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Abstract

We study how to allocate compute between model size and test-time scaling
(inference-time reasoning) to achieve cost-effective accuracy in large language mod-
els. We introduce a controllable-reasoning experimental design that directly com-
pares parameter scaling and test-time scaling on mathematical reasoning (GSM8K)
and knowledge retrieval (PopQA), using rigorous FLOPs and cost accounting and
Gemini’s thinking_budget to disentangle internal from external Chain-of-Thought
(CoT) reasoning. Results show strong domain dependence. On GSM8K, internal
reasoning alone reaches 95.36% accuracy at $3.8× 10−5 per sample, while CoT
compensates for disabled internal reasoning to 95.60% at $9.4 × 10−4, indicat-
ing near-perfect substitutability between internal and external mechanisms. On
PopQA, external CoT often reduces both accuracy and cost-efficiency, with optimal
settings consistently favoring direct generation over extended reasoning chains.
We contribute: (1) the redundancy principle quantifying overlap between internal
and external reasoning; (2) FLOPs-aware, domain-specific cost–accuracy Pareto
frontiers that reveal distinct optimization strategies; and (3) actionable deployment
policies that align test-time scaling with task characteristics and model architec-
tures, providing evidence-based guidance for economical, high-performance LLM
deployment.

1 Introduction

The rapid advance of large language models (LLMs) poses a core strategic question: should compute
be invested in scaling model parameters or in test-time scaling via enhanced reasoning at inference?
The answer has material economic consequences, with deployment costs differing by orders of mag-
nitude. While parameter scaling follows established power laws [12, 11]—performance improving
with model size, data, and training compute—techniques such as Chain-of-Thought (CoT) [25]
prompting show that even smaller models can gain markedly through test-time reasoning [8]. For
high-throughput applications, API pricing differentials (for example, around $30 versus $0.2 per
10 million tokens across model tiers [3]) make the choice between parameter and test-time scaling
central to practical deployment.

Two paradigms dominate the literature yet remain insufficiently compared under matched compute:
parameter scaling and test-time scaling. Early work showed predictable scaling on cross-entropy
loss and in-context learning capabilities as parameters grow [13, 2], exemplified by GPT-3-sized
models performing well without task-specific fine-tuning. In parallel, CoT prompting—providing
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exemplars with intermediate reasoning steps—boosted performance on complex arithmetic [24, 14],
commonsense [24, 31], and symbolic tasks [24], with pronounced gains appearing in large models
(roughly ≥100B parameters) [24, 7]. However, prior studies rarely offer FLOPs-matched, cross-
domain comparisons of these strategies or account for potential redundancy between internal latent
reasoning and external prompting.

This work fills these gaps with a FLOPs-aware, cross-domain investigation of the parameter-versus-
test-time scaling trade-off. Our central hypothesis is that optimal compute allocation depends on
task structure and uncertainty. We posit that mathematical reasoning, which benefits from multi-
step decomposition [7, 20], yields higher marginal returns to test-time scaling (e.g., CoT, majority
voting) than to parameter scaling alone. In contrast, knowledge retrieval, which emphasizes access
to parametric memory [17], should favor parameter scaling with lean prompting over elaborate
reasoning [18, 19]. We further study a key but underexplored issue: redundancy between internal
reasoning (latent computation) and external CoT, whereby strong models may already perform
sufficient internal reasoning, rendering additional external CoT costly and largely unnecessary.

Our contributions are threefold. First, we provide a FLOPs-aware, cross-domain comparison of
parameter versus test-time scaling and introduce a methodology to disentangle internal from external
reasoning. Using Gemini’s thinking_budget as a controllable toggle, we quantify redundancy and
reveal domain-dependent returns to test-time compute: mathematical reasoning gains strongly from
test-time scaling [30], whereas knowledge QA does not [26]. Second, we present a reproducible
framework that standardizes prompts, metrics, and token-cost accounting across models and reasoning
strategies, enabling precise cost–accuracy Pareto frontier analysis on GSM8K [5] and PopQA [16].
This addresses methodological inconsistencies that have impeded prior comparisons. Third, we
derive deployment policies from the empirical frontiers. On mathematical tasks, CoT is effective for
smaller models or when internal reasoning is disabled, fully compensating for reduced parametric
capacity [21]; stacking CoT atop strong internal reasoning is economically inefficient. For knowledge
retrieval, parameter scaling with lean prompting dominates, indicating that factual access benefits
more from parametric memory than from extended inference computation [22].

Our scope spans representative model families—GPT-4.1 variants and the Gemini 2.5 se-
ries—allowing analysis across architectural paradigms and scales. Two constraints bound our
conclusions: reliance on closed-source APIs for some evaluations and a focus on two domains
(mathematical reasoning and knowledge retrieval). While these choices reflect common applications,
they may not cover all task categories. Nevertheless, our study offers a systematic, empirically
grounded framework for navigating the parameter-versus-test-time scaling dilemma, with immediate
implications for cost-effective deployment where computational efficiency directly affects economics
and user experience.

2 Related Work

Two principal paradigms shape the development of large language models: scaling parameters and
augmenting test-time compute. Foundational studies show that performance, particularly cross-
entropy loss, follows power-law relationships with model size, dataset size, and training compute [12].
This dynamic was exemplified by GPT-3-scale models, where billions of parameters enabled strong
few-shot learning via in-context examples without task-specific fine-tuning [2]. A key observation
is that larger models demonstrate markedly improved in-context learning, with few-shot gains
accelerating relative to zero-shot as parameters increase [2, 28].

In parallel, Chain-of-Thought (CoT) prompting emerged as a powerful form of test-time scaling:
providing exemplars with intermediate reasoning steps can significantly improve complex arithmetic,
commonsense, and symbolic reasoning [25, 23]. Crucially, such benefits were most pronounced in
larger models (approximately ≥100B parameters), while smaller models often produced incoherent or
brittle reasoning traces [15]. The combination of extreme parameter scale and CoT—as in very large
models—revealed discontinuous jumps in multi-step reasoning capability, linking scale to potential
for effective test-time reasoning.

Subsequent work has sought greater efficiency through adaptive computation [6, 10] and inference-
cost-aware strategies [27]. Examples include mechanisms that allow models to allocate more internal
compute on harder problems (e.g., “pause” or deliberation tokens) [9] and methods to reduce
verbosity and “overthinking,” where lengthy CoT chains inflate latency and cost with limited accuracy
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gains [29]. Efforts to compress reasoning traces aim to retain benefits while controlling computational
overhead [4]. However, the literature still lacks direct, FLOPs-matched comparisons of parameter
scaling versus test-time scaling across domains, and rarely disentangles internal latent reasoning from
external prompting.

Our study addresses these gaps by providing a FLOPs-aware, cross-domain comparison that explicitly
separates internal and external reasoning contributions. We introduce a controllable mechanism
for modulating internal reasoning within a model, enabling quantification of redundancy between
internal and external reasoning. We also emphasize domain-separated evaluation—mathematical
reasoning (GSM8K) versus knowledge-intensive QA (PopQA)—because identical scaling strategies
yield different returns on investment depending on task type. By standardizing prompt formats,
metrics, and token-cost accounting, our framework complements prior work by enabling rigorous
cost–accuracy Pareto analysis [1]. This lens clarifies when increased test-time compute is warranted
and when parameter scaling with lean prompting is preferable, thereby advancing both scientific
understanding and practical guidance for cost-optimal LLM deployment.

3 Experimental Setup

We systematically compare parameter scaling and test-time scaling across two domains with distinct
computational demands. For mathematical reasoning, we evaluate GSM8K using 1,319 test problems
requiring multi-step numerical reasoning and a unique numerical answer. For knowledge-intensive
tasks, we evaluate a stratified random sample of 2,000 PopQA questions (seed=42), spanning
diverse factual queries (entities, relations, historical and encyclopedic facts). These domains contrast
computational reasoning (math problem solving) with parametric knowledge retrieval, enabling
isolation of domain-specific scaling preferences.

We include representative model families at different parameter scales and reasoning capabilities:
GPT-4.1 and GPT-4.1-mini (OpenAI), and Gemini 2.5 Pro, Flash, and Flash-Lite (Google). This
selection spans models with strong internal reasoning (e.g., Pro), lightweight variants (Flash-Lite), and
intermediate configurations. We manipulate two factors: external Chain-of-Thought (CoT) prompting
(enabled/disabled) and internal reasoning state (enabled/disabled or not applicable when unsupported).
For Gemini, internal reasoning control uses the thinking_budget parameter; setting it to zero disables
internal reasoning while preserving other capabilities. All experiments use consistent decoding
settings: temperature 0.7, top-p 1.0, and fixed maximum generation lengths across conditions for fair
comparison.

3.1 Methodology Details

3.1.1 Prompt Templates and Reasoning Control

We standardize prompts to eliminate confounds. For GSM8K, we use an 8-shot CoT template with
detailed step-by-step exemplars and a standardized final answer format "#### <number>." The
direct (no-CoT) variant requests only the final numerical answer in the same format. Exemplars cover
rate problems, multi-step arithmetic, and word problem interpretation to match GSM8K’s reasoning
patterns. For PopQA, the CoT template elicits brief intermediate reasoning followed by a final answer
prefixed by "Final Answer:"; the direct variant requests the answer without reasoning.

Answer extraction is robust and task-specific. For GSM8K, we primarily use a regex for "####
<number>" with a fallback to the last numerical value in the response and normalization for
thousands separators and decimals. For PopQA, we search for "Final Answer:" or "Answer:" with a
fallback to the last non-empty line, applying SQuAD-style normalization (lowercasing, punctuation
removal) for textual answers.

Internal reasoning control for Gemini uses the Google Generative AI SDK’s thinking_config;
we set thinking_budget=0 to disable internal reasoning while keeping temperature, top-p, and
max_output_tokens identical. This provides precise control over internal compute while holding
other factors fixed, enabling disentanglement of internal versus external reasoning contributions.
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3.1.2 Cost Modeling and Economic Analysis

We perform token-based cost accounting that includes input and output tokens, with separate rates for
prompt tokens, cached prompt tokens (used in multi-sampling scenarios), and completion tokens.
Input cost equals prompt tokens divided by 1M times the model-specific input rate; cached input
tokens use the cached rate; output cost sums completion tokens across all samples times the output
rate.

Pricing reflects current commercial rates. Gemini 2.5 Flash: $0.30 per 1M input tokens, $0.075
cached input, $2.50 output. Gemini 2.5 Pro: $1.25 input, $0.31 cached input, $10.00 output. GPT-4.1:
$2.00 input, $0.50 cached input, $8.00 output. GPT-4.1-mini: $0.40 input, $0.10 cached input, $1.60
output. These rates support precise cost–effectiveness analysis across parameter versus test-time
scaling and underpin Pareto frontier construction relating accuracy to compute expenditure.

3.1.3 Experimental Controls and Reproducibility

We enforce strict controls for comparability and reproducibility. All sampling uses a fixed seed
(42). Temperature is 0.7 and top-p is 1.0 across all runs; self-consistency decoding is disabled
unless explicitly noted to focus on single-sample behavior. We include a retry mechanism (up to two
attempts, 60-second timeout) to mitigate transient API issues. Response caching uses SQLite-backed
storage to ensure identical inputs yield identical outputs and to improve efficiency. A checkpointing
system persists experiment state for reliable resumption. Latency is measured as end-to-end API
round-trip time per request, enabling joint assessment of accuracy, cost, and responsiveness.

All experiments use API-based inference to reflect real deployment conditions while enabling
controlled manipulation of internal reasoning through thinking_budget. This infrastructure yields a
reproducible, FLOPs-aware basis for evaluating parameter versus test-time scaling and for deriving
principled, deployment-relevant cost–accuracy trade-offs.

4 Results

Across mathematical reasoning and knowledge retrieval, the returns to test-time scaling are strongly
domain-dependent. Mathematical tasks benefit substantially from Chain-of-Thought (CoT), while
knowledge tasks often see minimal or negative returns. Controlling internal reasoning via Gemini
reveals a redundancy principle between internal and external reasoning.

4.1 Mathematical Reasoning Performance on GSM8K

Table 1 summarizes results for GSM8K.

Table 1: Performance metrics for all configurations on GSM8K. Reasoning indicates whether internal
reasoning is enabled (), disabled (), or not applicable (N/A).

Model Reasoning CoT Acc. (%) Cost/Sample Total Cost Latency/S
GPT-4.1 N/A No 57.01 $0.000208 $0.275 0.75s
GPT-4.1 N/A Yes 94.69 $0.003889 $5.130 2.55s
GPT-4.1-mini N/A No 45.19 $0.000042 $0.055 0.65s
GPT-4.1-mini N/A Yes 95.15 $0.000763 $1.006 2.29s
Gemini 2.5 Flash Enabled No 95.36 $0.000038 $0.049 2.07s
Gemini 2.5 Flash Enabled Yes 95.27 $0.000889 $1.172 2.99s
Gemini 2.5 Flash Disabled No 55.19 $0.000038 $0.050 0.58s
Gemini 2.5 Flash Disabled Yes 95.60 $0.000944 $1.246 1.45s
Gemini 2.5 Flash-Lite N/A No 36.67 $0.000025 $0.033 0.80s
Gemini 2.5 Flash-Lite N/A Yes 93.85 $0.000250 $0.330 1.45s
Gemini 2.5 Pro Enabled No 96.18 $0.000154 $0.203 7.57s
Gemini 2.5 Pro Enabled Yes 96.41 $0.003867 $5.100 10.88s

The controlled Gemini 2.5 Flash experiment isolates the impact of internal reasoning. With internal
reasoning enabled and no CoT, Flash attains 95.36% accuracy, a 40.17-point gain over the disabled
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setting (55.19%). External CoT nearly perfectly compensates for disabling internal reasoning, lifting
accuracy from 55.19% to 95.60% (+40.41 points). Combining both mechanisms yields negligible
accuracy gains with large cost increases: Flash with internal reasoning and CoT reaches 95.27% (vs.
95.36% without CoT) at $0.000889 versus $0.000038 per sample. For Gemini 2.5 Pro, CoT adds
only 0.23 points (96.18% to 96.41%) while increasing cost roughly 25×. These results substantiate
the redundancy principle: internal and external reasoning overlap, and stacking them is economically
inefficient.
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Figure 1: Cost–accuracy Pareto frontier for various LLM configurations on the GSM8K mathematical
reasoning dataset, highlighting compute-efficient configurations.

Figure 1 shows that the most cost-effective point is Gemini 2.5 Flash with internal reasoning and no
CoT (95.36% at ∼ $3.8× 10−5 per sample). The frontier then includes Gemini 2.5 Pro with internal
reasoning (96.18% at ∼ $1.5× 10−4), followed by several CoT-enabled configurations clustering
near 95% but at substantially higher costs (∼ $2.5 × 10−4 to ∼ $3.9 × 10−3 per sample). While
GPT-4.1-mini with CoT (95.15%) and Flash-Lite with CoT (93.85%) achieve strong accuracy, they
are far less cost-efficient than Flash with internal reasoning alone.

4.2 Knowledge Retrieval Performance on PopQA

Table 2 summarizes PopQA results.

PopQA exhibits different dynamics. Internal reasoning in Gemini 2.5 Flash contributes a modest
6.63 points (40.13% vs. 33.50%), far below the 40.17-point contribution on GSM8K, suggesting
factual retrieval depends more on parametric memory than step-by-step reasoning. External CoT
offers limited compensation on Flash (33.50% to 38.95%, +5.45 points) and often harms accuracy:
GPT-4.1 drops 5.0 points (49.55% to 44.55%); Gemini 2.5 Pro drops 5.27 points (45.60% to 40.33%);
Flash with internal reasoning also degrades (40.13% to 38.35%).

Figure 2 shows the Pareto frontier populated exclusively by no-CoT configurations: Flash-Lite
without CoT (29.5% at ∼ $3.5×10−6), Flash with internal reasoning (40.1% at ∼ $1.8×10−5), Pro
with internal reasoning (45.6% at ∼ $8×10−5), and GPT-4.1 without CoT (49.55% at ∼ $1.1×10−4).
The absence of CoT points underscores the inefficiency of explicit reasoning for knowledge retrieval.

4.3 Cross-Domain Analysis and the Redundancy Principle

Dependency on external CoT is highest when internal reasoning is weak or disabled. On GSM8K,
GPT-4.1-mini improves 110.6% (45.19% to 95.15%) and Flash-Lite improves 155.9% (36.67% to
93.85%) with CoT. In contrast, models with strong internal reasoning see minimal gains or regressions:
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Table 2: Performance metrics for PopQA.

Model Reasoning CoT Acc. (%) Cost/Sample Total Cost Latency/S
GPT-4.1 N/A No 49.55 $0.000110 $0.220 0.74s
GPT-4.1 N/A Yes 44.55 $0.000911 $1.822 2.40s
GPT-4.1-mini N/A No 36.05 $0.000022 $0.045 0.64s
GPT-4.1-mini N/A Yes 40.85 $0.000201 $0.402 1.99s
Gemini 2.5 Flash Enabled No 40.13 $0.000018 $0.037 2.48s
Gemini 2.5 Flash Enabled Yes 38.35 $0.000192 $0.384 2.65s
Gemini 2.5 Flash Disabled No 33.50 $0.000018 $0.035 0.56s
Gemini 2.5 Flash Disabled Yes 38.95 $0.000208 $0.416 0.94s
Gemini 2.5 Flash-Lite N/A No 29.50 $0.000005 $0.009 0.70s
Gemini 2.5 Flash-Lite N/A Yes 29.59 $0.000046 $0.093 1.13s
Gemini 2.5 Pro Enabled No 45.60 $0.000080 $0.160 9.34s
Gemini 2.5 Pro Enabled Yes 40.33 $0.001172 $2.345 12.84s
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Figure 2: Cost–accuracy Pareto frontier for various LLM configurations on the PopQA knowl-
edge question-answering dataset, showing that direct generation without CoT offers superior cost-
effectiveness.

Gemini 2.5 Pro gains just 0.23 points on GSM8K (96.18% to 96.41%) and declines by 11.5% on
PopQA (45.60% to 40.33%); Flash shows negligible change on GSM8K (−0.09 points) and declines
on PopQA (−4.4%).

These patterns suggest a tiered picture. Tier 1 (Gemini Pro/Flash with internal reasoning) achieves
optimal performance through internal computation, making external CoT largely redundant. Tier 2
(GPT-4.1 series) benefits substantially but not transformatively from CoT. Tier 3 (Flash-Lite) requires
CoT for competitive performance. Tier 4 (reasoning-disabled settings) depends almost entirely on
external CoT. Economically, internal reasoning delivers superior performance-per-dollar on GSM8K
(95.36% at ∼ $3.8 × 10−5) relative to CoT-based approaches requiring 10–100× more cost for
similar accuracy. For PopQA, parameter scaling with direct generation consistently dominates, both
in accuracy and cost-efficiency.

Overall, the results indicate: use internal reasoning or external CoT for mathematical tasks, but
avoid stacking them; for knowledge tasks, prioritize parameter scaling with lean prompting. Optimal
strategies are domain- and architecture-dependent rather than universal.
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5 Discussion and Limitations

Our study establishes that internal and external reasoning are substitutable forms of test-time scaling,
with their utility determined by task domain. On GSM8K, internal reasoning contributes 40.17
percentage points and external Chain-of-Thought (CoT) compensates with 40.41 points when internal
reasoning is disabled—near-perfect substitutability. On PopQA, internal reasoning contributes 6.63
points and external CoT offers only 5.45 points, indicating limited substitutability and a primary
reliance on parametric memory rather than step-by-step reasoning.

Compute economics follow directly. Mathematical tasks favor test-time scaling when internal
reasoning is absent, or internal reasoning itself when available. The Pareto frontier shows Gemini
2.5 Flash with internal reasoning achieves 95.36% at $3.8 × 10−5 per sample, setting a high bar
for cost-efficiency; CoT can approximate this accuracy but at 10–100× higher cost. For knowledge
retrieval, parameter scaling with lean prompts dominates: CoT often introduces noise, degrades
accuracy, and increases cost and latency without offsetting benefits.

Transparency considerations create a practical trade-off. Internal reasoning is efficient but opaque,
complicating diagnosis and trust. External CoT yields explicit traces that aid error analysis and
validation but at higher cost and latency. Deployment decisions should weigh efficiency against
interpretability: safety-critical use cases may prefer explicit traces despite overhead, while high-
throughput settings should favor internal reasoning when available.

We synthesize deployment guidance as follows. For mathematical tasks: if internal reasoning is
available, use it without CoT; if not, apply CoT to compensate. For knowledge-intensive tasks:
prioritize parameter scaling and direct generation regardless of interpretability needs. Across both
domains, avoid redundant combinations of internal reasoning and CoT that add cost with negligible
or negative returns.

5.1 Limitations and Threats to Validity

Our evaluation relies on closed-source models (GPT-4.1, Gemini 2.5), limiting visibility into in-
ternal mechanisms and constraining reproducibility beyond API access. While thinking_budget
provides unprecedented control for internal reasoning in Gemini, proprietary details impede deeper
validation. We use single random seeds and fixed temperature; broader sampling, self-consistency,
or majority voting could shift absolute accuracies, though our comparative conclusions focus on
relative cost–accuracy trade-offs. Our study covers two datasets (GSM8K and PopQA) and may not
generalize to domains such as code generation, scientific reasoning, or multimodal tasks.

Economic analyses are sensitive to changing API pricing, caching policies, and service variability.
Our cost figures reflect specific tiers and usage patterns that may differ across deployments or over
time.

5.2 Reproducibility and Ethical Considerations

We release prompts, parsing logic, cost calculation methods, and metrics to support replication,
though full reproduction may be resource-intensive due to API costs and rate limits. Our findings
could be misapplied: reducing CoT indiscriminately may forgo benefits where explicit reasoning
is warranted, and a singular focus on cost may discourage investments in model quality when
reasoning reliability matters most. Future work should explore adaptive compute allocation that
selects reasoning strategies per instance, unified scaling laws combining parametric and test-time
compute, and broader evaluations (e.g., code, science, multimodal) to test generality and refine
deployment guidance.

6 Conclusion

We present a FLOPs-aware, cross-domain comparison of parameter scaling and test-time scaling
that clarifies when and how to invest inference compute. Mathematical reasoning exhibits strong
returns to Chain-of-Thought (CoT) when internal reasoning is unavailable, while knowledge retrieval
rarely benefits and can be harmed by explicit reasoning. Controlling internal reasoning with Gemini’s
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thinking_budget reveals a redundancy principle: internal and external reasoning are substitutable,
and stacking them is economically inefficient.

These insights translate into deployment policies. For mathematical tasks, use internal reasoning when
available; otherwise employ CoT to compensate. Avoid combining both. For knowledge-intensive
tasks, prioritize parameter scaling with lean prompting and direct generation. Across settings, target
configurations on the cost–accuracy Pareto frontier rather than defaulting to verbose reasoning.

Future work should develop unified scaling laws that integrate parameters, training data, and variable
test-time compute, and extend evaluations to code and multimodal domains. Our reproducible method-
ology—controllable internal reasoning, standardized metrics, and comprehensive cost–accuracy
frontiers—provides a foundation for economical, high-accuracy LLM deployment and for principled
allocation of compute in production systems.

7 AI Involvements for writing this paper

Disclaimer. Since human authors are Korean, most of the prompts supplied to AI agents were
originally written in Korean. We have translated and summarized their essential content here to
clearly convey the generation process.

7.1 Hypothesis Generation

We used Liner’s Hypothesis Generator Agent to select the topic and hypothesis for the paper.

Figure 3: Hypothesis Generation UI
(link: https://getliner.com/ko/agent/hypothesis-generator/6394e2b3-730c-442d-a0ee-b7290ed0c6d8)

The initial instructions were:

• Identify a hypothesis showing how the entire research workflow can be automated by AI
agents.

• Ensure the hypothesis is related to large language models (LLMs) and demonstrates both
impact and novelty.

From the multiple hypotheses produced, we selected the one below and lightly refined it to produce a
concrete research question:
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Generated Hypothesis

Optimal computational budget allocation in Large Language Models can be predicted and dynami-
cally adjusted through real-time multi-dimensional uncertainty signature analysis, where mathematical
reasoning tasks exhibit 2.4x greater performance improvements per unit compute when allocated to
inference-time scaling (chain-of-thought, tree search, majority voting) versus parameter scaling, while
knowledge retrieval tasks demonstrate 1.9x better cost-effectiveness from parameter scaling. This
domain-specific allocation pattern can be automatically predicted with >87% accuracy using a real-time
uncertainty-guided resource allocation framework that combines: (1) adaptive task complexity metrics
(reasoning depth, semantic dependency graphs, attention pattern analysis), (2) dynamic uncertainty
quantification signatures (epistemic uncertainty via semantic density, aleatoric uncertainty via response
diversity, predictive uncertainty via token-level analysis), and (3) continuous budget optimization that
adjusts compute allocation ratios at sub-second intervals during inference. The framework generalizes
across model architectures and scales from 1B to 70B parameters, achieving 35% reduction in computa-
tional costs while maintaining performance equivalence, and demonstrates cross-domain transferability
with uncertainty signatures serving as universal indicators of optimal resource allocation needs.

7.2 Paper Writing

The experiment was conducted with generated hypothesis and for writing paper, we used Liner’s
End-to-End (E2E) Paper Generation Agent.

It compiles intermediate outputs from other Liner agents into a complete manuscript. The agent’s
overall structure is illustrated below.

Figure 4: Simple figure explaining the flow of Liner’s E2E Paper Generation Agent

Although the product is not yet publicly released, we disclose its architecture here to support
reproducibility. The agent accepts the following input resources: generated hypothesis, literature
review, experiment design, experiment results, and relevant papers. Except for the experimental
results, each of these inputs were generated by other Liner’s Research Agent products. The final
output of this pipeline was the compiled PDF of the paper, which we submitted directly.
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A Implementation Details

Software Environment. Experiments use Python 3.11 with official API clients for OpenAI and
Google. Core dependencies include pandas, numpy, tqdm, and httpx for HTTP requests. Complete
dependency specifications and environment setup instructions are provided with our code release.

Reproducibility. Each experimental run generates detailed JSONL logs containing per-sample
inputs, outputs, token counts, latencies, and costs. Aggregated results are exported to CSV format for
analysis. All random seeds, API parameters, and reasoning toggles are centrally configured to ensure
consistency across conditions.

Data Availability. GSM8K uses the standard test split available through HuggingFace datasets.
PopQA subset selection uses numpy random sampling with seed=42 for reproducibility. Specific
item indices used in our evaluation will be released with our code.

Code Availability. Our implementation is available as open source at https://anonymous.4open.
science/r/agent4science-2D92.
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Agents4Science AI Involvement Checklist
1. Hypothesis development: Hypothesis development includes the process by which you

came to explore this research topic and research question. This can involve the background
research performed by either researchers or by AI. This can also involve whether the idea
was proposed by researchers or by AI.
Answer: [D]
Explanation: I used Liner’s "Hypothesis Generator" agent to propose LLM-related hypothe-
ses that could be executed by AI across the full research pipeline. From several candidates, I
selected one and lightly refined it with my own perspective. I then evaluated it with Liner’s
"Hypothesis Evaluator" agent and incorporated its feedback. Through this iteration, with
minimal human steering but significant AI ideation and critique, the final hypothesis used in
the paper was produced.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.
Answer: [C]
Explanation: I used cursor with the claude sonnet-4 model to generate the experiment code.
The initial plan was to run open-source models on GPU instances, but the AI-generated
code yielded implausible results; my manual “vibe coding” attempts did not fix them. I
pivoted to LLM API calls to simplify execution. Even then, many errors remained, so I
read the code, diagnosed issues, and guided the coding agent on where and how to patch
them. AI produced most of the code, while I performed validation, debugging, and design
corrections—hence a rating of C.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.
Answer: [D]
Explanation: After providing the hypotheses, raw experimental results, and necessary
context, I delegated the entire process of data organization, analysis, and interpretation to
Liner’s end-to-end agent system. This system automatically cleaned and structured the
data, performed the required statistical and qualitative analyses, and generated interpretive
summaries of the outcomes. My role was limited to supplying the inputs and reviewing the
final outputs for plausibility, with minimal manual intervention.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.
Answer: [D]
Explanation: Once hypotheses, experiment designs, results, and figures (created with
ChatGPT-5) were prepared, Liner’s end-to-end agent system produced the full manuscript
draft—including narrative text and layout suggestions—directly from the supplied inputs. It
also iteratively refined the text to improve clarity and coherence. My contribution consisted
primarily of supplying the inputs and conducting final oversight for factual accuracy and
alignment with the research goals, while the AI handled the actual drafting and structuring
of the paper.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or
lead author?
Description: The hardest stage was still coding and running experiments in Cursor. Al-
though Liner’s end-to-end agent system handled most of the analysis and writing once
the inputs were ready (including figures generated with ChatGPT-5), implementing and
executing the experiments themselves was far less seamless. The AI often showed over-
confidence—treating incomplete runs as “finished,” missing global context, or producing
plausible but incorrect outputs. When code failed semantically (no crash but wrong results),
the agent struggled to localize faults. I had to perform root-cause analysis, propose concrete
fixes, and then direct the agent to implement them. In short: limited end-to-end verification,
misinterpretation of provided figures, and insufficient epistemic humility were the main pain
points.
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Agents4Science Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction clearly state the central contribu-
tion—comparing parameter scaling and test-time scaling (CoT) under cost and latency
constraints across GSM8K and PopQA—and formalize the redundancy principle between
internal and external reasoning. These claims are directly supported by the Experiments,
Results, and Discussion sections, and limitations are explicitly acknowledged.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Limitations section discusses reliance on closed-source APIs, provider-
specific reasoning controls in Gemini, scope restricted to two datasets (GSM8K and PopQA),
and sensitivity to prompt design and pricing, clarifying how these factors affect generaliza-
tion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper is empirical and does not present new theorems or formal proofs;
therefore this item is not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The Experimental Setup, Methodology, and Implementation Details specify
seeds (42), decoding parameters, prompt templates, reasoning toggles, and evaluation
metrics. Logging of tokens, latency, and cost, as well as release of PopQA indices, enable
reproduction with the same APIs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• We recognize that reproducibility may be tricky in some cases, in which case authors

are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: An anonymized supplement includes scripts, configurations, and run instruc-
tions. All datasets used (GSM8K test split, PopQA subset) are public, and PopQA indices
will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The Methodology section details dataset splits, prompt templates for CoT and
direct answers, answer extraction rules, reasoning controls (thinking_budget), decoding
parameters, retry and timeout settings, and other configuration specifics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We currently report point estimates (e.g., exact match accuracy) without
confidence intervals or hypothesis tests; bootstrap confidence intervals will be added in the
appendix in a revised version.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Inference was executed via hosted APIs (OpenAI and Google), so provider-side
hardware specifications are not controllable. We report per-sample latency and monetary
cost but do not enumerate provider compute specs; client machine specs and total wall-clock
duration can be added in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: The work uses publicly available datasets and model APIs, involves no human
subjects or personal data, and complies with dataset licenses and provider terms.

Guidelines:
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• The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The current draft does not include a dedicated broader-impacts discussion; a
revised version will briefly cover efficiency benefits, risks of over-automation or misuse, and
mitigation strategies.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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