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ABSTRACT

Semi-supervised domain adaptation (SSDA) is to adapt a learner to a new domain
with only a small set of labeled samples when a large labeled dataset is given
on a source domain. In this paper, we propose a pair-based SSDA method that
adapts a learner to the target domain using self-distillation with sample pairs. Our
method composes the sample pair by selecting a teacher sample from a labeled
dataset (i.e., source or labeled target) and its student sample from an unlabeled
dataset (i.e., unlabeled target), and then minimizes the output discrepancy between
the two samples. We assign a reliable student to a teacher using pseudo-labeling
and reliability evaluation so that the teacher sample propagates its prediction to
the corresponding student sample. When the teacher sample is chosen from the
source dataset, it minimizes the discrepancy between the source domain and the
target domain. When the teacher sample is selected from the labeled target dataset,
it reduces the discrepancy within the target domain. Experimental evaluation on
standard benchmarks shows that our method effectively minimizes both the inter-
domain and intra-domain discrepancies, thus achieving the state-of-the-art results.

1 INTRODUCTION

Deep neural networks have shown impressive performance in learning tasks on a domain where a
large number of labeled data are available for training (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014; He et al., 2016). However, they often fail to generalize to a new domain where the distri-
bution of input data significantly deviates from the original domain, i.e., when a domain gap arises.
The goal of domain adaptation is to adapt a learner to the new domain (target) using the labeled data
available from the original domain (source). Unsupervised domain adaptation (UDA) attempts to
tackle this inter-domain discrepancy problem without any supervision on the target domain, assum-
ing that no labels for samples are available from the target domain in training (Ganin et al. (2016);
Saito et al. (2017); Long et al. (2018); Hoffman et al. (2018)). In contrast, semi-supervised domain
adaptation (SSDA) relaxes the strict constraint, using a small number of additional labels on the
target data, e.g., a few labels per class (Saito et al. (2019)). As we are often able to obtain such ad-
ditional labels easily on the target data, it renders the adaptation problem more practical and better
situated in learning.

Empirical results (Saito et al. (2019)) show that a naı̈ve adaptation of UDA to SSDA, e.g., consider-
ing the labeled samples on the target domain as a part of those on the source domain, suffers from
the effect of target intra-domain discrepancy, i.e., the distribution of labeled samples on the target
domain is separated from that of unlabeled samples during training. We consider the intra-domain
discrepancy and the aforementioned inter-domain discrepancy as major challenges of SSDA, and il-
lustrate in Fig. 1a and Fig. 1b. Previous methods for SSDA (Saito et al. (2019); Kim & Kim (2020))
aims to address the issue using a proxy-based approach; they create a prototype representation for
each class and reduce a distance between each prototype and its nearby unlabeled samples (Fig. 1c).

In this paper, we propose a new SSDA approach, dubbed pair-based self-distillation (PSD), that
leverages rich data-to-data relations rather than proxy-to-data relations (Fig. 1d). Our method takes
as a teacher a labeled sample on either source or target domain, and propagates its information
to an unlabeled sample as a student in the form of self-knowledge distillation. When the teacher
comes from the source domain, it minimizes the inter-domain discrepancy between the source and
the target. When the teacher is a labeled sample on the target domain, it effectively suppresses the
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Figure 1: Two problems of SSDA and two different approaches. (a) Inter-domain discrepancy
represents the discrepancy of sample distributions between a source domain and a target domain. (b)
Intra-domain discrepancy indicates the discrepancy of sample distributions within the target domain.
(c) Previous proxy-based methods give a prototype as a guidance to unlabeled target samples. (d)
Our pair-based method uses a fine-grained sample-to-sample guidance to unlabeled target samples.

intra-domain discrepancy within the target. To generate reliable pairs of the teacher and the student,
we employ pseudo-labeling (Lee, 2013), and present a new form of reliability evaluation on the
pseudo-label motivated by Zhang et al. (2019). Compared to the previous proxy-based approach, our
pair-based approach fully exploits rich and diverse supervisory signals via data-to-data distillation,
and effectively adapts to the target domain by minimizing both the intra-domain and inter-domain
discrepancy.

The contributions of our proposed method are summarized as follows.

• We propose pair-based self-distillation (PSD) that exploits rich sample-to-sample relations
using self-distillation with the help of pseudo-labeling.
• We show that PSD effectively adapts a network to a target domain by alleviating both the

inter- and intra-domain discrepancy issue.
• PSD sets a new state of the art on semi-supervised domain adaptation benchmarks and an

unsupervised domain adaptation benchmark.

2 RELATED WORK

Semi-supervised domain adaptation. The goal of semi-supervised domain adaptation (SSDA) is
to adapt a model on the target domain with a few labels of target data (Saito et al., 2019). Although
SSDA has been considered in Ao et al. (2017); Donahue et al. (2013); Yao et al. (2015), most recent
research has explored unsupervised domain adaptation (UDA). The main issue of domain adaptation
is the gap between the source and the target domain distributions. Previous UDA methods commonly
focus on aligning the two domain distributions. Adversarial learning between a domain-classifier
and a feature extractor is one of the representative UDA approaches (Ganin et al., 2016; Saito et al.,
2017; Long et al., 2018; Lee et al., 2019; Xu et al., 2019). Learning with pseudo-labels (Lee, 2013) is
another approach in UDA (Xie et al., 2018; Chang et al., 2019; Deng et al., 2019; Zhang et al., 2019).
To supplement the absence of target domain labels, the network assigns labels to the target data in
a certain standard. The network then utilizes the obtained pseudo-labels as supervision for training
using the target domain data. SSDA is re-examined in Minimax Entropy (MME) (Saito et al., 2019)
for taking the advantage of extra supervision. With a minor effort, the model benefits from just
a few target labels. MME discovers the ineffectiveness of previous UDA methods in SSDA, and
proposes a new approach for the task. They minimize the distance between the class prototypes and
nearby unlabeled target samples by minimax entropy. After MME, several new SSDA methods are
followed. Jiang et al. (2020) generate bidirectional adversarial samples from source to target domain
and from target to source domain to fill the domain gap. Attract, Perturb, and Explore (APE) (Kim
& Kim, 2020) analyzes the target intra-domain discrepancy issue, and suggest to minimize the gap
using Maximum Mean Discrepancy (MMD), perturbation loss, and the class prototypes. Among the
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Figure 2: An overview of the Pair-based Self-Distillation (PSD) (Section 3.2). We use a feature
extractor and a classifier trained in the pre-training stage (Section 3.1). PSD consists of a student-
set generation procedure and a sample-to-sample distillation procedure. In the former, the model
generates pseudo-labels ofDTU and completesDTS. In the latter, the model is trained with generated
teacher-student pairs. In every N steps, pseudo-labels are updated using the latest model. We omit
feature normalization, temperature scaling, and softmax operation for simplicity.

previous work, MME and APE adapt to the target domain, and use the class prototypes for SSDA.
We tackle the issues of SSDA in a simple pair-based way by applying self-distillation different from
previous work.

Knowledge distillation. The idea of knowledge distillation (KD) is to train a model (student) by
transferring knowledge extracted from another model (teacher) that is more powerful than the stu-
dent (Breiman & Shang, 1996; Buciluǎ et al., 2006). A series of study on KD has shown its attractive
characteristics such as regularizing the student (Yuan et al., 2020), stabilizing training (Cheng et al.,
2020), and preventing models to be overconfident (Yun et al., 2020). One line of work on KD as-
sumes two independent teacher and student networks sharing an input sample, and maps the output
of the student to that of the teacher (Hinton et al., 2015; Romero et al., 2014; Zagoruyko & Ko-
modakis, 2017; Park et al., 2019). This type of work motivates GDSDA (Ao et al., 2017), which
proposes to use multiple pre-trained source models to give predictions to a target model for domain
adaptation tasks. The other interesting line of work on KD investigates self-knowledge distillation;
a single network is trained by the knowledge from itself (Furlanello et al., 2018; Xie et al., 2020;
Yun et al., 2020). Our design follows the second line of work. We present a loss to minimize
Kullback–Leibler divergence of two predictions between a labeled sample and its corresponding
pseudo-labeled sample using self-distillation. This learning objective naturally conforms to the goal
of domain adaptation: adapting to a target domain by aligning semantically similar samples from
two diverse domains.

3 METHOD

The task of semi-supervised domain adaptation is formulated as to classify unlabeled samples on a
target domain using labeled samples on a source domain together with a limited number of labeled
samples on the target domain (Saito et al., 2019; Kim & Kim, 2020; Li & Hospedales, 2020). Let us
consider three datasets given in this context: a source datasetDS = {(x(i)

S , y
(i)
S )}NS

i=1, a labeled target
datasetDTL = {(x(j)

TL , y
(j)
TL )}

NTL
j=1, and an unlabeled target datasetDTU = {x(k)

TU }
NTU
k=1, where x, y, and

N denote a sample, its corresponding label, and the number of samples, respectively. Here, we are
given only a limited number of labeled samples per class on the target domain, i.e., NTL � NTU.
The source and target domains share the same number of classes K. In this setup, we train a model
on Dtrain = DS ∪ DTL, and DTU, and then evaluate it on Dtest = DTU with its ground-truth labels. In
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Algorithm 1 Pair-based self-distillation.

Input: DS,DTL,DTU: Source domain, labeled target domain, and unlabeled target domain dataset
Input: θ and W: Pre-trained weights . Section 3.1
Input: N : student-set generation interval

1: for e← 1 to max steps do
2: if e mod N is 0 then . Student-set generation.
3: Update student set DTS = {(x′(l)TS , ŷ

(l)
TS )}

NTS
l=1 . Equation 4 and equation 3.

4: end if
5: (x, y) ∼ DS ∪ DTL , (x′, ŷ) ∼ DTS such that ŷ = y
6: p(y|x)← softmax(g(f(x;θ);W)/T ) . Section 3.1
7: p(ŷ|x′)← softmax(g(f(x′;θ);W)/T ) . Section 3.1
8: Llab ← CE(p(y|x), y) . Equation 2
9: Lunl ←WCE(p(ŷ|x′), ŷ) . Equation 6

10: Lpair ← KL(p(y|x), p(ŷ|x′)) . Sample-to-sample self-distillation. Equation 5.
11: L ← Llab + Lunl + λLpair . Equation 7.
12: update θ and W with L using SGD
13: if e mod val freq is 0 then
14: validate and early-stop . Section 3
15: end if
16: end for

training, we validate models on additional labeled target set Dval of Dval ∩Dtrain = Dval ∩Dtest = ∅.
We select the best model and search hyper-parameters on the validation set.

3.1 CLASSIFIER MODEL AND ITS PRE-TRAINING

Our model consists of two parts: a feature extractor f(·;θ) and a classifier g(·;W), where θ and
W denote trainable parameters. We use a convolutional neural network for f(·;θ), and a distance-
based classifier for g(·;W) (Wang et al. (2018); Chen et al. (2019)). The distance-based classifier
computes its output as the cosine similarity between the input feature h and each column wk of W:

p(y|x) = softmax(
g(f(x;θ);W)

T
), where g(h;W) = [

w1

‖w1‖
; · · · ; wK

‖wK‖
]>

h

‖h‖
, (1)

where the final prediction p(y|x) is obtained via softmax operation with temperature T . In the
following subsections, we often omit the function parameters, θ and W, for notational simplicity.

We pre-train the model with labeled samples in DS ∪ DTL via minimizing the cross-entropy loss:

Llab = E(x,y)∈DS∪DTL [− log p(y|x)]. (2)

This pre-training improves the performance of PSD and also speeds up its convergence.

3.2 PAIR-BASED SELF-DISTILLATION (PSD)

The pair-based self-distillation (PSD) is designed to perform SSDA by simultaneously minimizing
both the inter-domain discrepancy (between the source and the target) and the intra-domain discrep-
ancy (within the target). It achieves the goal by alternating student-set generation and sample-to-
sample self-distillation. At the student-set generation step, we pseudo-label samples from unlabeled
target dataset DTU and select reliable ones using reliability evaluation. The resultant set DTS is used
for student samples in self-distillation. At the sample-to-sample self-distillation step, we randomly
produce teacher-student pairs with the same class label and perform self-distillation by miminizing
the distance between their predictions. In paring, we take one sample from either DS or DTL (as a
teacher) and the other from DTS (as a student). It effectively reduces the inter-domain discrepancy
using pairs between DS and DTS, while suppressing the intra-domain discrepancy using pairs be-
tween DTL and DTS. The overall procedure is summarized in Alg. 1 and also illustrated in Fig. 2. In
the following, we explain the details of each step and describe the overall training objective.

Student-set generation. This step consists of pseudo-labeling and reliability evaluation. We assign
a class label ŷ to each unlabeled sample x′ ∈ DTU, and construct a pseudo-labeled set of the stu-
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dent samples {(x′(l), ŷ(l))}NTU
l=1 ; we simply take a pseudo-label ŷ of x′ as the class index k of the

maximum prediction value:

ŷ = argmax
k∈{1,2,...,K}

p(y = k|x′). (3)

Although pseudo-labeling enables supervised training on unlabeled samples, pseudo-labels are often
incorrect, in particular, in an early stage of training. We thus drop unreliable samples to compose
DTS for pairing. Let πj(·) be a selection operator that selects jth largest value. We construct a student
set by reliability evaluation:

DTS = {(x′, ŷ)|(π1(p(ŷ|x′)) > α) ∨ (π1(g(f(x
′)))− π2(g(f(x′))) > δ) ;∀x′ ∈ DTU}, (4)

where δ is an average margin of unlabeled target logits and α is a hyper-parameter. The first condi-
tion is met when the absolute largest class probability score is high enough. The second condition
is met when a margin between the largest and the second largest value of the logit is high enough
(Zhang et al., 2019). In this way, the model assigns pseudo-labels to confident samples only so that
the model can take reliable pairs.

Sample-to-sample self-distillation. After we obtain DTS, we construct a pair of a labeled sample
(x, y) ∈ DS ∪ DTL and an pseudo-labeled sample (x′, ŷ) ∈ DTS. We then set a labeled sample as a
teacher sample, and set an unlabeled sample as a student sample. The pairing loss is calculated as

Lpair = E(x,y)∈DS∪DTL,(x′,ŷ)∈DTS [Jŷ = yKDKL(p(y|x) ‖ p(ŷ|x′))] , (5)

where J·K denotes Iverson brackets. If the teacher sample x is selected from DS, the loss would
minimize the inter-domain discrepancy, and if x is chosen from DTL, the loss would reduce the
intra-domain discrepancy of the target domain. This effect is validated in our experiments in Fig. 3.

To improve our training, we introduce an additional loss using student samples with pseudo-labels.
We utilize the latest prediction of student samples to decide the reliability of pseudo-labels and
multiply it to the cross-entropy loss of each student sample, i.e., we use a weighted cross-entropy
loss (WCE) for training student samples:

Lunl = E(x′,ŷ)∈DTS [−p(ŷ|x
′) log p(ŷ|x′)]. (6)

Our total loss in training thus consists of three terms:

L = Llab + Lunl + λLpair, (7)

where λ is a weighting hyper-parameter for the pairing loss. The model is updated by minimizing L
for N iterations. Llab is the cross-entropy loss from equation 2.

We iterate alternating the student-set generation step and the sample-to-sample self-distillation step
until the model converges on the validation set.

4 EXPERIMENTS

We compare PSD with current state-of-the-art methods on two standard SSDA benchmarks. We
include experiments of PSD on the UDA setup. We analyze the effectiveness our method both
quantitatively and qualitatively. For more experimental results, please refer to the appendix.

4.1 SETUP

Datasets. We evaluate our method using two benchmark datasets: DomainNet (Peng et al., 2019)
and Office-Home (Venkateswara et al., 2017). DomainNet contains 6 domains of 345 classes each.
Among them, we use 4 domains (Real, Clipart, Painting, and Sketch) and 126 classes. We choose
seven source-to-target domain scenarios following the work of Saito et al. (2019). Office-Home
consists of four domains (Real, Clipart, Product, and Art) of 65 classes. We conduct Office-Home
experiments on all possible source-to-target domain scenarios.

Implementation details. We follow most of the implementation details of Saito et al. (2019) for a
fair comparison. We select AlexNet (Krizhevsky et al., 2012) and ResNet-34 (He et al., 2016), both
of which are pre-trained on ImageNet (Deng et al., 2009), for our base networks. In a mini-batch, the
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Table 1: Classification accuracy of the DomainNet dataset (%) for one-shot and three-shot on 4
domains (R: Real, C: Clipart, P: Painting, S: Sketch). † denotes that we reproduced the baseline.

Net Method R to C R to P P to C C to S S to P R to S P to R MEAN
1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

A
le

xN
et

S+T 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
DANN 43.3 46.1 41.6 43.8 39.1 41.0 35.9 36.5 36.9 38.9 32.5 33.4 53.6 57.3 40.4 42.4
ADR 43.1 46.2 41.4 44.4 39.3 43.6 32.8 36.4 33.1 38.9 29.1 32.4 55.9 57.3 39.2 42.7
CDAN 46.3 46.8 45.7 45.0 38.3 42.3 27.5 29.5 30.2 33.7 28.8 31.3 56.7 58.7 39.1 41.0
ENT 37.0 45.5 35.6 42.6 26.8 40.4 18.9 31.1 15.1 29.6 18.0 29.6 52.2 60.0 29.1 39.8
MME 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
APE 47.7 54.6 49.0 50.5 46.9 52.1 38.5 42.6 38.5 42.2 33.8 38.7 57.5 61.4 44.6 48.9
APE † 46.3 51.5 45.5 48.5 40.6 47.6 36.2 42.2 37.1 42.2 30.3 37.8 54.2 58.5 41.5 46.7
PSD (ours) 51.6 56.2 47.9 51.2 48.0 51.3 39.2 43.5 40.6 46.5 37.4 39.8 59.5 65.1 46.3 50.5

R
es

N
et

S+T 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7
ADR 57.1 60.7 61.3 61.9 57.0 60.7 51.0 54.4 56.0 59.9 49.0 51.1 72.0 74.2 57.6 60.4
CDAN 65.0 69.0 64.9 67.3 63.7 68.4 53.1 57.8 63.4 65.3 54.5 59.0 73.2 78.5 62.5 66.5
ENT 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
MME 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
APE 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
APE † 67.0 72.2 70.3 69.9 67.7 71.3 56.8 63.8 65.5 67.4 61.9 65.0 72.8 77.6 66.0 69.6
PSD (ours) 73.4 75.3 69.2 70.8 73.4 74.4 60.2 63.1 66.1 69.1 62.8 64.7 79.3 79.7 69.2 71.0

Table 2: Classification accuracy of the Office-Home dataset (%) for one-shot on 4 domains (R: Real,
C: Clipart, P: Product, A: Art).

Net Method R to C R to P R to A P to R P to C P to A A to P A to C A to R C to R C to A C to P MEAN

A
le

xN
et

S+T 37.5 63.1 44.8 54.3 31.7 31.5 48.8 31.1 53.3 48.5 33.9 50.8 44.1
DANN 42.5 64.2 45.1 56.4 36.6 32.7 43.5 34.4 51.9 51.0 33.8 49.4 45.1
ADR 37.8 63.5 45.4 53.5 32.5 32.2 49.5 31.8 53.4 49.7 34.2 50.4 44.5
CDAN 36.1 62.3 42.2 52.7 28.0 27.8 48.7 28.0 51.3 41.0 26.8 49.9 41.2
ENT 26.8 25.8 45.8 56.3 23.5 21.9 47.4 22.1 53.4 30.8 18.1 53.6 38.8
MME 42.0 69.6 48.3 58.7 37.8 34.9 52.5 36.4 57.0 54.1 39.5 59.1 49.2
APE † 42.1 69.6 49.8 57.7 35.5 35.9 49.2 32.1 55.0 52.7 37.8 57.6 47.9
PSD (ours) 45.3 69.5 48.0 58.5 34.8 34.5 55.9 34.6 57.2 56.7 37.0 60.3 49.4

ratio of teacher samples (from DS ∪DTL) and student samples (from DTS) is one to one. We choose
the same number of source and labeled target data to construct teacher samples. Specifically, we use
48 teacher samples and 48 student samples in AlexNet. In ResNet-34, we use 64 teacher samples
and 64 student samples like MME. We use the Stochastic Gradient Descent (SGD). The values of
an initial learning rate, a momentum, and a weight decay are 0.01, 0.9, and 0.0005, respectively. In
student-set generation step, we set α to 0.95, and δ is fixed to the average of all student samples’
margin. We set the student-set generation interval N as 100. The hyper-parameter for the pairing
loss λ is set individually on each base network according to the maximum validation accuracy. The
details of searching λ are described in Section A.2. Experiments are implemented using PyTorch
(Paszke et al. (2017)).

Baselines. We compare our method to competitive SSDA baselines: MME (Saito et al., 2019), and
APE (Kim & Kim, 2020). Additionally, we bring S+T that simply minimizes the cross-entropy loss
on the labeled dataset. DANN (Ganin et al., 2016), ADR Saito et al. (2017), and CDAN (Long et al.,
2018)), which are the well-known methods in UDA, are also described as comparison. Further, we
include the accuracy of ENT (Grandvalet & Bengio, 2005).

4.2 RESULTS

Comparison on DomainNet. Table 1 demonstrates the classification accuracy of our method and
other baselines on DomainNet dataset. We conduct experiments on both one-shot and three-shot
settings with AlexNet and ResNet. We reproduce APE based on their public codes. For a fair com-
parison, we select the best model, and tune hyper-parameters on the validation set for all experiments
including reproduction and our method. In AlexNet one-shot and three-shot setting, our proposed
method outperformed S+T with 6.3%p and 7.1%p respectively when we take an average of all adap-
tation scenarios. PSD also acquires improved accuracy than the previous state-of-the-art in most of
domain scenarios. In ResNet experiments, our method achieves 12.3%p and 11.0%p higher mean
accuracy in one-shot and three-shot setting respectively than S+T. Compared with APE, our method
obtains notable accuracy improvement in one-shot and three-shot setting.
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Table 3: Classification accuracy of the DomainNet dataset (%) in the UDA setting.

Net Method R to C R to P P to C C to S S to P R to S P to R MEAN

A
le

xN
et

Source 41.1 42.6 37.4 30.6 30.0 26.3 52.3 37.2
DANN 44.7 36.1 35.8 33.8 35.9 27.6 49.3 37.6
ADR 40.2 40.1 36.7 29.9 30.6 25.9 51.5 36.4
CDAN 44.2 39.1 37.8 26.2 24.8 24.3 54.6 35.9
ENT 33.8 43.0 23.0 22.9 13.9 12.0 51.2 28.5
MME 47.6 44.7 39.9 34.0 33.0 29.0 53.5 40.2
APE † 45.9 47.0 42.0 36.5 37.0 30.3 54.1 41.8
PSD (ours) 49.3 49.2 42.7 38.1 41.7 38.0 54.1 44.7

Table 4: Comprehensive ablation study of PSD on DomainNet dataset (%) for one-shot setting.

Net Method Lunl RSS R to C R to P P to C C to S S to P R to S P to R MEAN

A
le

xN
et

S+T 43.3 42.4 40.1 33.6 35.7 29.1 55.8 40.0
DANN 43.3 41.6 39.1 35.9 36.9 32.5 53.6 40.4
MME 48.9 48.0 46.7 36.3 39.4 33.3 56.8 44.2
APE 47.7 49.0 46.9 38.5 38.5 33.8 57.5 44.6

PSD (ours)
X 50.8 47.5 47.0 37.9 40.1 37.3 60.8 45.9

X 49.2 46.7 47.1 39.5 41.1 36.5 59.6 45.8
X X 51.6 47.9 48.0 39.2 40.6 37.4 59.5 46.3

Comparison on Office-Home. Table 2 shows the results of our method and others on Office-Home.
We reproduce MME and APE based on their public codes. We observe that PSD outperforms current
state-or-the-art methods in most scenarios. Notably, PSD is effective where the domain gap between
the source and target domain is substantial. In comparison to S+T, for example, PSD increases
accuracy by 7.8%p on Real to Clipart, and 8.2%p on the other way around. Real and Clipart domains
appear considerably distinctive to each other because samples in Real domain are photos from real
world, on the other hand, the samples in Clipart domain are artificial illustrations. We believe that
the pair-based loss explicitly drives two individual features from two visually diverse domains to be
close. As a results, it achieves a clear performance gain in such challenging scenarios.

4.3 ANALYSIS

Unsupervised domain adaptation. Table 3 summarizes performance improvement of PSD on the
UDA setup on DomainNet. In this setup, we assume no labels are given from target domains, while
other settings are not changed. PSD outperforms counterparts in most scenarios. It is impressive that
PSD excels methods that have been proposed for UDA (Ganin et al., 2016; Saito et al., 2017; Long
et al., 2018). Note that DomainNet dataset is designed to have a substantial domain gap between
domains, each of which are categorized into 126 classes. We examine that PSD is powerful on such
a challenging dataset even though target labels are not given at all.

Ablation study. We conduct an ablation study on the weighted-cross entropy loss and the reliable
student-set generation (RSS). The check mark of Lunl represents that the weighted cross-entropy
loss for student samples (equation 6) is added to the overall loss. The check mark of RSS denotes
that the reliability evaluation is utilized to generate DTS (equation 4). If there is no check mark on
the RSS column, we assign a class index of the maximum prediction value as a pseudo-label instead
of equation 3. The bottom row is our complete setting. By comparing the first row and the third row
of ours, the effectiveness of Lunl is verified in most of the domain scenarios. Also, by comparing the
second row and the third row, it shows that our method benefits from RSS.

Inter-domain and intra-domain discrepancies. Fig. 3 visualizes that PSD progressively clusters
instances of the same classes by overcoming inter- and intra-domain discrepancies. Fig. 3a plots
cosine similarity between a source embedding and a target embedding from the same class for all
classes. Fig. 3c plots cosine similarity between two target embeddings from the same class for
all classes. Fig. 3b and Fig. 3d visualize the histograms from each final model of APE and PSD.
For more implementation details, please refer to appendix. The cosine similarities gradually move
toward 1.0 over iterations, which proves that a learner is guided to map two semantically similar
samples to nearby points in the embedding space. While a majority of the same-class embeddings
moves close to each other, we observe that a small portion of embeddings pushes apart as shown
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Figure 3: (a) Histograms of cosine similarities between a source and a target embedding (inter-
domain similarity) over iterations (b) Inter-domain similarity histograms of APE and PSD. (c) His-
tograms of cosine similarities between target embeddings (intra-domain similarity) over iterations.
(d) Intra-domain similarity histograms of APE and PSD.
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Figure 4: t-SNE visualization on Office-Home. (a) Embedding space after pre-training stage on
Clipart→ Product. (b) Embedding space at the final model on Clipart→ Product. (c) Embedding
space after pre-training stage on Art→ Clipart. (d) Embedding space at the final model on Art→
Clipart.

in Fig. 3c. This is considered one limitation of leveraging pseudo-labels; wrong pairs misguide the
learning process. We thus address the importance of pseudo-labeling for future work on domain
adaptation.

Qualitative results. Fig. 4 visualizes how PSD clusters instances from two domains over iterations
using t-SNE (Maaten & Hinton, 2008). The results respresent two main points: (1) target sam-
ples align toward source samples over iterations. (2) samples from the same class pull each other
over iterations. Each point above stands for little inter-domain discrepancy and little intra-domain
discrepancy on the final embedding manifold. We include more qualitative results in the appendix.

5 CONCLUSION

We have proposed a novel pair-based self-distillation (PSD) for semi-supervised domain adaptation.
First, PSD assigns a pseudo-label to an unlabeled sample only if its prediction is reliable. Then, PSD
makes a pair of two samples: one from pseudo-labeled samples and the other from labeled samples.
PSD drives two predictions of the pair to be close. PSD outperforms on two semi-supervised do-
main adaptation benchmarks and one unsupervised domain adaptation benchmark. The experiments
demonstrate that PSD effectively adapts to a target domain using a single architecture given an ex-
tremely few number of labeled target domain samples.
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A APPENDIX

In this appendix, we provide supplementary results and details of our method.

A.1 IMPLEMENTATION DETAILS OF FIG. 3

We use ResNet34 architecture, Office-Home dataset on ont-shot setting. We use Product and Clipart
domains for the source and target domains, respectively. For PSD, we start plotting after the pre-
training stage (the 7,000th iteration) until the model converges for every 500 iterations. For APE, we
plot the final model only.

A.2 THE HYPER-PARAMETER λ

Table 5: Hyper-parameter search on DomainNet using ResNet34. We choose Real to Clipart three-
shot and Real to Sketch one-shot scenarios. We measure the test accuracy at the maximum validation
accuracy.

Scenario m
3 4 5 6 7 8 9

R to C 3-shot 75.3 75.9 73.9 75.5 75.9 75.7 75.2
R to S 1-shot 60.6 61.2 63.6 62.9 62.9 62.9 61.2
Average 68.0 68.5 68.7 69.2 69.4 69.3 68.2

We use λ to balance Lpair in the overall loss. We set the hyper-parameter λ using a ramp-up function

λ =
2

1 + e−mz
− 1, (8)

where z is a training progress calculated by the current step over maximum training step. We set
the start step according to the accuracy of the pre-trained model. By changing m, we vary the slope
of the ramp-up function to examine the effects of weighting Lpair. We search the hyper-parameter
by varying m from 3 to 9. We choose two domain scenarios, and select m at the best validation
accuarcy on average of two scenarios. We set m to 6, 7, and 9 on AlexNet of Table 1, ResNet of
Table 1, and Table 2 respectively. Table 5 shows the accuracy of our model when varying m.

A.3 EXTRA T-SNE VISUALIZATION

Fig. 5 visualizes how PSD clusters instances from two domains over iterations. We observe that
the data-to-data self-distillation stage clearly enhances the embedding quality from the pre-training
stage. Two main points of the results are: (1) target samples align toward source samples over
iterations. (2) samples from the same class pull each other over iterations. We use ResNet34 archi-
tecture, Office-Home dataset on the one-shot setting. The final dimension is reduced from 512 to 2
dimensions by using t-SNE (Maaten & Hinton, 2008).
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Figure 5: t-SNE visualization on Office-Home. The left column visualizes the source and target
embeddings together. The middle and the right column visualizes the source and the target embed-
dings, respectively. The first 30 classes are visualized. (a) t-SNE visualization after pre-training
stage on Clipart → Product. (b) t-SNE visualization at the final model on Clipart → Product. (c)
t-SNE visualization after pre-training stage on Art → Clipart. (d) t-SNE visualization at the final
model on Art→ Clipart.
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