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Abstract
Modern recommendation platforms serve personalized content across diverse user-facing scenarios such as main
feeds, topic channels, and live video streams. These interaction environments induce distinct user behavior patterns
that are statistically diverse yet semantically correlated. Conventional Multi-Scenario Recommendation (MSR)

approaches often combine shared encoders with
scenario-specific modules, but they frequently overlook
distributional shifts between scenarios, leading to
entangled representations that restrict cross-scenario
generalization. We introduce DistProto, a framework
that re-encodes user-item interactions into
distribution-sensitive latent spaces via dedicated
prototype manifolds. DistProto extracts shared
features with a multi-expert gating mechanism (MMoE)
while using scenario-dependent encoders for
fine-grained contextual variation. Both embeddings are
mapped to global and scenario-specific prototype
spaces, producing representations that reflect
commonality and distinction. To align features with
semantic prototypes, DistProto adopts Unbalanced
Optimal Transport (UOT) to softly associate samples to
prototype anchors and refine semantics. To preserve
diversity, it further imposes a structural orthogonality
constraint on the global prototypes. Experiments on
multiple public benchmarks and an online short-video
deployment demonstrate consistent gains in
personalization and robustness.

Keywords: multi-scenario recommendation, prototypes,
distribution shift, unbalanced optimal transport,
disentanglement.

1. Introduction
Large-scale recommendation systems expose users to
content through heterogeneous scenarios: home feeds,
vertical channels, search-triggered lists, and real-time
streams. Although scenarios share intent-level
semantics, their observed interaction distributions differ
due to presentation bias, exposure constraints, and
scenario-specific consumption modes.

Multi-Scenario Recommendation (MSR) transfers
knowledge across scenarios while respecting
differences. Mainstream designs use parameter sharing
(e.g., SharedBottom) and conditional routing (e.g.,
MMoE, PLE), but latent spaces trained only by pointwise

losses can absorb scenario shifts into entangled
representations.

DistProto organizes representations by distribution via
prototype manifolds: a global manifold for
scenario-invariant semantics and scenario manifolds for
contextual variation. Unbalanced Optimal Transport
(UOT) learns soft associations between samples and
prototypes while allowing mass variation across
scenarios.

Contributions: DistProto; UOT-based prototype
alignment; orthogonality regularization for prototype
diversity; empirical evidence on offline benchmarks and
online deployment.

2. Related Work
MSR architectures: Shared-bottom and cross-stitch
sharing are early baselines; MMoE and PLE use routing
to separate shared vs. task-specific factors;
adapter-based designs (e.g., STAR) add scenario
specialization.

Prototype-based representation learning: prototypes act
as semantic anchors for calibration and interpretability,
helping disentangle shared vs. scenario-specific signals.

Optimal transport: OT matches distributions; unbalanced
OT allows mass creation/destruction, suitable for
scenario exposure mismatch. We use UOT as a
differentiable soft assignment mechanism.
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Figure 1: DistProto overview. Shared extraction + scenario
encoding; embeddings align to global and scenario prototypes

via UOT.

3. Method
Setup. Each interaction is (u, i, s, y) with scenario s in S.
We learn embeddings that generalize across scenarios
while preserving scenario-specific behavior.

3.1 Encoders
Dense features x(u,i) are processed by a shared
multi-expert extractor and scenario-conditioned
encoders:

Shared multi-expert extraction: h = sum_{e=1..E} g_e(x,s)
f_e(x), g(x,s) = softmax(W_g[s] phi(x)).

Encoding: z_g = E_g(h) in R^d, z_s = E_s(h) in R^d.

3.2 Prototype manifolds
We maintain global prototypes P_g and per-scenario
prototypes P_s. Embeddings are softly aligned to
prototypes by minimizing cosine-distance costs.

Costs: C_g(j,k)=1-cos(z_g^j,p_g^k),
C_s(j,k)=1-cos(z_s^j,p_s^k).

3.3 UOT alignment
UOT computes a transport plan that matches
embeddings to prototypes while allowing mass variation,
which mitigates exposure mismatch across scenarios.

UOT: T* = argmin_{T>=0} + eps H(T) + tau_a KL(T 1 || a) +
tau_b KL(T^T 1 || b).

Alignment: L_align = sum_{j,k} T_g*(j,k) C_g(j,k) + sum_{s in
S} sum_{j,k} T_s*(j,k) C_s(j,k).

3.4 Prototype diversity
To avoid prototype collapse, we regularize
row-normalized global prototypes P_hat_g to be
near-orthogonal:

Orthogonality: L_ortho = || P_hat_g P_hat_g^T - I ||_F^2.

3.5 Objective

Total: L = sum_{s in S} L_task^(s) + lambda_a L_align +
lambda_o L_ortho + lambda_wd ||Theta||_2^2.

Algorithm 1  DistProto training (minibatch)
Input: minibatch B = {(u,i,s,y)}, prototypes P_g and {P_s}, parameters Theta
1: Compute dense features x(u,i) and shared representation h via MMoE experts
2: Compute embeddings z_g = E_g(h) and z_s = E_s(h) for each scenario in the batch
3: Build cost matrix C_g between {z_g} and P_g; solve entropic UOT to get T_g*
4: For each scenario s: build C_s between {z_s} and P_s; solve UOT to get T_s*
5: Compute task loss L_task, alignment loss L_align, and orthogonality loss L_ortho
6: Update (Theta, P_g, {P_s}) by backprop on L

4. Experiments
We evaluate on four public multi-scenario benchmarks.
Metrics: AUC (binary) and NDCG@10 (ranking).
Baselines: SharedBottom, MMoE, PLE, STAR-Adapter.
Hyperparameters: d=64, E=8 experts, K_g=64, K_s=32;
UOT eps=0.05, tau_a=tau_b=1.0.

Method AUC NDCG@10 Worst-AUC

SharedBottom 0.781 0.413 0.742

MMoE 0.792 0.421 0.754

PLE 0.797 0.427 0.758

STAR-Adapter 0.801 0.431 0.762

DistProto 0.812 0.442 0.776

Table 1: Overall performance (illustrative). DistProto improves
both average and worst-scenario metrics.

Variant AUC Delta

Full DistProto 0.812 +0.000

- UOT (balanced OT) 0.806 -0.006

- Scenario prototypes 0.803 -0.009

- Orthogonality 0.807 -0.005

- MMoE (single encoder) 0.799 -0.013

Table 2: Ablation (illustrative). UOT and two-level prototypes
both contribute to gains.

4.1 Robustness
Global prototypes capture reusable intent-level
semantics, while scenario prototypes capture
exposure-driven variation. Under synthetic exposure
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shifts, UOT avoids forcing full mass matching, improving stability.

4.2 Online deployment
In a short-video deployment, DistProto runs as a shared backbone with scenario-conditioned heads. Daily warm-start
training updates prototypes. The model improves watch time and reduces cross-scenario volatility, especially in long-tail
scenarios.

5. Conclusion
DistProto improves cross-scenario transfer by organizing MSR representations with distribution-sensitive prototype
manifolds, UOT alignment, and prototype diversity regularization.
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