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Abstract

In Bayesian parameter estimation, models make simplifying assumptions to make1

parameter inference feasible. If learned inference methods are trained using data2

simulated by models, however, distributional differences between simulated and3

observed data may lead to biased inference results on the observed data. In this4

work, we introduce a semi-supervised learned Bayesian inference method which5

makes use of both simulated data – for which the underlying parameters are known6

by construction – and unlabeled data, which may depend on nuissance parameters7

not captured by the simulation procedure. A conditional variational autoencoder8

(CVAE) is trained to perform approximate inference simultaneously on the sets of9

labeled simulated data and unlabeled data, where the unlabeled data is initialized10

with arbitrary pseudo labels. At each training iteration, new candidate pseudo11

labels are drawn from the CVAE posterior and the pseudo labels are updated using12

the Metropolis-Hastings algorithm. This process results in a Markov chain of13

bootstrapped pseudo labels for each unlabeled datum, effectively performing online14

Markov chain Monte Carlo (MCMC) inference wherein the proposal distribution15

is a CVAE informed by labeled simulated data, producing proposals which are16

increasingly likely to be accepted as training proceeds. The resulting CVAE is17

able to efficiently produce samples from the posterior distributions of both the18

simulated and unlabeled data, implicitly marginalizing over nuissance parameters19

in the unlabeled data. We demonstrate the effectiveness of this method in magnetic20

resonance imaging (MRI) where MCMC is computationally impractical to due the21

(3+1)D nature of the images, showing improvement against traditional MCMC22

inference in both speed and posterior quality.23

1 Introduction24

Bayesian parameter estimation methods are robust techniques for quantifying properties of a system25

that cannot be observed directly [1]. In order to estimate such parameters, one first needs to develop26

a model of the phenomena to be studied. This process requires deep domain-specific knowledge. For27

all but the most basic of systems, a series of simplifying assumptions on the system are required to28

make parameter inference tractable. Typically, tractable is synonymous with not being unreasonably29

expensive to compute. Examples of such methodologies include perturbation theory, in which models30

containing Taylor series expansions drop higher order terms; mean-field theory, in which interactions31

involving many degrees of freedom are replaced by averaged approximations; and (stochastic)32

differential equations, when used as continuous limits of discrete stochastic processes. The price one33

pays for utilizing a given approximation is highly problem dependent. When approximate models34

are used for parameter inference, the mismatch between model predictions and data may propagate35
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through the inference process and lead to bias and other misestimations of the inferred parameters. In36

this work, we are interested in the following research question: can a deep learning model be trained37

to perform inference, while incorporating both labeled data generated from a well-understood model,38

and unlabeled data which contains additional complex structure which cannot be modeled?39

Here, we present Metropolis conditional variational autoencoders (Metropolis-CVAEs). Metropolis-40

CVAEs combine traditional CVAEs with the Metropolis-Hastings Markov chain monte carlo (MCMC)41

inference method. The resulting networks combine the ability of CVAEs to learn to perform rapid42

approximate Bayesian inference from labeled data with traditional MCMC methodology which43

requires only a likelihood model and a prior distribution over the parameters of interest. The44

Metropolis-CVAE initializes the unlabeled data with pseudo labels drawn from the prior distribution45

and, informed by the labeled data, iteratively improves the pseudo labels throughout training. We46

demonstrate the effectiveness of the Metropolis-CVAE network compared to traditional MCMC47

methods on an inference problem from magnetic resonance imaging (MRI) which is inherently48

computationally challenging due to the (3+1)D nature of the data.49

2 Methods50

2.1 Related work51

In the pioneering work by Sohn et al. [2], conditional variational autoencoders were introduced52

by considering a variational lower bound to the conditional log-likelihood log p(y|x) of labels y53

given corresponding data x. Ideally, to perform data-driven approximate inference, one would like54

to train a network to learn to maximize the conditional log-likelihood directly. However, this is55

known to be an intractable problem. To mitigate this issue, the stochastic gradient variational Bayes56

(SGVB) framework is employed. In SGVB, a latent space which factorizes the marginal likelihood is57

introduced via p(y|x) =
∫
z

dz p(z|x)p(y|z,x), as well as a recognition distribution q(z|x,y). The58

conditional log-likelihood is then maximized indirectly via maximizing the variational lower bound59

log p(y|x) ≥−KL (q(z|x,y) || p(z|x)) + Eq(z|x,y) [log p(y|x, z)]

:=−L(x,y)
(1)

where KL is the Kullback-Leibler divergence. The interpretation as a conditional autoencoder is60

as follows: let p(z|x), q(z|x,y), and p(y|x, z) be parameterized by deep neural networks E1(z|x),61

E2(z|x,y), and D(y|x, z), respectively. Then, E1 and E2 can be viewed as encoders which map62

their inputs into distributions over the latent variables z. D can be viewed as a decoder which maps63

stochastic latent representations z and data x into posterior distributions over the labels y. Hence, y64

is conditionally autoencoded via the encoder-decoder pipeline z ∼ E2(z|x,y) → y ∼ D(y|x, z).65

At inference time, posterior samples are similarly drawn via z ∼ E1(z|x)→ y ∼ D(y|x, z). The66

CVAE – the triplet of networks (E1, E2, D) – is trained by minimizing L over the CVAE parameters,67

thereby maximizing the variational lower bound on log p(y|x).68

The CVAE approach by Sohn et al. [2] is designed for supervised learning problems. Earlier work of69

a similar vein by Kingma et al. [3] introduces a semi-supervised framework in which labeled data70

(x`,y) is used to infer labels for unlabeled data xu via the minimization of a two-term loss function.71

The first term of the loss function is a supervised loss over (x`,y) samples, similar to Equation 1,72

derived from a variational lower bound on the joint log-likelihood log p(x`,y). The second term is an73

unsupervised loss over xu samples which treats label inference as a data imputation task. Specifically,74

the unknown label is treated as a parameter over which posterior inference is performed; the resulting75

loss is a variational lower bound on the log-likelihood log p(xu).76

While the semi-supervised method of Kingma et al. is an elegant approach to discovering labels,77

it is not quite suitable for inferring labels for out of distribution data. This is due to the implicit78

assumption that relationships between x` and y learned from the joint distribution p(x`,y) generalize79

to data from p(xu). In fact, this assumption is made explicit via an extended objective function which80

adds a regularization term Ep̃`(x,y) [−log q(y|x`)] over the empirical distribution p̃`(x,y) of labeled81

data. This penalty encourages the learned posterior distribution q(y|x) to generate labels for xu by82

extrapolating from the relationships it discovers between (x`,y) pairs. This will naturally lead to83

biased labels for xu when the distribution underlying xu differs from that of x`.84
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Gabbard et al., who made use of CVAEs to accelerate inference for an application in gravitational85

wave astronomy [4], presented an alternate view of Equation 1. Gabbard et al. begin by aiming to86

minimize the expected cross-entropy87

H := − Ep(x)

[∫
y

dy p(y|x) log p̂(y|x)

]
(2)

over the data distribution p(x) between the true posterior p(y|x) and approximate posterior p̂(y|x).88

Employing the SGVB framework and letting p̂(y|x) =
∫
z

dz p̂(z|x)p̂(y|z,x), it follows from 1 that89

H ≤ Ep(x)

[∫
y

dy p(y|x)L(x,y)

]
. (3)

Applying Bayes’ theorem, we equivalently have that90

H ≤ Ep(x) Ep(y|x) [L(x,y)] (4)

= Ep(y) Ep(x|y) [L(x,y)] (5)

= Ep(x,y) [L(x,y)] . (6)

Therefore, maximizing the variational lower bound to log p(y|x) over a dataset of (x,y) pairs, as in91

Equation 1, is equivalent to minimizing the expected cross-entropy via Equation 6. The interpretation92

of Equations 4 and 5, however, will prove useful for remedying the issue of label inference for out of93

distribution data.94

2.2 Theoretical contributions95

Equation 5 is a natural framework for using CVAEs to perform inference on simulated data with96

known labels [4]. Suppose labels y ∼ p(y) are sampled from a prior distribution and x ∼ p(x|y)97

is subsequently given by a (possibly stochastic) model function x = f(y). Then, Equation 598

corresponds to minimizing the average CVAE loss L(x,y) over pairs of simulated data (x=f(y),y).99

The novel contribution of this work stems from of Equation 4. Using this formulation directly would100

require sampling from the posterior p(y|x), which is our stated objective. However, this can be101

circumvented by making the observation that if we could construct a Markov chain of pseudo labels102

ỹ during training, such that the stationary distribution of the sequence (ỹk)k∈N was p(y|x), then103

Equation 4 could be approximated as104

Ep(x) Ep(y|x) [L(x,y)] ≈ Ep(x)

[
1

Lc

Lc−1∑
i=0

L(x, ỹn−i)

]
(7)

where (ỹn−Lc+1, . . . , ỹn) are the Lc most recent samples in the Markov chain. This approach to105

distribution sampling – Markov chain Monte Carlo (MCMC) sampling – is considered the gold106

standard in parameter inference.107

In this work, we consider the Metropolis-Hastings (MH) algorithm [5, 6]. In the context of Bayesian108

inference for recovering labels y from data x, MH sampling begins with a prior distribution p(y), a109

likelihood function p(x|y), and a proposal distribution Q(y′|y) which quantifies the probability of110

transitioning from y to y′ in the space of possible labels. Given a sample yn of a Markov chain, the111

MH update rule is given by112
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Figure 1: (A-G) Comparison of inference results for data simulated using Equation 14 with parameters
drawn from Equation 17. Histograms of errors between the means of the empirical distributions
and the true labels are shown. (H) p-p plot for each label. In all plots, MCMC with 100 samples,
MCMC with 3000 samples, and Metropolis-CVAE with 100 samples are shown in red, green, and
blue, respectively.

y′ ∼ Q(y′|yn)

α = min

(
1,

p(y′)

p(yn)
· p(x|y

′)

p(x|yn)

)
u ∼ Uniform(0, 1)

yn+1 =

{
y′ u ≤ α
yn otherwise.

(8)

The proposal distribution Q(y′|y) is a free parameter of the MH algorithm. In general, choosing Q113

to resemble the true posterior as closely as possible improves the efficiency of the MH algorithm.114

Therefore, we propose to use the approximate posterior p̂(y|x) of the CVAE itself as the proposal115

distribution. Recalling that p̂(y|x) =
∫
z

dz p̂(z|x)p̂(y|z,x) :=
∫
z

dzE1(z|x)D(y|z,x), we let116

Q(y′|yn) = Q(y′) =

∫
z

dzE1(z|x)D(y′|z,x) (9)

≈ 1

Lz

Lz∑
i=1

D(y′|zi,x) where zi ∼ E1(z|x). (10)

By choosing this proposal function, we are able to bootstrap pseudo labels ỹ onto unlabeled data xu.117

In particular, we minimize the semi-supervised hybrid loss118

Lhybrid = Lsuper + Lself (11)
Lsuper = E(x`,y)∼p̃`(x,y) [L(x`,y)] (12)

Lself = E(xu,ỹ)∼p̃u(x,ỹ) [L(xu, ỹ)] (13)
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Figure 2: (A) Pseudo label acceptance rate vs. epochs for the MRI datasets p̃`,1(x) and p̃`,2(x). (B)
Wasserstein distance vs. epochs between empirical label distributions and MCMC with 100 posterior
samples, and (C) same as (B) but MCMC with 3000 posterior samples.

where p̃`(x,y) and p̃u(x, ỹ) are the empirical distributions over the pairs of labeled data (x`,y)119

and unlabeled data with bootstrapped pseudo labels (xu, ỹ), respectively. The pseudolabels ỹ are120

initialized uniformly from the prior space p(y) and are updated according to the MH algorithm 8 at121

each training iteration.122

Note that in the MH update step, the MH acceptance ratio α can be interepreted as computing a123

Bayesian goodness of fit check relative to the current label ỹn. Therefore, p̃`(x) and p̃u(x) need124

not be identical distributions, merely close enough such that decreasing the supervised loss Lsuper125

improves the proposal quality for the self-supervised loss Lself early in training.126

2.3 MRI physics application127

We consider an application in magnetic resonance imaging. In MRI, data is typically acquired in128

the form of (3+1)D spatio-temporal grids, with 1D magnetic resonance time signals measured in129

each voxel of the three spatial dimensions. Advanced imaging methods typically involve voxelwise130

parameter inference for each time signal for the computation of quantitative maps. Modeling the131

individual time signals for inference, however, is challenging due to imperfections in the magnetic132

field generated by the scanner and other sources of signal corruption. Effectively, in MRI there is a133

distributional mismatch problem: simulated data p̃`(x), with labels corresponding to well understood134

physics parameters, does not contain the full distribution of measured data p̃u(x) which, while135

generated by the same physics in principle, depends on additional nuissance parameters which cannot136

be modeled. Machine learning models which intended to generalize to p̃u(x) should therefore not be137

trained only on data from p̃`(x).138

In this work, we acquire multi spin-echo (MSE) MRI images. The MSE time signals are modeled139

using a two-component extended phase graph (EPG) model using the algorithm detailed in Prasloski140

et al. [7]. Using this model, the j-th time point for each signal is given by141

x̂j = f(j · TE)

f(t) =

2∑
`=1

A` EPG(t, α, β, T2,`, T1)
(14)

where α is the spin flip angle, β the refocusing control angle, A1, A2 the component amplitudes,142

T2,1 ≤ T2,2 the short and long transverse relaxation times, and T1 the longitudinal relaxation time.143

The EPG(t, . . .) terms are approximately exponentially decaying in t with time constants T2,`, with144

additional modifications due to MRI physics determined by α, β, and T1. The echo time TE is the145

uniform spacing between time points. We reparameterize A1, A2, T2,1, and T2,2 in terms of the146

unconstrained parameters η, δ1, and δ2 as follows: A1 = η, A2 = 1 − η, log T2,1 = log T2,min +147
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(log T2,max−log T2,min)·δ1, and log T2,2 = log T2,min+(log T2,max−log T2,min)·(δ1+δ2 ·(1−δ1)),148

where T2,min = 10 ms and T2,max = 1 s. The longitudinal relaxation time is fixed T1 = 1.0 s.149

MRI signal noise can be modeled as Rician [8, 9]. Given data x normalized to have maximum value150

1, the likelihood p(x|y) under Rician noise is given by151

log p(x|y) =

Nx∑
j=1

log pRice

(
xj

∣∣∣∣ s · x̂(θ)j
maxk x̂(θ)k

, s · ε
)
, (15)

where pRice(ξ|ν, σ) =
ξ

σ2
exp

(
−ξ

2 + ν2

2σ2

)
I0

(
ξν

σ2

)
(16)

is the Rician probability density function with location parameter ν and scale parameter σ; I0 is152

the modified Bessel function of the first kind with order zero. We have introduced two additional153

parameters: a scale parameter s to account for signal normalization, and a noise level ε relative to this154

scale. Additionally, we denote θ = (α, β, η, δ1, δ2) the parameters of the EPG model 14.155

In total, there are 7 labels to be inferred: y = (α, β, η, δ1, δ2, log ε, log s). We place the following156

priors on the parameters:157

α ∼ TN (180◦, 45◦, 90◦, 180◦)

β ∼ TN (180◦, 45◦, 90◦, 180◦)

η ∼ TN (0.0, 0.5, 0.0, 1.0)

δ1 ∼ TN (0.0, 0.5, 0.0, 1.0)

δ2 ∼ TN (1.0, 0.5, 0.0, 1.0)

log ε ∼ U(log 10−5, log 10−1)

log s ∼ TN (0.0, 0.5,−2.5, 2.5)

(17)

where TN (µ, σ, a, b) is the normal distribution with parameters (µ, σ) truncated to the interval [a, b],158

and U(a, b) is the uniform distribution on [a, b]. The priors were chosen to align with the expectations159

that: α, β are typically near 180◦; the short component amplitude η is typically less than the long160

amplitude 1− η; δ1 and δ2 should prefer to represent the shortest and longest components; the noise161

level ε is chosen uniformly from signal-to-noise ratios between 20 and 100; the scale parameter s162

should prefer to be 1.163

3 Experiments164

3.1 Data sets165

MRI data The MRI data used for this study consists of two anonymized brain scans acquired using166

a Carr-Purcell-Meiboom-Gill (CPMG) [10, 11] multi spin-echo sequence [12]. The first data set,167

denoted p̃u,1(x), contains signals with Nx,1 = 48 samples at times ti = i · TE, with echo spacing168

TE = 8 ms, repetition time TR = 1073 ms, matrix size 240× 240× 48, and spatial resolution169

0.96× 0.96× 2.5 mm3. The second data set, denoted p̃u,2(x), contains signals with Nx,2 = 56170

samples at times ti = i · TE, with echo spacing TE = 7 ms, repetition time TR = 1066 ms,171

matrix size 240× 240× 113, and spatial resolution 1.0× 1.0× 3.0 mm3. Following the extraction172

of image volumes containing the brain, p̃u,1(x) and p̃u,2(x) contain 821 145 and 1 265 306 signals,173

respectively. MRI data was acquired on a 3 T MR system (Ingenia Elition, Philips Medical Systems,174

Best, The Netherlands) from healthy volunteers giving written and informed consent, and approved175

by our university ethics board.176

Simulated data Using the EPG physics model 14 with Rician noise, we consider two simulated177

data sets. First, the labeled data set p̃`(x) which is generated on demand during training using labels178

y ∼ p(y) drawn from the prior distributions 17. Second, a precomputed simulated data set p̃u,3(x)179

used for validation of the method, where the labels are held out during training. All simulated signals180

are generated with Nx,3 = 64 samples and TE = 10 ms.181

MCMC data MCMC is performed using the No-U-Turn Sampler [13] algorithm to generate182

posterior samples ŷ ∼ p(y|xu) which can be compared with the (Metropolis-)CVAE posterior183
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Figure 3: (A-G) Histograms of Wasserstein distances between (Metropolis-)CVAE and MCMC
empirical distributions for the two MRI data sets. Histograms of errors between the means of the
empirical distributions and the true labels are shown. (H) Quantile-quantile plot for each label between
global empirical distributions of CVAE samples and MCMC samples. In all plots, comparison with
MCMC with 100 samples and 3000 samples are shown in red and green, respectively; CVAE trained
only on simulated data is shown in dashed lines; Metropolis-CVAE shown in solid lines.

samples. MCMC was performed twice: once to draw 100 posterior samples for every time signal in184

p̃u,1(x), p̃u,2(x), and p̃u,3(x), and once to draw 3000 posterior samples for a subset of 5000 signals185

from the training, validation, and testing partitions of all three data sets. In total, performing the186

above MCMC analysis took approximately 72 h using an AMD Ryzen 9 3950X 16-Core CPU.187

3.2 Model architecture188

CVAE components Let x ∈ RNx , y ∈ RNy , and z ∈ RNz be input data, corresponding labels,189

and latent space samples, respectively. The encoders E1 and E2 are chosen to be multivariate normal190

distributions: E1(z|x) = N (µz1 , σz1) and E2(z|x,y) = N (µz2 , σz2), where µz1 , µz2 ∈ RNz and191

σz1 , σz2 ∈ RNz
+ . Similarly, the decoder is given byD(y|x, z) = TN (µy, σy, 0, 1), where µy ∈ RNy192

and σy ∈ RNy

+ parameterize independent multivariate normal distributions truncated to [0, 1]. The193

labels y are scaled linearly from the prior domains 17 to [0, 1]Ny in order to better condition the194

network during training. Similarly, as we are interested only in the relative x values and not their195

absolute scale, inputs x are normalized to [0, 1]Nx .196

Each of the E1, E2, and D networks are composed of fully connected layers with ReLU activation197

functions and H = 2 hidden layers, with hidden dimension NH = 512, for a total of H + 2 = 4198

layers. The dimensions of the data, labels, and latent space are Nx = 64, Ny = 7, and Nz = 12,199

respectively. The encoder networks output µz1 , log σz1 , µz2 , and log σz2 vectors. In order to avoid200

latent space collapse during early training stages – that is, one or both of |µzi |, | log σzi | → ∞ –201

each µzi was bounded to (−3, 3) using the activation function x→ 3 tanh(x), and each log σzi was202

bounded to (−6, 0) using the activation function x→ 3 tanh(x)− 3. These bounds were determined203

by observing empirical µzi
and log σzi

values and choosing intervals which clipped only the tails of204

the distributions. The decoder network outputs µy and log σy vectors without further nonlinearities.205
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Loss functions The terms Lsuper and Lself in Equation 11 are identical apart from their inputs,206

with each term consisting of the KL-divergence and evidence lower bound (ELBO) terms from the207

variational lower bound of Equation 1. The KL-divergence can be computed in closed closed-form,208

and is given by209

KL (E2(z|x,y) ||E1(z|x)) =

Nz∑
j=1

σ2
z2,j

+ (µz2,j − µz1,j)
2

2σ2
z1,j

+ log
σz1,j

σz2,j
− 1

2
(18)

Following sampling z2 ∼ E2(z|x,y) and subsequently computing (µy, log σy) = D(y|x, z2), the210

ELBO component is approximated as211

EE2(z|x,y) [logD(y|x, z)] ≈
Ny∑
j=1

{

log φ

(
yj − µy,j

σy,j

)
− log

(
Φ

(
1− µy,j

σy,j

)
− Φ

(
0− µy,j

σy,j

))
− log σy,j

} (19)

where φ(ξ) =
1√
2π

exp

(
−1

2
ξ2
)

Φ(ζ) =
1

2

(
1 + erf

(
ζ√
2

))
.

φ(ξ) and Φ(ζ) are the probability density and cumulative distribution functions of the standard212

normal distribution, respectively. Note that each term in the sum of Equation 19 is the log-likelihood213

of a normal distribution with parameters (µy,i, σy,i) truncated to the unit interval [0, 1].214

3.3 Training215

All data sets were split into training/validation/testing with proportions 50 %/25 %/25 %. Input data216

was padded with zeros to length Nx = 64, if necessary. To support data with differing unpadded217

lengths, random masking was performed during training: for each x, a random integer jmask was218

sampled from 32–64 and all elements xj>jmask were set to zero. The ADAM optimizer was used with219

an initial learning rate of 10−4. The learning rate was decreased every 1000 epochs by a factor of
√

10.220

Training was completed after 5000 epochs, where an epoch is defined as 100 iterations. Each iteration,221

a batch of 1024 data and (pseudo-)label pairs are drawn from either a labeled or an unlabeled dataset,222

with equal probability. If labeled data are sampled, the loss component Lsuper(x`,y) is descended223

on. If unlabeled data are sampled, the pseudo labels ỹ corresponding to the sampled xu are updated224

using Equation 8 before descending on the loss component Lself(xu, ỹ). In the Metropolis-Hastings225

update step, we set Lc = 1 in equation 7 and Lz = 1 in equation 9. Training was performed on a226

single Nvidia GeForce RTX 3080 GPU with 10 GB of VRAM; approximately 15 hours was required227

to train for 5000 epochs.228

4 Results and discussion229

In the first experiment, a Metropolis-CVAE is trained on online simulated labeled data x` ∼ p̃`(x) as230

well as precomputed simulated data xu ∼ p̃u,3(x) with labels held out during training. Figure 1(A-G)231

shows the distributions of prediction errors by the trained network for each label. For each method,232

the prediction error is defined as the difference between the true label and the mean of the posterior233

samples. The labels have been normalized to [0, 1]. The histograms for the Metropolis-CVAE with234

100 posterior samples are more tightly clustered around zero than MCMC with either 100 or 3000235

posterior samples – denoted MCMC-100 and MCMC-3000 – in all cases except for one (Figure 1F).236

Figure 1H shows a p-p plot: the fraction of posterior samples greater than or equal to the true label, p,237

is plotted against the cumulative distribution of p-values across the data set; the Metropolis-CVAE238

produces similar curves as MCMC-3000.239
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In the second experiment, a Metropolis-CVAE is similarly trained using labeled simulated x` ∼ p̃`(x),240

but now with the unlabeled data xu drawn from the MRI data sets p̃u,1(x) and p̃u,2(x). For241

comparison, a second traditional CVAE is trained on the simulated data only. Figure 2A shows the242

acceptance rate of the proposed pseudo labels ỹ′ ∼ Q(y′) for each data set during training. As the243

Metropolis-CVAE continually learns from both data sets, we find that the network quickly enters244

a negative feedback loop in which the acceptance rate continually increases throughout training.245

Noteworthy is that the acceptance rate of ỹ converges to a value between 0.6 and 0.7 for both datasets.246

The default target acceptance rate of the No-U-Turn sampler is 0.65, a value which originates from247

a theoretical result pertaining to Hamiltonian Monte Carlo (HMC) [14]. Theoretical work would248

be required to demonstrate a direct connection between Metropolis-CVAEs and the HMC result.249

However, this illustrates that the network neither accepts nor rejects more proposals than is typically250

desired. Figure 2(B-C) shows the average Wasserstein distance between empirical label distributions251

from the Metropolis-CVAE with MCMC-100 and MCMC-3000, respectively. During training, the252

Metropolis-CVAE quickly reaches minimum Wasserstein distances with respect to MCMC-100.253

Minima are reached with respect to MCMC-3000 similarly quickly. We can extrapolate from this254

result that the Metropolis-CVAE likely produces higher quality posterior samples than MCMC-3000.255

This may be expected, as the Metropolis-CVAE updates its pseudo labels at every training iteration,256

continuously performing MCMC throughout training using the MH update rule 8.257

Figure 3(A-G) compares the empirical distributions of a traditional CVAE trained only on simulated258

data with a Metropolis-CVAE. Histograms of the Wasserstein distances between the two networks and259

MCMC-100 do not show large differences, due to the low-quality of MCMC-100. Compared with260

MCMC-3000, parameters which are traditionally easier to infer, such as α and β, show little difference261

between the networks. The CVAE trained on supervised data alone shows significant deviation from262

MCMC-3000 for several parameters, particularly η, δ1, and log ε. This illustrates the ability of the263

Metropolis-CVAE to generalize well to the unlabeled test data, as unlabeled training data from p̃u(x)264

has been explicitly incorporated into its training process. Figure 3(H) shows quantile-quantile plots265

for distributions of all label samples across the data sets. All methods agree.266

Limitations A limitation of this method is the requirement of a likelihood function which is fast to267

compute in order to perform the Metropolis-Hastings update step 8. For physics models, computing268

the likelihood of a set of parameters often involves costly forward simulations of complex models.269

Therefore, computationally intensive models which require solving non-trivial integral or differential270

equations will not be suitable.271

Another limitation is that the pseudo label sampling procedure may converge to a stable local272

minimum which is far from the globally optimal labels. This is inherent to the MH update step; while273

MCMC methods often provide convergence guarantees in the limit of large numbers of update steps,274

one can not predict how many update steps this will require in practice. However, by training the275

Metropolis-CVAE on both simulated data generated from the prior space as well as real unlabeled276

data, we have not found this to be a practical concern.277

Potential negative societal impacts This work describes a framework for ascribing labels to unla-278

beled data. Potential malicious and unintended uses could occur if this framework were significantly279

extended beyond the MRI physics inference problem which we considered. For example, this method-280

ology could be used to infer missing data generally, with the inferred data then presented under the281

pretense that it were true data. Further, we have not shown that our method of data inference for282

unlabeled data is inherently fair, nor that the clinical MRI data under which the Metropolis-CVAE283

model is trained on cannot be recovered from the network weights.284
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