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Abstract

Recent advances in knowledge distillation have emphasized the importance of
decoupling different knowledge components. While existing methods utilize mo-
mentum mechanisms to separate task-oriented and distillation gradients, they
overlook the inherent conflict between target-class and non-target-class knowl-
edge flows. Furthermore, low-confidence dark knowledge in non-target classes
introduces noisy signals that hinder effective knowledge transfer. To address these
limitations, we propose DeepKD, a novel training framework that integrates dual-
level decoupling with adaptive denoising. First, through theoretical analysis of
gradient signal-to-noise ratio (GSNR) characteristics in task-oriented and non-task-
oriented knowledge distillation, we design independent momentum updaters for
each component to prevent mutual interference. We observe that the optimal mo-
mentum coefficients for task-oriented gradient (TOG), target-class gradient (TCG),
and non-target-class gradient (NCG) should be positively related to their GSNR.
Second, we introduce a dynamic top-k mask (DTM) mechanism that gradually
increases K from a small initial value to incorporate more non-target classes as
training progresses, following curriculum learning principles. The DTM jointly
filters low-confidence logits from both teacher and student models, effectively puri-
fying dark knowledge during early training. Extensive experiments on CIFAR-100,
ImageNet, and MS-COCO demonstrate DeepKD’s effectiveness.

1 Introduction

Knowledge distillation (KD) has emerged as a powerful paradigm for model compression since
its introduction by Hinton et al. [1], finding widespread adoption across computer vision [2; |3} 4]]
and NLP [5] domains. By transferring dark knowledge from large teacher models to compact
student networks, KD addresses the critical challenge of deploying high-performance models on
resource-constrained devices - a fundamental requirement for emerging applications like autonomous
driving [6] and embodied Al systems [[7; 8]

Recent advances in KD methodologies have primarily focused on three directions: (1) Multi-teacher
ensemble distillation [9; [10] to enhance information transfer, (2) Intermediate feature distillation [[11]]
through sophisticated alignment mechanisms, and (3) Input-space augmentation [[12;13]] or output-
space manipulation through noise injection [[14; [15] and regularization [16}[17]. However, these
approaches lack systematic analysis of two fundamental questions: Which components of knowledge
transfer contribute to student performance? and How should different knowledge components be
optimally coordinated during optimization? While previous works have made significant progress -
DKD [18] decouples KD loss into target class knowledge distillation (TCKD) and non-target class
knowledge distillation (NCKD) components through loss reparameterization, revealing NCKD’s

*Equal Contributions
fCorresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



crucial role in dark knowledge transfer, and DOT [19]] introduces gradient momentum decoupling
between task and distillation losses - critical limitations persist. First, existing methods fail to address
the joint optimization of decoupled losses and their corresponding gradient momenta. Second,
the theoretical foundation for momentum allocation lacks rigorous justification, relying instead on
empirical observations of loss landscape.

To address these limitations, we present DeepKD, as illustrated in Figure ] a knowledge distillation
framework with theoretically grounded features. Our investigation begins with a comprehensive anal-
ysis of loss components and their corresponding optimization parameters in knowledge distillation.
Through rigorous stochastic optimization analysis [20]], we find that optimal momentum coefficients
for task-oriented gradient (TOG), target-class gradient (TCG), and non-target-class gradient (NCG)
components should be positively related to their gradient signal-to-noise ratio (GSNR) [21] in stochas-
tic gradient descent optimizer with momentum [22[]. This enables deep decoupling of optimization
dynamics across different knowledge types.
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Figure 1: Analysis of optimization dynamics and knowledge transfer of ResNet32 x4/ResNet8 x4
on CIFAR-100: (a) Gradient Signal-to-Noise Ratio (GSNR) comparison across different knowledge
distillation methods, (b) Loss landscape visualization [23]] showing the flatness of minima, and (c)
Dynamic top-k masking process for dark knowledge denoising aligns with curriculum learning.

As shown in Figure Eka), we visualize the GSNR of vanilla KD [1]], DKD [18], DOT [19], and
our proposed DeepKD throughout the training process (with gradient sampling at 200-iteration
intervals). The results demonstrate that DeepKD further decouples KD gradients into TCG and
NCG, achieving higher overall GSNR. This enhancement directly contributes to improved model
generalization [21%[24]. Moreover, Figure[I(b) reveals that DeepKD exhibits a flatter loss landscape
compared to other methods. This observation aligns with established findings that flatter minima in
the loss landscape generally correlate with improved model generalization [25}26]—a critical factor
for effective knowledge distillation. Remarkably, through our GSNR-based deep gradient decoupling
with momentum mechanisms alone, DeepKD achieves state-of-the-art performance across multiple
benchmark datasets, as detailed in the experiments section.

Additionally, while prior works [[1; 18} |19] emphasize the importance of teacher logits’ dark knowl-
edge, they typically process all non-target class logits uniformly. We challenge this convention
through two key insights: (1) Only non-target classes semantically adjacent to the target class pro-
vide meaningful and veritable dark knowledge. (2) Low-confidence logits may introduce optimization
noise that outweighs their informational value. To address these issues, we introduce a dynamic top-k
mask (DTM) mechanism that progressively filters low-confidence logits (i.e., potential noise sources)
from both teacher and student outputs, implemented as a curriculum learning process [27]], as shown
in Figure[T|c). Unlike CTKD [28]] which modulates task difficulty via a learnable temperature param-
eter, our method dynamically adjusts k from 5% of classes to full class count, balancing early-stage
stability and late-stage refinement. Notably, while ReKD [29]] applies top-k selection to target-similar
classes but retains other non-target classes, we only preserve the top-k largest non-target-class logits
based on the teacher and dynamically discard the remainder.

Comprehensive experiments across diverse model architectures and multiple benchmark datasets
validate DeepKD’s effectiveness. The framework demonstrates remarkable versatility by seamlessly
integrating with existing logit-based distillation approaches, consistently achieving state-of-the-art
performance across all evaluated scenarios.



2 Related Work

Knowledge Distillation Paradigms: Knowledge distillation has evolved along two main directions:
feature-based and logit-based approaches. Feature-based methods transfer intermediate representa-
tions, starting with FitNets [30] using regression losses for hidden layer activations. This evolved
through attention transfer [31]] and relational distillation [32] to capture structural knowledge, culmi-
nating in multi-level alignment techniques like Chen et al.’s [33]] multi-stage knowledge review and
USKD’s [34] normalized feature matching. While methods like FRS [35]] and MDR [36] address
teacher-student discrepancy through spherical normalization and adaptive stage selection, they often
require complex feature transformations and overlook gradient-level interference. Logit-based distil-
lation, pioneered by Hinton et al. [1]], focuses on transferring dark knowledge through softened logits.
Recent advances like DKD [18] decouple KD loss into target-class (TCKD) and non-target-class
(NCKD) components, revealing NCKD’s crucial role. Extensions including NTCE-KD [37] and
MDR [36] enhance non-target class utilization but neglect gradient-level optimization dynamics.

Theoretical Foundations and Methodological Advances: Recent advances in knowledge distillation
have explored both optimization strategies and theoretical foundations. On the optimization front,
DOT [19] employs momentum mechanisms for gradient decoupling, CTKD [28]] uses curriculum
temperature scheduling, and ReKD [29] implements static top-k filtering, though these approaches
often rely on empirical heuristics. Dark knowledge purification has been addressed through various
strategies: TLLM [38]] identifies undistillable classes via mutual information analysis, RLD [39]]
proposes logit standardization, and TALD-KD [[14] combines target augmentation with logit distortion.
The theoretical underpinnings of model generalization have been extensively studied through loss
landscape geometry [255 23], with Jelassi ez al. [22] analyzing momentum’s role in generalization.

Recent methodological advances have further enriched the knowledge distillation landscape. Niu et
al. [40] propose respecting transfer gaps in knowledge distillation, while Huang et al. [41] intro-
duce knowledge diffusion mechanisms for improved distillation. Li ef al. [42] explore curriculum
temperature scheduling for knowledge distillation, and Saidutta et al. [43] present controlled in-
formation flow approaches. Huang et al. [44] propose DIST+ with stronger adaptive teachers for
enhanced knowledge transfer. Our work extends these principles by establishing the first theoretical
connection between gradient signal-to-noise ratio (GSNR) and momentum allocation in KD, bridging
optimization dynamics with knowledge transfer efficiency. Unlike DKD’s loss-level decoupling or
DOT’s empirical momentum separation, we provide GSNR-driven theoretical guarantees for joint
loss-gradient optimization. Compared to CTKD’s temperature-centric curriculum or ReKD’s static
filtering, our dynamic top-k masking offers principled noise suppression while preserving semantic
relevance, addressing the limitation of uniform processing of non-target logits in previous approaches.

3 Methodology

3.1 Preliminaries

Vanilla KD: Given a teacher model 7 and a student model S, knowledge distillation transfers
knowledge from 7 to & while maintaining performance. Let X’ be the input space and ) be the
label space. For input x € X, the models produce logits z” = 7(x) and z° = S(x). The standard
knowledge distillation [[L] loss combines:

Lxp =aLlop(o(z®),y) + (1 - &)’ Lir(0(z° /7),0(z” /7)) )
where o is the softmax function, Lcg is the cross-entropy loss with hard labels y € Y, Lk, is the

KL divergence between softened logits p” and p%, i.e., p’ = o(z’ /7) and p® = o(2°/7), T is the
temperature hyperparameter that controls the softness of the distribution, and « balances the losses.

DKD: Decoupled Knowledge Distillation (DKD) [[18]] splits the vanilla KD loss into target-class
Knowledge Distillation (TCKD) and non-target-class Knowledge Distillation (NCKD) components:

Lokp = aLee(®,y) + 72 (Bilrcxn(bp(p! ), bp(y)) + BeLnckp (DL, BL)) 2)
where bp(.) is the binary probabilities function of the target class p] (p?), and all the other non-target
classes pJ,(pt,), and pJ, = o(z,/7) and pY, = o(z{,/7). Lroxp transfers target class knowledge
and Lnckp captures relationships between non-target classes, revealing NCKD’s importance in KD.

DOT: Distillation-Oriented Trainer (DOT) [19] maintains separate momentum buffers for cross-
entropy and distillation loss gradients. For each mini-batch, DOT computes gradients g, and g, 4 from



Lcg and Lgp respectively, then updates momentum buffers v, and vig with different coefficients:
Vee < Y9ee + (lu - A)IUCC; Vkd < G + (/“L + A)de (3)

where p is the base momentum and A is a hyperparameter controlling the momentum difference. By

applying larger momentum to distillation loss gradients, DOT enhances knowledge transfer while
mitigating optimization trade-offs between task and distillation objectives. However, DOT has two
key limitations: (1) it fails to address the inherent conflict between target-class and non-target-class
knowledge flows, which can lead to suboptimal optimization trajectories; and (2) it lacks a systematic
analysis of the optimization dynamics across different loss components and their corresponding
gradient momenta, particularly in handling low-confidence dark knowledge that introduces noisy
signals and impedes effective knowledge transfer.

3.2 GSNR-Driven Momentum Allocation

Unlike previous DOT [19] that only decouples task and distillation gradients at a single level, our
approach introduces a dual-level decoupling strategy further decomposing the gradient of the student
model’s training loss into three components: task-oriented gradient (TOG), target-class gradient
(TCG), and non-target-class gradient (NCG). We define its gradient signal-to-noise ratio (GSNR) as:
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where T is the sampling interval step size (default: 200), and g, denotes the gradient at step ¢

including 7OG = VL, TCG = V.Lrckp, and NCG = V.Lnckp. For a target class ¢ and any class i,
the gradients can be expressed as:
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where p; and p! denote the softmax probabilities of the student and teacher models respectively.
The detailed mathematical derivation of this process is provided in Appendix[A.2]

During stochastic optimization in deep neural networks, gradients computed at the end of each
forward pass are used for backward propagation. These gradients form a sequence of stochastic
vectors, where the statistical expectation and variance of the gradient can be estimated using the
short-term sample mean within a temporal window [20]. Empirically, we find that gradient sampling
at intervals of 200 iterations yields better performance. This estimation serves as the foundation
for calculating the GSNR [45]]. Specifically, the statistical expectation represents the true gradient
direction, while the variance quantifies noise introduced by stochastic sampling.
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Figure 2: Comparison of gradient and buffer SNR between vanilla KD and DeepKD: (a) KD GSNR
with less component separation, (b) DeepKD GSNR with better component distinction, (c) KD BSNR
with limited separation, and (d) DeepKD BSNR with enhanced component differentiation.

To better understand the optimization dynamics, we conduct empirical analysis of GSNR curves
of decoupled vanilla KD throughout the training process. As shown in Figure P{(a), vanilla KD
exhibits consistently high signal-to-noise ratios (SNR) for non-target-class gradients (NCG) under
identical momentum coefficients, indicating inherent difficulties in transferring "dark knowledge"
to the student model. This persistent gradient divergence suggests unresolved conflicts between
distillation objectives and target tasks, ultimately causing SNR instability in the gradient accumulation
buffer (BSNR) (Figure [2{c)). Notably, gradient divergence reflects suboptimal convergence since
well-converged models typically exhibit near-zero gradients, leading to smoothly decaying SNR



trajectories. We hypothesize that gradient components with higher SNR should be prioritized with
heuristic weighting to help optimization. Figure 2[b) demonstrates that our DeepKD framework
achieves accelerated and better absorption of dark knowledge from NCG while maintaining equilib-
rium among all gradient components. The resultant SNR trajectories exhibit smooth uniformity in the
buffer (Figure [J(d)), validating our theoretical proposition. Empirical validation further corroborates
that momentum coefficients for gradient components positively correlate with their respective SNRs
during KD optimization. Crucially, experimental results reveal robustness to specific coefficient
values, aligning with observations in prior work (DOT [19])).

Let’s first examine the standard optimization formulation of SGD with momentum [46]:
Vit1 = g, + pvt; Orp1 = 0 — vy (6)

where v, and 6, represent the momentum buffer and the model’s trainable parameters at time
step ¢, g, is the current gradient, p is the base momentum coefficient, and -y is the learning rate.
Through analysis of the GSNR in Figure[2a), we observe that NCG and TOG maintain higher GSNR
compared to TCG. This key observation motivates our adaptive momentum allocation strategy:

vroc = TOG + (1 + A)vrog; vree = TCG + (1 — A)vres; vneg = NCG + (n+ A)oneg (7)

where A is a hyperparameter controlling the momentum difference. As shown in Figure {b) & (d),
our DeepKD with different momentum coefficients achieves significantly improved GSNR in both
gradient buffers and raw gradients, further validating the necessity of our deep momentum decoupling
approach for gradient components. Our GSNR-driven approach ensures each knowledge component
follows its optimal optimization path while maintaining component independence, leading to more
effective knowledge transfer. Note that our method is equally applicable to the Adam optimizer [47]]
by modifying only its first-order momentum, as validated on DeiT [48] (see Table[3).

3.3 Dynamic Top-K Masking

While existing advanced approaches [18}[19;49] typically process non-target class logits through
either uniform treatment or weighted separation [29]], we identify two critical limitations in these
conventional approaches: (1) Teacher models demonstrate extreme confidence in target class (softmax
probabilities >0.99 for more than 92% of samples), while non-target classes collectively exhibit low
confidence yet contain valuable dark knowledge, as evidenced in Figure[3{(a). (2) The dark knowledge
from non-target classes exhibits varying degrees of assimilability - classes semantically similar to the
target (e.g., "tiger" for target "cat") provide beneficial dark knowledge, while semantically distant
classes (e.g., "airplane") introduce noise and learning difficulties.
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Figure 3: Analysis of top-k masking strategy. (a) Distribution of teacher model’s confidence on
target classes. (b) Accuracy comparison of different static top-k values for knowledge distillation. (c)
Learning curve divided into distinct training phases with the optimal top-k masking approach.

To address these limitations, we first develop a static top-k masking approach that permanently
filters classes with extreme semantic dissimilarity through fixed k-value masking, yielding baseline
improvements as shown in Figure[3(b). Building upon this, we propose a more sophisticated dynamic
top-k masking mechanism that implements phase-wise k-value scheduling inspired by curriculum
learning [27]]. This mechanism operates in three distinct phases via accuracy curves (Figure 3]c)):

* Easy Learning Phase: K increases linearly from 5% of the total number of classes to the
optimal static K value
e Transition Phase: Maintains the optimal static K value

* Hard Learning Phase: Expands K linearly to encompass the full class count



The optimal static K value is determined through ablation studies or by using 20% of training data
to reduce training cost. The complete process of dynamic top-k masking learning is illustrated in
Figure[I[c). For each training iteration ¢, we compute the mask M;; as:

M; = I(rank(z';) < K;) ®)
where rank(.) represents the rank of logits in ascending order, and K; gradually increases from 5%
of classes to the total number of classes. The masked distillation loss is formulated as:
Lorm = Lncxp(o(M; ©25,/7),0(M; © 2],/7)) ©)
where ® denotes element-wise multiplication. This mechanism effectively suppresses noise while
preserving semantically relevant dark knowledge.

3.4 DeepKD Framework
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Figure 4: Detailed architecture of our DeepKD framework. Input images flow through teacher and
student networks, producing target (yellow) and non-target (green) logits. The framework uses
three independent gradient paths (task-oriented, target-class, and non-target-class) with separate
momentum buffers. Dynamic Top-k Mask filters low-confidence non-target logits (gray cells).

Building upon theoretical analysis of GSNR, we propose DeepKD, a comprehensive framework
that introduces deeply decoupled optimization with adaptive denoising for knowledge distillation.
As illustrated in Figure 4, DeepKD decomposes the knowledge transfer process into three parallel
gradient flows: task-oriented gradient (TOG), target-class gradient (TCG), and non-target-class
gradient (NCG). Each gradient flow is managed independently with its own momentum buffer
and optimized based on their distinct GSNR properties. This decoupled architecture enables more
effective knowledge transfer by allowing each component to be optimized independently. The
complete loss function of DeepKD (see Algorithm[I]in the Appendix for detailed implementation):

Lpeeprp = aLop(®®,y) +7°(BiLrexp (bp(p] ), bp(py)) + B2LDTMr) (10)
where L g represents the standard cross-entropy loss, « and j3; are fixed coefficients that balance the
contribution of each loss component, L7ck p is the target class loss, and £ p7 s is the dynamic top-k
masking loss of the non-target classes. This formulation enables the framework to effectively combine
task-specific learning with knowledge distillation while maintaining computational efficiency.

4 Experiments

4.1 Datasets and Implementation

We conduct comprehensive evaluations on three widely-used benchmarks: CIFAR-100 [50]] (100
classes, 50k training/10k validation 32 x 32 images), ImageNet-1K [51] (1,000 classes, 1.28M/50k
images cropped to 224 x 224), and MS-COCO [52] (80-class detection, 118k training/5k validation
images). For implementation, we follow standard practices using SGD optimizer with momentum
0.9 and weight decay of 5 x 10~* (CIFAR) or 1 x 10~* (ImageNet). The training schedule varies
by dataset: CIFAR uses 240 epochs with batch size 64 and initial learning rate 0.01-0.05, while
ImageNet uses 100 epochs with batch size 512 and learning rate 0.2. All experiments were conducted
on a system equipped with an Nvidia RTX 4090 GPU and an AMD 64-Core Processor CPU.



Table 1: Top-1 Accuracy (%) on CIFAR-100 validation set. Results show homogeneous distillation
(same architecture, different capacity) across feature-based and logit-based methods. Performance
gains from our DeepKD framework are highlighted in blue and red.

ResNet32x4 VGGI13 WRN-40-2  WRN-40-2 ResNet56  ResNetl10 ResNetl10

Tve Teacher 79.42 7464 75.61 75.61 7234 7431 7431

M3 Student ResNet8x4  VGG8 WRN-40-1 WRN-16-2 ResNet20 ResNet32 ResNet20
uden 72.50 70.36 71.98 73.26 69.06 71.14 69.06
FitNet [30] 73.50 71.02 72.24 73.58 69.21 71.06 68.99
Feature  SimKD [S3] 78.08 74.89 74.53 75.53 71.05 73.92 71.06
CATKD [54] 76.91 74.65 74.82 75.60 71.62 73.62 71.37
KD [0 7333 72.98 73.54 74.92 70.66 73.08 70.67
KD+DOT [19] 74.98 73.77 73.87 7543 7111 73.37 70.97
KD+LSKD [49] 76.62 74.36 74.37 76.11 7143 74.17 71.48

KD+Ours (w/o top-k) 76.69.556 7496 105 714804106 76044100 T179.113 74204115 7159002

KD+Ours (w. top-k) 77.03.500 75021514 75.05.151 645,155 T1.90, 125 74.35.107 T1.824115
DKD [I8] 76.32 74.68 74.81 76.24 71.97 74.11 70.99
DKD+DOT [19] 76.03 74.86 74.49 75.42 71.12 73.57 71.58
DKD+LSKD [49] 77.01 74.81 74.89 76.39 72.32 74.29 71.48

DKD+Ours (w/o topk) 7725005 75094041 75244043 7648, 021 72864080 74324021 72064107

Logit ~ DKD+Ours (w. top-k) 7154000 7519 05 1542.005 76724150 7305105 744,091 T2.28,1 70
MLKD [55] 77.08 75.18 75.35 76.63 72.19 74.11 71.89
MLKD+DOT [19] 76.06 74.96 74.38 75.72 71.41 73.83 71.65
MLKD+LSKD [49] 78.28 75.22 75.56 76.95 7233 74.32 7227

MLKD+Ours (w/o top-k)  78.814173 76214103 7745.010 78154152 73754156 75.88, 177 73.03,114
MLKD+Ours (w. top-K) ~ 79.15,5.0r 7645107 77.82.54 7849, c5 7412105 7615, 505 7T3.28,1 19

CRLD [13] 77.60 75.27 75.58 76.45 72.10 74.42 72.03
CRLD+DOT [19] 76.54 74.34 74.75 75.57 71.11 73.91 70.67
CRLD+LSKD [49] 78.23 74.74 76.28 76.92 72.09 75.16 72.26
CRLD+Ours (w/o top-k) 78901130 76294102 76981140 77.994154 73294119 76.031161 73.074104
CRLD+Ours (w. top-k) 79.25. 1 65 76.58, 131 77351177 7842197 73.85.175 76.48.505 73.52. 49

4.2 Image Classification

Results on CIFAR-100. Our DeepKD framework shows consistent improvements in both ho-
mogeneous and heterogeneous distillation settings. On homogeneous architectures (Table [I),
DeepKD achieves accuracy gains of +0.61%—+3.70% without top-k masking and +0.67 %—+3.70 %
with masking, outperforming feature-based methods by 1.2—4.8%. The top-k variant further im-
proves performance by up to +1.86%, with MLKD+Ours reaching 79.15% accuracy. In het-
erogeneous scenarios (Table [2)), DeepKD shows strong generalization: CRLD+Ours achieves
72.85% for ResNet32 x4—MobileNet-V2 (+2.48% ), while KD+Ours attains 77.15% for WRN-40-
2—ResNet8x4 (+3.18%). Performance remains stable (variance <0.5%) under hyperparameter
variations, confirming DeepKD’s effectiveness in handling conflicting distillation signals.

Results on ImageNet-1K. As shown in Table [3] DeepKD achieves significant improvements across
diverse teacher-student pairs. For ResNet50—MobileNet-V1, KD+Ours (w. top-k) boosts top-1
accuracy by +4.15% (74.65% vs. 70.50%), the largest gain among all configurations. CRLD+Ours
(w. top-k) establishes new state-of-the-art results: 73.34% (ResNet34—ResNetl8, +0.97%) and
75.75% (RegNetY-16GF— Deit-Tiny, +1.89%). The dynamic top-k masking consistently enhances
performance, contributing additional gains of +0.30%—+0.84% in top-5 accuracy. Notably, our
framework demonstrates strong scalability: (1) For lightweight students (MobileNet-V 1/Deit-Tiny),
improvements reach +3.82%—+4.15%; (2) With large teachers (RegNetY-16GF), top-5 accuracy ex-
ceeds 93.85% (CRLD+Ours), surpassing all feature-based methods. These results validate DeepKD’s
effectiveness in large-scale distillation scenarios.

4.3 Object Detection on MS-COCO

DeepKD shows strong performance on object detection (see Table[d). With dynamic top-k masking
(1), our method improves baseline KD by +1.93% AP (32.16% vs. 30.13%) and exceeds ReviewKD’s
33.71% AP using only logit distillation. DKD+Ourst achieves 34.20% AP, the best among all KD
variants, with +1.86% gain over vanilla DKD. The dynamic top-k mechanism provides additional
improvements of +0.05%-0.34% AP, with the largest boost in AP75 (+2.64% for KD+). Our approach
demonstrates better localization than feature-based LSKD, reaching 36.59% AP~5 (vs. LSKD’s
36.34%) for DKD7. These results confirm DeepKD’s effectiveness for dense prediction tasks.



Table 2: Top-1 Accuracy (%) on CIFAR-100 validation set with heterogeneous teacher-student pairs.
Methods are grouped by type (feature/logit-based). Performance gains are shown in blue and red.
ResNet32x4 ResNet32x4 ResNet32x4 WRN-40-2  WRN-40-2 VGGI3  ResNet50

T Teacher 79.42 79.42 79.42 75.61 75.61 74.64 79.34
ype Student SHN-V2 ~ WRN-16-2 WRN-40-2 ResNet8x4 MN-V2 MN-V2 MN-V2

uden 71.82 73.26 75.61 72.50 64.60 64.60 64.60
ReviewKD [56] 77.78 76.11 78.96 74.34 71.28 70.37 69.89
Feature ~ SimKD [53] 78.39 77.17 79.29 75.29 70.10 69.44 69.97
CAT-KD [54] 78.41 76.97 78.59 75.38 70.24 69.13 71.36
KD [1] 74.45 74.90 77.70 73.97 68.36 67.37 67.35
KD+DOT [19] 75.55 75.04 77.34 75.96 68.36 68.15 68.46
KD+LSKD [49] 75.56 75.26 77.92 77.11 69.23 68.61 69.02

KD+Ours (w/o top-k) 76.14 1160 758840098 78381068 76.691272 6939103 69364199 69.13; 78

KD+Ours (w. top-k) 7645500 76124190 78.65.095 77.151318  69.85.149 6992, 555 69.78. 943
DKD [I8] 77.07 75.70 78.46 75.56 69.28 69.71 70.35
DKD+DOT [19] 77.41 75.69 78.42 75.71 62.32 68.89 70.12
DKD+LSKD [49] 77.37 76.19 78.95 76.75 70.01 69.98 70.45

DKD+Ours (w/o top-k) 77.6841061 76.6140091 79574111 76864130 70291101 70.044033 7048013

Logit DKD+Ours (w. top-k) 7795088 7689 119 7982, 135 76904134 70.65.137 7038, 067 70.72, 037
MLKD 53] 78.44 76.52 79.26 77.33 70.78 70.57 71.04
MLKD-+DOT (9] 78.53 75.82 79.01 76.53 69.15 68.26 67.73
MLKD+LSKD [49 78.76 77.53 79.66 77.68 71.61 70.94 71.19

MLKD+Ours (w/o top-k)  80.5512.11 78284176 81.404214 78311098 721741139 72464180 73.044200
MLKD+Ours (w. top-k) 8092545 78.65,213 81.78 250 7849116 7253175 7282595 73.40.5 55

CRLD [13] 78.27 76.92 80.21 77.28 70.37 70.39 71.36
CRLD+DOT [19] 78.33 75.97 79.41 76.41 64.36 61.35 69.96
CRLD+LSKD [49] 78.61 77.37 80.58 78.03 71.52 70.48 71.43

CRLD+Ours (w/o top-k)  79.72145 7879187 81821161 78621131 7209172 71.99.160 72.011065
CRLD+Ours (W tOp-k) 80.15+1_55 79.25+2_33 82.35-1_77 79.18+1_(;(, 72.85-2_4x 72,65_2_2(; 72,78_1_42

Table 3: Accuracy (%) on ImageNet-1K validation set. N/A indicates that the data is not available.

Teacher/Student ResNet34/ResNet18 ResNet50/MN-V1 RegNetY-16GF/Deit-Tiny
Type Accuracy top-1 top-5 top-1 top-5 top-1 top-5
Teacher 73.31 91.42 76.16 92.86 82.89 96.33
Student 69.75 89.07 68.87 88.76 72.20 91.10
Feature SimKD [53] 71.59 90.48 72.25 90.86 N/A N/A
CAT-KD [54] 71.26 90.45 72.24 91.13 N/A N/A
KD [1] 71.03 90.05 70.50 89.80 73.15 91.85
KD+DOT [19] 71.72 90.30 73.09 91.11 73.42 92.10
KD+LSKD [49] 71.42 90.29 72.18 90.80 73.27 91.95
KD+Ours (W/O tOp—k) 72~41+1,38 91.05+1_()(] 74~32+3,82 91.94+2_14 74.36+1V21 92.85+1_(][)
KD+Ours (w. top-k) 72854182 91354130 74651415 92.25,245 74831168 93151130
DKD [18] 71.70 90.41 72.05 91.05 73.35 92.05
DKD+DOT [19] 72.03 90.50 73.33 91.22 73.66 92.25
Logit DKD+LSKD [49] 71.88 90.58 72.85 91.23 73.48 92.15
DKD+Ours (W/O tOp—k) 72.78+1V()g 90.96+()_55 74~41+2,36 92.08+1_(J3 74-57+1,22 93.07+1_(]2
DKD+Ours (W. tOp-k) 73.15+1,13 91 .25+U 84 74-43+2.38 91 ~95+(J 90 74.95+1,ﬁu 93.36+1_31
MLKD [55] 71.90 90.55 73.01 91.42 73.54 92.25
MLKD+DOT [19] 70.94 90.15 71.65 90.28 73.25 91.95
MLKD+LSKD [49] 72.08 90.74 73.22 91.59 73.78 92.45

MLKD+Ours (W/O tOp-k) 73.18+1,28 91~23+().68 74~77+1,76 92.35+()_93 75-15+1,61 93.48+1_(]3
MLKD+Ours (W. IOp-k) 73.31+1,11 9].39+() 84 74.85+1,51 92.45+1 03 75.46+1,92 93.73+1,25

CRLD [13] 72.37 90.76 73.53 91.43 73.82 92.55
CRLD+DOT [19] 71.76 90.00 72.38 90.37 73.37 92.05
CRLD+LSKD [49] 72.39 90.87 73.74 91.61 73.95 92.65

CRLD+Ours (W/O tOp-k) 73.18+(],81 91.23+0_47 74.10+(),57 91.49+0_(]ﬁ 75‘35+1,53 93.35+(j_5)[)
CRLD+Ours (W. tOp-k) 73.34+n,97 91.38+U 62 74.85+1.12 92.45+1,02 75.75+1,59 93.85+1,1(J

5 Ablation Study

Momentum Coefficients and Loss Functions. Based on gradient signal-to-noise ratio (GSNR)
analysis, we decompose the gradient momentum in DeepKD into Target-Class Gradient (TCG) and
Non-Target-Class Gradient (NCG). To validate this decoupling strategy, we conduct comprehensive
ablation studies on CIFAR-100 using ResNet32 x4(teacher) and ResNet8 x4(student) pairs (see
Table[3). The results demonstrate the effectiveness of our approach and highlight the importance
of each component. Notably, DeepKD introduces only one hyper-parameter A, which proves



Table 4: Results on MS-COCO(val2017) based on Faster-RCNN-FPN|57]]. Teacher-student pair is
ResNet50 & MobileNet-V2. The values of columns with 1 based on dynamic top-k masking.

Metric  Teacher  Student ReviewKD‘ KD KD+LSKD  KD+Ours  KD+Ourst ‘ DKD DKD+LSKD DKD+Ours DKD+Oursf

AP 42.04 29.47 33.71 30.13 31.71 32014188 32164103 | 32.34 33.98 33.9941.65 342041 .86
APs5o 61.02 48.87 53.15 50.28 52.77 52.884260 52.981263 | 53.77 54.93 55.1141.34 55.3411.57
AP75 43.81 30.90 36.13 31.35 33.40 33.6542.30 33.99i264 | 34.01 36.34 36.3542.34 36.59 1258

to be robust across different datasets. Following DOT [19]], we set A=0.075 for KD+DeepKD on
CIFAR-100, and A=0.05 for DKD+DeepKD, MLKD+DeepKD, and CRLD+DeepKD. For ImageNet,
where teacher knowledge is more reliable, we use A=0.05 for all variants. Our ablation studies on
loss functions reveal that each component contributes significantly to the overall performance, with
NCKD being the dominant factor—consistent with findings in DKD [[18]]. These results validate our
decoupling strategy and demonstrate its effectiveness in improving model performance.

Table 5: Results of using our DeepKD+KD for Resnet32 x4(teacher)/Resnet8 x4(student) on CIFAR-
100. Left: impact of momentum coefficients (A); Middle: effectiveness of different loss combinations;
Right: performance with dynamic top-k masking and curriculum learning.

Momentum Coefficients ‘ Loss Functions ‘ Dynamic top-k with curriculum learning
Aroc Arce Ance  top-l top-5 ‘ TASK TCKD NCKD top-1 top-5 \ k-value Phasel Phase2 top-1 top-5
0.00 0.00 0.00 7413 92.82 X X X 1.21 5.31 55 40 170 7698 91.62
0.075 0.00 0.00 7489 9327 v X X 7328 92.89 55 60 170 77.03  92.07
0.00 0.075 0.00 7458 9352 X v X 7458 9352 55 60 160 7731 93.38
0.00 0.00 0.075 7525 93.61 X X v 7525 93.61 55 60 180 7713 9228
0.075 0.075 0.00 7541  93.71 v v X 7150  93.11 60 40 170 7720 92.51
0.00 0.075 0.075 7621 93.90 X v v 7542 93.83 60 60 170 77.19 9236
0.075 0.00 0.075  76.19 9397 v X v 76.06  94.12 60 60 160 7729  93.12
0.075 0.075 0.075 76.69 94.21 v v v 76.69 94.21 60 60 180 7721 93.32

Dynamic Top-k Masking. To discard the impact of dynamic top-k masking, we conduct the above
ablation studies on momentum coefficients and loss functions without this strategy. For the dynamic
top-k masking configuration, we empirically set the parameters as k-value = 55, Phasel = 60, and
Phase2 = 170 (see Table[5). The experimental results demonstrate that even simple hyperparameter
tuning can further improve model performance, suggesting that integrating a dynamic top-k masking
mechanism into KD holds great potential and warrants further exploration in future work.

Table 6: Results of using our DeepKD with different distillation methods on CIFAR-100. We evaluate
the impact of decoupled gradients (Decoupled) and dynamic top-k masking (DTM) strategies.

Method | KD (0 | DKD (T8 | MLKD {53] | CRLD (T3]
Decoupled X v X 4 X v X v X v X 4 X 4 X v
DTM X X v v X X v v X X v v X X v v
top-1 ‘ 7333 76.69 7489 77.03 ‘ 7632 7725 7658 71.54 ‘ 77.08 7881 7741 79.15 ‘ 77.60 7890 77.93 79.25

Furthermore, we conduct ablation studies on both gradient decoupling and dynamic top-k masking
strategies. The results demonstrate that each component individually enhances performance compared
to the original distillation methods, while their combination yields further improvements. Note that
when DTM is enabled individually, the mechanism operates on all logits including the target class.

6 Discussion

6.1 Computational Complexity Analysis

To address concerns about computational overhead, we provide a comprehensive analysis of
DeepKD’s training efficiency and resource requirements. Table [7] shows the memory consump-
tion and training time overhead for different teacher-student pairs on CIFAR-100 and ImageNet-1K.
DeepKD introduces minimal memory overhead, with increases of less than 1% on CIFAR-100 and
less than 0.2% on ImageNet-1K. This modest increase primarily stems from storing student gradients
during distillation, as the teacher model remains frozen. The efficient CUDA memory allocator fur-
ther mitigates additional memory footprint, confirming DeepKD’s suitability for large-scale training
scenarios.



Table 7: Computational overhead analysis of DeepKD: All experiments use a single 2080Ti GPU for
CIFAR-100 and two RTX 4090 GPUs for training on ImageNet-1K.

Dataset Method Memory (MB) Training Time (Hours)
Baseline DeepKD Baseline  DeepKD
KD 799 805 (+0.75%) 1.6 2.6 (+62%)
DKD 799 805 (+0.75%) 1.7 2.7 (+60%)
CIFAR-100 — \pjkp 983 087 (+041%) 92 123 (+33%)
CRLD 981 985 (+0.41%) 2.9 4.5 (+52%)
KD 21344 21370 (+0.12%)  20.0 29.4 (+47%)
ImageNet-1K DKD 21350 21370 (+0.12%) 20.1 29.8 (+48%)
& MLKD 34910 34960 (+0.14%) 34.2 53.1 (+55%)
CRLD 34862 34909 (+0.13%) 32.2 51.2 (+59%)

6.2 Training Time and Convergence Analysis

Table 8: Comparing training epochs and final accuracy. All baseline methods are trained for the
standard number of epochs (240 for CIFAR-100, 480 for MLKD, 100 for ImageNet-1K).

Dataset  Method CIFAR-100 ImageNet-1K
Epochs Top-1 (%) Epochs Top-1 (%)

KD 240 73.33 100 71.03

Baseline DKD 240 76.32 100 71.70
MLKD 480 77.08 100 71.90
CRLD 240 77.60 100 72.37
KD+Ours 160 76.83 65 71.76

DeepKD DKD+Ours 160 77.31 65 72.16
MLKD+Ours 320 79.04 65 72.52
CRLD+Ours 160 78.87 65 72.98

While DeepKD introduces moderate per-epoch training time increases, it achieves superior accuracy
with substantially fewer epochs than baseline methods, resulting in a favorable overall time-accuracy
trade-off. Table [§]demonstrates that DeepKD enables faster convergence while maintaining higher
final performance. The additional training cost is justified by substantial performance gains. Since
knowledge distillation is typically a one-time training process, investing more resources to achieve
superior models is standard practice in the field. Importantly, this additional training cost does not
affect the final inference speed of the student model, making DeepKD a highly efficient route to
better-performing models.

7 Limitations and Future Work

While our current work focuses on logit-based distillation, the SNR-driven momentum decoupling
mechanism naturally extends to feature distillation scenarios. By treating feature alignment losses as
additional optimization components, our framework can automatically handle multi-level knowledge
transfer without manual weighting, complementing existing feature enhancement techniques like
attention transfer [31] and contrastive distillation [58]. Future work could explore the application
of our framework to more complex scenarios, such as multi-teacher distillation and cross-modal
knowledge transfer. Additionally, our dynamic top-k masking strategy shows promising results in
improving distillation performance, suggesting potential for further refinement and adaptation to
different model architectures and datasets.

8 Conclusion

This paper presents DeepKD, a novel knowledge distillation framework that introduces SNR-driven
momentum decoupling to address the gradient conflict between task learning and knowledge transfer.
Our approach automatically allocates appropriate momentum coefficients based on gradient SNR
characteristics, enabling effective optimization of both task-specific and knowledge distillation objec-
tives. Through extensive experiments on multiple datasets and model architectures, we demonstrate
that DeepKD consistently improves the performance of various SOTA distillation methods.
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A Technical Appendices and Supplementary Material

A.1 Distillation fidelity and feature visualization.

To provide an intuitive understanding of our method’s effectiveness, we visualize both the distillation
fidelity and deep feature representations. Following DKD [18]], we calculate the absolute distance
between correlation matrices of the teacher (ResNet32 x4) and student (ResNet8x4) on CIFAR-100.
As shown in Figure [5] DeepKD enables the student to produce logits more similar to the teacher
compared to other methods. Additionally, our feature visualizations in Figure [f]demonstrate that our
pre-process enhances feature separability and discriminability across various distillation methods
including KD, DKD, MLKD, and CRLD.

“1 1 ] LR
%2 b b 8-
3% 1 ] 3

(a) Vanilla KD (1] (b) DKD [18] (c) DOT [19] (d) KD+DeepKD (Ours)

Figure 5: Difference of student and teacher logits. DeepKD leads to a significantly smaller difference
(more similar prediction) than other KD methods.

-
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(2) DKD [18] (b) MLKD [553] (c) CRLD [13]
Figure 6: The t-SNE [59] feature visualization of ResNet32 x4 and ResNet8 x4 on CIFAR-100.

A.2 Theoretical Analysis

Let us first define the key components of our knowledge distillation framework. Given a teacher
model 7 and a student model S, we aim to transfer knowledge from 7 to S while maintaining task
performance. The overall loss function combines task-specific loss and knowledge distillation loss:

L=alopP®,p%) +(1—-a)lrp®®,p”) (11)

where « is a balancing parameter, p° and p’ are the output probabilities of student and teacher
models respectively, and p¥ represents the ground truth labels. The knowledge distillation loss £ p
can be elegantly decomposed into two components using KL divergence:

Lip®®,p”) = KL®"|[p®) = KL®7||b%) + (1 - p[ )KL®" [[p°) (12)

Our DeepKD introduces a dual-level decoupling strategy further decomposes the gradient of the
student model’s training loss into three components: task-oriented gradient (7 OG), target-class
gradient (7CG), and non-target-class gradient (NCG).
The probability computation:

e’

Pi = = (13)
Zk:e
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where z; is the logit of the i-th class. And its derivatives are

ezi . Zezk _ ez,; . 62,;
k

Op; _
0z; (> exr)?
k
e~ Z et —e*
_ . k
a ek ek
k k
=pi-(1—pi)
0-> e —e%i-e%
Opi &
0z; (D e=)?
k
e e*
TS Tew
2 2
= —p;-p;,V] Fi

The task loss:
Liask = CE(pY,p%) = —log(pf)

and its gradients are

aﬁtask
O =
7- gt azzg
_ actask %
o Opf 0zF
1
= —— (7 - (1—p}))
2
=p} -1
aﬁtask
TOG,: =
9s 8,235
_ a‘cta,sk . %
opy 925
1 s S
= _E'(_pt “py)
The binary probability is constructed as
b= [ptv 1- pt]T

The TCKD Loss:

KL®||b%) = p] -lo p—fT+(1— 7Y lo L-p]
=D g S by gl_ S
P P

(14)

15)

(16)

a7

(18)

19)

= —p] -logpf — (1 —p]) - log(1 —p?) + p] -logp] + (1 —p]) - log(1 —p])

= CE®b b5 —H(®b")

22

(20)



and its derivatives are
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The non-target class probability distribution is calculated as:
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The non-target class loss:
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Suppose that the gradient g, at step ¢ is composed of signal s; and noise 72;:
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And suppose the noise is zero-mean:
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The noise power is
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A.3 Delta Parameter Stability Analysis

To address concerns about the robustness of our momentum difference parameter A, we conduct
comprehensive ablation studies evaluating different positive values of A on CIFAR-100 using
ResNet32x4 (teacher) and ResNet8x4 (student) pairs. As shown in Table@], all settings with A > 0
consistently and significantly outperform the baseline with A = 0. The performance remains stable
and comparable across a wide range of A values (0.05 to 0.08), confirming that our method is robust
and not sensitive to the exact choice of A as long as it is positive and within a reasonable range (0,
0.1). This validates our theoretical analysis that the momentum coefficients should be positively
related to their respective GSNR values.

Table 9: Delta parameter stability analysis on CIFAR-100 using DeepKD+KD. All experiments use
base momentum p = 0.9.

ATOG ATCG ANCG TOp—l Acc (%) TOp—5 Acc (%)

0.00 0.00 0.00 74.13 92.82
0.05 0.05 0.05 76.11 94.02
0.06 0.06 0.06 76.25 94.04
0.075  0.075  0.075 76.69 94.21
0.08 0.08 0.08 76.32 94.17

A.4 Transformer Architecture Experiments

To demonstrate DeepKD’s effectiveness on modern Transformer-based architectures, we conduct
additional experiments on Swin Transformer [[60] and Vision Transformer (ViT) [61] distillation
scenarios on ImageNet-1K. As shown in Table [T0} DeepKD consistently outperforms standard
KD baselines in Transformer-to-Transformer distillation scenarios. The method achieves notable
improvements of +1.12% and +0.92% Top-1 accuracy on Swin Transformer and ViT architectures,
respectively. These results demonstrate DeepKD’s versatility and effectiveness across diverse modern
architectures, validating our method’s applicability beyond CNN-based networks.

Table 10: Results on Transformer architectures for ImageNet-1K. DeepKD shows consistent improve-
ments across different Transformer-to-Transformer distillation scenarios.

Teacher & Student Models Method Top-1 Acc (%) Top-5 Acc (%)
Teacher (Swin-L)  86.30 97.87
Swin-Laree — Swin-Tin Student (Swin-T)  81.20 95.50
& Y Baseline (KD) 81.59 95.96
Ours (DeepKD)  82.71 95.73
Teacher (ViT-L) 84.20 96.93
. . Student (ViT-B) 78.29 94.08
VIT-L/16 — VIT-B/32 Baseline (KD)  79.40 9476
Ours (DeepKD)  80.32 95.01

A.5 DETR Object Detection Experiments
To further validate DeepKD’s effectiveness on Transformer-based architectures for object detection,

we conduct experiments on the DETR (DEtection TRansformer) architecture using MS-COCO
dataset.
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Table 11: DETR distillation results on MS-COCO. DeepKD provides consistent improvements over
standard distillation methods on Transformer-based object detection.

Method AP APy, AP, AP,
Teacher (DETR-R101) 43,6 254 46.8 60.7
Student (DETR-R50) 423 253 448 582
LD (Detrdistill [62], ICCV 2023) 43.7 253 46.5 60.7
LD + Ours 44.7 253 465 60.7
FD (Detrdistill [62], ICCV 2023) 43.5 254 46.7 60.0
LD + FD + Ours 453 258 470 61.0

As shown in Table [TT] DeepKD achieves consistent improvements on DETR-based object detection,
with up to +1.0 AP gain over standard distillation methods. The method demonstrates strong
performance across different scales (AP,, AP,,, AP;), confirming DeepKD’s effectiveness for
Transformer-based dense prediction tasks and addressing concerns about the method’s applicability
to stronger architectures.

A.6 Feature Distillation Experiments

To demonstrate DeepKD’s versatility beyond logit-based distillation, we conduct experiments inte-
grating DeepKD with feature-based distillation methods. Table [I2] shows results combining DeepKD
with FitNet and CRD on CIFAR-100.

Table 12: Feature distillation experiments on CIFAR-100. DeepKD provides substantial gains when
combined with feature-based methods, demonstrating its general applicability.

Method ResNet32x4—ResNet8x4  VGG13—VGG8 WRN-40-2—WRN-40-1 WRN-40-2—+WRN-16-2 ResNet56—ResNet20
FitNet 73.50 71.02 72.24 73.58 69.21
FitNet + KD 75.19 72.61 72.68 74.32 70.09
FitNet + DeepKD 77.32 75.67 75.49 76.55 72.01
Gain (A%) +3.82 +4.65 +3.25 +2.97 +2.80
CRD 75.51 73.94 74.14 75.48 71.16
CRD + KD 75.46 74.29 74.38 75.64 71.63
CRD + DeepKD 77.61 75.77 75.80 76.83 72.78
Gain (A%) +2.15 +1.48 +1.42 +1.19 +1.15

The results demonstrate that DeepKD is not restricted to logit-based distillation. Our GSNR-driven
optimization principles can be effectively combined with feature-based methods to achieve state-
of-the-art results. FitNet+DeepKD achieves gains of +3.82% on ResNet32x4—ResNet8x4, while
CRD+DeepKD provides consistent improvements across all teacher-student pairs. This confirms
DeepKD'’s general applicability and strength as a universal distillation optimizer.

A.7 Complete Results of Main Text

We provide the complete results corresponding to Table 1-3 in the main text, including all teacher-
student pairs and methods evaluated. As shown in Table [I3] Table [I4] and Table [I5] DeepKD
consistently improves upon standard KD and its variants across all scenarios. The method achieves
state-of-the-art performance in homogeneous distillation settings, demonstrating its effectiveness and
versatility.

A.8 Algorithm (DeepKD)

In this section, we provide the pseudo code for our proposed DeepKD framework, which includes the
main algorithm (Algorithm[T)) and the Dynamic Top-K Masking (DTM) strategy (Algorithm [2)).
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Table 13: The Top-1 Accuracy (%) of different knowledge distillation methods on the validation set
of CIFAR-100. We evaluate homogeneous distillation scenarios where teacher and student share the
same architecture but differ in model capacity. Methods are categorized by their distillation type
(feature-based vs. logit-based). Our DeepKD framework is applied to existing logit-based methods
with performance gains (blue and red) shown. Best results are highlighted in bold.

Teacher ResNet32x4 VGG13 WRN-40-2 WRN-40-2 ResNet56 ResNetl10 ResNetl10
Tyne 79.42 74.64 75.61 75.61 72.34 74.31 74.31
P Stud ResNet8 x4  VGG8 WRN-40-1 WRN-16-2 ResNet20  ResNet32  ResNet20
tudent 72.50 70.36 71.98 73.26 69.06 71.14 69.06
FitNet [30] 73.50 71.02 72.24 73.58 69.21 71.06 68.99
AT [63] 73.44 7143 72.77 74.08 70.55 72.31 70.65
RKD [64] 71.90 71.48 72.22 73.35 69.61 71.82 69.25
Feature CRD [65] 75.51 73.94 74.14 75.48 71.16 73.48 71.46
OFD [66] 74.95 73.95 74.33 75.24 70.98 73.23 71.29
ReviewKD [56] 75.63 74.84 75.09 76.12 71.89 73.89 71.34
SimKD [53] 78.08 74.89 74.53 75.53 71.05 73.92 71.06
CAT-KD [54] 76.91 74.65 74.82 75.60 71.62 73.62 71.37
KD [1] 73.33 72.98 73.54 74.92 70.66 73.08 70.67
KD+DOT [19] 74.98 73.77 73.87 75.43 71.11 73.37 70.97
KD+LSKD [49] 76.62 74.36 74.37 76.11 71.43 74.17 71.48
KD+Ours (w/o top-k) 76.69 336 T496,105 7480126 76144120 7179115 7420110 71.59,0.02
KD+Ours (w. top-k) 77.0343.70 75124904 7505115 7645. 155 7190104 7435. 1927 7182415
DKD [18] 76.32 74.68 74.81 76.24 71.97 74.11 70.99
DKD+DOT [19] 76.03 74.86 74.49 75.42 71.12 73.57 71.58
DKD+LSKD [49] 77.01 74.81 74.89 76.39 72.32 74.29 71.48
DKD+Ours (w/o top-k) 77251003 75094041 75244043 7648024 7286, 080 74324001 72.0641.07
Logit  DKD+Ours (w. top-k) 77541100 75.19.051 75421005 76724130 73.05,105 7448001 72.28,170
MLKD [55] 77.08 75.18 75.35 76.63 72.19 74.11 71.89
MLKD+DOT [19] 76.06 74.96 74.38 75.72 71.41 73.83 71.65
MLKD+LSKD [49] 78.28 75.22 75.56 76.95 72.33 74.32 72.27
MLKD+Ours (w/o top-k) 78814175 76214105 77454010 78151150 73754156 75884177 73.0341.14
MLKD+Ours (w. top-k) ~ 79.15.0 07  7645,1 57 77.82,0.4 7849 155 7412,1 05 76.15.00s 7328130
CRLD [13] 77.60 75.27 75.58 76.45 72.10 74.42 72.03
CRLD+DOT [19] 76.54 74.34 74.75 75.57 71.11 73.91 70.67
CRLD+LSKD [49] 78.23 74.74 76.28 76.92 72.09 75.16 72.26
CRLD+Ours (w/o top-k) 78904130 76294102 76984140 7799 151 73294119 76034161 73.0741.04
CRLD+Ours (w. top-k) 7925, 5 76.58,15 7735, 7842 19 73.85.175 7648005 73.52,1 .4
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Table 14: The Top-1 Accuracy (%) of different knowledge distillation methods on the validation set
of CIFAR-100. The teacher and student have distinct architectures. The KD methods are sorted by the
types, i.e., feature-based and logit-based. Our DeepKD framework is applied to existing logit-based
methods with performance gains (blue and red) shown. Best results are highlighted in bold.
ResNet32x4 ResNet32x4 ResNet32x4 WRN-40-2  WRN-40-2 VGGI3  ResNet50

T Teacher 79.42 79.42 79.42 75.61 75.61 74.64 79.34
ype Stud SHN-V2 ~ WRN-16-2 WRN-40-2 ResNet§x4 MN-V2 MN-V2 MN-V2
tudent 71.82 73.26 75.61 72.50 64.60 64.60 64.60
FitNet [30] 73.54 74.70 77.69 74.61 68.64 64.16 63.16
AT [63] 72.73 73.91 77.43 74.11 60.78 59.40 58.58
RKD [64] 73.21 74.86 77.82 75.26 69.27 64.52 64.43
Feature  CRD [63] 75.65 75.65 78.15 75.24 70.28 69.73 69.11
OFD [66] 76.82 76.17 79.25 74.36 69.92 69.48 69.04
ReviewKD [56] 77.78 76.11 78.96 74.34 71.28 70.37 69.89
SimKD [53] 78.39 77.17 79.29 75.29 70.10 69.44 69.97
CAT-KD [54] 78.41 76.97 78.59 75.38 70.24 69.13 71.36
KD [1] 74.45 74.90 77.70 73.97 68.36 67.37 67.35
KD+DOT [19] 75.55 75.04 77.34 75.96 68.36 68.15 68.46
KD+LSKD [49] 75.56 75.26 77.92 77.11 69.23 68.61 69.02
KD+Ours (w/o top-k) 76.141160 758840098 78381068 76.691272 6939103 69361199 69.131; 78
KD+Ours (w. top-k) 7645500 76124102 78.65.095 77151318 69.85.149 69.92.555 69.78.2.43
DKD [18] 77.07 75.70 78.46 75.56 69.28 69.71 70.35
DKD+DOT [19] 77.41 75.69 78.42 75.71 62.32 68.89 70.12
DKD+LSKD [49] 71.37 76.19 78.95 76.75 70.01 69.98 70.45
DKD+Ours (w/o top-k) 77.681061 76611091 7957 111 76.864130 70291101 70.04, 033 70.48, 013
Logit  DKD+Ours (w. top-k) 7795 055 76.89.110 7982155 7690 134 70.65.157 7038067 70.72.037
MLKD [55] 78.44 76.52 79.26 77.33 70.78 70.57 71.04
MLKD+DOT (9] 78.53 75.82 79.01 76.53 69.15 68.26 67.73
MLKD+LSKD [49] 78.76 71.53 79.66 77.68 71.61 70.94 71.19

MLKD+Ours (w/o top-k)  80.55:211 7828417 81404014 7831i:09s 72174139 72464180 73.0412.00
MLKD+Ours (w. top-k) 80.92. 545 78.65:213 8178550 78491116 72531175 728210595 73.40.9 36

CRLD [13] 78.27 76.92 80.21 77.28 70.37 70.39 71.36
CRLD+DOT [19] 78.33 75.97 79.41 76.41 64.36 61.35 69.96
CRLD+LSKD [49] 78.61 71.37 80.58 78.03 71.52 70.48 71.43

CRLD+Ours (w/o top-k) ~ 79.724145 78794187 81.821161 78624134 72094170 7199160 72014065
CRLD+Ours (w. top-k) 80.15418s 79251533 8235177 79181190 7285548 72.65.096 T72.78.1.40
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Table 15: The accuracy (%) on the ImageNet-1K validation set. Our DeepKD framework is applied
to existing logit-based methods, with performance gains (shown in blue and red). The best results are

emphasized in bold. N/A indicates that the data is not available.

Teacher/Student ResNet34/ResNet18 ResNet50/MN-V1 RegNetY-16GF/Deit-Tiny
Type Accuracy top-1 top-5 top-1 top-5 top-1 top-5
Teacher 73.31 91.42 76.16 92.86 82.89 96.33
Student 69.75 89.07 68.87 88.76 72.20 91.10
AT [63] 70.69 90.01 69.56 89.33 N/A N/A
OFD [66] 70.81 89.98 71.25 90.34 N/A N/A
Feature CRD [63] ] 71.17 90.13 71.37 90.41 N/A N/A
ReviewKD [56] 71.61 90.51 72.56 91.00 N/A N/A
SimKD [53] 71.59 90.48 72.25 90.86 N/A N/A
CAT-KD [54] 71.26 90.45 72.24 91.13 N/A N/A
KD [1] 71.03 90.05 70.50 89.80 73.15 91.85
KD+DOT [19] 71.72 90.30 73.09 91.11 73.42 92.10
KD+LSKD [49] 71.42 90.29 72.18 90.80 73.27 91.95
KD+Ours (w/o top-k) 72411138 91.0541.00 74324382 91941214 74364121 92.8511.00
KD+Ours (W. tOp-k) 72.85+1v82 91 .35+1_30 74.657/1‘13 92.25+2,r15 74.83+1,68 93.]5-1_30
DKD [18] 71.70 90.41 72.05 91.05 73.35 92.05
DKD+DOT [19] 72.03 90.50 73.33 91.22 73.66 92.25
Logit DKD+LSKD [49] 71.88 90.58 72.85 91.23 73.48 92.15
DKD+Ours (w/o top-k) 72781108 90964055 74411236 92.0841.03 745741122 93.0711.02
DKD+Ours (W. tOp—k) 73.15+1,/15 91 .25+0_gr1 74.4372‘38 91 .95+0,9() 74~95+1v60 93.36-1‘31
MLKD [55] 71.90 90.55 73.01 91.42 73.54 92.25
MLKD+DOT [19] 70.94 90.15 71.65 90.28 73.25 91.95
MLKD+LSKD [49] 72.08 90.74 73.22 91.59 73.78 92.45
MLKD+Ours (w/o top-k)  73.18 1128  91.2310.68 74771176  92.3540.03 751541161 93.4811.03
MLKD+Ours (W. top»k) 73.3]+1,/11 91'394»0.8'1 74.8571‘81 92.45+1,03 75.46+1v92 93~73-1‘28
CRLD [13] 72.37 90.76 73.53 91.43 73.82 92.55
CRLD+DOT [19] 71.76 90.00 72.38 90.37 73.37 92.05
CRLD+LSKD [49] 72.39 90.87 73.74 91.61 73.95 92.65
CRLD+Ours (w/o top-k)  73.18 081  91.23,047 74104057 91494006 75354153 93.3510.00
CRLD+Ours (W. tOp-k) 73.34+o,97 91.38+0,52 74.8571‘12 92.45+1,02 75.75+1,59 93.85-1,10
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Algorithm 1 Pseudo code of DeepKD Gradient Decoupling in a PyTorch-like style.

1_stu: student logits, l_tea: teacher logits
T: temperature, t: target class index

a, B1l, P2: loss weights

[t: base momentum, A: momentum difference
v_tog, v_tcg, v_ncg: momentum buffers

Calculate probability
_stu_task = softmax(l_stu)
tea = softmax(l_tea/T)

IO""U"U"U# H o HHH

_stu = softmax(1l_stu/T)
tea = [p_tealt], 1 - p_tealt]]
b_stu = [p_stult], 1 - p_stult]]

p_hat_tea = p_tea.clone()

p_hat_stu = p_stu.clone()

del p_hat_teal[t]

del p_hat_stult]

topk = get_dynamic_k(current_epoch, total_epochs) # See Algorithm [J]
topk_indices = argsort(p_hat_tea) [-topk:]

p_hat_tea = p_hat_tea[topk_indices]

p_hat_stu = p_hat_stul[topk_indices]

p_hat_tea /= sum(p_hat_tea)

p_-hat_stu /= sum(p_hat_stu)

# Calculate gradients

tog = o * grad(CE(p_stu_task, y))

tcg = 1 * grad(KL(b_tea, b_stu)) * T2

ncg = 2 * grad(KL(p_hat_tea, p_hat_stu)) * T~2

# Momentum updates

v_tog = tog + (u + A) * v_tog # Higher momentum
v_tcg = tcg + (u - A) * v_tcg # Lower momentum
v_ncg = ncg + (u + A) * v_ncg # Higher momentum

# Parameter update
params -= 1lr * (v_tog + v_tcg + v_ncg)

Algorithm 2 Pseudo code of Dynamic Top-K Masking (DTM) in a PyTorch-like style.

k_init: initial k value (5% classes)
k_max: max k value (100% classes)
k_opt: optimal k value

phase: easy/transition/hard learning phase

def get_dynamic_k(epoch, total_epochs):
if epoch < 0.3 * total_epochs: # Easy phase
return linear_interp(k_init, k_opt, epoch)
elif epoch < 0.7 * total_epochs: # Transition
return k_opt
else: # Hard phase
return linear_interp(k_opt, k_max, epoch)
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