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Abstract

We study the asymptotic error of score-based
diffusion model sampling in large-sample sce-
narios from a non-parametric statistics perspec-
tive. We show that a kernel-based score esti-
mator achieves an optimal mean square error of
Õ
(
n−1t−

d+2
2 (t

d
2 ∨ 1)

)
for the score function of

p0 ∗ N (0, tId), where n and d represent the sam-
ple size and the dimension, t is bounded above
and below by polynomials of n, and p0 is an
arbitrary sub-Gaussian distribution. As a con-
sequence, this yields an Õ

(
n−1/2t−

d
4

)
upper

bound for the total variation error of the distri-
bution of the sample generated by the diffusion
model under a mere sub-Gaussian assumption.
If in addition, p0 belongs to the nonparametric
family of the β-Sobolev space with β ≤ 2, by
adopting an early stopping strategy, we obtain
that the diffusion model is nearly (up to log fac-
tors) minimax optimal. This removes the crucial
lower bound assumption on p0 in previous proofs
of the minimax optimality of the diffusion model
for nonparametric families.

1. Introduction
Diffusion models have emerged as a powerful tool of gen-
erative models, demonstrating exceptional performance in
a wide range of applications. Pioneering work by Ho et al.
(2020) and Dhariwal & Nichol (2021) contributed to the
development of image generation. Recent advances have
demonstrated the effectiveness of diffusion models in a va-
riety of domains, as exemplified by state-of-the-art results
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in image and text generation (Ramesh et al., 2022; Nichol
et al., 2022), text-to-speech synthesis (Jeong et al., 2021;
Popov et al., 2021; Huang et al., 2022), and molecular struc-
ture modeling (Xu et al., 2023; Hua et al., 2023). Their
reach has extended to scientific fields such as neuroscience
(Pinaya et al., 2022) and materials science (Manica et al.,
2023).

Score-based generative modeling, a specific family of diffu-
sion modeling, uses learned score functions (i.e., gradients
of the log probability density functions) to transform white
noise into the target data distribution via solving a stochastic
differential equation. More specifically, the forward process
converts samples drawn from a data distribution, denoted
as p0 (such as natural images), into complete noise, while
the reverse process effectively reverts complete noise back
into samples from p0. Implementing the reverse process
requires approximating the score function, a task typically
accomplished through training neural networks using a score
matching objective, as seen in prior work such as Hyvärinen
& Dayan (2005), Vincent (2011) and Song & Ermon (2019).
While the score-based generative model has demonstrated
remarkable performance in numerous applications, there
remain gaps in our theoretical understanding.

From a statistical perspective, score-based diffusion model
can be framed as the estimation of an unknown distribution
from random samples. Any inaccuracies in score estimation
introduce errors into the subsequent diffusion process. This
naturally leads to the following question:

Consider viewing the score-based diffusion model as an
algorithm designed to generate samples from an unknown
distribution, using information from finite training samples
generated by the forward process. Under what conditions
does this algorithm attain statistically optimal error rate for
a given training sample size?

The total error in the sample distribution generated by a
diffusion model can be approximately attributed to three
components: the error stemming from approximating the
true score, the discretization error incurred when discretiz-
ing stochastic differential equations, and the error arising
from the convergence of the forward process (reflecting the
deviation between the initial distribution of the reverse pro-
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cess and the standard Gaussian). Existing literature often
employs Pinsker’s inequality and Girsanov’s theorem to
bound the total variation distance between the true and ap-
proximate reverse processes, as seen in Chen et al. (2023b),
Chen et al. (2023a) and Benton et al. (2023).

However, existing results are limited in the following as-
pects:

Uniform-in-time assumption on score estimation error.
In Chen et al. (2023b) and other works such as Benton
et al. (2023), it is assumed that the distribution is arbitrary,
but there is a uniform (in time) i.e., uniformly over [0, T ]
upper bound on the score estimation error. The uniform
upper bound assumption fails to capture the observation
in practice that the score error typically decreases in time,
due to the smoothing effect of the Gaussian kernel (see
our numerical experiment in Appendix B). Therefore, the
bound in Chen et al. (2023b) is not sharp enough to yield the
minimax optimal rate. They also did not discuss a natural
question in large sample scenarios: the relationship between
estimation error and sample size n.

Strong assumptions on the true data distribution. By
making an assumption on the data distribution class, it is
sometimes possible to resolve the above issue by character-
izing the decay of the score error in time. For example, Oko
et al. (2023) derived an estimation error bound for the Besov
class of density function, showing that the diffusion model is
minimax as long as the distribution satisfies a density lower
bound on its support. The density lower bound greatly
simplifies the proof of the score estimation error bound;
however, it excludes natural distribution classes, such as
multi-modal distributions or mixtures with well-separated
components. In fact, under the compact support and the
density lower bound assumption in Oko et al. (2023), we
can deduce that the true density satisfies the log-Sobolev
inequality (LSI) by the Holley-Stroock perturbation princi-
ple (Holley & Stroock, 1987). It is known that under LSI,
running the Langevin dynamics is sufficient for achieving
statistical efficiency (Koehler et al., 2022), while the dif-
fusion model is expected to achieve efficiency for a wider
class of distributions, by introducing a class of smoothed
distributions. In this regard, the theory of Oko et al. (2023)
has not uncovered the true strength of the diffusion model.
This paper uses a different proof technique than Oko et al.
(2023) and does not have this limitation.

Comparing the above two lines of work, it might seem that
a strong distribution assumption is a price we need to pay
for deriving sharp bounds for settings where the score error
is not uniform in time (such as the nonparametric class). In
this paper, we show that, perhaps surprisingly, we can derive
a general sampling error bound only using a Sub-Gaussian
assumption, which, when specialized to the nonparamet-
ric class (without the density lower bound assumption), is

nearly (up to polylog factors) minimax optimal.

1.1. Main Contributions

In this paper, we derive a time-dependent error bound for
the score function st(x) = ∇ log pt(x) (see Theorem 3.5).
Utilizing the error bound for the score function, we are able
to control the total variation distance between the true data
distribution p0 and the distribution of a sample from the dif-
fusion model as described in Algorithm 1. Our main results
only require the first or both of the following assumptions
on the ground true data distribution p0. We will make these
statements rigorous in Section 3.2.

A1 The true data distribution p0 is σ0-Sub-Gaussian.

A2 The true data distribution p0 belongs to the Sobolev
class of density functions with the order of smoothness
β ≤ 2.

In particular, under A1 and A2, we show that the error in
the distribution of the sample generated by the diffusion
model coincides with the classical minimax optimal conver-
gence rate of density estimation in nonparametric statistics
(Tsybakov, 2009). This rate cannot be improved, since sam-
pling error upper bounds the density estimation error. We
summarize our main result informally as follows:

Theorem 1.1 (Informal; see Theorem 3.5 and Theorem 3.8).
Suppose that p0 satisfies assumption A1, and C > 0 is
arbitrary. There exists a score estimator ŝt(x) (t > t0) such
that for the early stopping time t0 = n−C , The distribution
of sample from Algorithm 1 differs from pt0 by at most
polylog(n)n−1/2t0

− d
4 in the total variation (TV) distance,

where pt0 denotes the distribution of the forward process
at time t0. Furthermore, if p0 also fulfils A2, by choosing
t0 = n−

2
2β+d , the distribution of the output sample differs

from p0 by at most polylog(n)n−
β

2β+d in TV.

In previous studies, several restrictive assumptions were
made to construct minimax optimal score estimators for
diffusion models. One of the key assumptions is that p0 has
compact support and whose density is bounded from below
(Oko et al., 2023). As alluded to before, these assumptions
are strong enough to guarantee LSI and hence fail to unveil
the key advantage of the diffusion model over the Langevin
dynamics (Koehler et al., 2022). It is not at all obvious that
the density lower bound assumption can be removed without
impairing the convergence rate; in fact, in some examples
of nonparametric statistics, such as density estimation under
Wasserstein error, the minimax rate can indeed get worse
without the density lower bound assumption (Niles-Weed &
Berthet, 2022).

In this work, we employ a truncated version of the score
estimator similar to that of Zhang (1997) in the context of
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empirical Bayes, but with more refined analysis to control
the error in the regime of polynomially small t. More pre-
cisely, we note that st(x) = ∇pt(x)/pt(x), and estimate
the numerator and the denominator by carefully constructed
kernel density estimators. We define the truncated score
estimator by

ŝt(x) :=
∇p̂t(x)
p̂t(x)

1{p̂t(x)>ρn} (1)

where p̂t(x) is a kernel density estimator of original data
distribution pt(x) [see Appendix C.1 for details about prop-
erties of the kernel needed and proof of its existence]. We
set our score estimator ŝt(x) to be zero when the kernel
density estimator p̂t(x) is less than ρn, where ρn := 1

ntd/2

is a parameter decaying at the same rate as MSE of p̂t. If
p̂t(x) is larger than ρn, the MSE for ∇p̂t(x) is proportional
to pt(x) (Proposition 4.1), so that pt(x)MSE(ŝt(x)) ≈
MSE(∇p̂t(x))/pt(x) is unaffected by the lower density. If
p̂t(x) is smaller than ρn, there will be too few observations
near x, and we cannot show that MSE[∇p̂t(x)] is propor-
tional to pt(x) via Bernstein’s concentration; however, the
sub-Gaussian assumption ensures that the contribution to
the mean square score estimation error from this case is
exactly bounded at the level of the minimax rate. See Sec-
tion 3.3 for details on the convergence of our truncated score
estimator.

To summarize, we provide a convergence guarantee for the
diffusion model in the sense of total variation (TV) distance
under mild assumptions on the true distribution p0. Our
main results Corollary 3.7 and Theorem 3.8, obtain a con-
vergence rate of n−

β
2β+d polylog(n) for sampling from p0

using the score-based diffusion model, which matches the
minimax optimal rate in the classical nonparametric esti-
mation theory (Tsybakov, 2009) up to logarithmic factors.
While the recent work of Oko et al. (2023) showed a similar
minimax optimality result, they made the restrictive assump-
tions that the data distribution p0 has bounded support and
a density lower bounded, i.e., p0(x) > C for some con-
stant C. Here we relax the compact support assumption to
sub-Gaussianity and completely remove the density lower
bound.

1.2. Prior Works

Regarding the theoretical convergence results of score-based
generative models, previous works, such as Benton et al.
(2023), Chen et al. (2023a), Chen et al. (2023b), and Lee
et al. (2023), often assume an oracle score estimator with
bounded error, without explicitly touching on the issue of
the statistical error of the score estimator for finite samples.
For example, in Chen et al. (2023b) it is assumed that their

exists some estimator sθ satisfying a uniform in time bound

Eqtk (x)[∥∇ log qT−tk(x)− sθ(x, T − tk)∥2] ≤ ε2score,

(2)

where tk are the time discretization points, and showed that
the resulting reverse diffusion process produces a sample
with error roughly the order of εscore. It is still not clear
whether such sθ exists, or if the uniform in time assump-
tion (2) is valid, in specific settings. In contrast, our study
incorporates the statistical error in score estimation, by ap-
plying a (refined) truncated score estimator similar to the
one in Zhang (1997). This provides a unique perspective for
analyzing score functions within the low-density regions.

Furthermore, the broader landscape of score-generative
models relies on a variety of assumptions regarding the
true distribution p0, as discussed in prior works including
Song et al. (2021b), Pidstrigach (2022), and De Bortoli
(2022). These studies assumed the true distribution p0 is
supported on a low dimensional manifold M ⊂ Rd, with a
smooth density relative to the manifold. De Bortoli (2022)
specifically highlight that, without further assumptions, the
generalization error exhibits exponential dependence on
both the diameter of M and the reciprocal of the desired
error margin. Further research in this domain, such as Block
et al. (2022), explored the convergence of score estimation
error and finite-sample bounds for sampling using Langevin
diffusion.

Another line of work imposes the restrictive assumption
of smoothness conditions such as a log-Sobolev Inequality
(LSI) for the true distribution p0, as discussed by Lee et al.
(2022), Wibisono & Yang (2022). These studies provide
insights into polynomial convergence guarantees for score
function estimation in TV distance under L2-accurate er-
ror. Building upon this, Chen et al. (2023b) and Lee et al.
(2023) have extended the analysis by removing the LSI as-
sumption, addressing the complexities of real-world data
distributions, although they still require smoothness condi-
tions and bounded support for the true distribution.

Closer to our line of work are the results of Oko et al. (2023),
which provides a theoretical analysis of approximation and
generalization abilities of score-based diffusion modeling
under Besov function spaces and other specific assump-
tions, such as the true distribution being supported on a
bounded domain and having a density lower bound. They
gave an upper bound for the total generalization error of
n−

2s
d+2s log18 n for the score network estimation, which

matches the optimal convergence rate in the nonparametric
function class setting up to logarithmic factors. Consider-
ing the neural network architecture’s covering number, they
minimized the empirical score-matching error.

After we finalized our manuscript, we noted a concurrent
work by Wibisono et al. (2024) shares similarities with our
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work. They constructed a regularized version of the score
estimator

ŝϵh(x) :=
∇p̂h(x)

max (p̂h(x), ϵ)
,

where p̂h(x) is the kernel density estimator with the Gaus-
sian kernel. Using this estimator, they achieved an optimal
rate of Õ(n−

2
d+4 ) for estimating the score function of an

unknown probability distribution that is sub-Gaussian and
has score function that is Lipschitz-continuous.

1.3. Organization

The rest of the paper is organized as follows. In Section 2,
we establish the background of score-based generative mod-
els in our settings, detailing the necessary notations and
assumptions. Section 3 presents our main results concern-
ing the estimation error of the score function (over time t),
and the bound for the TV distance between the data distribu-
tion and the distribution of sample from the diffusion model
in Algorithm 1. Section 4 provides proof overviews for the
theorems in Section 3. We provide some discussions of this
paper in Section 5. Finally, we briefly summarize our main
findings in Section 6.

2. Background
2.1. Forward and Backward Processes

Forward Process. Given the ground truth data distribution
p0, a forward process (Xt)t∈[0,T ] is defined as the solution
for the following Itô SDE:

dXt = F (Xt, t)dt+ g(t)dBt, X0 ∼ p0, (3)

where F (·, t) : Rd → Rd is a vector-valued function called
the drift coefficient, g(t) : R → R is a scalar function called
the diffusion coefficient, and (Bt)t∈[0,T ] denotes a standard
Brownian motion.

In this paper, we focus on the case of Brownian motion
process,

dXt = dBt, X0 ∼ p0, (4)

which is a special case of (3). In this example the drift
term F (·, t) = 0 and the diffusion coefficient is a constant
g(t) = 1. This SDE has an explicit solution

Xt = X0 +
√
tZ. Z ∼ N (0, Id) ⊥⊥ X0 . (5)

Then we have

Xt|X0 ∼ N (X0, t Id). (6)

Note that if we perturb our original data X0 with Gaussian
noise BT for a large enough time T , the marginal distribu-
tion of XT will have only a weak dependence on X0 and
will be approximately Gaussian distributed. We hereafter

denote by pt(x) the probability density function of Xt in
(5).

Reverse Process for Sample Generation. If we reverse
the diffusion process (3) in time, we can generate new sam-
ples from p0. Importantly, denotes Y t = XT−t, where
(Xt)t∈[0,T ] is a solution to the SDE in (3), then (Y t)t∈[0,T ]

satisfies:

dY t =
[
−F (Y t, T − t) + g2(t)∇ log pT−t(Y t)

]
dt

+ g(t)dBt, Y 0 = XT ∼ pT , (7)

where (Bt)t∈[0,T ] is another independent standard Brown-
ian motion. Here, ∇ log pt(x) is called the score function
for pt. If we run the process (7) with Y 0 ∼ pT , then
Y T ∼ p0 and we obtain a sample from the true data distri-
bution. Setting F (·, t) = 0 and g(t) = 1, the corresponding
reverse SDE for the Brownian motion process (4) is

dY t = ∇ log pT−t(Y t)dt+dBt, Y 0 = XT ∼ pT . (8)

To compute the reverse SDE, we need to construct an es-
timator ŝt(x) for the score function ∇ log pt(x) from the
dataset {xi}ni=1. The score error (SE) (Song et al., 2021c)
for the estimator ŝt(x) is defined as:

SE(ŝ) :=

∫
t∈[0,T ]

Ex∼pt
[
∥∇ log pt(x)− ŝt(x)∥22

]
dt.

(9)
The expectation of score error over the dataset
E{xi}n

i=1
[SE(ŝ)] can be used to evaluate the perfor-

mance of the proposed score estimator. Once we have an
estimator of the score function, we can plug it into the
reverse SDE and solve it to get a sample from the original
data distribution p0(x).

2.2. Sampling Method

In order to sample from the unknown distribution p0, in this
paper we utilize the Brownian diffusion process (Xt)t∈[0,T ]

as defined in (4) and the corresponding backward process
(Y t)t∈[0,T ] defined in (8). If we run the forward process
(Xt)t∈[0,T ] for a large enough time T , the distribution of
XT can be approximated as Gaussian. Suppose we obtain
an estimator ŝt for the score function ∇ log pt(x) from the
dataset {xi}ni=1, we can run the backward SDE starting
from Gaussian distribution with the unknown score function
replaced by the score estimator:

dŶ t = ŝT−t(Ŷ t)dt+ dBt, Ŷ 0 ∼ N (0, TId). (10)

To avoid learning the true score function, ∇ log p0(x),
which can lead to large score estimation errors due to low-
density regions in p0, we introduce an early stopping time
t0. Consequently, Ŷ T−t0 is a sample generated from the
model.
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Algorithm 1 Brownian diffusion model
1: Input: The score estimator ŝt, early stopping time t0,

and a large enough time T .
2: Sample z from N (0, TId).
3: Solve the backward SDE

dY t = ŝT−t(Y t)dt+ dBt

with Y 0 = z
4: Output: Y T−t0 , a sample generated from the model.

We summarize the diffusion model based on the Brownian
motion (5) in Algorithm 1. Note that discretizing the process
for solving reverse SDE is not included here. But in practice,
we need to use a discrete-time approximation for the process
of sampling (10). This problem has been discussed in many
previous works. For example, Chen et al. (2023b) in their
Theorem 2 addressed the L-Lipschitz regularity condition
on ∇ log qt for all t, based on the TV metric. Theorem 1 of
Chen et al. (2023a) also regarded the L Lipschitz condition,
to the Kullback–Leibler (KL) divergence metric, etc. A
recent work Benton et al. (2023) controlled the discretiza-
tion error more precisely of the reverse SDE, based on tools
from stochastic localization initially developed in El Alaoui
et al. (2022), Montanari (2023). Without the Lipschitz con-
tinuity condition, Oko et al. (2023) provided further insight
regarding this issue, while considering other assumptions,
including Besov spaces and density lower bounds.

2.3. Connections with Ornstein–Uhlenbeck Process

Many works on diffusion models utilize the Ornstein-
Uhlenbeck (OU) process rather than the Brownian motion
process described in (5). The OU process is a special case of
the Itô stochastic differential equation in (3), with drift func-
tion F (Xt, t) = −Xt and diffusion function g(t) =

√
2:

dXt = −Xtdt+
√
2dBt, X0 ∼ p0. (11)

The solution (Xt)t∈[0,T ] admits a closed form:

Xt = e−tX0 +
√
1− e−2tZ Z ∼ N (0, Id) ⊥⊥ X0 .

(12)
As stated previously in (5), the solution to the Brownian
motion process (Y t)t∈[0,T ] satisfies:

Y t = Y 0 +
√
tZ Z ∼ N (0, Id) ⊥⊥ Y 0. (13)

If we set X0 = Y 0 and make the time transformation
t = e2s − 1, then it follows that esXs

d
= Y t. Therefore,

the Ornstein-Uhlenbeck process can be viewed as a time
transformation and scaled version of the Brownian motion
process. For the analysis in this paper, we will utilize the
Brownian motion process given in (5). The results can then
be generalized to the Ornstein-Uhlenbeck process due to the
equivalence of these two processes.

3. Main Results
In this section, we present our main results of score esti-
mation error bound and the optimal convergence rate for
diffusion models.

3.1. Notation

Here we outline notations and definitions used throughout
the paper (see details in Appendix A). p0 : Rd → R repre-
sents the true data distribution’s density, with pt(x) := p0 ∗
ϕt(x) (convolution with Gaussian density ϕt of N (0, tId)).
The term “polylog” refers to polylog(n) := (log n)C for
some constant C.

The Fourier transform of function f is given by:

F [f ](ω) =

∫
Rd

f(x)e−i⟨ω,x⟩dx,

where ⟨ω, x⟩ is the inner product of ω and x in Rd. For
multi-index α and a vector ω, ωα :=

∏d
i=1 w

αi
i . We use

TV (p, q) to denote the total variation distance between two
probability distributions p and q. Similarly, DKL(p∥q) de-
notes KL divergence.

3.2. Assumptions

In this subsection, we will introduce the assumptions that
are imposed on the true data distribution p0 in our analysis.
Roughly speaking, the data distribution is assumed to be
sub-Gaussian and in the Sobolev class of densities.
Assumption 3.1. The true distribution p0 is σ0-Sub-
Gaussian.

While the sub-Gaussian random variables in 1-dimension
have been well-studied, it is still necessary to clarify the
definition of a sub-Gaussian random vector in higher di-
mensions. A natural approach to define the Sub-Gaussian
distribution in higher dimensions is through the projections
onto lines.
Definition 3.2 (Sub-Gaussian random vectors, Vershynin
(2018)). A random vector X ∈ Rn is said to be Sub-
Gaussian if the one-dimensional marginals ⟨X, v⟩ are Sub-
Gaussian random variables for all v ∈ Rn. The Sub-
Gaussian norm of X is defined as

∥X∥ψ2 = sup
v∈Sn−1

∥⟨X, v⟩∥ψ2 , (14)

where Sn−1 is the unit sphere in Rd and the Orlicz norm
of random variable Y with respect to the function ψ2(x) =

ex
2 − 1 is defined as:

∥Y ∥ψ2
= inf

{
C > 0 : E

[
ψ2

(
|Y |
C

)]
≤ 1

}
. (15)

We say a random vector X ∈ Rd is σ-Sub-Gaussian if
σ := ∥X∥ψ2 <∞.
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Remark 3.3. The sub-Gaussian assumption is relatively
mild. It is well known that a Log-Sobolev inequality
(LSI) implies sub-gaussian decay of the tails (see Vershynin
(2018)), but the reverse implication is not true (consider
for example a distribution supported on the union of two
disjoint intervals). The LSI is a common assumption on
true data distribution in many prior works, such as Lee et al.
(2022); Wibisono & Yang (2022). In the work of Oko et al.
(2023), the true data distribution is assumed to have bounded
support and density bounded below, which implies the LSI
by the Holley-Stroock principle (Holley & Stroock, 1987).
However, the assumption that the true density is bounded
below is unrealistic in practice, as we would expect the true
data distribution to have many low-density regions. This
can lead to challenges in score estimation, as discussed in
Song & Ermon (2019).

As we will see in Theorem 3.5, it suffices to derive an
estimation error bound for the score function st(x) only
under Assumption 3.1. This in turn implies the minimax
optimal rate for the nonparametric class under the additional
Sobolev class assumption.

Assumption 3.4. The true distribution p0 belongs to the
Sobolev class of density (Tsybakov, 2009) with β ≤ 2.
Specifically, for β, L ∈ R+, the Sobolev class of density is
defined as followed:

PS(β, L) =
{
p ∈ L1(Rd) | p ≥ 0,

∫
p = 1,

∀α with
d∑
i=1

αi = β,

∫
|ωα|2|F [p](ω)|2 dω ≤ (2π)dL2

}
.

Note that instead of using the common definition of the
Sobolev class, this definition utilizes the Fourier transfor-
mation of the density p, thereby allowing each αi to take
values not only as integers but also as positive real numbers.

3.3. Analysis of Score Estimation Error

As illustrated in Section 2, the performance of the score-
based diffusion model of Algorithm 1 highly depends on
the estimation accuracy of the score function st(x) =
∇ log pt(x) at each time t ≥ t0. The following theorem
provides an upper bound for score estimation error. Notably,
the score estimation error decays as time increases, imply-
ing that adding sufficient noise to the samples makes the
score learning procedure easier.

Theorem 3.5. Denote the true score function st(x) :=
∇ log pt(x). Suppose that Assumption 3.1 holds. Then there
exists a score estimator ŝt(x) constructed from i.i.d samples
{xi}ni=1 ∼ p0 such that for any constants T1, T2 > 0, let

t0 := n−T1 and T := nT2 . Then for any t0 < t < T ,

E

[∫
x

∥ŝt(x)− st(x)∥2 pt(x) dx

]
≲ polylog(n)n−1t−

d+2
2

(
t
d
2 + σd0

)
, (16)

where ≲ hide the constant that does not depend on time t
and sample size n.

The formal proof can be found in Appendix D.1.
Remark 3.6. From this theorem, we can see that the use
of the early stopping technique is crucial for ensuring that
the analysis proceeds correctly. If we set t0 = 0, the upper
bound on the right-hand side in Theorem 3.5 would blow
up, resulting in a very large score estimation error. This is
because, without early stopping, the estimation error for the
score function ∇ log p0(x) at t = 0 would be excessively
high due to the low-density regions in p0. We can address
this issue by introducing an early stopping time t0. Properly
setting the early stopping time t0 is essential to achieve the
desired minimax rate, as will be shown in Corollary 3.7 and
Theorem 3.8.

After integrating over time in Theorem 3.5, we will get the
following result, and the proof is provided in Appendix D.2.
Corollary 3.7. Suppose that p0 satisfies Assumption 3.1,
and T1, T2 > 0 is arbitrary.

1. For t0 = n−T1 and T = nT2 , we have∫ T

t=t0

E
[ ∫

x

∥ŝt(x)− st(x)∥2 pt(x) dx
]
dt

≲ polylog(n)n−1t
−d/2
0 .

(17)

2. In particular, for any β > 0, let t0 = n−
2

2β+d and
T = nT2 , we have∫ T

t=t0

E
[ ∫

x

∥ŝt(x)− st(x)∥2 pt(x) dx
]
dt

≲ polylog(n)n−
2β

2β+d .

(18)

In the first part of Corollary 3.7, The upper bound for the
cumulative score error is given by n−1t

−d/2
0 , where t0 is

an early stopping time that can be freely chosen. Notably,
Corollary 3.7 does not impose any assumptions on p0 about
nonparametric class and requires only Sub-Gaussianity.
However, in the further analysis in Theorem 3.8 of the TV
error of the diffusion model, if we further assume that p0 is
in the Sobolev class of density with smoothness parameter β
(Assumption 3.4), setting t0 = n−

2
2β+d can adjust the error

bound to n−
2β

2β+d . Remark that if we choose t0 ≤ n−
2

2β+d

(as in (Oko et al., 2023)), then the optimal rate may no
longer be achieved in (18) without further assumptions such
as the density lower bound.
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3.4. Analysis of Estimation Error for Diffusion Model

In this section, we analyze the estimation error of the dif-
fusion model in Algorithm 1, based on the score estima-
tion error results from Section 3.3. The following theorem
concerns the bound of TV distance between the true data
distribution p0 and the samples generated by Algorithm 1.
Theorem 3.8. Suppose that Assumption 3.1 and Assump-
tion 3.4 holds. Let Ŷ T−t0 be the output of the diffusion
model in Algorithm 1 at time T − t0. Let t0 = n−

2
2β+d and

T = n
2β

2β+d , then there exists a score estimator ŝt such that

E
[
TV

(
X0, Ŷ T−t0

)]
≲ polylog(n)n−

β
2β+d . (19)

Remark 3.9. This sampling error rate coincides with the
classical minimax rate in nonparametric density estimation
(up to logarithmic factors) (Stone, 1980; 1982; Tsybakov,
2009), hence must be optimal. The sampling distribution
Ŷ T−t0 is considered minimax optimal because the sampling
error is lower-bounded by the estimation error. To see this,
suppose there exists a sampler Ẑ that produces samples with
a smaller TV distance E

[
TV

(
X0, Ẑ

)]
than the minimax

rate. We could then generate many independent samples
from Ẑ to construct a density estimator for p0 with an error
smaller than the minimax rate, leading to a contradiction.
Therefore, the sampling error cannot be smaller than the
density estimation error.
Remark 3.10. In the proof of Theorem 3.8 (see Sec-
tion 4.2), we only use the Sobolev class assumption (As-
sumption 3.4) when controlling the early stopping error
TV (X0,Xt0). Therefore, under only the sub-Gaussian
assumption, we can generalize this theorem to other non-
parametric classes, provided we can control the early stop-
ping error: TV (X0,Xt0). Using part 1 of Corollary 3.7 to
control the error of score estimation, the sampling error of
the diffusion model for a general sub-Gaussian p0 can be
bounded as follows:

E
[
TV

(
X0, Ŷ T−t0

)]
≲ inf

t0

(
TV (X0,Xt0) + polylog(n)n−1/2t

−d/4
0

)
.

In Theorem 3.8, under the Sobolev class assumption, the
desired rate is obtained by t0 = n−

2
2β+d .

4. Proof Overview
We now provide the proof sketches for Theorem 3.5 and
Theorem 3.8. Formal proofs are provided in Appendix D.1
and Appendix E, respectively.

4.1. Proof sketch of Theorem 3.5

Construction of the kernel score estimator. We first con-
struct the score estimator for proving Theorem 3.5. The

score function associated with perturbed data distribution
pt is st(x) = ∇ log pt(x) = ∇pt(x)

pt(x)
. It is natural to first

construct a density estimator p̂t(x) for pt(x), then use the
plug-in estimator ŝt(x) =

∇p̂t(x)
p̂t(x)

to estimate the score func-
tion. Here, we will use the kernel density estimator (KDE)
to estimate pt(x). Specifically, given samples Xi

i.i.d.∼ p0

and Zi,t
i.i.d.∼ N (0, tId), by definition of the forward process

in (4), Xt
i = Xi + Zi,t

i.i.d.∼ pt. Given a kernel Kd with
order ℓ ≥ 1 (Definition 1.3 of Tsybakov (2009), also see
Definition C.1) and with bounded support [−1, 1]d (we can
construct a kernel satisfying these properties using the Leg-
endre polynomials, see Lemma C.2 for details), the KDE
for pt(x) is defined as follows:

p̂t(x) =
1

nhd

n∑
i=1

Kd

(
x−Xt

i

h

)
,

where h is the bandwidth to be specified later. Naively esti-
mating the score by ∇p̂t(x)

p̂t(x)
would lead to poor performance

for x such that p̂t(x) is small. To avoid this issue, we intro-
duce the truncated version of the kernel score estimator: for
any time t, let the threshold be ρn := 1

ntd/2
. The truncated

kernel score estimator is defined as follows:

ŝt(x) :=
∇p̂t(x)
p̂t(x)

1{x : p̂t(x)≥ρn}. (20)

Mean Squared Error Analysis. The pointwise MSE for
p̂t(x) and ∇p̂t(x) are defined as follows:

MSE(p̂t(x)) := E
[
|p̂t(x)− pt(x)|2

]
,

MSE(∇p̂t(x)) := E
[
∥∇p̂t(x)−∇pt(x)∥2

]
.

We follow the common framework of bias-variance trade-
off Tsybakov (2009) with slight modifications, which allows
us to obtain a sharper bound that depends on the location
x. The result of MSE bounds for p̂t and ∇p̂t is summarized
in the following proposition, the proof can be found in
Appendix C.2.

Proposition 4.1 (See also Proposition C.3, C.4). If we take
the bandwidth h = C

√
t

logn for some constant C, and the
order of kernel ℓ = log n, then

MSE(p̂t(x)) ≲ polylog(n)
(
p∗t (x)

nt
d
2

+ (log n)− logn
)
,

MSE(∇p̂t(x)) ≲ polylog(n)
(
p∗t (x)

nt
d+2
2

+ (log n)− lognt−1
)
.

where p∗t (x) := sup∥λ∥∞<h pt(x+λ) is the local maximum
of the density function pt.

Remark 4.2. The bound for MSE depends on the point x,
dimension d, which allows us to obtain a sharper bound in
the low-density area of pt.
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With these results, we can proceed to derive the upper bound
(16) in Theorem 3.5. The main challenge is to control the er-
ror in low-density areas. To address this, we consider the fol-
lowing three cases. In the first case where pt(x) > ρn log

c n
for some constant c, the density is relatively high. Using the
concentration property of the KDE p̂t(x) (see Lemma F.6),
we find that with high probability, pt(x) and p̂t(x) will ap-
proximately have the same order. As a result, p̂t(x) > ρn,
which implies ŝt(x) =

∇p̂t(x)
p̂t(x)

. Then by triangle inequality
(See lemma D.1),

∥ŝt(x)− st(x)∥2 =

∥∥∥∥∇p̂t(x)p̂t(x)
− ∇pt(x)

pt(x)

∥∥∥∥2
≲

∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

(p̂t(x))2

Hence, the score error in (16) can be controlled using the
MSE results for p̂t(x) and ∇p̂t(x) from Proposition 4.1.

In case 2, we consider the lower density areas where
pt(x) < ρn log

−c n. With high probability, p̂t(x) < ρn
and therefore, ŝt(x) = 0. The score error in (16) is now∫

pt(x)<ρn log−c n

∥st(x)∥2pt(x)dx. (21)

This represents the expectation of the score function’s sec-
ond moment, restricted to the lower-density area. For any
integer m ≥ 1, Hölder’s inequality yields,

(21) ≤ (E [∥st(Xt)∥m])
2/m (P[p(Xt) ≤ ρn log

−c n]
)1− 2

m ,

where Xt ∼ pt. The moment of score can be bounded
using the result in Bobkov (2019) (See Lemma F.16), i.e.,
E [∥st(Xt)∥m] ≲ t−

m
2 . By Markov’s inequality, the second

term can be upper bounded in terms of the Rényi Entropy
(Rényi, 1961) of Xt. Combining this with the Rényi en-
tropy bound for the sub-Gaussian distribution we derive in
Appendix F.6, we obtain the desired result for case 2.

Finally, in case 3 where ρn log−c n < pt(x) < ρn log
c n,

we must consider both ŝt(x) ̸= 0 and ŝt(x) = 0, since
neither is guaranteed with high probability. However, since
pt has both lower bound and upper bound, we can thereby
apply the methods from both Case 1 and Case 2 to bound
this term. Combining three cases we can prove the result in
Theorem 3.5.

4.2. Proof sketch of Theorem 3.8

Here we sketch the proof of Theorem 3.8. Full details of the
proof of Theorem 3.8 can be found in Appendix E.

We first recall some notations defined in Section 2:

• The forward process in (4) is denoted by(Xt)t∈[0,T ]

and Xt ∼ pt;

• The backward process (8) is denoted by (Y t)t∈[0,T ]

and by definition, Y t ∼ pT−t;

• The process of Algorithm 1 is denoted by (Ŷ t)t∈[0,T ].

Let (Ȳ t)t∈[0,T ] be (Ŷ t)t∈[0,T ] replacing Ŷ 0 ∼ N (0, TId)
by Ȳ 0 ∼ pT , i.e., (Ȳ t)t∈[0,T ] satisfies:

dȲ t = ŝT−t(Ȳ t)dt+ dBt, Ȳ 0 ∼ pT .

Using triangle inequality of TV distance,

E[TV(X0, Ŷ T−t0)] ≤ TV(X0,Xt0)

+ E[TV(Y T−t0 , Ȳ T−t0)] + TV(XT ,N (0, TId)).

Therefore, it suffices to control three errors: the error from
early stopping: TV (X0,Xt0), the error from score esti-
mation: E

[
TV

(
Y T−t0 , Ȳ T−t0

)]
, and the error from the

initialization of backward process: TV (XT ,N (0, TId)).

Controlling the error from early stopping. Using stan-
dard Fourier analysis and tail bound for Sub-Gaussian dis-
tribution, the error TV (X0,Xt0) can be controlled by the
following theorem.

Theorem 4.3 (See also Theorem E.1). Under Assump-
tion 3.1 and Assumption 3.4, let t0 = n−

2
2β+d and pt0 =

p0 ∗ Φt0 , where Φt is the density of Gaussian distribution
N (0, tId) and ∗ denote the convolution operator, then there
exists a constant C that depends on p0, β, L and dimension
d such that

TV (p0, pt0) ≤ C polylog(n)n−
β

2β+d .

The proof can be found in Appendix E.1. This theorem
shows that for the density p0 belonging to the Sobolev class
of order β ≤ 2 (this is the only part of the argument requir-
ing β ≤ 2), by setting the early stopping time t0 exactly the
same as that in Corollary 3.7, the TV distance between the
true data distribution X0 ∼ p0 and the perturbed distribu-
tion X0 +Bt0 ∼ pt0 will not exceed the minimax optimal
rate of convergence n−

β
2β+d .

Girsanov’s theorem for controlling the score error. The
application of Girsanov’s Theorem in analyzing the con-
vergence of diffusion models has been explored in sev-
eral studies, see Song et al. (2021a); Chen et al. (2023b);
Oko et al. (2023). In our analysis, we replaced the un-
known drift term of the process (Y t)t∈[0,T−t0] by our ker-
nel score estimator ŝt(x), resulting in the new process
(Ȳ t)t∈[0,T−t0]. By Pinsker’s inequality and data process-
ing inequality, TV

(
Y T−t0 , Ȳ T−t0

)
≲
√
DKL (PY ∥PȲ ),

where PY and PȲ are path measure for (Y t)t∈[0,T−t0] and
(Ȳ t)t∈[0,T−t0], accordingly. Girsanov’s theorem (detailed
in Appendix E.2) shows that the KL divergence between the

8
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path measures is bounded by the accumulated score error
over time t, which can be bounded using Corollary 3.7, i.e.,

E [DKL (PY ∥PȲ )]

≲
∫ T

t0

E
[∫

x∈Rd

∥ŝt(x)−∇ log pt(x)∥2 pt(x)dx
]
dt

≲ polylog(n)n−
2β

2β+d .

Error from Initialization. Similar to the Exponential con-
vergence of the Ornstein–Ulhenbeck process (Bakry et al.,
2014), we show that the Brownian diffusion process in (4)
is close to Gaussian distribution in KL divergence for large
enough time T :

DKL (XT ∥N (0, TId)) ≲
1

T
.

Consequently, by applying Pinsker’s inequality, the initial-
ization error TV (XT ,N (0, TId)) has polynomial decay
rate of n−

β
2β+d for T ≥ n

2β
2β+d .

5. Discussions
Discretization error. In the analysis of Section 3.4, we
assume it is possible to solve the approximated backward
SDE (10) in Algorithm 1. However, in practical scenar-
ios, solving the backward SDE (10) directly is infeasible.
Therefore, we need to apply numerical SDE solvers such as
Euler-Maruyama discretization to approximate a solution.

Specifically, to discretize the SDE in (10), consider the grid
points 0 = t1 < . . . < tN = T − t0 and define the step size
γk = tk+1 − tk. We then consider the following process:
Let Ŷ 0 ∼ N (0, TId), and for t in each intervals [tk, tk+1],
define Ŷ t via the following SDE:

dŶ t = ŝT−tk(Ŷ tk)dt+ dBt, for t ∈ [tk, tk+1]. (22)

This is equivalent to the following iterative process:

Ŷ tk+1
= Ŷ tk + γkŝT−tk(Ŷ tk) +

√
γkzk

for k = 0, . . . N − 1, where zk ∼ N (0, Id).

This approximation introduces an extra discretization error
in the convergence analysis of the diffusion model in Theo-
rem 3.8. According to Theorem 2.2 of Chen et al. (2023a),
when the data distribution p0 has finite second moment,
which is satisfied under our Sub-Gaussian assumption, the
discretization error can be bounded by

d2
N−1∑
k=0

γ2k+1

t2k
. (23)

Therefore, by taking a constant step size tk = t0 + kh,
the discretization error in (23) scales as h2

∫ T
t0

1
t2 dt =

h2
(

1
t0

− 1
T

)
. In our setting, t0 and T are both polynomial

functions of n, the discretization error becomes negligible
if we set h ≍ n−C for a sufficiently large constant C > 0.

Since discretization is not the main focus of our paper, we
refer the reader to Theorem 2.2 of Chen et al. (2023a) for a
more detailed discussion.

Future works. In practice, instead of directly applying
kernel density estimation, the unknown score function is
often learned through empirical risk minimization of a cer-
tain class of neural networks using score matching. We
conclude this paper with two possible avenues for further
research. First, it is worth investigating whether a neural
network-based score estimator can achieve a similar score
estimation error upper bound as described in Theorem 3.5.
Additionally, the estimation error of the diffusion model,
as described in Theorem 3.8, has been proven for β ≤ 2.
Future research could explore extending this proof to cases
where β > 2.

6. Conclusion
In this paper, we prove general upper bounds for the score
estimation error for Gaussian mixture distributions, under a
mild sub-Gaussian assumption for the unknown density, us-
ing a truncated version of the Kernel Density Estimator. Our
score error bound has optimal dependence on the sample
size and the variance component of the Gaussian mixture.
By applying the Girsanov theorem and adopting early stop-
ping, this implies sharp bounds on the sampling error in
the diffusion model. As a consequence, for the Sobolev
class of density functions, we demonstrate that the total
variation sampling error of the diffusion model matches the
minimax rate in nonparametric statistics (Stone, 1982; 1980;
Tsybakov, 2009). This removes crucial assumptions in sim-
ilar recent results on the minimax optimality of diffusion
models, such as the density lower bound.
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Minimax Optimality of Score-based Diffusion Models

A. Notation
Here is a more detailed summary of notations. p0 : Rd → R denotes the density function of true data distribution. For
any time t, we denote the probability distribution pt(x) := p0 ∗ ϕt(x) =

∫
p0(y)ϕt(x − y)dy, where ∗ represents the

convolution operator, and ϕt is the density function of Gaussian distribution N (0, tId). Let st(x) := ∇ log pt(x) denote
the (Stein) score function corresponding to the probability distribution pt(x) at time t.

The operations ∨ is defined as a ∨ b := max{a, b}. For any functions f and g, f(n) ≍ g(n) implies that there exist two
positive constants C1 and C2 such that C1g(n) ≤ f(n) ≤ C2g(n) for all n, f(n) = O(g(n)) indicates that there exists a
positive real number M and an integer n0 such that |f(n)| ≤ Mg(n) for all n ≥ n0, and f(n) = Ω(g(n)) implies there
exists a positive constant c and an integer n0 such that f(n) ≥ c · g(n) for all n ≥ n0. The symbols ≲ and ≳ denotes the
corresponding inequality up to a constant C. In the notations used here and throughout this paper, the implicit constants
(such as C1, C2, M and C here) may depend on p0 but not on t and n, unless otherwise indicated. Throughout the proofs,
the constant C, C1, C2, . . . are used to denote positive constants and their values may change from one line to another, but
are independent of everything else. We define poly(f(n)) := f(n)C for some positive constant C. For a set A ⊂ Rd, |A|
denotes its Lebesgue measure.

For a square-integrable function f : Rd → R, denote ∥f∥L2 :=
∫
x
f2(x)dx and ∥f∥∞ := supx |f(x)|. For a vector

x = (x1, . . . , xd) ∈ Rd, ∥x∥2 :=
√∑d

i=1 x
2
i and ∥x∥1 :=

∑n
i=1 |xi|. The ℓ∞ norm of a vector x ∈ Rd, is defined as

∥x∥∞ = max (|x1| , |x2| , . . . , |xd|). The total variation (TV) distance between to probability distribution p and q is defined
as TV(p, q) := 1

2

∫
|p(x)− q(x)| dx.

B. Numerical Results
For numerical experiments using real data, we firstly demonstrate the impracticality of the prior uniform-in-time assumption
in a real-world example by using 28×28 MNIST dataset. In this experiment, we use U-Net shaped score-net (Ronneberger
et al., 2015) as our estimator. Note that the finding in Figure 1(b) matches the conclusion in (Oko et al., 2023) regarding
the convergence rate for neural net estimators. Actually, the decay rate we showed in Figure 1(b) follows the results we
discussed in Theorem 3.5, i.e., the slope approximately matches the theoretical result where the index of t is − 3

2 .

The baselines include: (1) To represent the training procedure of the reverse process, we used score-based U-Net architecture
(Song et al., 2021c) to learn the score function, and (2) we apply a specific forward process, i.e., the Brownian diffusion
process, described in Section 2, Algorithm 1. Our training objective sθ(x, t) is a continuous weighted combination of Fisher

(a) 1-dimensional-MSE Convergence Rate (b) Log-Log 1-dimensional-MSE Convergence Rate V.S. Time

Figure 1. Convergence Rates

divergences, given by

Et∈U(0,T )Ept(x)
[
∥∇x log pt(x)− sθ(x, t)∥22

]
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Minimax Optimality of Score-based Diffusion Models

where U(0, T ) denotes a uniform distribution over the time interval [T1, 1], where T1 > 0 is any constant. After training a
convolutional neural network with a U-shaped architecture (known as U-Net), and applying the results to linear regression
as illustrated in Figure 1(b), we observe that the slope closely approximates the main result of the mean square error as
presented in Theorem 3.5, particularly when substituting d = 1 for relatively small values of t. Although the U-Net score
estimator differs from the kernel estimator in the proof of Theorem 3.5, the − 3

2 slope is the minimax rate that does not
depend on the choice of the score estimator.

C. Construction and Properties of the Kernel Score Estimator
In this section, we will study the properties of the kernel score estimator we defined in (20), i.e.,

ŝt(x) :=
∇p̂t(x)
p̂t(x)

1{x : p̂t(x)≥ρn}(x).

C.1. Construction of Kernel Function

In this section we construct kernel with order ℓ ≥ 1 that are bounded, compactly supported in [−1, 1]d.

Definition C.1. (Tsybakov, 2009) Let ℓ ≥ 1 be an integer. A function Kd : Rd → R is a kernel of order ℓ if for any
multi-index α = (α1, α2, . . . , αd) with |α| = α1 + α2 + . . .+ αd ≤ ℓ, the mappings

x 7→ xαK(x)

are integrable and satisfy the following conditions:∫
Rd

K(x)dx = 1,∫
Rd

xαK(x)dx = 0, for all 1 ≤ |α| ≤ ℓ− 1,

there exists an α with |α| = ℓ such that
∫
Rd

xαK(x)dx ̸= 0.

Lemma C.2. For any positive integer ℓ, there exists kernel of order ℓ supported on [−1, 1]d, denoted as Kd(x) :=∏d
i=1K(xi) such that for any 1 ≤ i ≤ d and α ≤ ℓ,∫

[−1,1]d
Kd(x)dx = 1, ∥Kd∥L2 = O(ℓ

3d
2 ), ∥Kd∥∞ = O(ℓ

5d
2 ),

∫
[−1,1]

|K(xi)x
α
i | dxi = O

(
ℓ

5
2 /α

)
,

∫
[−1,1]

|K ′(xi)x
α
i |dx = O(ℓ

5
2 /α)

and
∥∥∇Kd(·)∥2∥L2 = O(

√
dℓ

3d
2 ), ∥(∇Kd(·))i∥∞ = O(ℓ

5d
2 ).

Proof. We first consider the d = 1 case. We can construct such kernel using Legendre polynomials: Denote by {Pn(x)}∞n=1

the Legendre polynomials. Define K by setting K(−∞) = 0 and

K ′(x) =

ℓ+1∑
i=0

aiPi(x),

where ai ̸= 0 only if i is odd. Since Pi is an odd function for odd i, by this construction we automatically have K(±1) = 0.
Then from the orthogonality properties of Legendre polynomials

ai =
2i+ 1

2

∫ 1

−1

K ′(x)Pi(x)dx.

13
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To ensure that K(x) is kernel of order ℓ, we need∫ 1

−1

K ′(x)dx = 0;∫ 1

−1

K ′(x)xdx = −
∫ 1

−1

K(x)dx = −1;∫ 1

−1

K ′(x)xkdx = −k
∫ 1

−1

K(x)xk−1dx = 0, k = 2, . . . , ℓ+ 1.

Note that these are ℓ+ 2 linear constraints, which uniquely determine {a0, . . . , aℓ+1}. (For this we need that the matrix
A, defined as A := {

∫ 1

−1
xiPj(x)dx}i,j=0,...,ℓ+1 which represents the coefficients of the system of linear equations, is

invertible. This is true because BA = {
∫ 1

−1
Pi(x)Pj(x)dx}i,j=0,...,ℓ+1 for some matrix B.) Therefore,

ai = −2i+ 1

2
[xi]Pi(x) = −2i+ 1

2
2ii

( i−1
2

i

)
,

where [xi]Pi(x) denotes the coefficients for xi in the polynomials Pi(x). Therefore,

|ai| = (2i+ 1)
((i)!!)

2

i!

≲ (2i+ 1)
2i
(
i
e

)i
√
2πi

(
i
e

)i
(
i!! ∼

√
2n

(
i

e

)i/2
and i! ∼

√
2πn

(
i

e

)i)
≲ (2i+ 1)

√
i.

Therefore,

∥K ′∥2L2 =

∫
K ′2(x)dx =

ℓ+1∑
i=0

2

2i+ 1
a2i ≲

ℓ+1∑
i=0

(2i+ 1)i = O(ℓ3),

∥K ′∥∞ ≤ ℓ+ 2

2
max |ai| = O(ℓ

5
2 ).

Last we consider
∫
|K ′(x)xα|dx.∫

[−1,1]

|K ′(x)xα|dx ≤ ∥K ′∥∞
∫
[−1,1]

|xα|dx ≤ O(ℓ5/2)
2

α+ 1
= O(ℓ5/2/α).

Next we consider the bounds for kernel K(x) = K(−1) +
∫ x
−1
K ′(t)dt =

∫ x
−1
K ′(t)dt.

∥K∥2L2 =

∫
K2(x)dx

=

∫ (∫ x

−1

K ′(t)dt

)2

dx

≤
∫ ∫ x

−1

K ′(t)2dtdx

≤ 2∥K ′∥2

= O(ℓ3),

∥K∥∞ = sup
x∈[−1,1]

∣∣∣∣∫ x

−1

K ′(t)dt

∣∣∣∣ ≤ 2∥K ′∥∞ = O(ℓ
5
2 ).

Finally, ∫
[−1,1]

|K(xi)x
α
i | dxi ≤ ∥K∥∞

∫
[−1,1]

|xα| dx = O(ℓ5/2/α).

14
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In general, for x = (x1, . . . , xd) ∈ Rd, let

Kd(x) :=

d∏
j=1

K (xj) , (∇Kd(x))j = K ′ (xj)
∏
i̸=j

K (xi) .

Using the above result in 1-dimension, we can directly find that

∥Kd∥L2 = O(ℓ
3d
2 ), ∥Kd∥∞ = O(ℓ

5d
2 )

and ∫
[−1,1]d

∣∣Kd(x)x
ℓ
j

∣∣ dx ≤ ∥K∥d−1
∞

∫
[−1,1]

∣∣K(xj)x
ℓ
j

∣∣ dxj = O
(
ℓ

5d−2
2

)
, for any 1 ≤ j ≤ d.

Besides,

∥∥∇Kd(·)∥2∥2L2 =

∫ d∑
i=1

(∇Kd(x))
2
i dx

=

d∑
i=1

∫ K ′ (xi)
∏
j ̸=i

K (xj)

2

dx

≤ d∥K ′∥2L2∥K∥2(d−1)
L2

= O(dℓ3d).

For any fixed i,

∥(∇Kd(·))i∥∞ ≤ ∥K ′∥∞∥K∥(d−1)
∞ = O(ℓ

5d
2 ).

C.2. Mean Squared Error Analysis

Intuitively, if both the gradient estimator ∇p̂t(x) and the density estimator ∇p̂t(x) are close to their respective true
values ∇pt(x) and pt(x), the kernel score estimator ŝt(x) defined in (20) should be also close to the true score function
st(x) =

∇pt(x)
pt(x)

. In this section, we study the mean squared errors (MSE) of p̂t(x) and ∇p̂t(x), and it will be shown in the
proof of Theorem 3.5 that these mean squared errors are the dominant part of the score error.

The MSE for p̂t(x) and ∇p̂t(x) are defined as follows:

MSE(p̂t(x)) := E
[
|p̂t(x)− pt(x)|2

]
,

MSE(∇p̂t(x)) := E
[
∥∇p̂t(x)−∇pt(x)∥2

]
.

We follow the common framework of bias-variance trade-off Tsybakov (2009) with slight modifications, which allows us to
obtain a sharper bound that depends on the location x.

Proposition C.3 (MSE for estimator p̂t). If we take the bandwidth h =
√
t

Dn
for some constant Dn that depends on n, then

there exists a constant C2 that depend on p0 and d, such that the MSE for p̂t(x) satisfies

MSE(p̂t(x)) ≤ C2

(
Dd
n ℓ

3d

nt
d
2

p∗t (x) +

(
Dn

de

)−2ℓ

ℓ−ℓ+5d− 1
2

)
,

where ℓ is the order of kernel defined in Theorem C.2, p∗t (x) := sup∥λ∥∞<h pt(x+λ). In particular, if we take ℓ = Ω(log n)

and Dn = C∗√log n, for some constant C∗ > de, we have

MSE(p̂t(x)) ≤ C2 polylog(n)

(
p∗t (x)

nt
d
2

+ (log n)− logn

)
.

15
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Proof. By the Bias-Variance trade-off, we have

MSE(p̂t(x)) = σ2(x) + b(x)2,

where
σ2(x) = E

[
|p̂t(x)− E[p̂t(x)]|2

]
, b(x) = E [p̂t(x)]− pt(x).

We first analyze the variance term σ2(x). Denote

ηi(x) = Kd

(
x−Xt

i

h

)
− E

[
Kd

(
x−Xt

i

h

)]
,

where Xt
i ∼ pt be the i-th observation at specific time point t. Then we have

E
[
η2i (x)

]
≤ E

[
K2
d

(
x−Xt

i

h

)]
=

∫
Rd

K2
d

(
x− y

h

)
pt(y) dy

= hd
∫
[−1,1]d

K2
d(z)pt(x− hz)dz

≤ hd p∗t (x)

∫
[−1,1]d

K2
d(z)dz,

where
p∗t (x) := sup

∥λ∥∞≤h
pt(x+ λ).

Therefore, since ηi(x) are independent and Eηi(x) = 0,

σ2(x) = E

( 1

nhd

n∑
i=1

ηi(x)

)2
 =

1

nh2d
E
[
η21(x)

]
≤ p∗t (x)

nhd

∫
K2
d(z)dz ≲

ℓ3d p∗t (x)

nhd
,

where in the last inequality we use the result in Lemma C.2. Taking h =
√
t

Dn
, we get

σ2(x) ≲
ℓ3dDd

n p
∗
t (x)

ntd/2
. (24)

Next we consider the bias b(x):

b(x) =
1

nhd
E

[
n∑
i=1

Kd

(
x−Xt

i

h

)]
− pt(x)

=
1

hd

∫
Rd

Kd

(
x− z

h

)
pt(z)dz − pt(x)

=

∫
Rd

Kd (−u) [pt(x+ uh)− pt(x)]du.

Using the Multivariate version of Taylor’s Theorem (Folland, 2005), we have

pt(x+ uh) = pt(x) +
∑
|α|=1

Dαpt(x)

α!
(uh)α + · · ·+

∑
|α|=ℓ

Dαpt(x+ τuh)

α!
(uh)α

for some τ ∈ [0, 1], where we use the multi-index notation,

|α| = α1 + · · ·+ αd = ℓ, uα =

d∏
i=1

uαi
i , α! =

d∏
i=1

αi!.

16
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Using the definition of kernel of order ℓ,
∫
Kd(−u)du = 1 and

∫
uαKd(u)du = 0 for |α| ≤ β − 1, we have

|b(x)| =

∣∣∣∣∣∣
∑
|α|=ℓ

∫
Rd

Kd(−u) (Dαpt(x+ τuh))
(uh)α

α!
du

∣∣∣∣∣∣
≤ hℓ

∑
|α|=ℓ

∫
Rd

∣∣∣∣Kd(−u) (Dαpt(x+ τuh))
uα

α!

∣∣∣∣ du
≤ hℓ

∑
|α|=ℓ

∫
Rd

∣∣∣∣Kd(−u)
uα

α!

∣∣∣∣ du (sup
x

|Dαpt(x)|
)
.

By Proposition F.4, we have
sup
x

|Dαpt(x)| ≤ Cd1∥p0∥∞ℓ
ℓ
2+

1
4 t−ℓ/2.

Using the property of the kernel Kd in Lemma C.2,

∑
|α|=ℓ

∫
Rd

∣∣∣∣Kd(−u)
uα

α!

∣∣∣∣ du =
∑
|α|=ℓ

d∏
i=1

1

αi!

∫
R
|K(−ui)uαi

i | dui

≲
∑
|α|=ℓ

d∏
i=1

1

αi!

ℓ5/2

αi

≤ ℓ5d/2
∑
|α|=ℓ

1

α!

= ℓ5d/2
dℓ

ℓ!
.

Here in the last equality, we use the following multinomial theorem with xi = 1 for all i = 1, . . . , d:(
d∑
i=1

xi

)ℓ
=
∑
|α|=ℓ

ℓ!

α!

d∏
i=1

xαi
i .

By Stirling’s approximation,

ℓ! >
√
2πℓ ℓℓe−ℓe

1
12ℓ+1 > ℓℓ+

1
2 e−ℓ.

Thus,

|b(x)| ≲ Cd1∥p0∥∞hℓ (de)ℓℓ−
ℓ
2+

5d
2 − 1

4 t−
ℓ
2 .

Take the bandwidth as h =
√
t

Dn
, we have:

|b(x)| ≲ Cd1∥p0∥∞
(
Dn

de

)−ℓ

ℓ−
ℓ
2+

5d
2 − 1

4 . (25)

Then the results follow by combining (24) and (25).

Proposition C.4 (MSE for estimator ∇p̂t). If we take the bandwidth h =
√
t

Dn
for some constant Dn that depends on n,

then there exists a constant C3, such that the MSE for ∇p̂t(x) satisfies

MSE(∇p̂t(x)) ≤ C3

(
ℓ

3d
2 Dd+2

n

nt
d+2
2

p∗t (x) +

(
Dn

de

)−2(ℓ−1)

ℓ−ℓ+5d− 1
2 t−1

)
,

where ℓ is the order of kernel defined in Lemma C.2, p∗t (x) := sup∥λ∥∞<h pt(x+ λ). In particular, if we take ℓ = log n

and Dn = C
√
log n for some constant C > de, we have

MSE(∇p̂t(x)) ≤ C3 polylog(n)

(
p∗t (x)

nt
d+2
2

+ (log n)− lognt−1

)
.
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Proof. We follow the same procedure above in Proposition C.3. The Bias-Variance trade-off reads

MSE(∇p̂t(x)) = σ2(x) + ∥b(x)∥2 ,

where
σ2(x) = E

[
∥∇p̂t(x)− E [∇p̂t(x)]∥2

]
, b(x) = E [∇p̂t(x)]−∇pt(x).

By definition, the kernel density estimation for the gradient ∇pt(x) is:

∇p̂t(x) =
1

nhd+1

n∑
i=1

∇Kd

(
x−Xt

i

h

)
,

where Xt
i stands for the i− th sample at time t. We first analyze the variance term σ2(x). Denote

ηi(x) := ∇Kd

(
x−Xt

i

h

)
− E

[
∇Kd

(
x−Xt

i

h

)]
,

Then, we get

E
[
∥ηi(x)∥2

]
≤ E

[∥∥∥∥∇Kd

(
x−Xt

i

h

)∥∥∥∥2
]

=

∫
Rd

∥∥∥∥∇Kd

(
x− y

h

)∥∥∥∥2 pt(y) dy
= hd

∫
[−1,1]d

∥∇Kd(u)∥2 pt(x− uh)du

≤ hd sup
∥λ∥∞<h

pt(x+ λ)

∫
[−1,1]d

∥∇Kd(u)∥2 du

≲ hdp∗t (x) dℓ
3d
2 ,

where in the last inequality we use the result in Lemma C.2. Therefore, since ηi(x) are independent and Eηi(x) = 0, we
have

σ2(x) = E

∥∥∥∥∥ 1

nhd+1

n∑
i=1

ηi(x)

∥∥∥∥∥
2
 =

1

nh2d+2
E
[
η21(x)

]
≲

dℓ
3d
2

nhd+2
p∗t (x).

Then, if we take h =
√
t

Dn
, then

σ2(x) ≲
dℓ

3d
2 Dd+2

n

nt
d+2
2

p∗t (x). (26)

Next, we consider the bias term b(x),

b(x) =
1

nhd+1
E

[
n∑
i=1

∇Kd

(
x−Xi

h

)]
−∇pt(x)

=
1

hd+1

∫
Rd

∇Kd

(
x− y

h

)
p(y)dy −∇pt(x)

=
1

h

∫
Rd

∇Kd (−u) p(x+ uh)du−∇pt(x).

We consider the first coordinate of b(x):

b1(x) :=
1

h

∫
K ′(−u1)

d∏
j=2

K(−uj)pt(x1 + u1h, . . . , xd + udh)du1 . . . dud −
∂

∂x1
pt(x)

18
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By Multivariate version of Taylor’s Theorem Folland (2005), we have

pt(x+ uh) =
∑

|α|≤ℓ−1

Dαp(x)

α!
(uh)α +

∑
|α|=ℓ

Dαp(x+ τuh)

α!
(uh)α, for some τ ∈ [0, 1].

Using K(1) = K(−1) = 0,
∫
Kd(−u)du = 1,

∫
uℓKd(u)du = 0 for ℓ ≤ β − 1 and integration by parts, we have the first

coordinate of b(x):

|b1(x)| =
1

h

∣∣∣∣∣∣
∫ ∑

|α|=ℓ

(∇Kd(−u))1Dαp(x+ τuh)
(uh)α

α!
du

∣∣∣∣∣∣
≤ hℓ−1

∑
|α|=ℓ

∫
Rd

∣∣∣∣(∇Kd(−u))1 (Dαpt(x+ τuh))
uα

α!

∣∣∣∣ du
≤ hℓ−1

∑
|α|=ℓ

∫
Rd

∣∣∣∣(∇Kd(−u))1
uα

α!

∣∣∣∣ du (sup
x

|Dαpt(x)|
)
.

By Lemma F.4,

sup
x

|Dαpt(x)| ≤ Cd1∥p0∥∞ℓ
ℓ
2+

1
4 t−ℓ/2.

Using the property of the kernel ∇Kd in Lemma C.2 and multinomial theorem, we have

∑
|α|=ℓ

∫
Rd

∣∣∣∣(∇Kd(−u))1
uα

α!

∣∣∣∣ du =
∑
|α|=ℓ

[(
1

α1!

∫
R
|K ′(−u1)uα1

1 | du1
) d∏
i=2

1

αi!

∫
R
|K(−ui)uαi

i | dui

]

≲
∑
|α|=ℓ

d∏
i=1

1

αi!

ℓ5/2

αi

≤ ℓ5d/2
∑
|α|=ℓ

1

α!

= ℓ5d/2
dℓ

ℓ!
.

By Stirling’s approximation,

ℓ! >
√
2πℓ ℓℓe−ℓe

1
12ℓ+1 > ℓℓ+

1
2 e−ℓ.

Thus,

|b1(x)| ≲ Cd1∥p0∥∞hℓ−1 (de)ℓℓ−
ℓ
2+

5d
2 − 1

4 t−
ℓ
2 .

Taking the bandwidth as h =
√
t

Dn
, we have:

|b1(x)| ≲ Cd1∥p0∥∞de
(
Dn

de

)−(ℓ−1)

ℓ−
ℓ
2+

5d
2 − 1

4 t−
1
2 ,

and then

∥b(x)∥2 ≤ |b1(x)|2 ≲ d2eC2d
1 ∥p0∥2∞

(
Dn

de

)−2(ℓ−1)

ℓ−ℓ+5d− 1
2 t−1. (27)

Finally, The results follow by combining (26) and (27).
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D. Proof of Estimation Error for Score Function
D.1. Proof of Theorem 3.5

The proof of our main result begins with a discussion of the estimation of the target total error term. Using the kernel score
estimator we constructed in Appendix C, i.e.,

ŝt(x) :=
∇p̂t(x)
p̂t(x)

1p̂t(x)>ρn ,

the following proposition shows that the score error ∥ŝt(x)− st(x)∥2 can be decomposed into two components: the error
of the gradient estimator ∇p̂t(x) and the error of the density estimator p̂t(x). Therefore, it suffices to control the error of
∇p̂t(x) and p̂t(x).
Lemma D.1. For any t > 0, the score estimator defined in (20) satisfies∫

x

E
[
∥ŝt(x)− st(x)∥2

]
pt(x)dx

≤ 2

∫
x

E
[
∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

p̂t(x)2
1{p̂t(x)>ρn}

]
pt(x)dx

+

∫
x

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx.

Proof. If x is such that p̂t(x) > ρn, we have the decomposition

ŝt(x)− st(x) = ∇ log p̂t(x)−∇ log pt(x)

=
∇p̂t(x)
p̂t(x)

− ∇pt(x)
pt(x)

=
∇p̂t(x)pt(x)−∇pt(x)pt(x) +∇pt(x)pt(x)−∇pt(x)p̂t(x)

p̂t(x)pt(x)

=
∇p̂t(x)−∇pt(x) + st(x)(pt(x)− p̂t(x))

p̂t(x)
.

Therefore, ∫
x

E
[
∥ŝt(x)− st(x)∥21p̂t(x)>ρn

]
pt(x)dx

≤ 2

∫
x

E
[
∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

p̂t(x)2
1p̂t(x)>ρn

]
pt(x)dx.

On the other hand, if x is such that p̂t(x) ≤ ρn, we have ŝt(x) = 0. Therefore,∫
x

E
[
∥ŝt(x)− st(x)∥21{p̂t(x)≤ρn}

]
pt(x)dx =

∫
x

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx.

We further consider the score error in three cases, respectively. Recall that our score estimator is defined as

ŝt(x) :=
∇p̂t(x)
p̂t(x)

1p̂t(x)>ρn .

The key challenge is to control the error in low-density regions. We therefore consider the following three cases. Let
c > 4Cd + dT2 + 2 be a sufficiently large constant, where is a constant that only depends on the dimension d. In the
first case pt(x) > ρn log

c n, the density is relatively high, so as we will see in the following proof, with high probability,
pt(x) and p̂t(x) will have the same order and as a result, p̂t(x) > ρn, which implies that the first term in Lemma D.1 will
dominate. Whereas in case 2 we consider the lower density area pt(x) < ρn log

−c n, with high probability, p̂t(x) < ρn
and therefore, ŝt(x) = 0. Finally, in case 3 where ρn log−c n < pt(x) < ρn log

c n, we must consider both ŝt(x) ̸= 0 and
ŝt(x) = 0, since neither of them is guaranteed with high probability. In this case, we will apply the methods from both Case
1 and Case 2 to bound this term.
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D.1.1. CASE 1: pt(x) > ρn log
c n

Lemma D.2. For any time n−T1 < t < nT2 , and for any 0 < ε < 1, taking ρn = 1
n td/2

, the score error on the set

G1 := {x : pt(x) > ρn log
c n}

can be upper bounded by

E
[∫

G1

∥ŝt(x)− st(x)∥2pt(x)dx
]
≲ polylog(n)n−1t−

d+2
2 (t

d
2 + σd0) g1(n, ε),

where

g1(n, ε) := exp

(
1

ε log n

)
(ε)−1 nC1ε,

where C1 = 2+dT2

2 .

Remark D.3. We will take ε = log logn
logn later in Section D.1.4 when Lemma D.2 is applied.

Proof of Lemma D.2. From Lemma D.1,∫
G1

E
[
∥ŝt(x)− st(x)∥2

]
pt(x)dx

≤ 2

∫
G1

E
[
∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

p̂t(x)2
1{p̂t(x)>ρn}

]
pt(x)dx (28)

+

∫
G1

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx (29)

Denote

It(x) :=
∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

p̂t(x)2
.

By Theorem F.6, define the random set

A :=

x : |p̂t(x)− pt(x)| < C4(α) polylog(n)

√p∗t (x)

nt
d
2

+
1

nt
d
2

+ (log n)−
(log n)

2

 ,

then {x ∈ A} has probability greater than 1 − n−α for any α > 0, where p∗t (x) := sup∥λ∥∞<h pt(x + λ) and C4(α) is
some constant that only depends on p0, d and α. Then we consider

It(x)1{p̂(x)>ρn} = It(x)1{p̂(x)>ρn}∩A + It(x)1{p̂(x)>ρn}∩Ac . (30)

Now we split the proof into several parts:

Part 1: The first term It(x)1{p̂(x)>ρn}∩A in (30). Under the random set {x : p̂(x) > ρn} ∩A ∩G1, by Lemma D.4:

p̂2t (x) ≥

pt(x)− C4(α) polylog(n)

√p∗t (x)

nt
d
2

+
1

nt
d
2

+ (log n)− logn

2

≥ 1

4
p2t (x).

Therefore, for any x ∈ G1,

It(x)1{p̂(x)>ρn}∩A ≤ ∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

pt(x)2/4
.

Using Proposition C.3 and Proposition C.4:

E
[
|p̂t(x)− pt(x)|2

]
≤ C2 polylog(n)

(
p∗t (x)

ntd/2
+ (log n)

− logn

)
, (31)
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E
[
∥∇p̂t(x)−∇pt(x)∥2

]
≤ C3 polylog(n)

(
p∗t (x)

n t(d+2)/2
+ (log n)

− logn
t−1

)
, (32)

Therefore, ∫
G1

E
[
It(x)1{p̂(x)>ρn}∩A

]
pt(x)dx ≲ polylog(n)

[
1

nt(d+2)/2

∫
G1

p∗t (x)

pt(x)
dx

+
1

ntd/2

∫
G1

p∗t (x)

pt(x)
∥st(x)∥2dx

+ (log n)− logn

∫
G1

(
t−1

pt(x)
+

∥st(x)∥2

pt(x)

)
dx

]
. (33)

For the last term, we can use Lemma F.4, Lemma F.9 and the fact that t > n−T1 , to obtain:∫
G1

(
t−1

pt(x)
+

∥st(x)∥2

pt(x)

)
dx ≤ |G1|

(
t−1ρ−1

n log−c n+ t−
d
2 ρ−3

n log−3c n
)
≲ poly(n log n).

Since (log n)− logn ≪ poly(n log n) for sufficiently large n, the error for this term can be ignored. Using Lemma F.18, for
any 0 < ε < 1,

p∗t (x)

p1−εt (x)
≤ 1√

1− ε
exp

{
1− ε

D2
nε

}
,

we have ∫
G1

p∗t (x)

pt(x)
dx =

∫
G1

p∗t (x)

p1−εt (x)
p−εt (x)dx ≤ 1√

1− ε
exp

{
1− ε

2D2
nε

}
(log n)−cερ−εn |G1|,

and ∫
G1

p∗t (x)

pt(x)
∥st(x)∥2dx ≤ 1√

1− ε
exp

{
1− ε

D2
nε

}
(log n)−cερ−εn

∫
G1

∥st(x)∥2dx.

Here, |G1| and
∫
G1

∥st(x)∥2dx can be upper bounded by Lemma F.9 and Lemma F.10, accordingly. Therefore, we have∫
G1

E
[
It(x)1{p̂(x)>ρn}∩A

]
pt(x)dx

≲ polylog(n)
(td/2 + σd0)

n t(d+2)/2

1√
1− ε

exp

{
1− ε

D2
nε

}
(log n)−cερ−εn

(
1 +m (log n)−

c
m ρ

− 1
m

n

)
≤ polylog(n)

(td/2 + σd0)

n t(d+2)/2

1√
1− ε

exp

{
1− ε

D2
nε

}
ρ−εn

(
1 +mρ

− 1
m

n

)
Take m ≍ 1

ε , and Dn = C
√
log n, then 1√

1−ε exp
{

1−ε
D2

nε

}
≲ exp

(
1

ε logn

)
. Using ρn = n−1t−d/2 > n−1n−dT2/2, we

then have

ρ−εn

(
1 +mρ

− 1
m

n

)
= ρ−εn

(
1 + ε−1 ρ−εn

)
≤ ε−1ρ−2ε

n

≤ ε−1nC1ε,

where C1 = 2+dT2

2 . Thus we can conclude that:∫
G1

E
[
It(x)1{p̂(x)>ρn}∩A

]
pt(x)dx ≲ polylog(n)n−1t−

d+2
2 (t

d
2 + σd0) exp

(
1

ε log n

)
(ε)−1nC1ε.

Part 2: The second term It(x)1{p̂(x)>ρn}∩Ac in (30). The error bound in this part essentially uses the fact that Ac is small
by concentration inequalities. Under the random set {x : p̂(x) > ρn} ∩Ac ∩G1, using p̂t(x) > ρn, pt(x) > ρn log

c n and
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Lemma F.11 of uniform upper bound for ∥∇p̂t(x)−∇pt(x)∥2 and ∥∇pt(x)∥2|p̂t(x)− pt(x)|2,

It(x)1{p̂(x)>ρn}∩Ac ≤
(
∥∇p̂t(x)−∇pt(x)∥2

ρ2n
+

∥∇pt(x)∥2|p̂t(x)− pt(x)|2

ρ2n p
2
t (x)

)
1{p̂(x)>ρn}∩Ac

≲
t−(d+1)poly log(n)

ρ2n

(
1 + (log n)−2cρ−2

n

)
1Ac .

Therefore,∫
G1

E
[
It(x)1{p̂(x)>ρn}∩Ac

]
pt(x)dx ≲

t−(d+1)poly(log n)

ρ2n

(
1 + (log n)−2cρ−2

n

) ∫
G1

E [1Ac ] pt(x)dx

=
t−(d+1)poly(log n)

ρ2n

(
1 + (log n)−2cρ−2

n

) ∫
G1

P [x ∈ Ac] pt(x)dx

≤ t−(d+1)poly(log n)

ρ2n

(
1 + (log n)−2cρ−2

n

)
n−α, (34)

where in the last inequality we use the fact that P [x ∈ Ac] ≤ n−α. Since α can be arbitrarily large and
t−(d+1)poly logn

ρ2n

(
1 + (log n)−2cρ−2

n

)
= O(poly(n log n)), we can ignore the error of this term.

Part 3: The second term
∫
G1

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx in (29). Using Lemma D.5,∫
G1

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx ≤
∫
G1

P (x ∈ Ac) ∥st(x)∥2pt(x)dx

≤ n−α EX∼pt
[
∥st(X)∥2

]
≲ n−αt−1.

Here in the last inequality, we use Lemma F.16 to bound the expectation of moment of the score function. Since α can be
sufficiently large and t−1 = O(poly(n)), the error of this term can be negligible.

Lemma D.4. Let A be the high probability set in Lemma F.6, i.e.,

A :=

x : |p̂t(x)− pt(x)| < C4(α) polylog(n)

√p∗t (x)

nt
d
2

+
1

nt
d
2

+ (log n)− logn

 .

For any x ∈ A, if x also satisfies: p̂t(x) > ρn and pt(x) > logc n ρn, then

p̂t(x) ≥
1

2
pt(x).

sufficiently large n.

Proof. For any x ∈ A, since p∗t (x) ≤ ∥p∥∞, we have

|p̂t(x)− pt(x)| ≲ polylog(n)

(√
1

nt
d
2

+
1

nt
d
2

+ (log n)− logn

)
= polylog(n)

(√
ρn + ρn + (log n)− logn

)
≲ polylog(n) (

√
ρn + ρn)

Therefore, under random set A and G := {x : pt(x) > logc nρn},

|p̂t(x)− pt(x)|
pt(x)

≲ polylog(n)

√
ρn + ρn

pt(x)

≤ (logc n)−1polylog(n)
(
ρ−1/2
n + 1

)
≲ polylog(n)nO(1),
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where in the last inequality we use ρ−1/2
n = n1/2td/4 ≤ nO(1). Therefore

p̂t(x)

pt(x)
≥ 1− polylog(n)nO(1).

When n is large, we can ensure that p̂t(x) ≥ 1
2 pt(x).

Lemma D.5. Let A be the high-probability random set defined in Lemma D.4. Define

B := {x : pt(x) > ρn log
c n},

C := {x : p̂t(x) < ρn}.

Then B ∩ C ⊆ B ∩Ac.

Proof. For x ∈ B ∩ C,

|pt(x)− p̂t(x)| > pt(x)− ρn >
1

2
pt(x),

when n is large. But by Lemma F.6, A implies |pt(x) − p̂t(x)| ≲ (log n)Cd
√
p∗t (x)ρn for some constant Cd that only

depends on d. Using Lemma F.18, for any ε > 0, A ∩B implies

|pt(x)− p̂t(x)| ≲ (log n)Cd(ρn log
c n)−

ε
2

√
pt(x)ρn

≤ (log n)Cd(ρn log
c n)−

ε
2 pt(x) log

− c
2 n

= (log n)Cd(n−1t−d/2)−
ε
2 (log n)−

c
2 (ε+1)pt(x)

≤ (log n)Cdn
ε
2 (1+

dT2
2 )(log n)−

c
2 (ε+1)pt(x),

where in the last inequality we use the fact that t ≤ nT2 . Therefore, by taking ε = log logn
logn , we have n

ε
2 (1+

dT2
2 ) =

(log n)
2+dT2

4 and (log n)−
c
2 (ε+1) ≲ (log n)−

c
2 , we have

(log n)Cdn
ε
2 (1+

dT2
2 )(log n)−

c
2 (ε+1) ≤ (log n)Cd+

2+dT2
4 − c

2 .

Then since the constant c satisfies c
2 > 2Cd +

2+dT2

2 > Cd +
2+dT2

4 , for large enough n we have |pt(x)− p̂t(x)| < 1
2 pt(x)

and B ∩ C ⊆ Ac, as desired.

D.1.2. CASE 2: pt(x) < ρn log
−c n

Lemma D.6. For any time n−T1 < t < nT2 , taking ρn = 1
n td/2

and for any 0 < ε < 1, the score error on the set

G2 := {x : pt(x) < ρn log
−c n}

can be upper bounded by

E
[∫

G2

∥ŝt(x)− st(x)∥2pt(x)dx
]
≲ n−1t−

d+2
2 (t

d
2 + σd0) g2(n, ε),

where
g2(n, ε) := (ε)−(1+d/2) nC2ε

for some constant C2 defined in the proof that only depends on T1, T2 and d (in turn, only depends on p0).

Proof. Let A denote the high probability random set defined in Lemma F.6, then using Lemma D.7,

G2 ∩A ⊂ {x : p̂t(x) < ρn}.
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Then under {x : p̂t(x) < ρn}, by definition, ŝt(x) = 0. Therefore,

E
[∫

G2

∥ŝt(x)− st(x)∥2pt(x)dx
]

= E
[∫

G2

∥ŝt(x)− st(x)∥21A(x) pt(x)dx
]
+ E

[∫
G2

∥ŝt(x)− st(x)∥21Ac(x) pt(x)dx

]
≤ E

[∫
G2

∥ŝt(x)− st(x)∥21{p̂t(x)<ρn}(x) pt(x)dx

]
+ E

[∫
G2

∥ŝt(x)− st(x)∥21Ac(x) pt(x)dx

]
≲
∫
G2

∥st(x)∥2pt(x)dx+
(
EX∼pt,{xi}n

i=1

[
∥ŝt(X)− st(X)∥4

])1/2(∫ P (x ∈ Ac) pt(x)dx

)1/2

≤
∫
G2

∥st(x)∥2pt(x)dx+
(
EX∼pt,{xi}n

i=1

[
∥ŝt(X)− st(X)∥4

])1/2
n−α/2,

where the last inequality follows by the Cauchy–Schwarz inequality. Therefore the error in the second term can be ignored
since by Lemma F.12 the fourth moment of the score error is bounded by some poly(n−1 log n) but n−α can be arbitrarily
small. For the first term, using Lemma F.17,∫

G2

∥st(x)∥2pt(x)dx ≲ (ε)−(1+d/2) t−1ρ1−εn σ
d(1−ε)
t .

Then the result follows by ρn = 1
ntd/2

= poly(n) and σdt ≲ t
d
2 + σd0 ≲ poly(n), and the order of the polynomials only

depends on T1 and T2.

Lemma D.7. For any x satisfying x ∈ A and pt(x) < ρn log
−c n, we have p̂t(x) < ρn.

Proof. By definition of the random set A,

p̂t(x) ≤ pt(x) + (log n)Cd

(√
p∗t (x)ρn + ρn + (log n)−

(log n)
2

)
≲ ρn log

−c n+ (log n)Cd
√
p∗t (x)ρn.

Using Lemma F.18, for any ε > 0,√
p∗t (x)ρn ≲

√
p1−εt (x)ρn ≲ (log n)−

c(1−ε)
2 ρ

1− ε
2

n .

Using the fact that t ≤ nT2 ,

ρ
− ε

2
n = (n−1t−d/2)−

ε
2 ≤ n

ε
2 (1+

dT2
2 ),

we have

p̂t(x) ≲
(
1 + (log n)Cd n

ε
2 (1+

dT2
2 ) log

c(ε+1)
2 n

)
ρn log−c n.

Then we can take ε = log logn
logn such that n

ε
2 (1+

dT2
2 ) = (log n)

2+dT2
4 and log

c(ε+1)
2 n ≤ log

c(1/2+1)
2 n = log

3c
4 n. Therefore,(

1 + (log n)Cd n
ε
2 (1+

dT2
2 ) log

c(ε+1)
2 n

)
log−c n < log−c n+ (log n)Cd+

2+dT2
4 − c

4

< 1,

for sufficiently large n, since c > 4Cd + dT2 + 2. Therefore, this implies p̂t(x) < ρn.
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D.1.3. CASE 3: ρn log−c n < pt(x) < ρn log
c n

Lemma D.8. For any time n−T1 < t < nT2 and any 0 < ε < 1, the score error on the set

G3 := {x : ρn log−c n < pt(x) < ρn log
c n}

can be upper bounded by

E
[∫

G3

∥ŝt(x)− st(x)∥2pt(x)dx
]
≲ polylog(n)n−1 t−

d+2
2 (t

d
2 + σd0) g3(n, ε),

where

g3(n, ε
′) := (ε)−(1+d/2) exp

(
1

ε log n

)
nC3ε

for some constant C3 defined in the proof that only depends on T1, T2 and d.

Proof. Again, apply Lemma D.1,∫
G3

E
[
∥ŝt(x)− st(x)∥2

]
pt(x)dx

≤ 2

∫
G3

E
[
It(x)1{p̂t(x)>ρn}

]
pt(x)dx+

∫
G3

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx (35)

where

It(x) :=
∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

p̂t(x)2
.

Now we split the proof into two parts:

Part 1: The first term
∫
G3

E
[
It(x)1{p̂t(x)>ρn}

]
pt(x)dx in (35).

First note that for any x ∈ G3, we have pt(x) log−c n < ρn < pt(x) log
c n. Therefore,

p̂t(x) ≥ ρn ≥ pt(x) log
−c n.

Then we have

It(x) ≤ (log2c n)(pt(x))
−2
(
∥∇p̂t(x)−∇pt(x)∥2 + ∥st(x)∥2|p̂t(x)− pt(x)|2

)
Using Proposition C.3 and Proposition C.4:

E
[
|p̂t(x)− pt(x)|2

]
≤ C2 polylog(n)

(
p∗t (x)

nt
d
2

+ (log n)
− logn

)
,

E
[
∥∇p̂t(x)−∇pt(x)∥2

]
≤ C3 polylog(n)

(
p∗t (x)

n t
d+2
2

+ (log n)
− logn

t−1

)
,

Then

E [It(x)] ≲ polylog(n) (pt(x))
−2

[
p∗t (x)

n t
d+2
2

+
p∗t (x)∥st(x)∥2

n t1/2
+ (log n)

− logn
(t−1 + ∥st(x)∥2)

]
Integrate over x: ∫

G3

E
[
It(x)1{p̂(x)>ρn}

]
pt(x)dx ≲ polylog(n)

[
1

nt
d+2
2

∫
G3

p∗t (x)

pt(x)
dx

+
1

nt
d
2

∫
G3

p∗t (x)

pt(x)
∥st(x)∥2dx

+ (log n)− logn

∫
G3

(
t−1

pt(x)
+

∥st(x)∥2

pt(x)

)
dx

]
.
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Notice thatG3 ⊂ {x : pt(x) > ρn log
−c n} := G′

3, which is similar to Case 1 (by replacing logc n with log−c n). Therefore,
using a similar approach in Lemma D.2 of Case 1, we know the term (log n)− logn is small than poly(n log n) for sufficiently
large n, then the error for the last term can be ignored:

(log n)− logn

∫
G3

(
t−1

pt(x)
+

∥st(x)∥2

pt(x)

)
dx ≤ (log n)− logn|G′

3|
(
t−1ρ−1

n logc n+ t−
d
2 ρ3n log

3c n
)

≲ (log n)− lognpoly(n log n)

≪ poly(n−1).

Again, using the similar approach in Lemma D.2 in Case 1,

1

nt(d+2)/2

∫
G3

p∗t (x)

pt(x)
dx+

1

n td/2

∫
G3

p∗t (x)

pt(x)
∥st(x)∥2dx

≲
(td/2 + σd0)

n t(d+2)/2

1√
1− ε

exp

{
1− ε

D2
nε

}
(logc n)ερ−εn

(
1 +m (logc n)

1
m ρ

− 1
m

n

)
.

As before, by taking m ≍ 1
ε , and Dn = C

√
log n, then 1√

1−ε exp
{

1−ε
D2

nε

}
≲ exp

(
1

ε logn

)
. Since ε < 1, we know

(logc n)ε < logc n and (logc n)1/m < logc n. Using ρn = n−1t−d/2 > n−1n−dT2/2 we can conclude that∫
G3

E
[
It(x)1{p̂(x)>ρn}

]
pt(x)dx ≲ polylog(n)n−1 t−

d+2
2 (t

d
2 + σd0)

(
1

ε
n(2+dT2)ε exp

(
1

ε log n

))
.

Part 2: The second term
∫
G3

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx in (35).

Notice that ∫
G3

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx ≤
∫
{x : pt(x)≤ρn logc n}

∥st(x)∥2pt(x)dx.

Therefore, we can use a similar method of case 2 as in Lemma F.17, by replacing log−c n with logc n:∫
{x : pt(x)≤ρn logc n}

∥st(x)∥2pt(x)dx ≤ polylog(n) (ε)−(1+d/2) t−1ρ1−εn σ
d(1−ε)
t .

Since ρn = 1
ntd/2

= poly(n) and σdt ≲ t
d
2 + σd0 ≲ poly(n), and the order of the polynomials C2 (the same as that in case

2) only depends on T1, T2 and d. Then can conclude that∫
G3

P (p̂t(x) ≤ ρn) ∥st(x)∥2pt(x)dx ≤ polylog(n)(ε)−(1+d/2) n−1t−
d+2
2

(
σ

d
2
0 + t

d
2

)
nC2ε.

D.1.4. COMBINING THE THREE CASES

Next, combining the three cases in Lemma D.2, Lemma D.6 and Lemma D.8 as discussed above,

E
[∫

x

∥ŝt(x)− st(x)∥2 pt(x) dx
]
= E

[∫
G1∪G2∪G3

∥ŝt(x)− st(x)∥2 pt(x) dx
]

≲ polylog(n)n−1t−
d+2
2 (t

d
2 + σd0) g(n, ε),

where

g(n, ε) : = g1(n, ε) + g2(n, ε) + g3(n, ε)

≤
(
exp

(
1

ε log n

)
+ (ε)−d/2 + (ε)−d/2 exp

(
1

ε log n

))
(ε)−1 n(C1∨C2∨C3)ε.

Let ε = log logn
logn , since nε = n

log log n
log n = log n, we have g(n, ε) ≤ C polylog(n) for some universal constant C. Therefore,

E
[∫

x

∥ŝt(x)− st(x)∥2 pt(x) dx
]
≲ polylog(n)n−1t−

d+2
2 (t

d
2 + σd0).

27



Minimax Optimality of Score-based Diffusion Models

D.2. Proof of Corollary 3.7

In Theorem 3.5, taking the integral with respect to time t from t0 = n−T1 to T = nT2 , we have:∫
t∈[t0,T ]

∫
x

E∥ŝt(x)− st(x)∥2pt(x)dxdt ≲ polylog(n)n−1

∫ T

t0

t−
d+2
2 (t

d
2 + σd0)dt

= polylog(n)n−1

(
log(T )− log(t0)−

2σd0
d
T− d

2 +
2σd0
d
t
− d

2
0

)
≤ polylog(n)n−1

(
log(T )− log(t0) +

2σd0
d
t
− d

2
0

)
≲ polylog(n)n−1 n

d T1
2 .

The second part of Corollary 3.7 simply follows by letting T1 = 2
2β+d and noticing that n−1n

dT1
2 = n−

2β
2β+d .

E. Proof of Theorem 3.8
E.1. Control of the error from early stopping

Theorem E.1. Under Assumption 3.1 and Assumption 3.4, if β ∈ [0, 2], t0 = n−
2

2β+d and pt0 = p0 ∗ Φt, where Φt is
the density of Gaussian distribution in d-dimension, N (0, tId) and ∗ denote the convolution operator, then there exists a
constant C that depends on p0, β, L and dimension d such that

TV (p0, pt0) ≤ C polylog(n)n−
β

2β+d .

Proof. Firstly, the total variance (TV) distance between p0 and pt can be decomposed into two terms and by Jensen’s
inequality,

TV (p0, pt) =

∫
Rd

|p0(x)− pt(x)| dx

=

∫
∥x∥∞<logn

|p0(x)− pt(x)| dx+

∫
∥x∥∞>logn

|p0(x)− pt(x)| dx

≤ (2 log n)d/2

√∫
Rd

|p0(x)− pt(x)|2 dx+

∫
∥x∥∞>logn

|p0(x)− pt(x)| dx. (36)

By the Sub-Gaussian tail bound in Lemma F.2, the error of the second term in (36) is negligible:∫
∥x∥∞>logn

|p0(x)− pt(x)|dx ≤
∫
∥x∥∞>logn

p0(x)dx+

∫
∥x∥∞>logn

pt(x)dx

≤ 2d exp

(
− (log n)2

2σ2
0

)
+ 2d exp

(
− (log n)2

2(σ0 +
√
t)2

)
≤ 4dn

− log n

σ2
0+1

≪ n−
β

2β+d . (37)

Next, we derive an upper bound for the first term
∫
Rd |p0(x)− pt(x)|2 dx in (36). By Plancherel’s theorem,∫

|p0(x)− pt(x)|2 dx =
1

(2π)d

∫
|F [p0] (ω)−F [p0] (ω)|2 dω

=
1

(2π)d

∫
∥ω∥∞≥t−1/2

|F [p0] (ω)|2 |1− ϕt(ω)|2 dω (38)

+
1

(2π)d

∫
∥ω∥∞<t−1/2

|F [p0] (ω)|2 |1− ϕt(ω)|2 dω. (39)
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Here ϕt(ω) := exp
(
− t2∥ω∥2

2

)
is the Fourier transformation (or Characteristic function) of Gaussian density. By the

definition of the Sobolev class of density in Assumption 3.4, we have

d(2π)dL2 ≥
∫
Rd

d∑
i=1

|ωi|2β |F [p0] (ω)|2 dω

≥
∫
∥ω∥∞≥t−1/2

d∑
i=1

|ωi|2β |F [p0] (ω)|2 dω

≥ t−β
∫
∥ω∥∞≥t−1/2

|F [p0] (ω)|2 dω (40)

For the first term (38), use the fact that |1− ϕt(ω)| ≤ 2 and (40), substituting t = n−
2

2β+d , we have

1

(2π)d

∫
∥ω∥∞t−1/2

|F [p0] (ω)|2 |1− ϕt(ω)|2 dω ≤ dL2tβ = dL2 n−
2β

2β+d . (41)

For the second term in (39), use the fact that |1− ϕt(ω)|2 =
∣∣∣1− exp

(
−∥ω∥2t

2

)∣∣∣2 ≤ t2∥ω∥4

4 , we have

1

(2π)d

∫
∥ω∥∞<t−1/2

|F [p0] (ω)|2 |1− ϕt(ω)|2 dω

≤ 1

(2π)d
· t

2

4

∫
∥ω∥∞<t−1/2

|F [p0] (ω)|2 ∥ω∥4dω

=
1

(2π)d
· t

2

4

∫
∥ω∥∞<t−1/2

|F [p0] (ω)|2 ∥ω∥2β · ∥ω∥4−2βdω

≤ 1

(2π)d
· t

2

4
sup

∥ω∥∞<t−1/2

∥ω∥4−2β

∫
|F [p0] (ω)|2 ∥ω∥2βdω. (42)

Since β ≤ 2, we have

sup
∥ω∥∞<t−1/2

∥ω∥4−2β = sup
∥ω∥∞<t−1/2

(
d∑
i=1

|ωi|2
)2−β

≤
(
d ∥ω∥2∞

)2−β
≤ d2−βtβ−2. (43)

Besides, since ∥ω∥2β =
(∑d

i=1 |ωi|2
)β

≤
(
dβ−1 ∨ 1

)∑d
i=1 |ωi|2β , and by the definition of Sobolev class of densities, we

have ∫
|F [p0] (ω)|2 ∥ω∥2βdω ≤

(
dβ−1 ∨ 1

) d∑
i=1

∫
|F [p0] (ω)|2 |ωi|2βdω

≤ d
(
dβ−1 ∨ 1

)
(2π)dL2. (44)

Therefore, combining (43) and (44),

(42) ≤
L2d3−β

(
dβ−1 ∨ 1

)
4

tβ =
L2d3−β

(
dβ−1 ∨ 1

)
4

n−
2β

2β+d . (45)

As a result of combining the above terms (41), (45) and (37), we are able to deduce that the total error between p0 and pt is
TV (p0, pt) ≲ polylog(n)n−

β
2β+d .

E.2. Girsanov’s Theorem

We can translate the cumulative score error to the KL divergence error by using the following Girsanov Theorem.
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Theorem E.2 (Girsanov Theorem, Le Gall (2016)). Define the stochastic process (Lt)t∈[0,T ] by Lt :=
∫ t
0
⟨bs, dBs⟩, where

B is a Q-Brownian motion. Assume that EQ
∫ T
0
∥bs∥2 ds <∞. Then, L is a Q-martingale in L2(Q). Moreover, if

EQ E(L)T = 1,

where

E(L)t := exp

(
Lt −

1

2
[L ]t

)
= exp

(∫ t

0

⟨bs, dBs⟩ −
1

2

∫ t

0

∥bs∥2 ds
)
.

Then E(L)T is also a Q-martingale and the process

B̃t := Bt −
∫ t

0

bs ds

is a Brownian motion under the measure P defined by the Radon-Nikodym derivative:

dP := E(L)T dQ.

The Girsanov theorem can be used to convert a Brownian motion with drift into a standard Brownian motion by changing the
measure. In this paper, we aim to derive the KL divergence between two stochastic processes, (Xt)t∈[0,T ] and (Y t)t∈[0,T ].
These processes have different drift terms. More specifically, (Xt)t∈[0,T ] and (Y t)t∈[0,T ] are solutions to the following two
SDEs:

dXt = bX(Xt, t) dt+ dBt, X0 ∼ p,

dY t = bY (Y t, t) dt+ dBt; Y 0 ∼ p.

Denote by PX and PY the path measures of (Xt)t∈[0,T ] and (Y t)t∈[0,T ], respectively. Since the initial distributions of
these two processes are identical, the only difference for these two processes is their drift terms bX and bY . By Girsanov
theorem, we can derive the Radon-Nikodym derivative for their path measure d PX

d PY
, which allows us to compute the KL

divergence for these two processes:

DKL (PX ∥PY ) = EPX

[
log

dPX

dPY

]
.

The above discussion is summarized in the following lemma, as described in Chen et al. (2023b) and Oko et al. (2023).

Lemma E.3 (Chen et al. (2023b),Oko et al. (2023)). Let p be any probability distribution and let (Xt)t∈[0,T ], (Y t)t∈[0,T ]

be solutions to the following two SDEs:

dXt = bX(Xt, t) dt+ dBt, X0 ∼ p,

dY t = bY (Y t, t) dt+ dBt; Y 0 ∼ p.

We denote the distribution of Xt and Y t as pXt and pYt and the path measure of (Xt)t∈[0,T ] and (Y t)t∈[0,T ] as PX and
PY , respectively.

1. Suppose the following Novikov’s condition holds:

EPX

[
exp

(∫ T

0

∥bX(Xt, t)− bY (Xt, t)∥2 dt

)]
<∞. (46)

Then the Radon-Nikodym derivative of PX with respect to PY is

dPX

dPY
(Z) = exp

(
1

2

∫ T

0

∥bX(Zt, t)− bY (Zt, t)∥2 dt−
∫ T

0

(
bX(Zt, t)− bY (Zt, t)

)
dBt

)
.
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Therefore we have

DKL (PX ∥PY ) =
1

2
EPX

[∫ T

0

∥bX(Xt, t)− bY (Xt, t)∥2 dt

]

=
1

2

∫
x

∫ T

0

pXt (x)∥bX(x, t)− bY (x, t)∥2 dt dx.

2. If
∫
x

∫ T
0
pXt (x)∥bX(x, t)− bY (x, t)∥2 dt dx ≤ C holds for some constant C, then

DKL (PX ∥PY ) ≤ 1

2

∫
x

∫ T

0

pXt (x)∥bX(x, t)− bY (x, t)∥2 dt dx,

even if Novikov’s condition (46) is not satisfied.

E.3. Proof of Theorem 3.8

We first recall some notations of the stochastic processes we defined in Section 2. The forward process (4) is denoted by
(Xt)t∈[0,T ] and Xt ∼ pt; The backward process (8) is denoted by (Y t)t∈[0,T ] and by definition, Y t ∼ pT−t; The process

of Algorithm 1 is denoted by (Ŷ t)t∈[0,T ]. Let (Ȳ t)t∈[0,T ] be (Ŷ t)t∈[0,T ] replacing Ŷ 0 ∼ N (0, TId) by Ȳ 0 ∼ pT , i.e.,
(Ȳ t)t∈[0,T ] satisfies:

dȲ t = ŝT−t(Ȳ t)dt+ dBt, Ȳ 0 ∼ pT .

Now we start the proof. By the triangle inequality,

E
[
TV

(
X0, Ŷ T−t0

)]
≤ TV (X0,Xt0) + TV (Xt0 ,Y T−t0)

+ E
[
TV

(
Y T−t0 , Ȳ T−t0

)]
+ E

[
TV

(
Ȳ T−t0 , Ŷ T−t0

)]
.

By Theorem E.1, TV (X0,Xt0) ≲ polylog(n)n−
β

2β+d . By definition of the backward process (8), TV (Xt0 ,Y T−t0) = 0.
For the third term, by Pinsker’s inequality and data-processing inequality,

TV
(
Y T−t0 , Ȳ T−t0

)
≲
√

DKL

(
Y T−t0∥Ȳ T−t0

)
≤
√

DKL (PY ∥PȲ ),

where PY and PȲ are the path measure for (Y t)t∈[0,T−t0] and (Ȳ t)t∈[0,T−t0]. Then using the second part of Lemma E.3
by taking bXt = ∇ log pT−t(x) and bYt = ŝT−t(x) (see Section E.2 for details), we have

DKL (PY ∥PȲ ) ≤ 1

2

∫ T−t0

0

Ex∼pt
[
∥ŝT−t(x)−∇ log pT−t(x)∥2

]
dt

=
1

2

∫ T

t0

Ex∼pt
[
∥ŝt(x)−∇ log pt(x)∥2

]
dt.

Then E [DKL (PY ∥PȲ )] can be bounded by Corollary 3.7. Since the only difference of Ȳ T−t0 and Ŷ T−t0 is their initial
distribution, we have

E
[
TV

(
Ȳ T−t0 , Ŷ T−t0

)]
≤ TV (XT ,N (0, TId)) .

Again, by Pinsker’s inequality,

TV (XT ,N (0, TId)) ≤
√
DKL (XT ∥N (0, TId)).

Using Jensen’s inequality,

DKL (XT ∥N (0, TId)) ≤ Ex∼p0 [DKL (XT |X0 = x ∥N (0, TId))]

=
1

2T
Ex∼p0

[
xTx

]
.

Here in the last equality, we use the fact that XT |X0 = x ∼ N (x, TId) and the KL divergence between two Gaussian
distributions. Ex∼p0

[
xTx

]
is finite since p0 is Sub-Gaussian. Therefore by taking T = n

2β
2β+d

E
[
TV

(
Ȳ T−t0 , Ŷ T−t0

)]
≲ n−

β
2β+d .
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F. Auxiliary Results
F.1. Sub-Gaussian Properties of pt(x)

We defined the Sub-Gaussian random vectors in Definition 3.2. Sub-Gaussian random vectors in higher dimensions also
retain similar properties to those of 1-dimensional Sub-Gaussian random variables. The following lemma shows that the
sum of two Sub-Gaussian random vectors is still Sub-Gaussian.

Lemma F.1. Let X,Y ∈ Rd be independent Sub-Gaussian random vectors with Sub-Gaussian norms ∥X∥ψ2
and ∥Y ∥ψ2

respectively. Then X + Y is Sub-Gaussian and

∥X + Y ∥ψ2 ≤ ∥X∥ψ2 + ∥Y ∥ψ2 .

Proof. We first prove that for X,Y ∈ R, we have

∥X + Y ∥ψ2
≤ ∥X∥ψ2

+ ∥Y ∥ψ2
.

In fact, notice that the function ψ2(x) = ex
2 − 1 is convex and increasing. Denote σX := ∥X∥ψ2 and σY := ∥Y ∥ψ2 , then

by triangle inequality and Jensen’s inequality,

ψ2

(
|X + Y |
σX + σY

)
≤ ψ2

(
|X|

σX + σY
+

|Y |
σX + σY

)
= ψ2

(
σX

σX + σY

|X|
σX

+
σY

σX + σY

|Y |
σY

)
≤ σX
σX + σY

ψ2

(
|X|
σX

)
+

σY
σX + σY

ψ2

(
|Y |
σY

)
.

Take expectation of both sizes, and use the definition of Orlicz norm,

E
[
ψ2

(
|X + Y |
σX + σY

)]
≤ σX
σX + σY

E
[
ψ2

(
|X|
σX

)]
+

σY
σX + σY

E
[
ψ2

(
|Y |
σY

)]
≤ σX
σX + σY

+
σY

σX + σY
= 1.

Therefore,
∥X + Y ∥ψ2

≤ σX + σY .

In general case where X,Y ∈ Rd, for any v ∈ Sd−1,

∥⟨X + Y, v⟩∥ψ2
= ∥⟨X, v⟩+ ⟨Y, v⟩∥ψ2

≤ ∥⟨X, v⟩∥ψ2
+ ∥⟨Y, v⟩∥ψ2

≤ ∥X∥ψ2
+ ∥Y ∥ψ2

.

The result follows from taking the supremum with respect to v ∈ Sd−1 of both sizes and the definition of Orlicz norm.

The next lemma provides a tail bound for a Sub-Gaussian random vector, analogous to the one-dimensional tail bound.

Lemma F.2. Suppose X ∈ Rd is σ-Sub-Gaussian with EX = 0, then for any t ∈ R,

P (∥X∥∞ > t) ≤ 2d exp

(
− t2

2σ2

)
.

Proof. Let v = (1, 0, . . . , 0) ∈ Rd.

E exp

(
|X1|2

σ2

)
= E exp

(
|⟨X, v⟩|2

σ2

)
≤ 2.
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Then X1 is σ-Sub-Gaussian. Similarly, Xi is σ-Sub-Gaussian for all i = 1, . . . , d. Therefore,

P (∥X∥∞ > t) ≤
d∑
i=1

P (|Xi| > t)

≤
d∑
i=1

2 e−
t2

2σ2

= 2d e−
t2

2σ2 .

Let X0 ∼ p0, Zt ∼ N (0, tId) and Xt = X0 + Zt ∼ pt. The following results of the Sub-Gaussian property of Xt can be
directly seen from Lemma F.1.

Lemma F.3. [Sub-Gaussian property for pt(x)] Suppose p0 is σ0-Sub-Gaussian, and pt = p0 ∗ ϕt, where ϕt is the density
of N (0, tId) and ∗ denotes the convolution. Then pt is also Sub-Gaussian and for Xt ∼ pt, ∥Xt∥ψ2

≤ σ0 +
√
t.

Proof. Let Z ∼ N (0, tId). For any v ∈ Sd−1, since ∥v∥ = 1, ⟨Z, v⟩ ∼ N (0, t). Using the fact that the Sub-Gaussian
norm for a one-dimensional Gaussian random variable is equal to its square root of the variance, we have ∥⟨Z, v⟩∥ψ2 =

√
t.

Therefore,

∥Z∥ψ2
= sup
v∈Sd−1

∥⟨Z, v⟩∥ψ2
=

√
t.

If X ∼ p0, then X + Z ∼ pt. By Lemma F.1,

∥X + Z∥ψ2 ≤ ∥X∥ψ2 + ∥Z∥ψ2 = σ0 +
√
t.

F.2. Bounds on ∥Dαpt(x)∥∞

The following lemma provides an upper bound for any derivatives of pt.

Lemma F.4. Supposed ∥p0∥∞ := supx p0(x) <∞, and let α = (α1, . . . , αd) with ℓ =
∑d
i=1 αi, then

sup
x

|Dαpt(x)| ≤ Cd1∥p0∥∞ℓ
ℓ
2+

1
4 t−ℓ/2,

for some universal constant C1.

Proof. Denote ϕt(x) := 1
(2πt)d/2

exp
{
−∥x∥2

2t

}
as the Gaussian density function with variance tId.

|Dαpt(x)| ≤
∫
y

|p(y)Dαϕt(x− y)|dy

≤ ∥p0∥∞
∫
x

|Dαϕt(x)|dx.

Next, we establish an upper bound for
∫
x
|Dαϕt(x)|dx =

∫
x
|
∏d
i=1

∂αi

∂x
αi
i

ϕt(x)|dx using the Hermite polynomials. The
Hermite polynomials of order n are defined as follows:

Hn(x) := (−1)nex
2 dn

dxn
e−x

2

. (47)

Then we have:

Dαϕt(x) =

(
− 1√

2t

)|α| d∏
i=1

Hαi

(
xi√
2t

)
ϕt(x).
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Using Lemma F.5 for Hermite polynomials, we have

|Dαϕt(x)| ≤ Cdt−ℓ/2

(
d∏
i=1

αi!

)1/2

e∥x∥
2/4tϕt(x),

Therefore, using
∏d
i=1 αi! ≤ (

∑d
i=1 αi)! = ℓ!, we have,∫
x

|Dαϕt(x)|dx ≤ Cdt−ℓ/2(ℓ!)1/2
∫
x

e∥x∥
2/4tϕt(x)dx

= Cdt−ℓ/2(ℓ!)1/2
∫
x

1

(2πt)d/2
e−∥x∥2/4tdx

= Cd2d/2(ℓ!)1/2t−ℓ/2.

By Stirling’s approximation,

n! ≤
√
2πn

(n
e

)n
e

1
12n ,

we have
(ℓ!)1/2 ≤ (2π)1/4 e

1−12ℓ2

24ℓ ℓ
ℓ
2+

1
4 ≤ (2π)1/4 ℓ

ℓ
2+

1
4 .

Therefore, ∫
x

|ϕ(ℓ)t (x)|dx ≤ Cd2d/2(2π)1/4 ℓ
ℓ
2+

1
4 t−ℓ/2.

Lemma F.5. Indritz (1961) The Hermite polynomials defined in (47) satisfies

Hn(x) ≤ C (2nn!)
1/2

ex
2/2

for some universal constant C.

F.3. Concentration Inequality for p̂t

Lemma F.6. There exist a constant C4 that only depends on p0 and dimension d such that the kernel density estimator
p̂t(x) with the kernel of order ℓ we defined in Lemma C.2 and the choice of h =

√
t

Dn
satisfies

|p̂t(x)− pt(x)| < C4

√Dd
n ℓ

3d p∗t (x) log(1/δ)

nt
d
2

+
Dd
nℓ

5d/2 log(1/δ)

nt
d
2

+

(
Dn

de

)−ℓ

ℓ−
ℓ
2+

5d
2 − 1

4

 ,

with probability at least 1−δ, where p∗t (x) := sup∥λ∥∞<h pt(x+λ). Furthermore, by choosing ℓ = log n, Dn = C
√
log n

and δ = n−α for any positive constant α, there exists a constant C5(α) that depends on p0, d and α, with probability at
least 1− n−α,

|p̂t(x)− pt(x)| < C5(α) polylog(n)

√p∗t (x)

nt
d
2

+
1

nt
d
2

+ (log n)− logn

 .

Proof. Take Yi = 1
hdK

(
x−Xi

h

)
, then ∣∣∣∣∣ 1n

n∑
i=1

Yi − EY

∣∣∣∣∣ = |p̂t(x)− E p̂t(x)| ,

Using Lemma C.2, we have

|Yi| ≤
1

hd
∥Kd∥∞ ≲

ℓ
5d
2

h
,
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Var (Yi) =
1

h2d
Var

(
Kd

(
x−Xi

h

))
≤ 1

hd

∫
K2
d(u)du sup

∥λ∥∞<h

pt(x+ λ) ≲
ℓ3d

hd
p∗t (x),

where p∗t (x) := sup∥λ∥∞<h pt(x+ λ). Next we use the following Bernstein’s inequality.

Proposition F.7 (Bernstein’s inequality). Suppose that Yi are iid with mean µ, Var (Yi) ≤ σ2 and P (Yi ≤M) = 1. Then

P

(∣∣∣∣∣ 1n
n∑
i=1

Yi − µ

∣∣∣∣∣ > ε

)
≤ 2 exp

{
− nε2

2σ2 + 2Mε/3

}
.

Furthermore, with probability at least 1− δ,∣∣∣∣∣ 1n
n∑
i=1

Yi − µ

∣∣∣∣∣ <
√

2σ2 log(1/δ)

n
+

2M log(1/δ)

3n
.

By Bernstein’s inequality,

P

(
|p̂t(x)− E p̂t(x)| <

√
2 ℓ3d p∗t (x) log(1/δ)

nhd
+

2ℓ5d/2 log(1/δ)

3nhd

)
> 1− δ (48)

By triangle inequality,

|p̂t(x)− pt(x)| ≤ |p̂t(x)− E p̂t(x)|+ |E p̂t(x)− pt(x)| (49)

Using the result of bias term in Proposition C.3, and by taking h =
√
t

Dn
, we have

|E p̂t(x)− pt(x)| ≤ C2

(
Dn

de

)−ℓ

ℓ−
ℓ
2+

5d
2 − 1

4 .

Therefore, there is a constant C4 such that with probability at least 1− n−α,

|p̂t(x)− pt(x)| < C4

√Dd
n ℓ

3d p∗t (x) log(1/δ)

nt
d
2

+
Dd
nℓ

5d/2 log(1/δ)

nt
d
2

+

(
Dn

de

)−ℓ

ℓ−
ℓ
2+

5d
2 − 1

4

 .

By choosing the order ℓ = Ω(log n), Dn = C
√
log n and δ = n−α for some positive constant α, we have with probability

at least 1− n−α,

|p̂t(x)− pt(x)| < C5(α) polylog(n)

√p∗t (x)

nt
d
2

+
1

nt
d
2

+ (log n)− logn

 .

F.4. Bounds on the Tail Density

In this section, we provide the proofs for the bound of |G1| and
∫
G1

∥st(x)∥2dx in the proofs in Lemma D.2, where
G = {x : pt(x) > ρn log

c n} and ρn = 1
n td/2

. To begin with, the following lemma shows that for sub-Gaussian density
function pt, for sufficiently large x satisfying ∥x∥∞ ≳

√
log n, the tail density can be controlled. Specifically, we show that

pt(x) is bounded above by a polynomial decay in n−1: pt(x) ≲ poly(n−1). This lemma is crucial for the proof of upper
bounds on |G1| and

∫
G1

∥st(x)∥2dx.

Lemma F.8. For any D > 0 and t > n−T1 , if x ∈ Rd satisfies ∥x∥∞ ≥ Dσt
√
log n and n ≥ exp

(
∥p0∥2

∞
4D2

)
, where

σt = σ0 +
√
t, then

pt(x) ≤ 2
√
2n−

D
2 +

dT1
2
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Proof. Step 1: Suppose d = 1. From Lemma F.3, Xt ∼ pt(x) is Sub-Gaussian with Orlicz norm ∥Xt∥ψ2
≤ σt = σ0 +

√
t.

Then by the sub-Gaussian property in Definition 3.2,∫
e

x2

σ2
t pt(x)dx ≤ 2.

Consider two cases. If t ≥ 1, fix x0 that satisfies |x0| > Dσt
√
log n. Define the following two sets:

A :=

{
x : |x− x0| <

Dσt
2

√
log n

}
,

B :=

{
x : |x− x0| <

pt(x0)
√
t

4

}
,

If n > exp
(

∥p0∥2
∞

4D2

)
, then Dσt

2

√
log n ≥ Dσt∥p0∥∞

4D ≥ pt(x0)
√
t

4 , where the last inequality is due to the fact that

pt(x) =

∫
p(y)ϕt(x− y)dy ≤ ∥p0∥∞ for any x.

Therefore B ⊂ A. Next, we use the Lipschitz property of pt to control pt(x) for all x ∈ B. Specifically, for any x < x′,

|pt(x)− pt(x
′)| ≤

∫
p0(y)|ϕt(x− y)− ϕt(x

′ − y)|dy

≤ |x− x′| sup
x

|ϕ′t(x)|

≤ 1

t
|x− x′|, (50)

where in the second inequality we use the mean value theorem, and in the third inequality we use the fact that

sup
x

|ϕ′t(x)| =
1

t
√
2πt

sup
x

{
x exp

(
−x

2

2t

)}
=
e−1/2

√
2π

t−1.

Then for any y ∈ B, using (50), since t > 1, we have

pt(y) ≥ pt(x0)−
1

t
|x0 − y|

≥ pt(x0)−
1√
t
|x0 − y|

≥ pt(x0)−
1√
t

pt(x0)
√
t

2

=
1

2
pt(x0). (51)

Then using the definition of Sub-Gaussian and (51),

2 ≥
∫
ex

2/σ2
t pt(x) dx ≥ inf

x∈A
ex

2/σ2
t

∫
A
pt(x) dx

≥ e
D2

4 logn

∫
B
pt(x) dx

≥ nD
2/4 |B| 1

2
pt(x0)

=
1

4
nD

2/4p2t (x0)
√
t.

This implies that

pt(x0) ≤ 2
√
2n−D/2t−1/4 ≤ 2

√
2n−D/2.

36



Minimax Optimality of Score-based Diffusion Models

If n−
2

2β+d < t < 1, define

C :=

{
x : |x− x0| <

pt(x0)t

4

}
.

Similarly, if n > exp
(

∥p0∥2
∞

4D2

)
, then Dσt

2

√
log n ≥ Dσt∥p0∥∞

4D ≥ pt(x0)
√
t

4 ≥ pt(x0) t
4 since t < 1. Therefore C ⊂ A. Then

for any y ∈ C, using (50),

pt(y) ≥ pt(x0)−
1

t
|x0 − y|

≥ pt(x0)−
1

t

pt(x0)t

2

=
1

2
pt(x0). (52)

Then using the definition of Sub-Gaussian and (52),

2 ≥
∫
ex

2/σ2
t pt(x) dx ≥ inf

x∈A
ex

2/σ2
t

∫
A
pt(x) dx

≥ e
D2

4 logn

∫
C
pt(x) dx

≥ nD
2/4 |C| 1

2
pt(x0)

=
1

4
nD

2/4p2t (x0)t.

This implies that

pt(x0) ≤ 2
√
2n−D/2t−1/2 ≤ 2

√
2n−

D
2 +

T1
2 .

Step 2: In general case d ≥ 1, since ∥x∥∞ ≥ Dσt
√
log n, without loss of generality, we suppose |x1| ≥ Dσt

√
log n. Then

by definition of pt(x),

pt(x) =

∫
y∈Rd

p0(y)

d∏
i=1

ϕt(xi − yi)dy

≤ (2πt)−
d−1
2

∫
y∈R

p0(y)ϕt(x1 − y)dy

= (2πt)−
d−1
2 pt(x1).

Using the 1-dimensional results, pt(x1) ≤ 2
√
2 n−

D
2 + 1

2β+d1t<1 , and use the fact that t > n−T1 , we have

pt(x) ≤ 2
√
2n−

D
2 +

dT1
2 .

Lemma F.9. Let G = {x : pt(x) > ρn log
c n} where ρn = 1

n td/2
and n−T1 < t < nT2 ,

|G| ≤ D(t
d
2 + σd0)(log n)

d
2

for some constant D only depending on d, T1 and T2.

Proof. For any t ≥ n−T1 and constant C > 0. Let D = 2C + 2dT1. Then by Lemma F.8, for any n ≥ exp
(

∥p0∥2
∞

4D2

)
,

pt(x) ≥ 2
√
2 n−C
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implies

∥x∥∞ ≤ Dσt
√
log n ≤ D (

√
t+ σ0)

√
log n.

Since ρn = n−1t−d/2 ≥ n−(1+
dT2
2 ), we can take C = 1 + dT2

2 and conclude that

|G| ≤ |{x : ∥x∥∞ ≤ D (
√
t+ σ0)

√
log n}|

≲ (
√
t+ σ0)

d(log n)
d
2

≤ 2d−1(t
d
2 + σd0)(log n)

d
2 .

Then using the bound for expectation of moment of score function E [∥st(X)∥m] in Lemma F.16 and combining Theorem F.9,
we can further provide an upper bound for ∫

G

∥st(x)∥2dx. (53)

Lemma F.10. For any m > 1, define the set

G := {x : pt(x) > ρn logc n},

then ∫
G

∥st(x)∥2dx ≤ C6m (log n)−
c
m ρ

− 1
m

n t−1 (t
d
2 + σd0) (log n)

d
2 ,

for some constant C6 depends on D1 and p.

Proof. By Hölder’s inequality,∫
G

∥st(x)∥2dx =

∫
G

∥st(x)∥2
1

pt(x)
pt(x)dx

≤
(∫

G

∥st(x)∥2mpt(x)dx
)1/m(∫

G

pt(x)
−m′

pt(x)dx

)1/m′

,

where m,m′ > 1 and satisfies 1
m + 1

m′ = 1. By Lemma F.16,

(∫
G

∥st(x)∥2mpt(x)dx
)1/m

=
(
E
[
∥st(X)∥2m

])1/m ≤ t−1 ((2m− 1)!!)
1/m ≲ m t−1,

where in the last inequality we use Stirling’s approximation. By Theorem F.9,

(∫
G

pt(x)
−m′

pt(x)dx

)1/m′

=

(∫
G

pt(x)
1−m′

dx

)1/m′

≤
(
|G|(logc n)1−m

′
ρ1−m

′

n

)1/m′

≤
(
D1(t

d
2 + σd0)(log n)

d
2

)1−1/m

(logc n)−
1
m ρ

− 1
m

n

≤ D1(t
d
2 + σd0)(log n)

d
2 (log n)−

c
m ρ

− 1
m

n .

38



Minimax Optimality of Score-based Diffusion Models

F.5. Bounds on the Squared Error

The next proposition provides uniform upper bounds over x ∈ R for

∥∇p̂t(x)−∇pt(x)∥2

and
∥∇p̂t(x)∥2 |p̂t(x)− pt(x)|2 .

Lemma F.11. There exists constants C5 depending on d and p0 such that with probability 1,

sup
x

∥∇p̂t(x)−∇pt(x)∥2 ≤ C5

(
∥p0∥2∞t−1 + ℓ5dh−(2d+2)

)
,

sup
x

∥∇pt(x)∥2 |p̂t(x)− pt(x)|2 ≤ C5

(
∥p0∥2∞t−1(ℓ5dh−2d + 2∥p0∥2∞)

)
.

In particular, if h =
√
t

Dn
, Dn = C

√
log n and ℓ = log n, then the two terms above are O(t−2poly(log n)). Furthermore, if

log 1
t = O(log n), then the two terms above are at most polynomial in n.

Proof. By Lemma F.4,

∥∇pt(x)∥2 =

d∑
i=1

∣∣∣∣ ∂∂xd pt(x)
∣∣∣∣2 ≤ dC2d

1 ∥p∥2∞t−1.

For the derivative of kernel density estimation,

∇p̂t(x) =
1

nhd+1

n∑
i=1

∇Kd

(
x−Xt

i

h

)
,

By Lemma C.2,

∥∇p̂t(x)∥2 ≤ d∥∇Kd(·)1∥2∞
h2d+2

≲
dℓ5d

h2d+2
.

Therefore

∥∇p̂t(x)−∇pt(x)∥2 ≤ 2dC2d
1 ∥p∥2∞t−1 + 2C2

dℓ5d

h2d+2
.

Besides, since

p̂t(x) =
1

nhd

n∑
i=1

Kd

(
x−Xt

i

h

)
,

we have
|p̂t(x)− pt(x)|2 ≤ 2∥K∥2∞h−2s + 2∥p∥2∞ ≲ ℓ5dh−2d + 2∥p∥2∞.

Moreover, the fourth moments of the score error Ex∼pt,{xi}n
i=1

∥ŝt(x)− st(x)∥4 can also be bounded.

Lemma F.12. There exists some constants C6 depending on d and p0 such that

EX∼pt,{xi}n
i=1

∥ŝt(X)− st(X)∥4 ≤ C6

(
t−2 + ρ−4

n h−4(d+1)
)
.

In particular, if h =
√
t

Dn
, Dn =

√
log n, ℓ = log n and log 1

t = O(log n), then the right side is at most polynomial in n.

Proof.

EX∼pt,{xi}n
i=1

∥ŝt(X)− st(X)∥4 ≲ EX∼pt,{xi}n
i=1

∥ŝt(X)∥4 + EX∼pt∥st(X)∥4.
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Lemma F.16 shows that the moment of score is bounded:

EX∼pt∥st(X)∥4 ≲ t−2d2.

Using the definition of ŝt(x) =
∇p̂t(x)
p̂t(x)

1p̂t(x)>ρn and Lemma C.2,

EX∼pt,{xi}n
i=1

∥ŝt(X)∥4 ≤ ρ−4
n EX∼pt,{xi}n

i=1
∥∇p̂t(X)∥4

≤ ρ−4
n

∥∥∥∥∥ 1

nhd+1

d∑
i=1

∇Kd

(
x−Xt

i

h

)∥∥∥∥∥
4

≲ ρ−4
n h−4(d+1)ℓ5d.

F.6. Control of the Score moments via the Rényi Entropies

F.6.1. RÉNYI ENTROPIES FOR SUB-GAUSSIAN RANDOM VECTOR

Definition F.13. The α-Rényi entropy for random vector X with distribution p is defined as

hα(X) :=
1

1− α
log

∫
(p(x))α dx.

The next proposition shows that sub-Gaussian random variables have finite Rényi entropy and that the maximum Rényi
entropy is attainable by the Gaussian distribution.

Lemma F.14. Suppose that X ∈ R is σ-Sub-Gaussian random variable. Let α ∈ (0, 1) and p denotes the density of X .
Then

hα(X) ≤ 1

1− α
log

((
2πσ2

) 1−α
2 (1− α)

1−α
2 α− 1

2

)
.

Proof. By the sub-Gaussian property in 1 dimension, X satisfies

E[eX
2/σ2

] ≤ 2. (54)

The map p(·) 7→
∫
pαdx is concave for α ∈ (0, 1), so the maximum of hα(X) under the given Sub-Gaussian constraint

(54) is achieved at the stationary point via calculus of variations. Namely, define the Lagrangian with Lagrange multipliers
η > 0:

L(p(x), η) =
∫
p(x)α dx+ η

(
2−

∫
p(x) exp

(
x2

σ2

)
dx

)
.

The functional derivative of L with respect to p(x) is:

δL
δp(x)

= αp(x)α−1 − η exp

(
x2

σ2

)
= 0.

Therefore the maximum of hα(X) is attained by

p̃(x) = Ze
− x2

(1−α)σ2

for some normalizing constant Z > 0. As p is a probability measure, we can verify that Z = 1√
π(1−α)σ

. Therefore, for all

σ-sub-Gaussian random variable X ,

hα(X) ≤ 1

1− α
log

∫
(p̃(x))α dx =

1

1− α
log

((
2πσ2

) 1−α
2 (1− α)

1−α
2 α− 1

2

)
.
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Next, we generalize this result to d-dimension σ-sub-Gaussian random vector X using the following property of Rényi
entropy.

Lemma F.15. Suppose that X ∈ Rd is σ-Sub-Gaussian random vector. Let α ∈ (0, 1) and p denotes the density of X . Then
for α→ 0, we have

hα(X) ≤ log
(
Cdσ

dα− d
2

)
for some constant Cd that only depends on the dimension d.

Proof. We define a transformation T : Rd → Sd−1 × R+ by T (x) = (u, r), where u = x/∥x∥ and r = ∥x∥. This
transformation converts Cartesian coordinates to spherical coordinates, with u representing the direction and r the radius.
The determinant of the Jacobian of this transformation is |JT−1(r, u)| = rd−1. Therefore, by change of variable, the joint
distribution of (U,R) = ( X

∥X∥ , ∥X∥) is given by

pU,R(u, r) = pX(T−1(u, r))|JT−1(r, u)| = pX(ur)rd−1.

Next, we formulate the Rényi entropy of X in terms of the joint distribution of (X/∥X∥, ∥X∥):

hα(X) = log

(
E

[(
1

pX(X)

)1−α
]) 1

1−α

= log

(
E

[(
∥X∥d−1

pU,R(X/∥X∥, ∥X∥)

)1−α]) 1
1−α

≤ log

(
E
[(

1

pU,R(X/∥X∥, ∥X∥)

)p]) 1
p

+ log
(
E
[(

∥X∥(d−1)
)q]) 1

q

= h1−p

(
X

∥X∥
, ∥X∥

)
+

1

q
logE

[
∥X∥q(d−1)

]
,

where in the inequality term we apply the Hölder’s inequality with 1
1−α = 1

p + 1
q for 0 < p < 1 and q > 1. Combining

Proposition 4.9 and Proposition 4.12 in Berens (2013), we obtain an Rényi Entropy upper bound for the join distribution(
X

∥X∥ , ∥X∥
)

h1−p

(
X

∥X∥
, ∥X∥

)
≤ h1−p (∥X∥) + h0

(
X

∥X∥

)
.

The last term is bounded by a constant logCd that only depends on the dimension because the direction vector X
∥X∥ has

bounded supported on a unit sphere Sd−1 (Van Erven & Harremos, 2014). Notice that ∥X∥ ∈ R is
√
dσ-sub-Gaussian since

by Hölder’s inequality,

E
[
exp

(
∥X∥2

dσ2

)]
≤

d∏
i=1

(
E
[
exp

(
X2
i

σ2

)]) 1
d

≤ 2.

Therefore, using the result of one dimension in Lemma F.14,

h1−p(∥X∥) ≤ 1

p
log
((

2πdσ2
) p

2 p
p
2 (1− p)−

1
2

)
.
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The moments of ∥X∥ can also be bounded since it is sub-Gaussian:

E
[
∥X∥q(d−1)

]
=

∫ ∞

0

P
(
∥X∥q(d−1) > u

)
du

= q(d− 1)

∫ ∞

0

P (∥X∥ > t) tq(d−1)−1dt

≤ q(d− 1)

∫ ∞

0

2 exp

(
− t2

2dσ2

)
tq(d−1)−1dt

= q(d− 1)(2dσ2)
q(d−1)

2 Γ

(
q(d− 1)

2

)

≤ 3q(d− 1)(2dσ2)
q(d−1)

2

(
q(d− 1)

2

) q(d−1)
2

where in the last inequality we use Γ(x) ≤ 3xx for all x ≥ 1/2.

Combining these results and take p = 1− α
2 and q = 2

α + α− 3, when α is small we have

hα(X) ≤ log
(
C̃dσ

dα− d
2

)
for some constant C̃d that only depends on the dimension d.

F.6.2. CONTROLLING THE EXPECTATION OF SCORE FUNCTION WITHIN LOWER DENSITY AREAS

For any random vector, we denote Im(X) := E[∥sX(X)∥m], where sX(x) := ∇ log pX(x). For any random vector X , we
can use the following proposition to control any order of moments of the score function Im(X).

Lemma F.16. Let X and G be independent random vectors such that X ∼ p0, G ∼ N (0, Id) and Y = X +
√
tG, then we

have

Im(Y ) ≤ min{Im(X), Im(
√
tG)}

≤ Im(
√
tG)

≤ t−
m
2 d

m
2 (m− 1)!!

Proof. The proof follows from a simple convexity argument of Corollary 3.2 in Bobkov (2019).
According to Bobkov (2019)[Corollary 3.2], for all independent random variablesX,Y , Ik(X+Y ) ≤ min {Ik(X), Ik(Y )}.
We can generalize this result to higher dimensions. Here we have

Im(X) =

∫
∥sX(x)∥mpX(x)dx

=

∫
∥∇p(x)∥m

pm−1(x)
dx

where the items are vectors instead of scalars. In Bobkov (2019), follows the fact that the homogeneous function R(u, v) =
uk/vk−1 is convex on the plane u ∈ R, v ∈ R. We need to extend this to the convexity of (u, v) 7−→ ∥u∥m

vm−1 where u is
vector from Rd vector space. In fact, as in the constraints in classical convex optimization problems, we can check that the
Hessian matrix for u and v are positive semi-definite:

det

(
∇2 ∥u∥m

vm−1

)
= det

(
(m− 2)(u⊗ u) + I −(m− 1)u⊤

−(m− 1)u m− 1

)
· ∥u∥

2m−3

v2m
·m2

≥ 0.

Therefore, the function (u, v) 7−→ ∥u∥m

vm−1 is still convex within the u ∈ Rd, v ∈ R.
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Next, we calculate the moment of scores for Gaussian distribution Im(
√
tG). Let

√
tG ∼ ϕt(x) := (2πt)−

d
2 exp

(
−∥x∥2

2t

)
and Z ∼ N (0, 1),

Im(
√
tG) = EX∼ϕt

∥∇ log ϕt(X)∥m

= t−
m
2 EG∼ϕ1

∥G∥m

≤ t−
m
2 d

m
2 E|Z|m

≤ t−
m
2 d

m
2 (m− 1)!!.

Lemma F.17. Suppose that X ∼ pt is σ2
t -Sub-Gaussian, and st(x) :=

∇pt(x)
pt(x)

denoted the score function for pt(x). Then
for any 0 < ε < 1, ∫

pt(x)≤ρn log−c n

∥st(x)∥2 pt(x)dx ≲ ε−(1+ d
2 )t−1ρ1−εn σd(1−ε),

where ρn = n−1t−d/2.

Proof. By Hölder’s inequality,∫
pt(x)≤ρn log−c n

∥st(x)∥2 pt(x)dx = E[∥st(X)∥21{pt(x)≤ρn log−c n}(X)]

≤ (E [∥st(X)∥m])
2/m (P[p(X) ≤ ρn log

−c n]
)1− 2

m .

The first term is the moments of score and can be upper bounded by Lemma F.16:

(E [∥st(X)∥m])
2/m ≤ (E [∥st(X)∥m])

2/m

≤ t−1d((m− 1)!!)2/m

≲ mt−1,

where in the last inequality we use Stirling’s approximation. By Markov’s inequality and the Upper bound for Rényi
entropies in Lemma F.15,

P[p(X) ≤ ρn log
−c n] = P

[
1

p1−α(X)
≥ 1

ρ1−αn (log n)−(1−α)c

]
≤ ρ1−αn (log n)−(1−α)c exp((1− α)hα(Y ))

≤ Cdρ
1−α
n σd(1−α)α− d

2 .

So combining the results we have∫
pt(x)≤ρn log−c n

∥st(x)∥2 pt(x)dx ≲ mt−1ρ(1−α)(1−2/m)
n σd(1−α)(1−2/m)α− d(1−2/m)

2 .

Finally, we take α = ε ↓ 0, m = ε−1 → ∞ such that (1− α)(1− 2
m ) ≍ 1− ε, then∫

pt(x)≤ρn log−c n

∥st(x)∥2 pt(x)dx ≲ ε−(1+ d
2 )t−1ρ1−εn σd(1−ε).

43



Minimax Optimality of Score-based Diffusion Models

F.7. Bounds on the Maximal Function

In the MSE analysis for p̂t and ∇p̂t in Proposition C.3 and Proposition C.4, we introduce the local maximal function
p∗t (x) := sup∥λ∥∞<h pt(x+ λ). The following lemma shows that p∗t (x) and pt(x) are uniformly close to each other for all

x. Specifically, we demonstrate that if we take h =
√
t

Dn
, then for any small ε, the ratio p∗t (x)

p1−ε
t (x)

is bounded by a constant that
only depends on ε for all x and t.

Lemma F.18. Define
p∗t (x) = sup

∥λ∥∞≤h
pt(x+ λ).

If we take h =
√
t

Dn
, for some Dn that depends on sample size n, then for any t > 0, x ∈ Rd, and ε ∈ (0, 1),

pt(x) ≤ p∗t (x) ≤ (1− ε)−d/2 exp

{
d(1− ε)

2D2
nε

}
p1−εt (x).

In particular, by taking Dn = C
√
log n for some constant C we have

pt(x) ≤ p∗t (x) ≤ (1− ε)−d/2 exp

{
d(1− ε)

2C2(log n)ε

}
p1−εt (x).

Remark F.19. If we take ε→ 0 such that ϵ log n→ +∞, we have pt(x) ≤ p∗t (x) ≲ p1−εt (x).

Proof of Lemma F.18. The first inequality follows from the definition of p∗t (x). Next we prove the second inequality. By
Jensen’s inequality,

p1−εt (x) = (p0 ∗ ϕt)1−ε(x) ≥ p0 ∗ ϕ1−εt (x) ≥ p0 ∗ ϕ t
1−ε

(x),

where ϕt(x) = exp
(
−∥x∥2

2

2t

)
. Then

p∗t (x)

p1−εt (x)
≤ sup

x∈Rd

∥λ∥∞≤
√

t
Dn

p0 ∗ ϕt(x+ λ)

p0 ∗ ϕ t
1−ε

(x)

By changing of variable and Lemma F.20,

p∗t (x)

p1−εt (x)
≤ sup

x∈Rd

∥λ∥∞≤D−1
n

∫
p0(x+

√
tλ−

√
ty)ϕ1(y)dy∫

p0(x−
√
ty)ϕ 1

1−ε
(y)dy

= sup
x∈Rd

∥λ∥∞≤D−1
n

∫
p0(y)ϕ1

(
λ+ x−y√

t

)
dy∫

p0(y)ϕ 1
1−ε

(
x−y√
t

)
dy

≤ sup
x∈Rd

∥λ∥∞≤D−1
n

ϕ1 (λ+ x)

ϕ 1
1−ε

(x)

= (1− ε)−d/2 sup
x∈Rd

∥λ∥∞≤D−1
n

exp

{
1

2

[
(1− ε)∥x∥2 − ∥x+ λ∥2

]}
.

The exponent above is

sup
x∈Rd

∥λ∥∞≤D−1
n

(
(1− ε)∥x∥2 − ∥x+ λ∥2

)
= sup

x∈Rd

∥λ∥∞≤D−1
n

(
−ε∥x+ λ/ε∥2 + (1/ε− 1)∥λ∥2

)
= sup

∥λ∥∞≤D−1
n

(1/ε− 1)∥λ∥2

= d(1/ε− 1)D−2
n .
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Therefore, denote Dε :=
p∗t (x)

p1−ε
t (x)

, then for all x ∈ Rd

Dε ≤ (1− ε)−d/2 exp

{
d(1− ε)

2D2
nε

}
.

Lemma F.20. Suppose that f(x), g(x) and p(x) are probability density functions. Suppose that the density ratio of f and g
is bounded, i.e.,

sup
x

f(x)

g(x)
<∞.

Then ∫
x
f(x)p(x) dx∫

x
g(x)p(x) dx

≤ sup
x

f(x)

g(x)
.

Proof. Denote

λ = sup
x

f(x)

g(x)
<∞.

Then
f(x) ≤ λg(x).

Integrate both sizes we have ∫
f(x)p(x) dx ≤ λ

∫
g(x)p(x) dx.
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