Efficiently Quantifying Individual Agent
Importance in Cooperative MARL

Omayma Mahjoub™ !, Ruan de Kock™!, Siddarth Singh™!, Wiem Khlifi’: > Abidine Vall’, Kale-ab
Tessera* Rihab Gorsane!, Arnu Pretorius’
InstaDeep Ltd
2National School of Computer Science, Tunisia
3National School of Engineering of Tunis
4University of Edinburgh
“Equal Contribution

Abstract

Measuring the contribution of individual agents is challenging
in cooperative multi-agent reinforcement learning (MARL).
In cooperative MARL, team performance is typically inferred
from a single shared global reward. Arguably, among the best
current approaches to effectively measure individual agent con-
tributions is to use Shapley values. However, calculating these
values is expensive as the computational complexity grows
exponentially with respect to the number of agents. In this
paper, we adapt difference rewards into an efficient method for
quantifying the contribution of individual agents, referred to as
Agent Importance, offering a linear computational complexity
relative to the number of agents. We show empirically that the
computed values are strongly correlated with the true Shapley
values, as well as the true underlying individual agent rewards,
used as the ground truth in environments where these are avail-
able. We demonstrate how Agent Importance can be used to
help study MARL systems by diagnosing algorithmic failures
discovered in prior MARL benchmarking work. Our analy-
sis illustrates Agent Importance as a valuable explainability
component for future MARL benchmarks.

1 Introduction

In recent years, multi-agent reinforcement learning (MARL)
has achieved significant progress, with agents being able to
perform similar or better than human players and develop
complex coordinated strategies in difficult games such as Star-
craft (Samvelyan et al. 2019; Vinyals et al. 2019), Hanabi
(Foerster et al. 2019; Bard et al. 2020; Hu and Foerster 2021;
Du et al. 2021) and Diplomacy (Bakhtin et al. 2022). Further-
more, MARL has also shown promising results in solving
real-world problems such as resource allocation, manage-
ment and sharing, network routing, and traffic signal controls
(Vidhate and Kulkarni 2017; Brittain and Wei 2019; Nasir
and Guo 2019; Spatharis et al. 2019; Liu et al. 2020; Zhao,
Liu, and Cheng 2020; Pretorius et al. 2020; Gu et al. 2021).
These real-world settings are naturally formulated as coop-
erative MARL systems, where agents need to coordinate to
optimise the same global reward.

One of the critical challenges in cooperative MARL is
multi-agent credit assignment (Chang, Ho, and Kaelbling

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2003). Since agents typically receive a global reward for
their joint actions, this makes determining individual agent
contributions challenging. This need for correct attribution
becomes especially important as more autonomous systems
are deployed in the real world. The inherent complexity of
these MARL systems impedes our understanding of decision-
making processes and the motivations behind actions, hin-
dering progress in this field. Improved credit assignment
could play a vital role in comprehending agent behaviour and
system-level decision-making, aiding in accountability, trust,
fairness, and facilitating the detection of potential issues such
as coordination failures, or unethical behaviour.

Credit assignment can be considered from a core algorith-
mic perspective, where components of reinforcement learning
(RL) algorithms, such as the value function, are adapted to
better decouple the impact of the actions of individual agents.
Methods such as VDN (Sunehag et al. 2017a), COMA (Foer-
ster et al. 2018), and QMIX (Rashid et al. 2018a) fall into this
domain. However, since these algorithms are trained end-to-
end through the use of function approximators, explainability
is difficult, i.e. it is challenging to correlate specific agent
actions to reward outcomes over time. Furthermore, since
these notions of agent impact are part of the RL algorithms
themselves, it is not easy to transfer these between different
algorithms.

Accurate credit assignment within a team of agents can
also be seen as a form of explainable AI (XAI). XAl consists
of machine learning (ML) techniques that are used to provide
insights into the workings of models (Arrieta et al. 2020).
It has been used across various domains in ML, and more
recently in single-agent RL! (Glanois et al. 2021) and multi-
agent systems (Heuillet, Couthouis, and Diaz-Rodriguez
2022). Following from (Arrieta et al. 2020; Glanois et al.
2021), we use the notion of explainability to refer to any ex-
ternal post-hoc methodology that is used to gain insights into
a trained model. These techniques have the notable advantage
of being able to be used across algorithms, often irrespective
of their design or formulation.

Efforts to enhance explainability in RL have resulted in
the development of various techniques (Juozapaitis et al.

'In this paper, we use the term "RL” to exclusively refer to
single-agent RL, as opposed to RL as a field of study, of which
MARL is a subfield.

2019; Madumal et al. 2020; Puiutta and Veith 2020; Glanois
et al. 2021; Heuillet, Couthouis, and Diaz-Rodriguez 2021;
Vouros 2022; Dazeley, Vamplew, and Cruz 2023). In con-
trast, MARL lacks dedicated explainability tools, with only a
limited number of works addressing this topic (Kraus et al.
2019; Boggess, Kraus, and Feng 2022; Heuillet, Couthouis,
and Diaz-Rodriguez 2022). One notable approach involves
leveraging the Shapley value (Shapley 1953), a metric de-
rived from game theory, and adapting it to MARL to quantify
agent contributions to the global reward (Heuillet, Couthouis,
and Diaz-Rodriguez 2022). Although Shapley values have
shown promise in MARL explainability, calculating these
values is expensive as the computational complexity grows
exponentially with respect to the number of agents.

In this paper, we highlight the need for employing explain-
able tools to help quantify credit assignment in cooperative
MARL systems. We show that an averaged calculation of the
difference reward (Wolpert and Tumer 2001) across evalua-
tion episodes, can be used as an effective metric for measur-
ing an agent’s contribution, which we refer to as the Agent
Importance. Unlike Shapley values, the Agent Importance
has a linear computational complexity (w.r.t. the number of
agents) making it more efficient to compute. Through empiri-
cal analysis, we demonstrate a strong correlation between the
Agent Importance values and the true Shapley values, while
also empirically validating the scalability and computational
advantage of this approach.

To showcase the practical use of Agent Importance, we
revisit a previous benchmark in cooperative MARL (Pa-
poudakis et al. 2021) and follow the standardised evaluation
guideline proposed by (Gorsane et al. 2022) to reproduce key
results from this benchmark under a sound protocol. We then
proceed by applying Agent Importance to specific scenarios
of interest as highlighted by the authors of this benchmark.
This includes investigating: (1) why Multi-Agent Advantage
Actor-Critic (MAA2C) (Mnih et al. 2016a; Papoudakis et al.
2021) outperforms Multi-Agent Proximal Policy Optimisa-
tion (MAPPO) (Yu et al. 2022) in the Level-Based Foraging
(LBF) environment % (Albrecht and Ramamoorthy 2015; Al-
brecht and Stone 2019; Christianos, Schifer, and Albrecht
2020); and (2) why parameter sharing between agents leads to
improved performance (3) analyse agents’ behaviour in case
of heterogeneous settings. Using agent importance, we un-
cover that for (1) MAA2C achieves a more equal contribution
among agents when compared to MAPPO, i.e. agents have
a more similar importance to the overall team and therefore
have a higher degree of cooperation; and that for (2) archi-
tectures without parameter sharing exhibit a higher variance
in agent importance, leading to credit assignment issues and
lower performance compared to architectures with parame-
ter sharing. The source code to reproduce our analysis and
compute the agent importance, as well as our raw experiment
data is publicly available 3.

%A somewhat surprising result since MAPPO uses importance
sampling for off-policy correction and is expected to perform at
least as well as MAA2C as it incorporates a clipping function based
on importance sampling allowing data retraining without divergent
policies.

3Data and code are accessible at the following links:

2 Related Work

Explainability in RL With the surging popularity of Deep
RL, which relies on black-box deep neural networks, there
has been an increase in literature that attempts to enable
human understanding of complex, intelligent RL systems
(Juozapaitis et al. 2019; Madumal et al. 2020; Puiutta and
Veith 2020; Glanois et al. 2021; Heuillet, Couthouis, and
Diaz-Rodriguez 2021; Vouros 2022; Dazeley, Vamplew, and
Cruz 2023). Additionally, frameworks like ShinRL (Kita-
mura and Yonetani 2021) and environment suites like bsuite
(Osband et al. 2019) offer comprehensive debugging tools
including state and action space visualizations and reward dis-
tributions, and carefully crafted environments for behavioural
analysis in RL.

Explainability in MARL In contrast to explainable RL,
there has been a limited amount of work focusing on explain-
ability in MARL (Kraus et al. 2019; Boggess, Kraus, and
Feng 2022; Heuillet, Couthouis, and Diaz-Rodriguez 2022).
Specifically, we are interested in explainability in the context
of cooperative MARL with a shared, global reward and the
aim is to effectively quantify credit assignment.

The challenges associated with measuring credit assign-
ment in MARL have motivated researchers to explore the use
of the Shapley value (Shapley 1953). Originating from game
theory, the Shapley value addresses the issue of payoff dis-
tribution within a “grand coalition” (i.e. a cooperative game)
and quantifies the contribution of each coalition member to-
ward completing a task. Specifically, consider a cooperative
game I' = (N, v), where N is a set of all players and v is
the payoff function used to measure the “profits” earned by a
given coalition (or subset) C C N\ {4}, such that the marginal
contribution of player ¢ is given by ¢;(C) = v(CU{i})—v(C).
The Shapley value of each player ¢ can then be computed as:

LN = [€] — 1)t
CCM\ {3}

¢i(C). (1)

Calculating Shapley values in the context of MARL
presents two specific challenges: (1) it requires computing
27~1 possible coalitions of a potential n(2"~1) coalitions
(with || = n) which is computationally prohibitive and (2)
it strictly requires the use of a simulator where agents can be
removed from the coalition and the payoff of the same states
can be evaluated for each coalition.

Despite its limitations, the Shapley value is able to alleviate
the issue of credit assignment and help towards understand-
ing individual agent contributions in MARL. As a result,
numerous efforts have been undertaken to incorporate it as
a component of an algorithm (Wang et al. 2020; Yang et al.
2020a; Han et al. 2022; Wang et al. 2022). However, in this
work, we focus on the Shapley value as an explainability met-
ric. One such approach is introduced in (Heuillet, Couthouis,
and Diaz-Rodriguez 2022), where the authors utilise a Monte
Carlo approximation of the Shapley value to estimate the con-
tribution of each agent in a system, which we refer to here as
MC-Shapley. This approximate Shapley value is computed

Data- https://sites.google.com/view/agent-importance/home
Code- https://tinyurl.com/ycx47jz6

as:

M
- 1
SMr) = i > (re, vy —re,) S0, ()

where M is the number of samples (episodes), C, is a ran-
domly sampled coalition out of all possible coalitions ex-
cluding agent 7, and r¢, ;) and r¢,, are the episode returns
obtained with and without agent ¢ included in the coalition.

In essence, Heuillet, Couthouis, and Diaz-Rodriguez
(2022) attempts to address the second limitation of the Shap-
ley value, which involves removing agents from the envi-
ronment. They propose three strategies for proxies of agent
removal while computing the return ¢, . The first hypothesis
is to provide the agent ¢ with a no-op (no-operation) action,
the second is to assign the agent ¢ with a random action, and
the third is to replace the action of agent ¢ with a randomly
selected agent’s action from the current coalition C,,. The
paper’s findings indicate that using the no-op approach yields
the most accurate approximation of the true Shapley value.
A primary limitation of this work is the dependence on a
significant number of sampled coalitions, with each sample
corresponding to a single episode. This characteristic has a
notable impact on training speed, especially if the proposed
approach is employed as an online metric for detecting the
evolution of agents’ contributions during system training.

Difference Rewards. Of central relevance to this work
is difference rewards (Wolpert and Tumer 2001; Agogino
and Tumer 2004, 2008; Devlin et al. 2014) which presents
a method for estimating credit assignment within a system.
It can be written as D;(z) = G(z) — G(2—;) where D;(z) is
the difference reward for agent ¢, z is a state or state-action
pair depending on the application, G(z) is the performance
of the global system and G(z_;) is the performance of a
theoretical system that omits agent 7. Any action taken that
increases the difference reward D;(z) also increases G(z)
but will have a higher impact on the (typically unknown
or hypothetical) individual reward for each agent compared
to the global reward. It is from this property that we may
determine the relative impact of each agent in a system.

3 Agent Importance

We compute the Agent Importance as an average of difference
rewards and use it as an efficient estimate of the Shapley
value. To ensure accuracy in our estimation, we emphasize
the importance of utilizing an adequate number of samples.
This is reminiscent of the MC-Shapley approach which uses
Monte Carlo approximation over entire episodes (Heuillet,
Couthouis, and Diaz-Rodriguez 2022). However, in this work,
we show that such an approach to estimation is not necessary
and instead, we compute difference returns over samples
collected per step, rather than per episode, without the need
to resample coalitions. We simply compute the difference
reward for each agent at each timestep during evaluation and
aggregate over all evaluation timesteps. This approach greatly
improves the sample efficiency in estimation during online
evaluation. Concretely, the Agent Importance is given by

SH(T Zr -t 3)

where 7' is the number of tlmesteps in a full evaluation
interval, r! is the team reward (i.e. the reward of the grand
coalition), at timestep ¢ and 7’ ; is the team reward when
agent ¢ performs a no-op action.

Applying Equation 3 poses a technical challenge as it
requires comparing rewards between agents based on the
same exact environment state at a given timestep. In MARL,
most simulators are not easily resettable and/or stateless,
which makes measuring one reward and undoing that step and
then measuring a second reward difficult . To overcome this
limitation, we adopt a simple solution outlined in Algorithm
1, where we create a copy of the environment for each agent
to be able to compute the Agent Importance.

Algorithm 1: Per timestep difference reward contribution in
Agent Importance

Require: t: evaluation timestep, marginal_contribution:
dictionary
1: env_copies < deepcopy(env, len(agents))
2: 1t < env.step(selected_actions)

3: for i = 0 to len(agents) do

4: actions_with_no_op —
disable actions(selected_actions, 1)

5: ; < env_copies][i]. step(actzons _with_no_op)

6: add,to,dlct(margmal,contmbutzon, i, (rt — 1))

7: end for

4 Case Study: using Agent Importance to
analyse a prior benchmark

Our case study setup is based on the work of (Papoudakis et al.
2021), which made a comparative benchmark of cooperative
MARL algorithms. The study conducts evaluations and com-
parisons of multiple categories of MARL algorithms, cov-
ering Q-learning, and policy gradient (PG) methods, across
two paradigms: independent learners (ILs), and centralised
training with decentralised execution (CTDE). The findings
of this study align with those of (Gorsane et al. 2022), con-
cluding that current MARL algorithms are most performant
on the popular Multi-Particle Environment (MPE) (Lowe
et al. 2017) and Starcraft Multi-Agent Challenge (SMAC)
(Samvelyan et al. 2019) environments—with most algorithms
achieving comparable performance, in some cases seemingly
to the point of overfitting. Consequently, our main analysis
focuses on the remaining two environments from this bench-
mark: LBF, and RWARE.

Environments. The Multi-Robot Warehouse (RWARE)
(Christianos, Schifer, and Albrecht 2020; Papoudakis et al.
2021) is a multi-agent environment that is designed to rep-
resent a simplified setting where robots move goods around

“We however do note, that this could easily be achieved with
simulators written using pure functions in JAX (Freeman et al. 2021;
Lange 2022; Bonnet et al. 2023).

Figure 1: Left: Multi-Robot Warehouse (RWARE). Middle:
Level-Based Foraging (LBF). Right: SMAClite

a warehouse. The environment requires agents (circles) to
move requested shelves (colored squares) to the goal post
(dark squares) and back to an empty square as illustrated at
the top of Figure 1. Tasks are partially observable with a very
sparse reward signal as agents have a limited field of view
and are rewarded only upon a successful delivery.

Level-Based Foraging (LBF) (Albrecht and Ramamoorthy
2015; Albrecht and Stone 2019; Christianos, Schifer, and
Albrecht 2020) is a mixed cooperative-competitive game with
a focus on inter-agent coordination illustrated at the bottom of
Figure 1. Agents are assigned different levels and navigate a
grid world where the goal is to consume food by cooperating
with other agents if required. Agents can only consume food
if the combined level of the agents adjacent to a given item of
food exceeds the level of the food item. Agents are awarded
points equal to the level of the collected food divided by their
level. LBF has a particularly high level of stochasticity since
the spawning position and level assigned to each agent and
food are all randomly reset at the start of each episode.

In the original benchmarking work by (Papoudakis et al.
2021), the authors used the popular Starcraft Multi-Agent
Challenge (SMAC) (Samvelyan et al. 2019) environment. In
our case study, we instead use SMAClite (Michalski, Chris-
tianos, and Albrecht 2023), an environment designed to repli-
cate SMAC faithfully, in Python. An illustration of SMAClite
is given in Figure 1. SMAClite has similar system dynamics
to SMAC but does not rely on the StarCraft 2 video game
engine as a backend. Due to this SMAClite requires signifi-
cantly less RAM making it more suitable for utilising parallel
processing. This also means it can be used in conjunction
with Python methods like copy which makes contribution
analysis methods like simpler to implement.

Algorithms. As in the original benchmarking setup of
(Papoudakis et al. 2021), we use the exact same collection
of algorithms for our case study. Specifically, we use the
value-based algorithms Independent Q-Learning (IQL) (Tan
1997), Value-Decomposition Network (VDN) (Sunehag et al.
2017a), and QMIX (Rashid et al. 2018a), alongside two
policy-gradient (PG) algorithms, namely Multi-Agent Prox-
imal Policy Optimisation (MAPPO) (Yu et al. 2022) and
Multi-Agent Advantage Actor-Critic (MAA2C) (Foerster
et al. 2018). To investigate the influence of parameter sharing,
we conduct experiments with both parameter-sharing and
non-parameter-sharing architectures. Further details about
the algorithms can be found in the Appendix section A.

Evaluation Protocol. We follow the protocol outlined by
(Gorsane et al. 2022), and apply the evaluation tools from
(Agarwal et al. 2022) in the MARL setting as advocated in
the protocol. We evaluate agents at 201 equally spaced evalua-
tion intervals for 32 episodes each during training. Following

from the recommendations of (Papoudakis et al. 2021) we
train off-policy algorithms for a total of 2M timesteps and on-
policy algorithms for a total of 20M timesteps summed across
all parallel workers. This implies that evaluation occurs at
fixed intervals of either 10k or 100k total environment steps
for off- and on-policy algorithms respectively. For all our
experiments, we use the EPyMARL framework (Papoudakis
et al. 2021) which is opensourced under the Apache 2.0 li-
cence. This is to ensure we are evaluating all algorithms on
the same tasks, using the same codebase as was done by
(Papoudakis et al. 2021) for maximal reproducibility. Further-
more, it allows us to use identical hyperparameters as used
in their work, which are available in the Appendix section A.
All results that are presented are aggregated over 10 indepen-
dent experiment trials. In cases where aggregations are done
over multiple tasks within an environment, as opposed to
an individual task (e.g. for computing performance profiles),
the interquartile mean is reported along with 95% stratified
bootstrap confidence intervals. For all plots except for sam-
ple efficiency curves, the absolute metric (Colas, Sigaud, and
Oudeyer 2018; Gorsane et al. 2022) for a given metric is
computed. This metric is the average metric value of the
best-performing policy found during training rolled out for
10 times the number of evaluation episodes.

Computational resources. All experiments were run on
an internal cluster using either AMD EPYC 7452 or AMD
EPYC 7742 CPUs. Each independent experiment run was
assigned 5 CPUs and 5GB of RAM with the exception of
the scalability experiments which were exclusively run using
AMD EPYC 7742 CPUs and either 5, 15, 30, or 200 GB of
memory depending on the number of agents and subsequently
the number of environment copies that were required.

5 Results

We demonstrate the validity of Agent Importance by consider-
ing its correlation to the true Shapley value, its computational
scalability and its reliability in quantifying individual agent
contributions. We then proceed to illustrate how Agent Im-
portance may be used as an explainability tool.

Validating Agent Importance

Correlation between Agent Importance and the Shapley
value. We note that the Agent Importance metric is not
mathematically equivalent to the Shapley value. It focuses on
the grand coalition rather than all possible agent coalitions.
However, through empirical study, we argue that Agent Im-
portance is sufficient for capturing agents’ contributions in
the context of cooperative MARL.

To validate our assertion, we conduct experiments on both
LBF and RWARE to empirically assess the correlation be-
tween Agent Importance and the Shapley value. We generate
a heatmap that describes the correlation between the metrics
for the VDN algorithm. Furthermore, we assess the ability
of a metric to maintain the relative agent rankings according
to each agent’s individual rewards (which are not seen by
the agents). If a metric gives the same ranking to agents, we
count this as a positive result-implying that a higher-ranking
match is better. While only results on VDN are displayed,

o oo
ab ag

60 -
[—

Ranking match %

a:]

@ @ a 3 o
Agents o

a a
Agents

Figure 2: Correlation analysis for agents {ag, a1, a2, as}, for
each metric: Agent Importance i, Shapley Value s, and Indi-
vidual Reward r using the VDN algorithm. (a) Heatmap of
Correlations among Metrics. TOP: LBF 15x15-4p-5f. BOT-
TOM: RWARE small-4ag. (b) Matching Rankings Compari-
son on LBF 15x15-4p-5f. (¢) Matching Rankings Compari-
son on RWARE small-4ag. The legend refers to which metric
is being compared to the individual agent rewards.

the trend is consistent for all algorithms across various tasks.
Further results to this end are given in the Appendix section
D.

Figure 2 (a) shows that there exists a strong correlation
between the Agent Importance, the Shapley value and the
individual agent reward as calculated by the Pearson corre-
lation coefficient. This indicates the effectiveness of both
the Shapley value and Agent Importance in assessing agents’
contributions, making them valuable substitutes for individ-
ual agent rewards in environments where such rewards are
unavailable. Notably, Agent Importance showcases a promis-
ing ability to effectively replace both the Shapley value and
individual rewards. While the Shapley value may provide
greater consistency in ranking information when compared
to the Agent Importance (as illustrated in Figures 2 (b,c))
where the frequency of ranking agreement between the indi-
vidual reward and the contribution estimators is illustrated,
it is important to note that Agent Importance is highly corre-
lated with the individual reward and shows a minimal rate of
non-matched rankings.

Scalability of Agent Importance. In order to validate the
computational feasibility of the simplified Agent Importance
against the full Shapley value we record the run time of both
approaches on LBF tasks with 2,4, 10, 20, and 50 agents. We
run the algorithm without any training and compute the num-
ber of seconds it takes for agents to take a single environment
step while computing each metric. The reported results here

—— importance
1034 shapley

Seconds per Step
=
<
1

1|0 2|0 5|0
Number of Agents

N
S~

Figure 3: Computational cost of computing the agent impor-
tance and the Shapley value.

2
|
o » o u o
1 1 1 1 1

o
[
1

o
w
1

Agent Importance value (1e-2)

Agent Importance value (1e-2)

o
1
o
1

T T T T T T T T
0.0 0.5 1.0

15
Number of timesteps (Millions)

o

.0 0. 5 2.0
Number of timesteps (Millions)

I
o
1

—— Agent 0
Agent 1
—— Agent2

1.59

o
EY
n

1.254

=4
o
1

1.04

0.754

ortance value (1e-3)
°
IS
!

a 4
£ 0.5

€ 0.251_/__’_/ M‘
0 0
T T

T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Number of timesteps (Millions) Number of timesteps (Millions)

o
N
h

Agent Importance value (1e-3)

Agel

Figure 4: Agent importance scores on the deterministic LBF
scenario for MAA2C, MAPPO, VDN and QMIX. Agents 0,
1 and 2 are assigned fixed levels of 1, 2 and 3 respectively—
implying that their contributions should be weighted accord-

ingly.

are the mean and standard deviation over 3 independent runs.
The Shapley value became prohibitively slow as the agent
number was increased and required approximately 2 hours to
measure a single step within the environment with 20 agents.
Nonetheless, Figure 3 clearly illustrates how the Agent Im-
portance is significantly more computationally efficient than
the Shapley value.

Reliability of Agent Importance. In order to validate
the ability of the Agent Importance to effectively untangle
agent contributions from a shared team reward, we create a
deterministic version of LBF where agent levels are always
fixed to be 1, 2, and 3 respectively, and the maximum level of
each food is a random value between 1 and 6. Since agent 2 is
assigned a fixed greater level than its counterparts we should
expect it to contribute the most to the team return. Figure
4 illustrates the ability of Agent Importance to uncover the
correct ordering and approximate level of contribution among
agents towards the overall team goal.

—— MAPPO QL —— MAA2C —— QMIX —— VDN

o W e

Mean episode return
e o o o
N B (=2} =

o
o

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

— mappo 0L —— MARC — QM — VON

Algorithm X Algorithm Y =1 o
MAA2C | mapro s
2 0.75]
VDN MIX H
C TR
s
QL VDN IS
< I 20.25
§
QL QMIX 3
| %000
00 025 05 075 1.0 00 02z 04 06 08 10
PX>Y) Mean episode return ()
—e— MAPPO QL —e— MAA2C —e— QMIX —e— VDN
0.8
=]
£
=]
°
= 0.6
)
°
a
50.4
)
c
802
2o
0.0 MRSl

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

— mappo 0L —— MARC — QM — VDN

Algorithm X Algorithm Y = 3 oo
MAA2C MAPPO g
0.75)
VDN - QMIX E
2 0.50
s
QL VDN <
I 2025
5
QL B omix g
2 0.00]
00 025 075 1.0 0.0 02 0.4 06 8 1.0

0.5 . X X 0.
P(X>Y) Mean episode return (1)

Figure 5: Algorithm performance on LBF and RWARE in-
cluding probability of improvement, performance profiles
and sample efficiency curves. Top two rows: Performance of
algorithms on 7 LBF tasks. Bottom two rows: Performance
of all algorithms on 3 RWARE tasks.

Applications of Agent Importance

We replicated the experiments performed by (Papoudakis
et al. 2021), obtaining similar results. However, our work
adds value by following a strict protocol (Gorsane et al. 2022)
which includes additional evaluation measurements such as
examining the probability of improvement and providing per-
formance profiles (Agarwal et al. 2022), as shown in Figure
5. Additional plots and tabular results for different scenarios
and the performance of the algorithms without parameter
sharing are included in the Appendix along with more de-
tailed performance plots for SMAClite in Appendix section
C.

MAA2C vs MAPPO. Empirical results in RL consis-
tently demonstrate that PPO tends to outperform A2C (Heess
et al. 2017; Schulman et al. 2017; Henderson, Romoft, and
Pineau 2018). This trend naturally leads to the question of
whether a similar pattern is observed in the multi-agent set-

(a) —e— VDN —e— QMIX —e— MAPPO IQL —— MAA2C

o o o
> o ©

Mean episode return

o
N

0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

(©) %7 — wmarro
d —— MAA2C

(b)ﬂl'o- —— MAPPO Agents

—— MAA2C Age V)
g

o
o
I
4
Y
L

I o
> o
n L
< o
> o
I 1

Agent Importance Value (1e-2
o
o
1

o
[N
h

Agent Importance Variance (1e:

o

)

o
1

T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Number of timesteps (Millions) Number of timesteps (Millions)

Figure 6: MAA2C outperforms MAPPO on the LBF 15x15-
3p-5ftask. (a) Sample efficiency curves (one seed). (b) Agent
importance for all agents associated with a given algorithm.
(c) Variance of Agent Importance. MAA2C has a lower vari-
ance in agent importance at convergence.

ting, i.e. between MAPPO and MAA2C. However, when
examining the results in Figure 5, a conflicting observation
arises. In the case of RWARE, we observe the expected be-
haviour with the probability of improvement aligning with
our initial expectations. However, in the case of LBF, the
opposite occurs as MAA2C outperforms MAPPO, presenting
an unexpected outcome. Figure 6 (b) highlights a possible
reason. By tracking Agent Importance, we may attribute this
outcome to a narrowing in the spread of importance values
between MAA2C agents at convergence, as compared to
MAPPO agents. The assumption of lower variance in Agent
Importance leading to improved performance in LBF is due
to the stochasticity of the environment. It is reasonable to
expect that an algorithm performing well in this environment
should have the capability to adapt to the variability in agent
and food levels across episodes. From the narrower spread in
Agent Importance values in MAA2C we can see it has learnt
treat all agents as equally important.For additional findings
on RWARE see section B in the supplementary material.
Parameter sharing vs non-parameter sharing. Consis-
tent with the findings of (Papoudakis et al. 2021), our ex-
periments demonstrate that algorithms utilizing parameter
sharing outperform those without it. As mentioned in the
benchmark paper, this outcome is expected as parameter
sharing enhances sample efficiency. Additionally, parameter
sharing enhances the sharing of learned information across
the system. The Agent Importance analysis for IQL, QMIX,
and VDN provides clear evidence of the impact of parameter-
sharing architectures, as illustrated in Figure 7. It is apparent
that in the absence of parameter sharing, the agents con-
tribute to varying degrees, leading to an uneven distribution
of importance. And as mentioned previously, given LBF’s

—— VDN - QMIX —=— MAPPO [TR—TYS

© os 10 15 2o
Number of timesteps (Millions)

o
000 025 050 075 100 125 150 175 200 00 o5 10 15 2o
‘Number of timesteps (Milions) Number of timesteps (Millions)

oo o

o5 10 15 2
Number of timesteps (Millions)

Figure 7: Comparison of performance with and without pa-
rameter sharing on the LBF 10x10-3p-3f task for one seed
including the sample efficiency, Agent Importance, and Agent
Importance variance. Top row: Performance with policy pa-
rameter sharing. Bottom row: Performance without policy
parameter sharing. With parameter sharing the agent impor-
tance is more evenly distributed.

characteristics, requiring a high level of coordination in the
presence of significant stochasticity, all agents should be ex-
pected (on average) to contribute equally. However, in the
non-parameter sharing cases, especially for IQL and VDN,
we observe that a small number of the agents dominate the
contributions, resulting in lower performance compared to
when parameter sharing is utilised.

Heterogeneous Agents. In both LBF and RWARE the
importance of each agent and the total reward are highly cor-
related as all agents have similar capabilities. In the hetero-
geneous setting of MMM2, rather than converging to similar
importance levels over time, agents will instead converge
to clear groups of importance levels as seen in figures 8b
and 8c. Furthermore, note that agents of the same type can
still fall into different levels of importance which is consis-
tent with role decomposition analysis in ROMA (Yang et al.
2020b). As shown by (Yang et al. 2020b), the optimal policy
in MMM2 requires a subset of marine agents to die early in
the episode, who then cannot contribute to the team reward
remaining timesteps, whereas a smaller number of marines
survive until the end. This is clearly seen in figure 8c for
MAPPO. In the case of MAA2C in figure 8b we can see
that although clear clusters have formed, it has not learned to
assign the correct importance to a subgroup of marines that
are required to optimally solve the environment >

6 Discussion

In this work, we illustrate that Agent Importance is an effi-
cient and reliable measure for agent contributions towards the
team reward in cooperative MARL. Aside from only quan-
tifying the agent contributions we have also shown how the
metric may be used as an explainability tool for uncovering
failure modes in existing MARL results.

Limitations. Although Agent Importance is useful, using

5An optimal policy for MMM2 can be found in a video by
the original SMAC authors in https://www.youtube.com/watch?v=
VZ7zmQ\ _obZ0 and additional information in appendix C.

—e— MAPPO —— MAA2C

= - N N
o ul [=] w

Mean episode return

w1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

(a) MMM2 sample efficiency

—— Medivac R
—— Marine /{'\ Wl
.

Marauder ,

—_ —— Medivac
1, 10.09 — Marine
Marauder

2
u
o

1

Pl o ot
o o)
1 1 1

N
=)
1

Agent Imporatnce Values (1e-2)

Agent Imporatnce Values (1le

o
1

T T T T T
0.0 0.5 1.0 15 2.0 0.0
Number of timesteps (Millions)

(b) MAA2C

0. 0 1. 2.0
Number of timesteps (Millions)

(c) MAPPO

Figure 8: Comparison between MAA2C and MAPPO in the
MMM? scenario from SMAClite.8a: Mean episode returns.
8b: Agent Importance scores MAA2C. 8c: Agent Importance
scores MAPPO.

simulators that allow for an agent’s removal during runtime
would be highly advantageous. Solely relying on no-op ac-
tions could still impact the coalition reward by obstructing
other agents’ presence and movement in their observations.
Unfortunately, agent removal is uncommon in most simula-
tors and some simulators also do not offer the option for a
no-op action. Additionally, while popular MARL research
environments are fairly low resource, creating multiple paral-
lel instances of the environment during the Agent Importance
calculation, makes using more resource-heavy simulators
prohibitive from a memory perspective. However, with the
growing popularity of the JAX framework, more stateless
environments are becoming available where the parallel envi-
ronments can be replaced with direct access to the environ-
ment state (Freeman et al. 2021; Lange 2022; Bonnet et al.
2023).

Future Work. It would be useful to investigate the rank-
ings calculated by agent importance for simulators which do
not have a no-op action. We could consider using random
actions or the random actions of specific agents as a proxy
for the no-op action or make use of function approximators
to learn minimal impact actions for the marginalised agents.

A Experimental details
Environments

To ensure our experimentation setup is clear and easily re-
producible, we make use of the same environment naming

conventions used in (Papoudakis et al. 2021). In this section,
we provide an overview of the naming conventions employed.
Primarily we break down how the naming conventions of
each environment correspond to the features of each sce-
nario in the Level-Based Foraging (LBF) and Multi-Robot
Warehouse (RWARE) environments.

Figure 9 illustrates a collection of ten scenarios, each cor-
responding to a specific task in the LBF and RWARE environ-
ments. The LBF scenarios are described in detail in Section
A, while the RWARE scenarios are explained in Section A.

Level Based Foraging Naming Convention. The scenar-
ios in the LBF environment are named according to the fol-
lowing convention:

Foraging < obs > — < x_size > x < y_size > — <
n_agents > p— < food > f < force_c > —vl

Each field in the naming convention has specific options:

* jobs;: Denotes agent level of partial observability for all
agents. If no value is given the agents can see as far as the
grid is wide.

* < x_size >: Size of the grid along the horizontal axis.

e < y_size >: Size of the grid along the vertical axis.

* < n_agents >: Number of agents in the environment.

e < food >: Number of food items in the environment.
This is the total number of food that can spawn per
episode.

e < force_c >: Optional field indicating a forced coopera-
tive task. It can be empty or set to ”’-coop” mode. In this
mode, the levels of all the food items are intentionally set
equal to the sum of the levels of all the agents involved.
This implies that the successful acquisition of a food item
requires a high degree of cooperation between the agents
since no agent will be able to collect a food item by itself.

As an example, an environment named “Foraging-2s-8x8-
2p-2f-coop” has a sight range of 2s” implying that agents
can view a 5x5 grid centred on themselves, a grid with
horizontal and vertical size 8, contains 2 agents, 2 food
objects and is set to a cooperative mode.

Additional Level Based Foraging Scenarios To gain in-
sights into the interplay between individual agent levels, their
impact on team performance, and individual contribution
(Agent Importance value), we introduce additional LBF envi-
ronments. These additional environments serve as a testing
ground to study the reliability and scalability of the Agent
Importance metric.

With the addition of these new scenarios, we focus on
two distinct test features. Firstly, we assess the reliability
of agent importance by making tasks that will always have
three agents with levels of 1, 2, and 3, respectively. This
allows us to compare the agent importance values to the
predetermined agent levels to see whether they correspond.
We also introduce two versions of the scenarios with fixed
agent levels; one where the levels of food items are uniformly
random values between 1 and 6 and another where the food
levels are always 3. Secondly, we assess the scalability of
agent importance w.r.t the number of agents in the setting.
To do this we enlarge the grid size of the LBF scenarios to

accommodate more agents up to a maximum tested number
of 50.

Used scenarios. Our research experiments were carried
out on a varied set of scenarios, and in all cases, agent posi-
tions and food positions as well as agent levels and food levels
are randomly generated at each new environment episode.

¢ Main scenarios

Figure 9(a) Foraging-2s-8x8-2p-2f-coop: 8x8 grid, par-

tial observability with sight=2, 2 agents, 2 food items,

cooperative mode.

— Figure 9(b) Foraging-8x8-2p-2f-coop: 8x8 grid, full
observability, 2 agents, 2 food items, cooperative mode.

— Figure 9(c) Foraging-2s-10x10-3p-3f: 10x10 grid, par-
tial observability, 3 agents, 3 food items.

— Figure 9(d) Foraging-10x10-3p-3f: 10x10 grid, full
observability, 3 agents, 3 food items.

— Figure 9(e) Foraging-15x15-3p-5f: 15x15 grid, full
observability, 3 agents, 5 food items.

— Figure 9(f) Foraging-15x15-4p-3f: 15x15 grid, full
observability, 4 agents, 3 food items.

— Figure 9(g) Foraging-15x15-4p-5f: 15x15 grid, full

observability, 4 agents, 5 food items.

* Reliability Scenarios

— Foraging-15x15-3p-3f-det: 15x15 grid, full observ-
ability, 3 agents, 3 food items. The food levels are fixed
to always be 3.

— Foraging-15x15-3p-3f-det-max-food-sum: 15x5 grid,
full observability, 3 agents, 3 food items. The food
levels are uniformly random values between 1 and 6.

* Scalability Scenarios

— Foraging-5x5-2p-2f: 5x5 grid, full observability, 2
agents, 2 food items.

— Foraging-10x10-4p-4f: 10x10 grid, full observability,
4 agents, 4 food items.

— Foraging-15x15-10p-10f: 15x15 grid, full observabil-
ity, 10 agents, 10 food items.

— Foraging-20x20-20p-20f: 20x20 grid, full observabil-
ity, 20 agents, 20 food items.

— Foraging-25x25-50p-50f: 25x25 grid, full observabil-
ity, 50 agents, 50 food items.

Multi-Robot Warehouse Naming Convention. The sce-
narios in the RWARE environment are named according to
the following convention:

rware— < size > — < num_agents > ag < diff >
—vl
Each field in the naming convention has specific options:

* < size >: Represents the size of the Warehouse (e.g.,

CLINET

“tiny”, ”small”, “medium”, “’large”).
* < nume_agents >: Indicates the number of agents (1-20).

e < dif f >: Optional field indicating the difficulty of the
task (default: N requests for each of the N agents).

Figure 9: Illustration of the seven LBF and three RWARE
tasks used for the main experiments.

Used scenarios In this situation, the experiments in our
study were carried out using three different scenarios of the
RWARE environment. In each of these scenarios, agents
have a 3x3 observation grid centred on themselves, providing
information on the location, rotation and surrounding config-
urations of other agents and shelves. By default, the number
of requested shelves is equal to the number of agents.

* Figure 9(h) rware-tiny-2ag: The tiny map is a grid world
of 11x11 squares, partial observability, 2 agents.

* Figure 9(i) rware-tiny-4ag: The tiny map is a grid world
of 11x11 squares, partial observability, 4 agents.

* Figure 9(j) rware-small-4ag: The small map is a grid
world of 11x20 squares, partial observability, 4 agents.

Algorithms Details

Algorithms Overview In our analysis, we restrict ourselves
to a limited set of algorithms from MARL literature. Our
algorithm selection is done to cover Q-learning and policy
gradient (PG) based methods in both the independent learner
(IL) and centralised training decentralised execution (CTDE)
paradigms. We also investigate the effect of parameter shar-
ing and non-parameter sharing on the performance of the
algorithms.

Q-learning For Q-learning-based methods we have se-
lected, VDN and QMIX which fall into the paradigm of
CTDE and IQL which is an IL method.

IQL: For Independent Q-Learning (IQL) (Tan 1993), each
agent learns a policy based purely on their own egocentric
experience in the training environment. This policy is param-
eterised by a Q-value network (Mnih et al. 2013).

VDN: In Value-Decomposition Network (VDN) (Sune-
hag et al. 2017b), IQL is extended through the use of value
decomposition. Rather than learning purely from their own
egocentric perspectives with each agent receiving the same
reward, VDN formulates the joint Q value of the coalition

as a linearly decomposed sum of the individual agent val-
ues. Each individual agent then updates its policy using the
gradient flow based on a joint additive loss.

QMIX: (Rashid et al. 2018b) then extends VDN by broad-
ening the range of reward functions that can be decomposed.
To create a more complex attribution of the Q values, it makes
use of a parameterised mixing network to perform the attri-
bution. This mixing network takes the individual agent Q
values as input and then policy updates are performed in an
end-to-end manner where attribution is done using backprop-
agation. Qmix also allows the use of data augmentation by
accommodating additional data at training time.

Policy Gradients (PG): IA2C: Independent Advantage
Actor-Critic (IA2C) is a variant of the A2C algorithm (Mnih
et al. 2016b) applied to the multi-agent setting. IA2C trains
agents using their own egocentric experiences in the training
environment where each agent has their own critic and ac-
tor networks that approximate the optimal policy and state
values.

IPPO: Independent Proximal Policy Optimisation (IPPO)
is a variant of the PPO algorithm (Schulman et al. 2017)
applied to the multi-agent setting. PPO can be thought of as
an improvement to A2C. It uses a surrogate objective which
limits the change in the policy at each update step which
allows PPO to iterate over the same trajectory of data multiple
times without policy divergence. Otherwise, its architecture
is the same as A2C.

MAPPO & MAA2C: Multi-Agent Proximal Policy Opti-
misation (MAPPO) and Multi-Agent Advantage Actor-Critic
(MAA2C) (Yu et al. 2022) extend IPPO and IA2C to make
use of a joint state value function. Instead of multiple per-
agent critics, there is a single critic that learns the value of the
joint state representation rather than the egocentric individual
agent observations. MAA2C is also sometimes referred to
as Central-V (Foerster et al. 2018) because of this but, to
prevent confusion, we use MAA2C. MAPPO also makes use
of the same CTDE type architecture with a centralised critic.

Parameter Sharing vs Non-Parameter Sharing: To im-
prove sample efficiency it is common to use Parameter Shar-
ing (PS) in cooperative MARL. When PS is in use, all of the
agents on a team share the same set of parameters for their
neural networks (NN). In practice, this is equivalent to using
a single neural network to represent all members of the team.
Typically a one-hot agent ID is added to the local observation
of each agent so that the NN can determine which agent to be-
have as. In some cases, using PS limits performance as agents
tend to learn a smaller subset of roles. Alternatively, we can
use concurrent/non-parameter shared learning where each
agent is represented by a different set of parameters. Under
this paradigm, we train each agent’s parameters concurrently
and maintain separate parameters for each individual agent.

Evaluation Protocol

Aggregation Metrics: Median: The median is the 50th
percentile, representing the central point of the sorted raw
data. Counts of the datapoints on either side of the median
will thus be the same.

IQM: The interquartile mean (IQM) or midmean is a mea-
sure of central tendency evaluated based on the truncated
mean of the interquartile range. It involves computing the
mean over the values that fall within the interquartile range,
which is the range between the 25th and 75th percentiles of
the data.

Optimality Gap: The optimality gap is the difference be-
tween the aggregated value and the optimal value. It provides
insight into the performance by quantifying the deviation
from the best achievable outcome.

Absolute Metric: The Absolute Metric represents the
average performance achieved by the best policy obtained
throughout the entire learning process. It’s computed by eval-
uating the algorithm over a number of independent evaluation
episodes that is 10 times greater than the original number
used during training.

Explanation of plots used: Sample efficiency The con-
cept of sample efficiency is used to evaluate how effectively
an algorithm improves its performance on a specific measure
in relation to the amount of data it samples during the train-
ing process. These curves are generated by calculating the
normalised average performance at each evaluation interval.

Performance Profiles: Performance profiles plot the prob-
ability that the normalised return of an algorithm is greater
than some fraction of a predetermined value. From these
plots, we can see the likelihood of algorithms reaching an
optimal score and compare their relative performance at dif-
ferent points.

Probability of improvement: The probability of improve-
ment are plots that indicate the probability that algorithm
X has superior performance than algorithm Y with a low
score indicating that algorithm Y is likely to be better than
algorithm X and vice versa for a high score.

Experimental Hyperparameters In our analysis, we
sought to conduct comprehensive experiments in various
environments using different algorithms. To ensure reliable
and consistent results, it is important carefully select and
optimize the hyperparameters for each algorithm in each
environment.

To this end, we used the optimized hyperparameters from
(Papoudakis et al. 2021), where the parameters of each algo-
rithm were chosen based on a hyperparameter sweep for a
single scenario of each environment and then reused across
all other scenarios for the same settings. The choice of the
set of hyperparameters is done by selecting the one with the
highest evaluation score averaged over three seeds.

Tables 1 and 5 provide a summary of the shared hyper-
parameters used in the Q-learning and policy gradient al-
gorithms, respectively. On the other hand, Tables 2, 3, and
4 specify the algorithm-specific hyperparameters for each
Q-learning algorithm, namely IQL, VDN, and QMIX, respec-
tively. Similarly, Tables 6 and 7 present the specific hyperpa-
rameter settings for the policy-gradient algorithms, namely
MAPPO and MAA2C, respectively.

These aforementioned tables offer an overview of the hy-
perparameters utilized in each environment, encompassing
the applicable algorithms in both parameter-sharing and non-
parameter-sharing scenarios.

Table 1: Shared hyperparameters for Q-learning algorithms
with and without parameter sharing

Parameter Sharing Non-Parameter Sharing

LBF RWARE LBF RWARE

Optimizer Adam Adam Adam Adam
Maximum gradient norm 10 10 10 10
Reward standardisation True True True True
Network type GRU FC GRU FC
Discount factor 0.99 0.99 0.99 0.99
e schedule steps 2e6 Se4 Sed Se4
€ schedule minimum 0.05 0.05 0.05 0.05
Batch size 32 32 32 32
Replay buffer size 5000 5000 5000 5000

Parallel workers 1 1 1 1

Parameter Sharing Non-Parameter Sharing

LBF RWARE LBF RWARE
Hidden dimension 128 64 64 64
Learning rate 0.0003 0.0005 0.0003 0.0005
Reward standardisation True True True True
Network type GRU FC GRU FC
Evaluation epsilon 0.05 0.05 0.05 0.05

Target update 200(hard) 0.01(soft) 200(hard) 0.01 (soft)

Table 2: Shared hyperparameters for IQL with and without
parameter sharing

Parameter Sharing Non-Parameter Sharing

LBF RWARE LBF RWARE
Hidden dimension 128 64 64 64
Learning rate 0.0003 0.0005 0.0001 0.0005
Reward standardisation True True True True
Network type GRU FC GRU FC
Evaluation epsilon 0.0 0.05 0.05 0.05

Target update 0.01(soft) 0.01(soft) 200(hard) 0.01 (soft)

Table 3: Hyperparameters for VDN with and without param-
eter sharing

Parameter Sharing Non-Parameter Sharing

LBF RWARE LBF RWARE
Hidden dimension 64 64 64 64
Network type GRU FC GRU FC
Mixing network size 32 32 32 32
Mixing network type FC FC FC FC
Mixing network activation ReLU ReLU ReLU ReLU
Hypernetwork size 64 64 64 64
Hypernetwork activation ReLU ReLU ReLU ReLU
Hypernetworks layers 2 2 2 2
Learning rate 0.0003 0.0005 0.0001 0.0003
Reward standardisation True True True True
Evaluation epsilon 0.05 0.05 0.05 0.05

Target update 0.01(soft) 0.01(soft) 0.01 (soft) 0.01 (soft)

Table 4: Hyperparameters for QMIX with and without pa-
rameter sharing

Table 5: Shared hyperparameters for Policy-based algorithms
with and without parameter sharing

Parameter Sharing

Non-Parameter Sharing

LBF RWARE LBF RWARE

Optimizer Adam Adam Adam Adam

Maximum gradient norm 10 10 10 10
Discount factor 0.99 0.99 099 0.99

Entropy coefficient 0.001 0.001 0.001 0.001
Batch size 10 10 10 10
Replay buffer size 10 10 10 10
Parallel workers 10 10 10 10

—— MAPPO 1L —— MAA2C —— QMIX

Foraging-15x15-3p-5¢

0 e
il

—— VDN

Foraging-8x8-2p-2f-coop Foraging-25-8x8-2p-2f-coop.

Kl £
H /

504 v
G

70 2 T pg T

T T =) 7
Number of timesteps (Milions)

5 o TS 5 T)
Number of timesteps (Milions) Number of timesteps (Wilions)

Foraging-15x15-4p-5¢ rware-small-4ag rware-tiny-4ag

L | S L/

ﬁ.»"” A B | ™
M }A A.J“,‘ }rf it

i

Parameter Sharing

Non-Parameter Sharing

2 e T 7 T 7T

05 o 5 o5 o TS
Number of timésteps (Milions) Number of timesteps (Milions)

rware-tiny-2ag

000 025 050 0.75 1.00 125 150 175 2.00
umber of timesteps (Millions)

Figure 10: Mean episode returns for all algorithms with pa-
rameter sharing in seven LBF scenarios and three RWARE
scenarios, with the mean and 95% confidence intervals over
10 distinct seeds.

Table 8: Normalized Episode Return: Aggregated Scores
with 95% Confidence Intervals in the LBF Environment with
Parameter Sharing

LBF RWARE LBF RWARE
Hidden dimension 128 128 128 128
Learning rate 0.0003 0.0005 0.0001 0.0005
Reward standardisation False False False False
Network type FC FC FC FC
Evaluation epsilon 0.05 0.05 0.05 0.05
Epsilon clip 0.2 0.2 0.2 0.2
Epochs 4 4 4 4
Target update 0.01(soft) 0.01(soft) 200 (hard) 0.01 (soft)
n-step 5 10 10 10

Table 6: Hyperparameters for MAPPO with and without pa-

MAPPO IQL MAA2C QMIX VDN
Median 0.84 +£0.03 0.87 £0.01 0.98 £0.01 0.67 £0.12 0.78 +0.06
IQM 0.85+0.01 0.71 £0.04 0.97 £0.01 0.58 £0.03 0.67 0.04
Mean 0.85+0.01 0.64 £0.02 0.95£0.01 0.56 £0.02 0.61 0.02
Optimality Gap 0.1540.01 0.36 £0.02 0.05 £0.01 0.44 0.02 0.39 £0.02

rameter sharing

Parameter Sharing

Non-Parameter Sharing

LBF RWARE LBF RWARE
Hidden dimension 128 64 128 64
Learning rate 0.0005 0.0005 0.0005 0.0005
Reward standardisation True True True True
Network type GRU FC GRU FC
Evaluation epsilon 0.01 0.01 0.01 0.01
Target update 0.01(soft) 0.01(soft) 0.01 (soft) 0.01 (soft)
n-step 10 5 5 5

Table 7: Hyperparameters for MAA2C with and without

parameter sharing

B Main experiment results

In this section, we present additional plots that complement
the figures presented in the main paper. These plots provide a
more comprehensive visualization of the experimental results
and support the analysis presented in the paper.

Parameter sharing Experiments

In Figure 10, we can observe the performance of the afore-
mentioned algorithms in the seven LBF tasks and the 3
RWARE tasks where we recorded the results of Mean episode
returns with the mean and 95% confidence intervals over 10
distinct seeds in the 201 evaluations.

In contrast, Tables 8 and 9 present the comprehensive tab-
ulated results of algorithms performance in the LBF and
RWARE environments. These tables showcase the utiliza-
tion of various aggregation metrics, including Median, IQM,
Mean, and the Optimality gap, along with their correspond-
ing 95% confidence intervals. The confidence intervals are
estimated using the percentile bootstrap with stratified sam-

pling.

Table 9: Normalized Episode Return: Aggregated Scores with
95% Confidence Intervals in the RWARE Environment with
Parameter Sharing

MAPPO IQL MAA2C QMIX VDN
Median 0.854+0.04 0.11 £0.06 0.35+0.03 0.03 £0.02 0.07 £0.03
QM 0.854+0.03 0.12+0.05 0.39£0.05 0.04+0.01 0.06 £0.03
Mean 0.83 +£0.04 0.13+0.04 0.41+£0.04 0.02£0.02 0.07 £0.02
Optimality Gap 0.17 0.04 0.87 £0.04 0.59 £0.04 0.98 £0.02 0.93 £0.02

Table 10: Normalized Episode Return: Aggregated Scores
with 95% Confidence Intervals in the LBF Environment with-
out Parameter Sharing

MAPPO IQL MAA2C QMIX VDN
Median 0.91 £0.03 0.23£0.02 0.35+£0.03 0.78 £0.03 0.46 £0.08
QM 0.93 +£0.01 0.34+0.03 0.42+£0.01 0.77 £0.01 0.43 £0.04
Mean 0.89 £0.01 04240.02 0.47 £0.01 0.74 +£0.02 0.48 £0.03
Optimality Gap 0.11 £0.01 0.58 £0.02 0.53 £0.01 0.26 £0.02 0.52 £0.03

Non-Parameter sharing Experiments

Similar to the replication of experiments conducted in the
parameter sharing case, we also conducted a replication of
the outcomes when agents do not share learning parameters.
The outcomes of these experiments are illustrated in Figure
11.

By examining the results for both the LBF and RWARE
environments, we aimed to compare and contrast the per-
formance of algorithms under these distinct conditions. The
replicated experiments serve to validate and complement the
findings presented in Figure 11, offering an understanding of
the impact of parameter sharing on algorithm performance.

In addition, in Figure 12 we also evaluated the performance
of various algorithms without parameter sharing across a
range of scenarios. For the LBF environment, we consid-
ered seven different scenarios, each presenting unique chal-
lenges and variations in agent and food levels. Similarly, for
the RWARE environment, we explored three distinct scenar-
ios, encompassing different warehouse sizes and numbers of
agents.

Similarly to the parameter sharing case discussed in Sec-
tion B, the results of algorithm performance in the LBF and
RWARE environments are presented in Tables 8 and 9.

Additional results on RWARE

We perform additional experimentation comparing agent im-
portance and the Shapley values in RWARE which is a sparse
setting. From figures 13 and 14 we can see that both method
perform similarly in the sparse setting when performance

Table 11: Normalized Episode Return: Aggregated Scores
with 95% Confidence Intervals in the LBF Environment with-
out Parameter Sharing

MAPPO IQL MAA2C QMIX VDN
Median 0.45+0.08 0.02+£0.02 0.03 £0.02 0.48 £0.14 0.08 £0.03
QM 0.41 £0.05 0.01 £0.01 0.04 £0.02 0.47 +£0.1 0.09 £0.03
Mean 0.44 £0.06 0.02 £0.01 0.04 £0.01 0.47 £0.09 0.09 £0.02
Optimality Gap 0.56 £0.06 0.98 +0.01 0.96 £0.01 0.53 +0.09 0.91 £0.02

—e— MAA2C NS —e— QMIXNS —e— VDN.NS —s— MAPPO_NS IQL_NS
5 1.00
o
Algorithm X Agorithmy &
MAA2C_NS || mappoNs £
H
2 0.50)
VDN_NS Bl omixns g \H_
1QL_NS | VDN_NS 2 0.25
s
1QL_NS Bl omxns Eooo \\

00 025 05 075 10 00 02 04 06 08 10
PX > Y) Mean episode return (t)

o o o
> o ©

e
N

Mean episode return

o
o

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

>
=3
8

Algorithm X Algorithm Y

MAA2C_NS |

o
S
vl

MAPPO_NS

o
o
=)

Fraction of runs with score > T

VDN_NS - QMIX_NS
IQL_NS | VDN_NS 0.25
10L_NS B omixns 0.00
00 025 05 075 10 00 02 04 06 08 10
P(X > Y) Mean episode return (t)
0.6

o
5

1
IS

e
[N

Mean episode return
o
w

e
-

i e ——R TR,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

o
o

Figure 11: Results from running the same experimental hy-
perparameters on the same tasks as (Papoudakis et al. 2021)
including the probability of improvement, performance pro-
files and sample efficiency curves. Top row: Performance of
algorithms on 7 LBF tasks. Bottom row: Performance of all
algorithms on 3 RWARE tasks.

—— MAA2CNS —— QMIXNS —— VDNNS —— MAPPONS —— IQLNS

Foraging-2s-8x8-2p-2f-coop. Foraging-8x8-2p-2-coop

1 19|

ol 03

05 04

04 04

02| 04

00l 09
7T 0

Foraging-10x10-3p-3f

05 o TS 7
Number of timesteps (Milions)

75) 5
Number of timesteps (Milions)
Foraging-2s-10x10-3p-3

5] o TS
Number of timesteps (Milions)

Foraging-15x15-4p-51 Foraging-15x15-3p-5¢

7T 5 o TS 70 23 75 o
Number of timesteps (Milions)

7 23 75 o

TS TS 0
Number of timesteps (Milions) Number of timesteps (Milions)

rware-tiny-2ag

[

000 025 050 075 1.00 125 150 175 200
Number of timesteps (Millions)

£ & &

Mean episode return

Figure 12: Mean episode returns for all algorithms without
parameter sharing in seven LBF scenarios and three RWARE
scenarios, with the mean and 95% confidence intervals over
10 distinct seeds.

m
8

)
8

Ranking match %
I
8

Ranking match %

3

" Agents

Figure 13: Comparison of Shapley value and agent im-
portance rankings to individual rewards for IQL, MAA2C,
MAPPO, VDN and QMIX on rware-small-4ag-v1.

is poor like for IQL, QMIX and VDN. However when the
agents are able to achieve some level of success, accuracy
drops for both methods. This is likely due to the sparse re-
ward creating many zeros in the data and creating erroneous
predictions. This is most noticeable for MAPPO and MAA2C
where the Shapley Value estimations can drop below 90%.
We can further verify this from figures 17 and 18 where the
agent importance and Shapey values exhibit similar variance
over time.

Aggregation of agent importance

Throughout the paper we use a single seed to display agent
importance over time. For homogeneous settings with param-
eter sharing this is required as agents can take different roles
in each seed depending on the training conditions. Essentially
agents of a similar type can fulfil multiple different sub-roles
during training which makes aggregating agent contributions
over multiple seeds inconsistent in the stochastic case as seen

2
8

&
&

2
=
g
g
B
s
]
¥
5
&

Ranking match %

8

" Agents) Agents

“ agents : - " Agents E : " agents "

Figure 14: Comparison of Shapley value and agent im-
portance rankings to individual rewards for IQL, MAA2C,
MAPPO, QMIX and VDN on rware-tiny-4ag-v1

— MAPPO Agents.

o

°

AN
SV nerogems
2 —— MAA2C Agents

Agent Importance Value (1e-2)

Agent Importance Value (1e-2)
Agent Importance Value (1e-2)

—— MAPPO Agents
—— MAA2C Agents

2

00

00 00

o5 10 15 20 T T T y
y [10 15 20
Number of timesteps (Millions) Number of timesteps (Milions)

0’5 10 15 20
Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

Figure 15: Comparisons of the agent importance on rware-
small-4ag-v1l for MAPPO and MAA2C

e P 8

N 2 S

E ERES 21s

S10q] K

. s o

5% £ 104 210 N
So6 5 H AWV
g 2 g §

:E,° 4 % 05 %u 5 o

§ f § § %)

802 — MAPPO Agents | & — MAPPO Agents | & 4 Y/ — maPPO Agents
<ol) — manzc agents | < | — MAAC Agents | < IV masac agents

00 0.0 00

o5 10 15 20 o5 1o 15 20 os 10 15 20
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

Figure 16: Comparisons of the Shapley values on RWARE
for MAPPO and MAA2C

25 s
3 S a0
B
5257 530
S159 g1 H
g] 2504
510l E1sd £
gre £ £
Eos £ E10]
= 205 £
g g g
2, 2, 2,
o.

00 00

o5 10 15 20 o5 10 15 20 o o5 1o 15 20
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

Figure 17: Comparisons of the agent importance variance on
RWARE for MAPPO and MAA2C

Agent Importance Variance (1e-6)
Agent Importance Variance (1e-6)

o5 10 15 20 o5 10 15 20 © o5 1o 15 20
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

Figure 18: Comparisons of the Shapley value variance
RWARE for MAPPO and MAA2C

025

— QL Agents. — 1QL Agents
QMIX Agents —— QMIX Agents.
—— VDN Agents.

— 1QL Agents
QMIX Agents
—— VDN Agents

2

— VDN Agents

Agent Importance Value (1e-2)

Agent Importance Value (1e-2)
Agent Importance Value (1e-2)

00 o5 1o 1s 20
Number of timesteps (Millions) 00 00

05 20 0’5 10 15 20
Number of timesteps (Millions) Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

Figure 19: Comparisons of the agent importance on RWARE
for QMIX, VDN and IQL

— loL Agents — IqL Agents — 1QL Agents
QMIX Agents 0.64 QMIX Agents 04 QMIX Agents
0.2 — VON Agents —— VDN Agents — VDN Agents

Importance Value (1e-2)

Agent Importance Value (1e-2)

Agent Importance Value (1e-2)

Agent

2

o
0o o5 20
Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

00 o5 10 5 20 T T T v
00 05 10 15 20
Number of timesteps (Millions) Number of timesteps (Milions)

Figure 20: Comparisons of the Shapley value on RWARE for
QMIX, VDN and IQL

—~014] 035 =
GO — oL @ — 3 024 — 1L
20124 QMix & 03 QMix 2 — amix
< — o < — von < — von
£ 0a] Eoas £o1sq
2 0.084 g o2 s
g g g 01
£ 0,064 £01s £
H H 5
20.0a4 g o1 g
£ E £o.0s4
£ 0.024 2005 2
& & &
< o 2 o 2 o
00 o o

05 10 15 20 o 05 10 15 20 o's 10 15 20
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

Figure 21: Comparisons of the agent importance variance on
RWARE for QMIX, VDN and IQL

- _03s -
go1] — o o 3 024 — L
K auix & o E Quix
30121 — von b b — vON
g o] o £ousq

2 0.084 S 02 s

g g g 01

5 0.064 2015 g

5 5 5

20.0a 2 01 g

g g Eo.0s

20024 Zo0s ~

s 3 g

£ o] 2 o g

00 00

o's ¥ 15 20 o's ¥ 15 20 o5 1o 15 20
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions)

(a) rware-small-4ag-(b) rware-tiny-4ag-(c) rware-tiny-2ag-
vl vl vl

Figure 22: Comparisons of the Shapley value variance on
RWARE for QMIX, VDN and IQL

& 307 ~ 2.5
GJ ()
=) =)
8259 $ 2.0
© ©
> >
o 4]
9 2.0 1.5
S 8
=4 =
215 2
g . g 1.0+
o =
f= c
& 1.0 0.5+
< <
T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Number of timesteps (Millions) Number of timesteps (Millions)
™ 1754 7 1307 — Agent 0
) 4 —— Agent 1
2 1504 = 12,54 9
o 2 s —— Agent 2
= =
© 12.54 © 10.0
> >
() ()
g 100 S 754
© ©
£ 7.5+ £
g g 50
£ 507 £
= = 257
g 257 o
j=2) j=2]
< 0 < 04
T T T T T T T T
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Number of timesteps (Millions) Number of timesteps (Millions)

Figure 23: Agent importance scores on the stochastic
Foraging-10x10-3p-3f-v2 LBF scenario for MAA2C, MAPPO,
VDN and QMIX.

in 23. When compared to the parameter sharing explain in
figure 7 we can see that determining individual agent contri-
butions becomes difficult. Similar issues can be seen in figure
24 when compared to figure 6.

C On heterogeneous settings

For most of our experiments, we make use of the LBF and
RWARE settings. RWARE is completely homogeneous as all
agents have the same capabilities as each other and their roles
and importance within the coalition are developed during
training time as the individual policies associated with each
agent’s IDs are learnt. This means that agent roles are incon-
sistent across seeds and parameterisation as depending on
external factors across runs, different agent IDs can occupy
different roles. For LBF, agents are homogeneous in their
action space but their importance rankings are essentially
preassigned due to their levels determining the extent of their
contribution towards collecting food. Given the limitations
of these settings, it is important to determine how effectively
agent importance is able to determine the contributions of

N o o =
> o © o
1 1 1 1

o
[N}
1
Agent Importance value (1le-2)
o
B
1

Agent Importance value (1e-2)

T T T T T T T T
.0 0.5 1.0 0.5 1.0 15 2.0

0 . 15 2.0 0.0
Number of timesteps (Millions) Number of timesteps (Millions)
_ 10 .
)) —— Agent 0
" Y 0.6
3 4 —— Agent1
v 087 o —— Agent2
g 205+ 9
S g
© 0.6 o 0-44
o O
c f=
£ £ 0.3
S 0.4 g
£ E02-
e e
0.2
g g0.11
< <
T T T T T T T T
0.0 0.5 1.0 2.0 0.0 0.5 1.0 15 2.0

Number of timésteps %ivslillions) Number of timesteps (Millions)
Figure 24: Agent importance scores on the stochas-
tic Ibforaging:Foraging-15x15-3p-5f-v2 LBF scenario for
MAA2C, MAPPO, VDN and QMIX.

agents in complex heterogeneous settings where there are
clear agent types with differing capabilities that compose the
coalition.

A popular setting with heterogeneous agents in coopera-
tive MARL is the Starcraft Multi-Agent Challenge (SMAC)
(Samvelyan et al. 2019) however, this environment has 2
limitations which make applying agent importance difficult.
Firstly, it uses the original game engine for the Starcraft
2 (SC2) video game which is coded in the C++ program-
ming language as a back-end. This makes it unsuitable for
creating multiple parallel copies of the setting using the built-
in Python copy method which makes applying contribution
calculation methods like the Shapley value and agent im-
portance challenging. Secondly, the SC2 engine back-end
is computationally expensive to run and the high resource
requirements make using contribution calculation methods
on top of the existing environment unappealing. Instead, we
make use of SMAClite (Michalski, Christianos, and Albrecht
2023), which implements a setting similar to SMAC but in
purely Python code which allows it to be copied and reduces
computational requirements.

Algorithm X Algorithm Y

MAA2C |] MAPPO 20
VDN - QMmIX 215
oL | VON S10

&
a -,

2

00 025 05 075 10
PX>Y) of

0.00 0.25 050 075 1.00 125 150 1.75 2.00
Number of timesteps (Millions)

(a) Probability of improve-
ment (b) Sample efficiency

Figure 25: Algorithms performance on SMAClite without
parameter sharing

—— MAPPO —+— IQL —— MAA2C —— QMIX —=— VDN —— MAPPO —+— IQL —+— MAA2C —— QMIX —— VDN

20| 20|

v

% 10)

c 5|

Mean episode return

=0

0.00 025 050 075 1.00 125 150 175 2.00 000 025 050 075 1.00 125 150 175 2.00
Number of timesteps (Millions) Number of timesteps (Millions)

Figure 26: Left: Mean episode return on 2s3z. Right: Mean
episode return on 3m.

We plot performance over training using the absolute met-
ric in figure 26 for the 3m and 2s3z scenarios. We average
results over 6 seeds rather than the 5 used in the SMAClite
paper and run the policy gradient (PG) methods for 20 mil-
lion timesteps and the Q-learning methods for 2 million as
recommended in the EPymarl benchmark (Papoudakis et al.
2021). We found there to be high variance in the performance
across seeds for the 3m setting especially for the PG methods
which often experienced significant performance decay later
into training however, for the more complex 2s3z setting per-
formance was fairly stable and algorithms quickly converged
to reasonable policies.

MAA2C MAPPO
00

-

80
60

40

Ranking match %
Ranking match %

Agents N : Agents

Figure 27: Ranking agreement percentages for MAPPO and
MAAZ2C for 3m

MAA2C MAPPO

Ranking match %
Ranking match %

Agents Agents

Figure 28: Ranking agreement percentages for MAPPO and
MAAZ2C for 253z

Firstly, given the high variance between seeds we deter-
mine how accurately agent importance is able to capture
the inddividual rewards that compose the joint reward in
SMAClite. Unlike the RWARE and LBF setting, SMAC and
SMAClIite do not produce individual rewards which can be
used as a ground truth value. Therefore instead of comparing
contribution methods to the individual rewards we directly
compare agent importance and the Shapley value were we
take the shapley value to be an accurate approximation of the
ground truth. We note that for 3m, despite the high variance in
return across all methods, agent importance and the Shapley
value have near 100 percent agreement w.r.t agent rankings.
When moving to 253z agreement drops to 90 percent for
agents 0 and 1 but remains near 100 percent for agents 2
to 4. As agent 0 and 1 are of the same type. Possibly this
indicates that agent importance is effective in determining
the relative contributions of each agent but as it does not

calculate the value of all possible coalitions it can produce
erroneous values when multiple agents are closely related but
have different importance.

— Agento

Agent Imporatnce Values

000 025 050 075 100 125 150 175 200
N

000 025 050 075 100 125 150 175 200
jumber of timesteps (Milions) Number)

(a) MAPPO agent importance (b) IQL agent importance

(c) MAA2C agent im-(d) QMIX agent im-(e) VDN agent impor-
portance portance tance

Figure 29: Agent importance plots for 3m from seed 0

In the homogeneous setting of 3m, we can see from fig-
ure 29 that agent importance follows a similar trend to the
RWARE and LBF settings. As agents perform similar func-
tions in the setting, their importance values are closely related.
Agent importance also has a high percent ranking match rate
with the Shapley values in this case as we can see in figure

le01 le0l —
1e01 g

8 8e02
1001 v

. — staler
— o
G2

e N~ —

2002
000 025 050 075 100 125 150 175 200
Number of timesteps (Millions)

8e.02

Agent Imporatnce Values
Agent Imporatnce Val

000 025 050 075
Number of

100 125 150 175 200
f timesteps (Millions)

(a) MAPPO agent importance (b) IQL agent importance

i

/A

(c) MAA2C agent im-(d) QMIX agent im-(e) VDN agent impor-
portance portance tance

Figure 30: Agent importance plots for 3m from seed 0

In the heterogeneous setting of 2s3z, we can see from fig-
ure 30 that the agents tend to naturally separate into very
distinct importance ranges. This is more distinct when sta-
ble converge has been reached as we can see with MAPPO
where after reaching an optimal solution, the agents no longer
have highly similar importance values. Comparatively when
convergence is unstable like with MAA2C agent importance
will oscillate. It is also notable that even agents of the same

type can have high variation in contribution score at the end
to training. This is inline with existing literature like (Yang
et al. 2020b; Singh and Rosman 2023) which have show that
the importance of different agent agent types varies across
the settings of the original SMAC and that importance cannot
be assigned uniformly. Additionally as agents in SMAC can
die during the episode rollout, the relative importance of the
remaining agents increases as dead agents cannot contribute
to the coalition which can result in agents of the same type
have different assigned weighting based on how long they
are able to survive.

Parameter Sharing for MMM?2

We perform additional experimentation on MMM?2 to gain
insight into how parameter sharing affects agent importance
in the heterogeneous case. We can see from figure 31 that
unlike in LBF and RWARE, parameter sharing seems to
degrade performance. This is most noticeable for MAA2C
which is unable to converge to a stable policy across 6 seeds.
This is expected as (Wen et al. 2022) provide theoretical
evidence towards parameter sharing reducing effectiveness
in heterogeneous settings. We can also observe that like the
findings on SMAC by (Wen et al. 2022) showing that it
is not a challenging enough to compare parameter vs non-
parameter sharing for SOTA algorithms like HATRPO, the
MMM2 setting that has been ported to SMAClite does also
not show a large change in performance for MAPPO in both
the shared and non-shared cases.

—— MAPPO —— MAA2C —e— MAPPONS —e— MAA2C_NS

N
&

N
S
S

&
e}

-
S

Mean episode return
s

Mean episode return

o)
w

0.00 025 050 075 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

O O et o tmasteps (lionsy
Figure 31: Left: Mean episode return for MMM?2 with pa-
rameter sharing. Righ: Mean episode return for MMM2 with
without parameter sharing.

From figures 32 and 33 we can see that the assigned agent
importance rankings vary greatly between the parameter shar-
ing (PS) and no-sharing (NS) results on MMM2. In the NS
case the algorithm is able to learn clearer distinctions be-
tween the subgroups and doe not consistently over weight
the value of the single marauder as it does in the PS case.

From figures 34 and 35 we can see that the assigned agent
importance rankings are fairly similar for both the PS and NS
case. In both cases from figure 31 we can see that MAPPO
obtains a similar learning curve. Essentially this supports the
claims made by (Wen et al. 2022) regarding evaluation of
SOTA methods using PS. Although NS does improve perfor-
mance and correct credit assignment in the heterogeneous
case, the improvement is only noticeable if the PS variant of
the algorithm is not already able to easily achieve optimal
policies.

_ —— Medivac _.10.0 — Medivac Ssod Medivac o
N R N . Y'5.09
& 10.01 —— Marine Py —— Marine o

—
=3 —— Marauder = —— Marauder =
= ~ 8.0 v 4.0
o 8.0 (9] [o
E E E
o o o
< > 6.0 2304
o 6.0 () o 3 S50
i) o o =
< c < g
© T 4.0 "
5 4.0 5 v 2201 H
a a o £
£ £ £ H
= - = 2.0 = -
E 2.0 aa‘-:; = 1.0

0] —— i
g 2 g Medivac
< 0 —————————r——— 04— ———— < 0 —— Marine
T T T T T T T T T T T T T T T o] —— Marauder o
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions) o 5 o 15 20
Number of timesteps (ilons)

~7 ~T. —— Medivac 6.0
,:‘ R o as0d P —— Medivac - —— Medivac
g6 3 N 3 3509 — Marine T o] — warine
Y Y o =] < —— Marauder = —— Marauder
EE i g5, i
g K] K 2 3 3404
oo S o s] E]
g g g] el 8304
23 2 23 e 3 g
s § H €0 8,04 g
g2 g g2 g%° g>° g20q
= = 210 £ E E
1 5 §1.01 21.04 —— Medivac = 1.0 2104
@ o @ 1.0
H < 2 o e g — Marne | & g

< o e —— Marauder | < o 2]

T T v v T T T . .
s 10 1 20 0.5 1.0 1.5 0 5 1.0 1 0 T T
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions) 0.0 0.0

T
0. . .0 0. X 5 2.0
Number of timesteps (Millions) Number of timesteps (Millions)

o ! s 2o
Number of timesteps (Millions)

Figure 32: Agent importance plots for MAA2C with parame-

° (Figure 34: Agent importance plots for MAPPO with parame-
ter sharing across 5 seeds in MMM?2

ter sharing across 5 seeds in MMM2

—_ —— Medivac <1004 — Medivac —~ —— Medivac
~) ~ 10) N ,
& 8.0 — Marine o —— Marine & 10.0 —— Marine -
= —— Marauder = —— Marauder 2 —— Marauder
- 4
e ¢ 80 [
g e ¢ 8.0
o 6.0 © © B
> > 6.0 > 260
a,] 3 6.0 H —— Medivac
o
e < c s N
54.04 s s H —— Marine
© < 4.04 S 4.04 S0
3 2 g™ H —— Marauder
E2o £ E i
=% = 2.0 2 209 <
c s S 20
o} [}
g 8 g
< o 0 e ————_ < o4
T T T T T T T T T T
0'0 0'5 1'0 1'5 2'0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 °
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions) - IR =
12.04
T — Medivac 10.04 512,04 — Medivac _ —— Medivac _ — — Medivac
8100 T Marine K} K] - Marine 310,04 — Marine 1009 1209 Marine M
2 —— Marauder S ol 10,0~ Marauder 2 k1 2 o0 — Marauder
3 504 H E € s0q g 8.0 8
g N g 3 3 g 80
% 6o g] s 60d g 60 i
£ £ £ 609 £ £ £ 6.0
s $ 40q g g] g
g 09 g g a0 g+ g * g 209
E E £ £ £ £
PR sy R I3 2 50d 2 20 S 204 — Medivac = 204
& & & g g —— Marin g
g 2 2 [g Marine g
0 0 0 T 0 =~ | € g — Marauder e [X 0] N
oo o5 10 15 20 oo o5 10 15 20 0o o5 10 15 20 T T T T T T T T T
s .) . s oo o5 10 15 20 oo ! L) oo o 5 2
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions)

Figure 33: Agent importance plots for MAA2C without pa-

Figure 35: Agent importance plots for MAPPO without pa-
rameter sharing across 5 seeds in MMM?2

rameter sharing across 5 seeds in MMM?2

2.0 ~
o
) ! 30_
: 3
0154 .54
8 2
@ 0 2.0
8104 g
g g15
: 2
a
£ 0.5 £ 1.0
o =
= 5 05_”
> — 2
< oA <
T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Number of timesteps (Millions) Number of timesteps (Millions)
a 5 & — Agent0
4259 8204 Ll Agent 1
o o 91254 — Agent2
22.04 =2 (—i
B S154 S 104
815 I g
5 5 §0.75
2 S1.04 £
§1°’ g 8 05
£ Eo5 £
205 = /_/_/_,_A 20251
5 5 2
< o £ o4 2 o ‘

T T T T T T T T o
00 05 1.0 15 2.0 0. 5 2.0

T T
0 5 15 0
Number of timesteps (Millions) Number of timesteps (Millions)

0 0.5 1.0 1,
Number of timesteps (M

llions)

Figure 36: Agent importance scores on the Foraging-15x15-
3p-3f-det scenario with parameter sharing for MAA2C,
MAPPO, VDN, IQL and QMIX. Agents 0, 1, and 2 are
assigned fixed levels of 1, 2 and 3.

Table 12: Average time required to calculate agent contribu-
tions compared to the baseline with standard deviation

Number of Agents Baseline Agent Importance Shapley Value
2 0.0018 £0.0002 0.0074 +£0.0001 0.0079 +0.0014
4 0.0023 £0.0003 0.0118 £0.0024 0.0313 +0.0041
10 0.0038 £0.0012 0.0392 +0.0022 3.544 +0.156
20 0.0088 £0.0007 0.1697 £0.0159 8065.3697 +832.1829
50 0.0401 +£0.0019 1.6947 £0.2295 —

D Further Validation of Agent Importance

In this section, we present additional results, for further vali-
dation of the agent importance metric, thus proving its effec-
tiveness. To do so, we set the tests on a deterministic version
of a fixed scenario, within LBF, to assess the reliability of the
metric and compare its scalability to the Shapley Value. We
provide additional plots to analyze the correlation between
the agent importance and the Shapley value.

Metric Reliability

Figures 36 to 39 showcase the results for the agent impor-
tance analysis for all tested algorithms, considering both the
parameter-sharing and non-parameter-sharing cases. In the
deterministic LBF setting, as outlined in Section 1, agents 0,
1, and 2 are assigned levels of 1, 2, and 3, respectively. The
figures demonstrate that agents with higher levels contribute
more significantly. These findings are consistent across all
algorithms and the reported values resulted from an aggrega-
tion over the 10 independent runs.

Metric Scalability

In Table 12, we present the average time taken per step along
with the standard deviation for the baseline algorithm without
any metrics, with agent importance, and with the Shapley
Value. These values were calculated over three independent
runs for each scenario. The specific scenarios used in these

NN W W
o u o u
1 1 1
2
NN oW
o U o
1 1 1

-
o
1

—
o
1
=
o
1

o
wn
1
o
5
1

AP,

o
!

Agent Importance value (le-2)
I
c wn
1
Agent Importance value (le

o
1

T T
.5 2.0

T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15
(Millions)

Number of timésteps (Millions) Number of timesteps

3.0

w
°
T

— Agent0
Agent 1
— Agent2

N
0
it

=N
u o
it T
n o
T
w s
o o
T T

o
T
N
o
T

°

&
it

°
T

o
o
Agent Importance value (1e-3)

Agent Importance value (1e-2)
S
:

Agent Importance value (le

-

o

T y T T T T T T
0. 0.

o
0.

°

T T T
.0 0. . K 2.0 .0 0. 1.0 15 2.0 X .
Number of timesteps (Millions) Number of timesteps (Millions) Number of timesteps (Millions)

Figure 37: Agent importance scores on the Foraging-15x15-
3p-3f-det scenario without parameter sharing for MAA2C,
MAPPO, VDN, IQL and QMIX. Agents 0, 1, and 2 are
assigned fixed levels of 1, 2 and 3.

& 3.0 &5
o Py 2.5
:‘2 5 =)
g 2 2.0
2.0 g
9} o 1.5+
1%} 1)
c1.549 c
81.0- 8"
E Eos
£ 0.5+ 2
g /M o
j=)] o —
< 049 < 0
T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Number of timesteps (Millions) Number of timesteps (Millions)
— P =1.04
& 154 42 g | T e
3125 3 9087 — Agent2
T T 157 =
; 1.04 - 2 0.6
émsf §104 Boad
2 05 g g
% 0254 Eo.sf EOZ,
T Sl g 5 =
A s o 01 : : . 4o : . .
“Number of timesteps (Millions) 20 0

.0 0. 5 0.5 1.0 15 2.0
Number of timesteps (Millions) Number of timesteps (Millions)

Figure 38: Agent importance scores on the Foraging-15x15-
3p-3f-det-max-food-sum scenario with parameter sharing
for MAA2C, MAPPO, VDN, IQL and QMIX. Agents 0O, 1,
and 2 are assigned fixed levels of 1, 2 and 3.

~ 257
@ 3.0 @
=) =)
@ 2.5 @ 2.0
= =
© ©
> 2.0 >
) o 157
2 1.5 2
© ©
£ 10
g_1.0- g
= 0.5+ < 0.5
c [=4
S 0)
< < 0
T T T T T T T T
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Number of timesteps (Millions) Number of timesteps (Millions)

5.0 M 124 — Agento
—— Agent1
— hgent2

(1le-3;
N ow
o
T T

~
o
i
o o =
& ®» o
T T T

°
=
n

o

1

°
N
h

i
Agent Importance value (le-3) &

Agent Importance value (1e-3)
>
T
4
>
Agent Importance value (1e-

/W

o 05 10 15 20
Number of timesteps (Millions)

p——————— 8 P ————

o
i

0 ¥
o

o o5 10 15 20 o 05 10 15 20
Number of timesteps (Millions) Number of timesteps (Millions)

Figure 39: Agent importance scores on the Foraging-15x15-
3p-3f-det-max-food-sum scenario without parameter shar-
ing for MAA2C, MAPPO, VDN, IQL and QMIX. Agents 0,
1, and 2 are assigned fixed levels of 1, 2 and 3.

—— importance
1034 —}— shapley

Seconds per Step

T T T T
24 10 20 50

Number of Agents

Figure 40: Computational cost of computing the Agent Im-
portance and the Shapley value in seconds per environment
step (log scale).

experiments are detailed in section A. We examined various
cases by changing and varying the number of agents from 2 to
50. However, it is important to note that the experiment with
50 agents using the Shapley value took an exceptionally long
time to complete and was therefore omitted. Nevertheless, the
results obtained from the other experiments demonstrate the
scalability w.r.t the number of agents of the Agent Importance
metric compared to the Shapley value. In Figure 40, we
present the time consumed by each metric per step, with
the values plotted in a logarithmic scale. This scaling helps
visualize the significant difference in the required time when
using the Shapley Value.

Correlation between Agent Importance and the
Shapley value

To demonstrate the robust correlation between Agent Impor-
tance, the Shapley value, and individual reward, we present a
comprehensive set of correlation heatmaps in Figures 45 to
54. Each heatmap corresponds to a specific algorithm-task

bl
s
£
2
£
A
5
2

a B s o a a
Agents Agents

Figure 41: Left: Matching Rankings Comparison on LBF
15x15-4p-5f. Right: Matching Rankings Comparison on
RWARE small-4ag.

Ranking match %

a o s o @ @
Agents Agents

Figure 42: Left: Matching Rankings Comparison on LBF
15x15-4p-5f. Right: Matching Rankings Comparison on
RWARE small-4ag.

combination, as indicated by the title of the respective plot.
It’s important to note that these figures show a symmetrical
pattern, unlike the asymmetry seen in Figure 2(a). Further-
more, in Figures 42 to 44, we have extended the analysis
by examining the consistency of rankings among individual
rewards, agent importance, and the Shapley value for the
scenario depicted in Figure 2. However, it is worth noting
that these specific plots are specific to alternative algorithms,
namely IQL, QMIX, MAPPO, and MAA2C.

Moreover, we provide an overarching assessment of the
correlation between Agent Importance and the Shapley value
in Table 13. This evaluation entails computing the average
correlation coefficient across multiple independent runs, al-
gorithms, tasks, and agents, thereby yielding a consolidated
metric. To ensure fairness, tasks involving 2, 3, and 4 agents
are aggregated separately in the analysis.

Ranking match %

a ax a a a 2
Agents Agents

Figure 43: Left: Matching Rankings Comparison on LBF
15x15-4p-5f. Right: Matching Rankings Comparison on
RWARE small-4ag.

a0

Ranking match %

) 2 a5 a a @
Agents Agents

Figure 44: Left: Matching Rankings Comparison on LBF
15x15-4p-5f. Right: Matching Rankings Comparison on
RWARE small-4ag.

Table 13: Average correlation of Agent Importance and the
Shapley value. Even when aggregating over multiple indepen-
dent runs, algorithms, tasks, and agents, the strong correlation
still holds.

Number of Agents Correlation Value

2 0.97 £0.01
3 0.96 £0.01
4 0.96 +£0.01

Figure 45: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
first independent run. Each subplot corresponds to a specific
algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 46: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
second independent run. Each subplot corresponds to a spe-
cific algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 47: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
third independent run. Each subplot corresponds to a specific
algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

(H]

Figure 48: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
fourth independent run. Each subplot corresponds to a spe-
cific algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 49: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
fifth independent run. Each subplot corresponds to a specific
algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 50: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
sixth independent run. Each subplot corresponds to a specific
algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 51: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
seventh independent run. Each subplot corresponds to a spe-
cific algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 52: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
eighth independent run. Each subplot corresponds to a spe-
cific algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 53: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
ninth independent run. Each subplot corresponds to a spe-
cific algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

Figure 54: The correlation between Agent Importance, Shap-
ley values, and individual agent rewards is examined for the
tenth independent run. Each subplot corresponds to a specific
algorithm and task, displaying the name of the algorithm
followed by the task name. Notably, a strong correlation is
observed across all algorithms and tasks.

References

Agarwal, R.; Schwarzer, M.; Castro, P. S.; Courville, A.; and
Bellemare, M. G. 2022. Deep Reinforcement Learning at the
Edge of the Statistical Precipice. arXiv:2108.13264.
Agogino, A. K.; and Tumer, K. 2004. Unifying temporal
and structural credit assignment problems. In Autonomous
Agents and Multi-Agent Systems Conference.

Agogino, A. K.; and Tumer, K. 2008. Analyzing and visual-
izing multiagent rewards in dynamic and stochastic domains.
Autonomous Agents and Multi-Agent Systems, 17: 320-338.
Albrecht, S. V.; and Ramamoorthy, S. 2015. A Game-
Theoretic Model and Best-Response Learning Method for Ad
Hoc Coordination in Multiagent Systems. arXiv:1506.01170.
Albrecht, S. V.; and Stone, P. 2019. Reasoning about
Hypothetical Agent Behaviours and their Parameters.
arXiv:1906.11064.

Atrrieta, A. B.; Diaz-Rodriguez, N.; Del Ser, J.; Bennetot, A.;
Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lépez, S.; Molina, D.;

Benjamins, R.; et al. 2020. Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and challenges
toward responsible Al. Information fusion, 58: 82-115.
Bakhtin, A.; Brown, N.; Dinan, E.; Farina, G.; Flaherty, C.;
Fried, D.; Goff, A.; Gray, J.; Hu, H.; Jacob, A. P.; Komeili,
M.; Konath, K.; Kwon, M.; Lerer, A.; Lewis, M.; Miller,
A. H.; Mitts, S.; Renduchintala, A.; Roller, S.; Rowe, D.; Shi,
W.; Spisak, J.; Wei, A.; Wu, D. J.; Zhang, H.; and Zijlstra, M.
2022. Human-level play in the game of Diplomacy by com-
bining language models with strategic reasoning. Science,
378: 1067 — 1074.

Bard, N.; Foerster, J. N.; Chandar, S.; Burch, N.; Lanctot,
M.; Song, H. F,; Parisotto, E.; Dumoulin, V.; Moitra, S.;
Hughes, E.; Dunning, I.; Mourad, S.; Larochelle, H.; Belle-
mare, M. G.; and Bowling, M. 2020. The Hanabi challenge:
A new frontier for Al research. Artificial Intelligence, 280:
103216.

Boggess, K.; Kraus, S.; and Feng, L. 2022. Toward Policy
Explanations for Multi-Agent Reinforcement Learning. In
International Joint Conference on Artificial Intelligence.
Bonnet, C.; Luo, D.; Byrne, D.; Abramowitz, S.; Coyette, V.;
Duckworth, P.; Furelos-Blanco, D.; Grinsztajn, N.; Kalloni-
atis, T.; Le, V.; Mahjoub, O.; Midgley, L.; Surana, S.; Waters,
C.; and Laterre, A. 2023. Jumanji: a Suite of Diverse and
Challenging Reinforcement Learning Environments in JAX.
Brittain, M.; and Wei, P. 2019. Autonomous Air Traffic
Controller: A Deep Multi-Agent Reinforcement Learning
Approach. arXiv:1905.01303.

Chang, Y.-H.; Ho, T.; and Kaelbling, L. 2003. All learning is
local: Multi-agent learning in global reward games. Advances
in neural information processing systems, 16.

Christianos, F.; Schifer, L.; and Albrecht, S. 2020. Shared Ex-
perience Actor-Critic for Multi-Agent Reinforcement Learn-
ing. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan,
M. F.; and Lin, H., eds., Advances in Neural Information
Processing Systems, volume 33, 10707-10717. Curran Asso-
ciates, Inc.

Colas, C.; Sigaud, O.; and Oudeyer, P.-Y. 2018. Gep-pg: De-
coupling exploration and exploitation in deep reinforcement
learning algorithms. In International conference on machine
learning, 1039—-1048. PMLR.

Dazeley, R.; Vamplew, P.; and Cruz, F. 2023. Explainable
reinforcement learning for broad-xai: a conceptual framework
and survey. Neural Computing and Applications, 1-24.
Devlin, S.; Yliniemi, L.; Kudenko, D.; and Tumer, K. 2014.
Potential-based difference rewards for multiagent reinforce-
ment learning. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems,
165-172.

Du, W.; Ding, S.; Zhang, C.; and Du, S. 2021. Modified
action decoder using Bayesian reasoning for multi-agent deep
reinforcement learning. International Journal of Machine
Learning and Cybernetics, 12.

Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual multi-agent policy gra-
dients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Foerster, J.; Song, F.; Hughes, E.; Burch, N.; Dunning,
L.; Whiteson, S.; Botvinick, M.; and Bowling, M. 2019.
Bayesian Action Decoder for Deep Multi-Agent Reinforce-
ment Learning. In Chaudhuri, K.; and Salakhutdinov, R.,
eds., Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, 1942-1951. PMLR.

Freeman, C. D.; Frey, E.; Raichuk, A.; Girgin, S.; Mordatch,
I.; and Bachem, O. 2021. Brax - A Differentiable Physics
Engine for Large Scale Rigid Body Simulation.

Glanois, C.; Weng, P.; Zimmer, M.; Li, D.; Yang, T.; Hao, J.;
and Liu, W. 2021. A survey on interpretable reinforcement
learning. arXiv preprint arXiv:2112.13112.

Gorsane, R.; Mahjoub, O.; de Kock, R.; Dubb, R.; Singh,
S.; and Pretorius, A. 2022. Towards a Standardised
Performance Evaluation Protocol for Cooperative MARL.
arXiv:2209.10485.

Gu, B.; Zhang, X.; Lin, Z.; and Alazab, M. 2021. Deep Mul-
tiagent Reinforcement-Learning-Based Resource Allocation
for Internet of Controllable Things. IEEE Internet of Things
Journal, 8(5): 3066-3074.

Han, S.; Wang, H.; Su, S.; Shi, Y.; and Miao, F. 2022. Sta-
ble and efficient Shapley value-based reward reallocation
for multi-agent reinforcement learning of autonomous ve-

hicles. In 2022 International Conference on Robotics and
Automation (ICRA), 8765-8771. IEEE.

Heess, N. M. O.; Dhruva, T.; Sriram, S.; Lemmon, J.; Merel,
J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.
M. A.; Riedmiller, M. A.; and Silver, D. 2017. Emergence
of Locomotion Behaviours in Rich Environments. ArXiv,
abs/1707.02286.

Henderson, P.; Romoff, J.; and Pineau, J. 2018. Where
Did My Optimum Go?: An Empirical Analysis of Gradi-
ent Descent Optimization in Policy Gradient Methods. ArXiv,
abs/1810.02525.

Heuillet, A.; Couthouis, F.; and Diaz-Rodriguez, N. 2021.
Explainability in deep reinforcement learning. Knowledge-
Based Systems, 214: 106685.

Heuillet, A.; Couthouis, F.; and Diaz-Rodriguez, N. 2022.
Collective explainable Al: Explaining cooperative strategies
and agent contribution in multiagent reinforcement learn-
ing with shapley values. IEEE Computational Intelligence
Magazine, 17(1): 59-71.

Hu, H.; and Foerster, J. N. 2021. Simplified Action
Decoder for Deep Multi-Agent Reinforcement Learning.
arXiv:1912.02288.

Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; and Doshi-
Velez, F. 2019. Explainable reinforcement learning via re-
ward decomposition. In IJCAI/ECAI Workshop on explain-
able artificial intelligence.

Kitamura, T.; and Yonetani, R. 2021. ShinRL: A Library for
Evaluating RL Algorithms from Theoretical and Practical
Perspectives.

Kraus, S.; Azaria, A.; Fiosina, J.; Greve, M.; Hazon, N.;
Kolbe, L. M.; Lembcke, T.-B.; Miiller, J.; Schleibaum, S.;

and Vollrath, M. 2019. AI for Explaining Decisions in Multi-
Agent Environments. In AAAI Conference on Artificial Intel-
ligence.

Lange, R. T. 2022. gymnax: A JAX-based Reinforcement
Learning Environment Library.

Liu, X.; Yu, J.; Feng, Z.; and Gao, Y. 2020. Multi-agent
reinforcement learning for resource allocation in IoT net-
works with edge computing. China Communications, 17(9):
220-236.

Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.;
and Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neural
information processing systems, 30.

Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F. 2020.
Explainable reinforcement learning through a causal lens. In
Proceedings of the AAAI conference on artificial intelligence,
volume 34, 2493-2500.

Michalski, A.; Christianos, F.; and Albrecht, S. V. 2023.
SMAClIite: A Lightweight Environment for Multi-Agent Re-
inforcement Learning. arXiv:2305.05566.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016a. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928-1937.
PMLR.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016b. Asyn-
chronous Methods for Deep Reinforcement Learning. In
Balcan, M. F.; and Weinberger, K. Q., eds., Proceedings of
The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research,
1928-1937. New York, New York, USA: PMLR.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Nasir, Y. S.; and Guo, D. 2019. Multi-Agent Deep Reinforce-
ment Learning for Dynamic Power Allocation in Wireless
Networks. IEEE Journal on Selected Areas in Communica-
tions, 37(10): 2239-2250.

Osband, 1.; Doron, Y.; Hessel, M.; Aslanides, J.; Sezener,
E.; Saraiva, A.; McKinney, K.; Lattimore, T.; Szepesvari, C.;
Singh, S.; et al. 2019. Behaviour suite for reinforcement
learning. arXiv preprint arXiv:1908.03568.

Papoudakis, G.; Christianos, F.; Schifer, L.; and Al-
brecht, S. V. 2021. Benchmarking Multi-Agent Deep Re-
inforcement Learning Algorithms in Cooperative Tasks.
arXiv:2006.07869.

Pretorius, A.; Cameron, S.; Van Biljon, E.; Makkink, T.;
Mawjee, S.; du Plessis, J.; Shock, J.; Laterre, A.; and Beguir,
K. 2020. A game-theoretic analysis of networked system
control for common-pool resource management using multi-

agent reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33: 9983-9994.

Puiutta, E.; and Veith, E. M. 2020. Explainable reinforcement
learning: A survey. In Machine Learning and Knowledge

Extraction: 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9
International Cross-Domain Conference, CD-MAKE 2020,
Dublin, Ireland, August 25-28, 2020, Proceedings 4, 77-95.
Springer.

Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2018a. QMIX: Monotonic Value
Function Factorisation for Deep Multi-Agent Reinforcement
Learning. arXiv:1803.11485.

Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2018b. QMIX: Monotonic Value
Function Factorisation for Deep Multi-Agent Reinforcement
Learning. arXiv:1803.11485.

Samvelyan, M.; Rashid, T.; de Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T. G. J.; Hung, C.-M.; Torr, P. H. S.;
Foerster, J.; and Whiteson, S. 2019. The StarCraft Multi-
Agent Challenge.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347.

Shapley, L. S. 1953. Stochastic Games*. Proceedings of the
National Academy of Sciences, 39(10): 1095-1100.

Singh, S. S.; and Rosman, B. 2023. The Challenge of Redun-
dancy on Multi-agent Value Factorisation. In Proceedings
of the 2023 International Conference on Autonomous Agents
and Multiagent Systems, 2436-2438.

Spatharis, C.; Blekas, K.; Bastas, A.; Kravaris, T.; and Vouros,
G. A. 2019. Collaborative multiagent reinforcement learning
schemes for air traffic management. In 2019 10th Interna-
tional Conference on Information, Intelligence, Systems and
Applications (I1ISA), 1-8.

Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.;
Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.;
Leibo, J. Z.; Tuyls, K.; and Graepel, T. 2017a. Value-
Decomposition Networks For Cooperative Multi-Agent
Learning. arXiv:1706.05296.

Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.; Zam-
baldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo,
J. Z.; Tuyls, K.; et al. 2017b. Value-decomposition net-
works for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296.

Tan, M. 1993. Multi-agent reinforcement learning: Inde-
pendent vs. cooperative agents. In Proceedings of the tenth
international conference on machine learning, 330-337.

Tan, M. 1997. Multi-Agent Reinforcement Learning: Inde-
pendent versus Cooperative Agents. In International Confer-
ence on Machine Learning.

Vidhate, D. A.; and Kulkarni, P. 2017. Cooperative multi-
agent reinforcement learning models (CMRLM) for intelli-
gent traffic control. In 2017 Ist International Conference on
Intelligent Systems and Information Management (ICISIM),
325-331.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.;
Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard, V.;

Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre,
C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.;
Wiinsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lillicrap,
T. P.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and Silver,
D. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 1-5.

Vouros, G. A. 2022. Explainable deep reinforcement learning:
state of the art and challenges. ACM Computing Surveys,
55(5): 1-39.

Wang, J.; Zhang, Y.; Gu, Y.; and Kim, T.-K. 2022. SHAQ:
Incorporating Shapley Value Theory into Multi-Agent Q-
Learning. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Bel-
grave, D.; Cho, K.; and Oh, A., eds., Advances in Neural
Information Processing Systems, volume 35, 5941-5954. Cur-
ran Associates, Inc.

Wang, J.; Zhang, Y.; Kim, T.-K.; and Gu, Y. 2020. Shapley
g-value: A local reward approach to solve global reward
games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 7285-7292.

Wen, M.; Kuba, J. G.; Lin, R.; Zhang, W.; Wen, Y.; Wang, J.;
and Yang, Y. 2022. Multi-Agent Reinforcement Learning is
a Sequence Modeling Problem. arXiv:2205.14953.

Wolpert, D. H.; and Tumer, K. 2001. Optimal payoff func-
tions for members of collectives. Advances in Complex Sys-
tems, 4(02n03): 265-279.

Yang, Y.; Hao, J.; Chen, G.; Tang, H.; Chen, Y.; Hu, Y.;
Fan, C.; and Wei, Z. 2020a. Q-value path decomposition
for deep multiagent reinforcement learning. In International
Conference on Machine Learning, 10706-10715. PMLR.
Yang, Y.; Hao, J.; Liao, B.; Shao, K.; Chen, G.; Liu, W.;
and Tang, H. 2020b. Qatten: A general framework for co-
operative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939.

Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.;
and Wu, Y. 2022. The surprising effectiveness of ppo in coop-
erative multi-agent games. Advances in Neural Information
Processing Systems, 35: 24611-24624.

Zhao, N.; Liu, Z.; and Cheng, Y. 2020. Multi-Agent Deep
Reinforcement Learning for Trajectory Design and Power
Allocation in Multi-UAV Networks. IEEE Access, 8: 139670—
139679.

