
Descriptor-In-Pixel : Point-Feature Tracking for Pixel Processor Arrays

Laurie Bose1,2 Jianing Chen1,2 Piotr Dudek1,2

1The University of Manchester, Department of EEE, Manchester, United Kingdom
2Visionchip Limited, Manchester, United Kingdom

https://lauriebose.github.io/DIP

Abstract

This paper presents a novel approach for joint point-
feature detection and tracking, designed specifically for
Pixel Processor Array (PPA) vision sensors. Instead of
standard pixels, PPA sensors consist of thousands of “pixel-
processors”, enabling massive parallel computation of vi-
sual data at the point of light capture. Our approach per-
forms all computation entirely in-pixel, meaning no raw im-
age data need ever leave the sensor for external processing.
We introduce a Descriptor-In-Pixel paradigm, in which a
feature descriptor is held within the memory of each pixel-
processor. The PPA’s architecture enables the response of
every processor’s descriptor, upon the current image, to be
computed in parallel. This produces a“descriptor response
map” which, by generating the correct layout of descrip-
tors across the pixel-processors, can be used for both point-
feature detection and tracking. This reduces sensor output
to just sparse feature locations and descriptors, read-out
via an address-event interface, giving a greater than 1000×
reduction in data transfer compared to raw image output.
The sparse readout and complete utilization of all pixel-
processors makes our approach very efficient. Our imple-
mentation upon the SCAMP-7 PPA prototype runs at over
3000 FPS (Frames Per Second), tracking point-features re-
liably under violent motion. This is the first work perform-
ing point-feature detection and tracking entirely in-pixel. 1

1. Introduction

Point-features are distinct points within an image, chosen to
be clearly identifiable within multiple images of the same
scene, even under changes such as scale, lighting, and per-
spective. The various methods of point-feature detection
and tracking are some of the most widespread tools in com-
puter vision, playing a vital role in Visual Odometry and Si-
multaneous Localisation and Mapping (SLAM). Many mo-

1This work has been funded in part by EPSRC, grant number
EP/Y023048/1.

Figure 1. A smartphone and SCAMP-7 PPA are strapped together
and shaken violently. The frames are not fully synchronised, but it
is clear the smartphone’s 60 FPS image is unusable, while at 3000
FPS our approach continues tracking features without issue.

bile systems such as virtual-reality headsets and unmanned
aerial vehicles rely extensively on point-features, often from
multiple cameras, to continuously estimate the system’s
pose. Such systems have limited on-board computational
power, limited battery life, and often require low-latency
response due to rapid motion. This has pushed the need for
computational efficiency, but despite many advancements,
the basic task of image transfer from sensor to processor
remains a significant time and power bottleneck.

This issue ultimately reflects the dominant paradigm in
electronic imaging, where sensors are primarily built to cap-
ture images for a human observer, rather than efficient vi-
sual computing. In the context of point-feature detection
and tracking, whole images are distilled down to a sparse
handful of key-points and descriptors. This is a tiny amount
of data compared to the original image, yet standard cam-
eras must still transfer whole images to external process-
ing, repeatedly every frame. This paper presents an alter-
native, a novel implementation of point-feature detection
and tracking for an emerging sensor paradigm, the Pixel-
Processor Array (PPA) [9]. Traditional cameras consist of
an array of light capture elements, while PPAs are an ar-
ray of programmable pixel-processors or “Processing El-
ements” (PEs). Each of these processors has its own lo-
cal memory on which it can perform various computations,
and communication with neighbouring processors enabling

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5392



data transfer across the array. Images are captured directly
into the array, with each PE capturing a single pixel of the
whole image into its local memory. This sensor architecture
enables massively parallel “in-pixel” computation upon the
focal plane, with the PE array operating as a Single Instruc-
tion Multiple Data (SIMD) computer. Such a sensor can
capture visual data, extract high level information, and then
output only this sparse data, thereby removing the image
output bottleneck.

Our in-pixel approach for point-feature detection and
tracking is designed specifically for the PPA’s architec-
ture, providing high pixel-processor compute resource util-
isation, and minimizing data transfer between sensor and
external processing. The core of our approach is based
around the concept of “Descriptor-In-Pixel”, whereby each
PE holds a complete point-feature descriptor within its own
local memory. The PPA computes in parallel the response
of every PE’s descriptor upon a captured image. By gener-
ating the correct layout of descriptors every frame across the
PE array, the computed “response map” can be used for both
point-feature detection and tracking. All computation is
performed within the PPA’s pixel-processors (the PE array),
without any additional external processing on PC or mi-
crocontroller. Therefore, dense sensor output, such as im-
ages, is no longer necessary. Instead, only the coordinates
of tracked point-features and the descriptors of newly ini-
tialized point-features are output, providing a greater than
1000× data reduction compared to whole images. Any ad-
ditional image data in this paper is output purely for visu-
alization purposes, and is not required for our approach to
operate. Our implementation upon the SCAMP-7 PPA pro-
totype [6] achieves speeds just above 3000 frames per sec-
ond (FPS), with an average sensor output of just 2 bytes
per feature, per frame, demonstrating the PPAs potential in
high-speed applications (Figure 1).

2. Related Works
Prior PPA Based Works: At the time of writing there
are few other works regarding point-feature detection and
tracking for PPAs. The early work of [8] demonstrated an
implementation of the FAST corner detector [17] at 2300
FPS on SCAMP-5. This work does not perform any form
of tracking, and simply outputs the coordinates of detected
corner points from the sensor. Performing feature track-
ing/correspondence using nothing but point coordinates is
very challenging, especially as FAST uses no information
from previous frames to inform detection, leading to poor
temporal stability of detected points between frames. BIT-
VO [16] took steps to address this by outputting a binary
edge image alongside the corner points detected by FAST.
From these edge images corner descriptors are computed,
which are then used in tracking corner points between
frames. While this improves tracking quality, the need to

output a full resolution binary image to external processing
introduces a significant bottleneck, limiting performance to
300 FPS. The solution to this is performing both detection
and tracking entirely on-sensor, avoiding the need to out-
put dense visual information to external processing. This is
the motivation behind our approach, which uses purely on-
sensor compute to detect and track point-features at thou-
sands of frames per second.
Event Cameras: Event cameras are another alternative vi-
sual sensor [10], outputting a stream of “events” which en-
code time, location and polarity of brightness changes at
the per-pixel level. Many works have demonstrated point-
features upon event cameras, some using just the raw event
stream [15], others incorporating image data into their ap-
proach [20], [11], [14]. With the event camera’s very
high dynamic range and temporal resolution, many of these
works produce impressive results, tracking features in rapid
motion and challenging lighting conditions. One drawback
of event cameras is the complexity involved in dealing with
their sparse asynchronous event data (a price paid in ex-
change for the sensor’s very high temporal resolution). This
can lead to significant computational costs, and while ear-
lier works may use only a standard desktop CPU [20], re-
cent works require a high-end 300 watt GPU for close to
real-time performance [14]. In contrast, a strength of the
PPA is that it still allows visual computation to be per-
formed upon captured image frames, instead of complex
asynchronous event data. By performing all computation
in-pixel, temporal resolutions and latencies comparable to
event camera based methods can be achieved, but at a re-
duced total energy cost.
Traditional Point-Feature Tracking: Many traditional
point-feature approaches such as ORB [18] work by locat-
ing salient points (using methods such as FAST [17]), and
building descriptors for each of these points. Point-features
are then tracked by matching their descriptors against those
of salient points detected in the current frame. However,
separating detection and tracking into two disjoint pro-
cesses allows a tracked feature’s associated salient point to
be missed in detection, potentially replaced by a different
salient point in close proximity. This can result in tracked
features “flickering” as their salient points are temporarily
lost. By contrast our approach uses the same mechanism
(descriptor response) for both detection and tracking for re-
liable re-detection of existing features.

3. SCAMP Overview
We demonstrate an implementation of our approach upon
the SCAMP-7 PPA system [6]. Shown in Figure 2, this vi-
sion sensor device has an image resolution of 256×256, giv-
ing a total of 65,536 pixel-processors (PEs). Each proces-
sor is connected to its four immediate neighbours, forming
a network for data transfer across the array. For local mem-

5393



ory, each pixel-processor has 23 1-bit digital registers, and 7
analogue registers which store continuous values. Various
operations upon local memory are supported, such as ad-
dition and subtraction of analogue registers, boolean logic
between digital registers, and thresholding of analogue val-
ues to digital results. Light is captured separately by each
processor, and with each frame trigger, converted to ana-
logue values. Thus each processor captures one pixel of an
image that spans the whole array.

Each pixel-processor does not store and execute its own
program instructions, instead a centralised controller broad-
casts identical instructions to all 65,536 processors in paral-
lel, which then execute each instruction concurrently. Thus
the array operates in a Single Instruction Multiple Data
(SIMD) mode, similar to GPU compute. Importantly each
pixel-processor contains a 1-bit “activity flag” register for
enabling and disabling the execution of instructions, allow-
ing for per-pixel conditional execution. By writing pro-
grams for the controller, the processor array can be made
to execute entire vision applications in-pixels, and output
only specific extracted information. Various tasks have
been demonstrated on this architecture including neural net-
works [4],[19],[21],[3], visual odometry [16],[2],[12], and
eye tracking [5].

4. Approach Overview
Our approach uses a novel Descriptor In-Pixel paradigm de-
signed specifically to exploit the PPA’s massively parallel,
on-sensor computation. Three key components enabled by
the PPA’s architecture are as follows.
1. In-Pixel Descriptors. Our approach involves storing a

complete point-feature descriptor within each PE’s local
digital memory, essentially storing a descriptor at each
pixel location.

2. Parallel Descriptor Computation. The PPA captures
image frames directly into the PE array, with each PE
capturing one pixel into its local analogue memory. By
examining the pixel data of surrounding PEs, each PE
can compute a descriptor for its local image content.
This descriptor computation can be performed for every
PE (i.e. every pixel location) simultaneously in parallel.

3. Parallel Descriptor Response Computation. Com-
parison between stored descriptors and those computed
from captured image can be performed in parallel across
all PEs. This generates a “response map”, indicating
how strongly the stored descriptors correlate or “match”
with the captured image content.

The descriptors distributed across the PE array follow a spe-
cific layout, surrounding each tracked point-feature’s loca-
tion with PEs storing its descriptor. This descriptor lay-
out is generated every frame by spreading the descriptors
of tracked features into nearby PEs. After computing the
response of these stored descriptors on the current image

Figure 2. SCAMP-7 has 256x256 pixel-processors, each which
can capture light, store and process data within its local memory
registers, and transfer data to neighbouring processors. A con-
troller sequentially transmits SIMD instructions to the processor
array for execution.

frame, each tracked feature will be surrounded by a patch of
response from its own descriptor. These response patches
are analysed in parallel, determining the new location of
each tracked feature. This tracking requires that features do
not move further than the predetermined patch area between
frames. However, our approach can operate at thousands of
frames per second, allowing patch areas to be very small
(9 × 9) and still facilitate reliable tracking. New point-
features are detected and initialized by analysing the re-
sponses of those PEs not inside the patch of any tracked
feature. These aspects will be described later in detail.

In summary, our approach performs all necessary com-
putation within the PE array, each feature is tracked be-
tween frames using pixel-processors surrounding its loca-
tion, while all remaining pixel-processors perform a search
to detect new features. This approach is very efficient essen-
tially utilizing 100% of the PPA’s compute, and also allows
sensor output to be reduced to simply the locations and de-
scriptors of tracked features. As a result, our approach can
operate at thousands of frames per second upon SCAMP-7.

5. In-Pixel Descriptors

We make use of simple binary point descriptors, similar to
the well known BRIEF descriptor [7]. Such descriptors are
stored as binary strings within each PE, occupying multiple
digital registers (1 bit per register). Computing a PE’s de-
scriptor for a given image involves comparing pairs of pixel
data around its location, each comparison generating 1 bit
of the descriptor’s string. Specifically, the ith bit of the de-

5394



Figure 3. Examples of simple descriptor response maps, where the same 8-bit descriptor is stored inside all PEs. Maps are generated for
three example descriptors, all using the same sampling pattern (Bottom Left), and input image (Top Left). For comparison we generate
response maps using both our weight pixel-pairs method, and the Hamming distance. High response ”blobs” pinpoint certain visual
structures, but those from the Hamming distance can be unreliable for tracking, as illustrated in Teal.

scriptor, di, is computed as

di =

{
0, if pi(1) < pi(2)

1, if pi(1) ≥ pi(2)
(1)

where pi(1), pi(2) are a pair of pixel values at locations rel-
ative to the PE’s location, according to some predetermined
sampling pattern.
Descriptor Size: For maximum efficiency, an entire de-
scriptor should be stored within each PE (i.e. one descriptor
per pixel location). However, PE local memory on SCAMP-
7 is very limited, restricting this first demonstration of our
approach to tiny 8-bit descriptors, performing just eight lo-
cal pixel pair comparisons. Due to how our approach op-
erates, these are still sufficient for reliable high-speed fea-
ture tracking. Larger descriptors could be utilized on future
PPA hardware, with greater memory per PE. Note, using
significantly larger descriptors (128+ bit) would likely not
improve tracking in our approach, but these would be better
suited to long term tasks such as re-localisation.
Descriptor Sampling Pattern: Computing the binary de-
scriptor for a specific pixel location involves comparing
pairs of pixels, sampled in a given pattern about that lo-
cation. This “sampling pattern”, is chosen with the aim to
compress the local image into a compact bit string, cap-

turing any discriminative structures within the local image
content. BRIEF [7] uses fixed random sampling patterns,
which are too large (128+ bit) to use for in-pixel descriptors.
Instead we use fixed sampling patterns similar to the BRISK
[13] & FREAK [1] descriptors. We only use a single sam-
pling pattern during operation, for all descriptors across all
PEs, as this enables us to fully exploit the PPA’s parallel
SIMD compute. We opted for a ‘compare-to-center’ sam-
pling pattern (see Figure 3) due to its simplicity and low
computational cost, though many other patterns could be
used.

6. Descriptor Response-Maps
With each new image frame our approach generates a lay-
out of descriptors stored across the PE array, and then com-
putes the “response” of each PE’s stored descriptor. De-
scriptor response refers to how strongly the visual features
represented by a specific descriptor are present at a certain
location within an image. Measuring the response of a PE’s
stored descriptor first involves computing the descriptor for
the image at that PE’s location. The computed image de-
scriptor is then compared to the PE’s stored descriptor. A
higher similarity between the two indicates that the stored
descriptor more accurately represents the local image con-

5395



Figure 4. Descriptor layout described in Section 7. Each PE stores
an 8-bit descriptor within its digital registers. Tracked features are
surrounded by patches of PEs storing their descriptor (shown by
various colours). PEs outside such patches store the current search
descriptor. Additionally, 1 digital register in each PE indicates if
tracked feature is located there (shown in yellow).

Figure 5. Left : A “patchwork” response map computed using
the descriptor layout of Section 7. Right: Corresponding captured
image & tracked features. Two response patches (9× 9 PEs) from
different features are shown in detail.

tent. Thus, as will be described, descriptor response should
correlate to a measurement of this similarity.

The PPA architecture enables the response of every PEs
stored descriptor to be computed in parallel, and placed
into local analogue memory, forming a “descriptor response
map” spread across the PE array. Figure 3 shows simple re-
sponse maps, with all PEs storing the same descriptor.
Measuring Descriptor Similarity and Response: A sim-
ple measure of similarity between binary descriptors is to
compute the number of matching bits between their bit
strings (i.e. Hamming distance), a common choice on tra-
ditional digital processing, being very cheap to compute.
SCAMP-7 however has analogue computation capability,
and captures images directly into its PE array as analogue
data. For almost no additional cost, this analogue compute
allows to also account for the raw pixel data when comput-
ing descriptor response. This is very useful for handling
image regions that will not provide reliable point-feature
tracking, such as low texture or highly repetitive texture re-
gions. Descriptors inside such “ambiguous” regions will
have poor temporal stability, as very slight image changes
(from noise or lighting) will produce radically different de-

scriptors from one frame to the next. Thus we do not simply
measure the number of matching bits between descriptors,
but also weight these matches (and penalize misses) by the
magnitude of the pixel pair comparison results associated
with each bit. Specifically, we compute the response R of a
stored descriptor at a certain image location as follows:

R =

8∑
i=1

(2di − 1)(pi(1) − pi(2)) (2)

where di ∈ {0, 1}, is the ith bit of the descriptor, and
pi(1), pi(2) ∈ ℜ are the pixel values for the ith pair of pix-
els, selected according to the descriptor’s sampling pattern.
This ensures high descriptor response is only produced in
image regions which can provide reliable tracking. Figure
3 shows example response maps generated using both this
weighted pixel-pairs method, and the Hamming distance.

7. Descriptor Layout
The response maps of Figure 3 are simple examples, with
the same descriptor being stored inside every PE. In prac-
tice, with every captured frame, our approach generates a
layout of various descriptors across the PE array. This de-
scriptor layout enables the computed response maps to be
used for both point-feature tracking and detection. Genera-
tion of this layout splits all PEs into one of two categories.
1. PEs Located Near Tracked Point-Features. Each

tracked point-feature’s descriptor is spread into a local
“patch” of PEs surrounding its location (i.e. around
the PE the feature currently resides in). The computed
response map will then have each tracked feature sur-
rounded by responses from its own descriptor, from
which the feature’s new location can be determined.

2. All Remaining PEs. A single “search descriptor” is
loaded into all remaining PEs, not located close to any
tracked feature. The responses from this descriptor are
examined to detect new point-features. To detect differ-
ent features, the search descriptor itself is randomized
every frame.

To generate this descriptor layout, the search descriptor is
first loaded into all PEs in parallel, excluding PEs contain-
ing tracked point-features. Next the descriptors of tracked
point-features are spread out from their containing PEs,
across a small local patch of PEs (9 × 9). This descriptor
spreading is also performed for every tracked point-feature
in parallel. Figure 4 illustrates this layout, and the digital
registers used with each PE for descriptor storage, and indi-
cation of a tracked feature’s location.

8. Patchwork Response Map
The descriptor layout described in Section 7 generates re-
sponse maps which have distinct patches of response, one

5396



Figure 6. Steps for updating locations of tracked features, computation of the patchwork descriptor response map, blob-detection & NMS.

for each tracked point-feature. Each feature’s patch is cen-
tred upon its last known location, and contains responses
from its descriptor. PEs outside these patches will contain
responses from the current search descriptor. When visual-
ized these response maps have a “patchwork” like appear-
ance as shown in Figure 5. These patchwork response maps
contain sufficient information to both detect reliable new
point-features, and update the locations of existing tracked
point-features. They also require no additional computa-
tion: by simply storing different descriptors across the PE
array, the responses used for both tracking and detecting
point-features are all computed in parallel.

9. Point-Feature Detection
Descriptor response is the mechanism by which our ap-
proach both detects and tracks point-features. With each
new frame a patchwork response map (as described in Sec-
tion 8) is computed. Feature detection involves searching
for any locations where the search descriptor’s response
strongly identifies some underlying visual point-feature.
These locations appear as small distinct regions of high re-
sponse, surrounded by low response. High response indi-
cates the strong presence of visual features matching the
search descriptor, while the surrounding low response indi-
cates these features are distinct to a specific location (i.e. a
point-feature). These high response “blobs” (such as shown
in Figure 6), are prime candidates at which to initialize new
point-features, as their location can be reliably tracked by
the descriptor’s local response.
Blob Detection: To locate new point-feature candidates
(and also track existing features), blob detection is per-
formed upon each frame’s response map, at a scale of the
descriptor sampling patterns size. Strong blob detection
responses then represent reliable point-feature candidates.
Figure 6 illustrates this process: from image, to response
map, to blob detection result.
Point-Feature Initialization: Our approach uses one dig-
ital register within each PE to signify if there is a tracked
point-feature at its location, with PEs containing tracked

features then also storing the descriptor of that feature (see
Figure 4). This scheme, storing point-features within local
PE memory, enables all features to be tracked in parallel.

To initialize new features, thresholding is performed
upon the blob detection result. This is used to identify the
PEs located at the centres of the strongest blobs, which are
the best candidates for new point-features. New features are
then added by simply setting the digital register to signify
the presence of a tracked point-feature within each of these
PEs.
Descriptor Readout: Whenever a new point-feature is ini-
tialized, we can optionally read out its descriptor from the
sensor. This is unnecessary for feature tracking, but could
be used for additional tasks or simply for visualization. The
descriptor readout is performed sequentially over multiple
frames, 1 bit per frame. This still allows hundreds of 8-bit
descriptors to be read out per second, but minimizes spikes
in the processing time per frame (< 1µs).

It is also possible to generate and read out longer descrip-
tors for each new feature (instead of the short 8-bit descrip-
tors used for in-pixel tracking). These could be used by
external off-sensor processing to re-identify past features,
which left the sensor’s view, such as for SLAM system
loop-closure/relocalisation. This is beyond the scope of this
paper, but should be a relatively straightforward extension.

10. Feature Tracking
With each new captured frame the locations of tracked
point-features must be updated. This is done by finding
the local maximum of each feature’s descriptor response,
around that feature’s previous location. The PE contain-
ing this maximum is then taken to be that of the feature’s
new location. This can be viewed as similar to a gradient
descent process, with each feature’s location following the
local maxima of its descriptor response, which evolves in
time with each captured frame. For each frame, the de-
scriptor layout of Section 7 is generated, and used to com-
pute the patchwork response maps of Section 8. These
response maps have each tracked feature surrounded by a

5397



Figure 7. Examples of feature tracking on SCAMP-7. Left Col-
umn: Trails of point-features tracked by SCAMP-7, with thickness
representing age. Right Column: 60 FPS video from smartphone
mounted alongside SCAMP-7. Our approach tracks features reli-
ably under motion that renders the smartphone’s image near unus-
able. Here SCAMP-7 also outputs an image temporally (1/16th

per frame) for visualization, limiting performance to around 850
FPS. The motion blur in SCAMP-7 images shown is an artefact of
this image readout scheme, and is not present internally.

patch of response from its own descriptor. After performing
blob detection upon this response map, a patch-wise, non-
maximum-suppression (NMS) routine is performed. This
identifies the PEs of highest response within every feature’s
patch, which are taken to represent each feature’s new lo-
cation. This process is illustrated in Figure 6. It should be
noted, that point-features are typically considered to be 1-
pixel in size. In practice, however, it is not necessary to

ensure the NMS routine produces single pixels, just well-
located, distinct, and small cluster of pixels.
Dropping Weak Features: After computing the descrip-
tor response map for a new frame, there may exist some
tracked features with no high values in their associated de-
scriptor response patches. This indicates the visual feature
associated with that point-feature’s descriptor is no longer
clearly identifiable due to occlusion, lighting, or perspective
changes. Such features can no longer be reliably tracked
by descriptor response. The PEs containing such features
are located by thresholding the response map, and their fea-
tures removed by setting the digital register signifying fea-
ture presence to false.
Benefits From High Frame-Rate: The very high speed
at which our approach operates significantly simplifies fea-
ture tracking. Captured images will barely change from one
frame to the next, and the motion of point-features is re-
duced to a gradual crawl across the PE array. Specifically
two major benefits are:

1. Reduced Motion Blur. Motion blur in captured images
is reduced significantly, if not entirely eliminated, even
under violent sensor motion. This helps ensure the vi-
sual features underlying each tracked point-feature re-
main clear and consistent from one image to the next.

2. Reduced Feature Location Search. As captured im-
age will change very little from one frame to the next, so
to will the locations of any tracked point-features. This
allows the search for each tracked point-feature’s new lo-
cation to be limited to a small region around its previous
location, 9× 9 PEs in SCAMP-7.

11. SCAMP Implementation

The current implementation of our approach on SCAMP-
7 can run at just over 3000 FPS. While optimized, further
code improvements may still exist . A breakdown of the
total computation time per frame is given in Table 1. To
put these numbers into perspective, the time taken to out-
put a full uncompressed image from the sensor is well over
20000 µs, and even a 4-bit image requires 2700 µs. Our
approach avoids such bottlenecks by performing all nec-
essary computation entirely on-sensor, and outputting only
sparse feature locations and descriptors. Examples of real-
time output are shown in Figure 7, showcasing point-feature
tracking under rapid motion to a degree not possible with
a traditional camera sensor. It is worth noting that the
SCAMP-7 chip is a research prototype, created using an
old 180nm CMOS manufacturing process, with relatively
low clock speeds, very restrictive memory per PE, and sig-
nificantly higher power usage than what is possible using
today’s state-of-the art semiconductor technology. That our
approach can achieve such performance upon this device is
an indication of the potential of the PPA sensor paradigm.

5398



12. Evaluation
An exact evaluation of our approach against traditional
methods is difficult for a number of reasons. Firstly to reach
its full potential, our approach must operate at very high
frame-rates to ensure small inter-frame motion (at a min-
imum 500 FPS). This is no issue for our PPA implemen-
tation, which can capture and process images at thousands
of frames per second, but the number of datasets applica-
ble to feature-tracking captured at such frame rates is very
limited. Further testing our PPA implementation upon any
such dataset would involve uploading each video frame se-
quentially into the PPA’s PE array to emulate image cap-
ture. SCAMP-7 was never designed with this in mind, and
uploading such large quantities of data is not efficient and
prone to errors. As such we deemed evaluation using high
frame rate datasets that would involve uploading thousands
of sequential images not feasible.

We instead performed a comparison against feature
tracking using a SCAMP-7 implementation of FAST key-
point detector. This is chosen also because it has speed com-
parable to our approach, and thus potentially able to track
features under the same rapid motion. A modified imple-
mentation of [8] was used, which outputs corner point co-
ordinates from the SCAMP-7. Simple point-feature track-
ing is then performed by matching each corner point with
its closest corner point from the previous frame. To match
corner points purely by frame-to-frame location (proxim-
ity), they must be within a small threshold distance (e.g. 5
pixels). We compare our approach against this FAST based
tracking by recording the output of both approaches, view-
ing the same scenes, running at the same speed of 1000
FPS, using a very similar sequences of sensor motions for
both approaches. Some of these motions keep parts of the
scene in constant view, allowing some features to be tracked
throughout the entire motion. We record how long every
feature is tracked for before it is lost, with results for each
motion sequence shown in Figure 8. Note, we also do not
count any “poor quality” features from the FAST approach,
which have lifetimes of less than 0.25 seconds. The distri-
bution of feature lifetimes in these histograms give a sense
of how reliable the approaches are comparatively. For ex-
ample, under the ‘Translate’ motion, 90% of features using
FAST based tracking were lost within 5 seconds, and 0%
of features were tracked for over 15 seconds, compared to
around 20% with our approach. It is clear from the ratio
of feature lifetimes that our approach is far more reliable at
tracking features for any significant length of time.
Limitations In our current implementation, only the loca-
tions and descriptors of tracked features are represented in-
pixel. Consequently, feature tracking has no concept of ori-
entation and scale, making it non-invariant to rotation and
scaling. While this is a significant limitation, we argue that
it is not a fundamental drawback of the Descriptor-In-Pixel

Table 1. SCAMP-7 Computation Time Breakdown.

Task Compute Time µs %
Descriptor Response Map 192 60

Feature Initialization 31 10
Feature-Wise NMS 41 13

Misc/Other Computation 57 17
Total 321 -

Figure 8. Comparison of feature lifetime histograms, our approach
vs tracking based on FAST keypoints, under different sensor mo-
tions. Both approaches are run at 1000 FPS on SCAMP-7 for com-
parison. Features tracked using our approach have significantly
longer lifespans in general as shown by the ratio.

approach but rather a constraint imposed by the current state
of PPA hardware, which remains in the early stages of de-
velopment. Specifically, the limited memory within each
PE makes storing additional information, such as a feature’s
orientation, challenging. We expect that as future PPA de-
vices increase memory capacity per PE, our method can be
extended to support rotational and scale-invariant tracking.

13. Conclusion

This paper presented a novel approach for performing point-
feature detection and tracking on PPA architectures, demon-
strated upon the SCAMP-7 system. Our approach is en-
tirely performed within the pixel-processors of the PPA, and
does not require external PC or micro-controller processing.
We introduce the concept of Descriptor-In-Pixel which en-
ables our approach to detect and track features by parallel
computation of descriptor response across the processing
array. This brings major performance benefits allowing our
approach to operate at 3000 FPS, on a portable “smart cam-
era” vision system, using around 1 watt of power, reliably
tracking point-features under violent motion which renders
traditional sensors unusable.

5399



References
[1] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst.

FREAK: Fast retina keypoint. In 2012 IEEE conference
on computer vision and pattern recognition, pages 510–517.
IEEE, 2012. 4

[2] Laurie Bose, Jianing Chen, Stephen J Carey, Piotr Dudek,
and Walterio Mayol-Cuevas. Visual odometry for pixel pro-
cessor arrays. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 4604–4612, 2017. 3

[3] Laurie Bose, Jianing Chen, Stephen J. Carey, Piotr Dudek,
and Walterio Mayol-Cuevas. A camera that CNNs: Towards
embedded neural networks on pixel processor arrays. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019. 3

[4] Laurie Bose, Piotr Dudek, Jianing Chen, Stephen J Carey,
and Walterio W Mayol-Cuevas. Fully embedding fast con-
volutional networks on pixel processor arrays. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIX 16, pages
488–503. Springer, 2020. 3

[5] Laurie Bose, Jianing Chen, Stephen J Carey, and Piotr
Dudek. Pixel processor arrays for low latency gaze esti-
mation. In 2022 IEEE Conference on Virtual Reality and
3D User Interfaces Abstracts and Workshops (VRW), pages
970–971. IEEE, 2022. 3

[6] Laurie Bose, Piotr Dudek, Stephen J Carey, and Jianing
Chen. Live demonstration: Scamp-7. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3995–3996, 2023. 2

[7] Michael Calonder, Vincent Lepetit, Mustafa Ozuysal,
Tomasz Trzcinski, Christoph Strecha, and Pascal Fua.
BRIEF: computing a local binary descriptor very fast. IEEE
transactions on pattern analysis and machine intelligence,
34(7):1281–1298, 2011. 3, 4

[8] Jianing Chen, Stephen J Carey, and Piotr Dudek. Feature
extraction using a portable vision system. In IEEE/RSJ Int.
Conf. Intell. Robots Syst., Workshop Vis.-based Agile Auton.
Navigation UAVs, 2017. 2, 8

[9] Piotr Dudek, Thomas Richardson, Laurie Bose, Stephen
Carey, Jianing Chen, Colin Greatwood, Yanan Liu, and Wal-
terio Mayol-Cuevas. Sensor-level computer vision with pixel
processor arrays for agile robots. Science Robotics, 7(67):
eabl7755, 2022. 1

[10] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al.
Event-based vision: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(1):154–180, 2020. 2

[11] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-
vide Scaramuzza. Asynchronous, photometric feature track-
ing using events and frames. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 750–
765, 2018. 2

[12] Colin Greatwood, Laurie Bose, Thomas Richardson, Walte-
rio Mayol-Cuevas, Jianing Chen, Stephen J Carey, and Pi-
otr Dudek. Perspective correcting visual odometry for ag-
ile MAVs using a pixel processor array. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems
(IROS), pages 987–994. IEEE, 2018. 3

[13] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart.
BRISK: binary robust invariant scalable keypoints. In 2011
International conference on computer vision, pages 2548–
2555. IEEE, 2011. 4

[14] Nico Messikommer, Carter Fang, Mathias Gehrig, and Da-
vide Scaramuzza. Data-driven feature tracking for event
cameras. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5642–
5651, 2023. 2

[15] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza.
Fast event-based corner detection. In British Machine Vision
Conference (BMVC), 2017. 2

[16] Riku Murai, Sajad Saeedi, and Paul HJ Kelly. BIT-VO: Vi-
sual odometry at 300 fps using binary features from the focal
plane. In 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 8579–8586. IEEE,
2020. 2, 3

[17] Edward Rosten and Tom Drummond. Machine learning
for high-speed corner detection. In Computer Vision–ECCV
2006: 9th European Conference on Computer Vision, Graz,
Austria, May 7-13, 2006. Proceedings, Part I 9, pages 430–
443. Springer, 2006. 2

[18] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. ORB: An efficient alternative to SIFT or SURF.
In 2011 International conference on computer vision, pages
2564–2571. Ieee, 2011. 2

[19] Haley M. So, Laurie Bose, Piotr Dudek, and Gordon Wet-
zstein. PixelRNN: In-pixel recurrent neural networks for
end-to-end-optimized perception with neural sensors. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 25233–25244,
2024. 3

[20] David Tedaldi, Guillermo Gallego, Elias Mueggler, and Da-
vide Scaramuzza. Feature detection and tracking with the
dynamic and active-pixel vision sensor (DAVIS). In 2016
Second International Conference on Event-based Control,
Communication, and Signal Processing (EBCCSP), pages 1–
7. IEEE, 2016. 2

[21] Matthew Z Wong, Benoit Guillard, Riku Murai, Sajad
Saeedi, and Paul HJ Kelly. AnalogNet: Convolutional neural
network inference on analog focal plane sensor processors.
arXiv preprint arXiv:2006.01765, 2020. 3

5400


