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Abstract

The shape of granular matter (particle) is crucial for understanding their properties
and assembly behavior. Existing studies often rely on intuitive or machine-derived
shape descriptors (e.g., sphericity and Corey shape factors). Typically, these studies
focus on single, individual particles with specific shape features, and statistical
evaluations involving a large number of particles are rare due to the scarcity of
particle samples. It raises doubts about whether the pre-selected shape descriptors
can adequately capture the rich morphological information offered by particles.
In this paper, we propose a two-step particle generation pipeline to evaluate the
quality of the previous shape descriptors. First, we explicitly use a Metaball-
Imaging algorithm to transform the pixel data into a lower-dimensional space.
Secondly, we introduce a conditional generative method to design 3D realistic
style particles. Meanwhile, we also design a new shape estimator to provide
shape constraints to guide the conditional generation process. Building on this,
we introduce the concept of "attribute twins" - particles that share identical shape
features but differ in actual morphologies. They provide crucial particle samples
to investigate whether existing shape descriptors are sufficient to represent the
effects of particle shape. In a series of simulations focusing on the drag force
experienced by settling particles in a fluid, we generate particle samples under
different constraints of single or multiple shape descriptors. Our results shed light
on the limitations of current shape descriptors in representing the influence of
particle shape on this physical process and highlight the need for improved shape
descriptors in future.

1 Introduction

Granular matter (particle) stands as one of the most abundant forms of matter globally, ranking second
only to fluids in terms of their prevalence [1]. Commonly, they span a wide spectrum of particles and
scales, encompassing entities ranging from viruses, cells to plastics and soil particles [2]. Across
such a diverse spectrum, granular matter exhibits a multitude of complex physical and mechanical
properties. It has been widely recognized that the macroscopic behavior of granular media is
intricately linked to the micro-structural characteristics of the constituent particles. Among these
characteristics, particle shape (morphology) emerges as one of the most influential factors in shaping
the properties of granular matter. It governs not only granular traits (including friction, interactions,
and deformations [3, 4]), but also profoundly influences the assembly responses (encompassing
permeability, strength, and failure [5, 6]). Therefore, how to effectively characterize the particle
shape is significant and fundamental for granular matter and understanding their behaviors.

∗Corresponding author: Stan.ZQ.Li@westlake.edu.cn

NeurIPS 2023 AI for Science Workshop.



However, defining and characterizing the impact of shape is effort-intensive and places a significant
burden on (expert) users to depict the particle shape impact for physical and chemical processes
that they care about. This challenge is further exacerbated as granular matter often resides within
a high-dimensional function space. In order to reduce dimensionality and simplify the granular
matter modeling problem, existing methods [7] typically rely on intuitive or machine-picked shape
descriptors (e.g., roundness, convexity, and aspect ratio) and represent the unknown particle landscape
with these learned parametric shape descriptors. However, it naturally raises the question: are these
shape descriptors sufficient to capture the full extent of morphological impacts?

With the rapid advancement of numerical simulation methods in recent years [1, 8, 9], one may expect
modern simulation methods to be beneficial for answering the above question and characterizing the
influence of shape factors better. Unfortunately, their (numerical simulation) success often hinges on
the availability of large amounts of data, while the limited availability of granular matter samples
places a significant burden on users to characterize all degrees of variation, or may produce poor
generalization along the axes that are not varied. More specifically, such limitation encompasses the
scarcity of particle collections with continuous shape descriptors and leaves the presence of granules
that share identical shape parameters but exhibit varying actual shapes. Thus, these constraints
impede our capacity to obtain a more comprehensive understanding of the impact of particle shapes,
leading to the degeneration of particle characterization.

In this paper, borrowing the idea of conditional generative models, we propose a particle generation
method called Scalable PaRtIcle Generation (SPRIG) to address the above sample limitation. In
particular, we propose a two-step particle generation pipeline. Our main contributions are as follows:
1) We first propose a dimension reduction method, namely Metaball-Imaging (MI), which can
transform 3D granular pixel data into interpretable, low-dimensional sequences in the form of
Metaball functions, while retaining a high degree of fidelity to the original particles. 2) On this
basis, we develop a conditional generative adversarial network (cGAN) that can generate three-
dimensional granular particles with specific geometric parameters by explicitly conditioning on
certain shape descriptors, such as sphericity, circularity, Corey shape factors, or their combinations.
3) We demonstrate that the particles generated by SPRIG retain the authentic granular style observed
in the input training data.

2 Related Work
2.1 Simulation Frameworks for Complex Shaped Particles

The intricate nature of granular matter presents significant challenges to analytical methods due to
the associated complexities in particle shape. Consequently, numerical simulations have become an
indispensable tool for unraveling the dynamics of particles with complex shapes [10–12], where the
Discrete Element Method (DEM) is often used. DEM treats particles as rigid entities and considers
their motions based on the Newton-Euler equations [13]. Many successful applications have been
made to model realistic particles with DEM using X-ray computed tomography (XRCT), differing
mainly in shape reconstruction methods and contact frameworks.

For example, Spherical-Harmonic (SH) DEM uses SH functions for shape and inter-particle contact
detection [14]. Level-set DEM uses level-set functions and look-up mechanisms [15]. Signed
Distance Field (SDF) DEM uses SDF functions and energy-saving contact theory [16]. Recently,
the Metaball function has also been implemented to reconstruct realistic particle morphologies [17]
and coupled with DEM in a gradient-based method [11]. This Metaball-based DEM approach
strikes a balance between accurate particle shape representation and computational efficiency. Of
particular note is its integration with the Lattice Boltzmann method, making it suitable for the study
of fluid-particle systems with a significant number of complexly shaped particles [18].

2.2 Particle Generation Methods

Accurate reconstruction of granular matter requires the XRCT technique, which is time-consuming
and costly. In practical engineering, only a small number of particles (less than 10% as reported
in [19]) can be scanned. Direct simulation with them will suffer from repetitive particle morphologies.
It is therefore necessary to generate realistic particles with co-essential morphological features.

Previous particle generation studies typically use a compressing-sampling approach [20, 21]. They
compress particle representations (e.g., XRCT images) into some control variables (e.g., the SH
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function) and add randomness to generate new particles. However, direct sampling of these variables
can lead to underfitting or overfitting problems [22]. This is partly addressed by the use of mixture
models [23, 21]. More recently, Variational Auto-encoders (VAE) have been used [22, 24], which
provide a more flexible generative approach with better performance. More importantly, it allows a
high level of control over the morphology of the generated particles [17], demonstrating the potential
of deep learning techniques on this problem.

However, generating particles with co-essential morphological features is not sufficient. To gain a
deeper understanding of the effect of particle shape and to assess the adequacy of existing shape
descriptors in representing these effects, a method capable of generating diverse realistic-style
particles with specific geometric features remains essential.

3 SPRIG: Scalable Particle Generation

3.1 Preliminaries

To understand the properties (granular traits and assembly responses) of granular matter2, we can
generally analyze them in three ways: 1) analytical method, 2) experimental method, and 3) simulation
method. The analytical method is to use mathematical models to predict the behavior of granular
matter, e.g., using Newton’s laws of motion. The experimental method solves this by conducting
physical experiments in controlled laboratory environments. The numerical method focuses on
computational models (e.g., discrete element method) to explore the property and response of
granular matter. In this paper, we will focus on the numerical simulation to characterize the particle.

However, the numerical simulation method requires a sufficient number of particle samples with
different and specific geometric shape characteristics. Previous studies have attempted many particle
reconstruction techniques that can introduce realistic particle shapes into the numerical framework.
Such a technique often requires X-ray computed tomography (XRCT), which is time-consuming and
costly. The large amount of resources required may not be accessible to all individuals and groups. It
is therefore crucial to have a method that can learn from limited particle XRCT samples to generate a
large number of new samples to meet research needs.

Then, we can identify a conditional generative task for numerical modeling. Formally, given a data
set fxg of XRCT samples (voxeled data), we first build a labeled data set D := f(x;y)g, where x
represents the normal XRCT samples and y is the computed shape features, i.e. y can represent
sphericity, volume, surface area, and so on. Thus, we can define the conditional generative task as
learning a conditional model p(xjy) to model the particle generation process.

3.2 Overall Pipeline

Typically, realistic particle data x is in voxel form, which has no inherent order or sequence and
requires a lot of memory, making it impractical to tackle high-resolution scenes and difficult to learn.
In addition, preprocessing of voxel data can be complex and computationally intensive. Tasks such as
rotation, segmentation, and feature extraction often require specialized algorithms and significant
computing resources.

Thus, to overcome the above challenges, we propose a two-step generative process. As shown
in Figure 1, our pipeline consists of two steps, including the Metaball-Imaging and a conditional
generation process. In the first step, the XRCT images of the particles x are transformed into (low-
dimensional) Metaball avatars (See Appendix. A for details) �x using the Metaball-Imaging algorithm,
thus obtaining �D := f(�x;y)g. In the second step, a conditional GAN is designed to solve this particle
generation task in a low-dimensional space. Further, we also introduce a new shape estimator to
improve the learning and enhance the interpretation of particle shapes.

3.3 Metaball-Imaging

The proposed Metaball-Imaging (MI) consists of three main parts: 1) data preprocessing, 2) acquisi-
tion of the principle outer contour with Sphere Clustering (SC), and 3) refinement of the distilled
contour with Gradient Search (GS). We show the general framework in Figure 1 (top).

2In this paper, we use the terms "granular matter" and "particle" interchangeably.
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Figure 1: The overall framework of our SPRIG. It consists of two steps: First, we reduce the dimension
of the input XRCT data into Metaball avatar using Metaball-Imaging algorithm. Then, an adaptation
of a conditional generative adversarial network is implemented to perform the generation task.

Data preprocessing. We employ two preprocessing methods (Figure 1, top (a)): transformation of
coordinates (TOC) and specification of interested region (SOIR). TOC is implemented to translate
the XRCT voxels into the coordinate system centered at the origin. Such an operation is dedicated to
obtain centralized voxelated representation V , which can avoid abnormal fitted parameters caused by
XRCT coordinates. SOIR is aimed to distill the surface points H from V .

Capturing principle outer-contour with sphere-clustering (SC). The outer contour is captured by
searching a series of non-overlapping inscribed spheres as control spheres (Figure 1, top (b)). This
algorithm (Algorithm 1) starts with the Euclidean distance transformation [25] on the preprocessed
voxelised particle V . It identifies the radius ri and center ci of the largest inscribed sphere by locating
the maximum value in the transformed vector and its position. Voxels inside the inscribed sphere are
then set to zero. This process is repeated until the number of inscribed spheres equals the number of
control points n (humanly selected), yielding a set of inscribed spheres denoted as SI .

Algorithm 1 The Sphere-Clustering (SC) Algorithm for the capture of the principal outer contour.
1: Require: the voxelized particle V , the number of control points n.
2: for i = 1; 2; :::; to n do
3: Transform - Implementing Euclidean distance transform on V .
4: Search - Finding the radius ri and center ci of maximum inscribed sphere with the maximum

value in the transformed vector.
5: Reset - Zeroing those voxels of the searched inscribed circles and updating V .
6: end for
7: Return: the distilled set of inscribed spheres SI = f(ri; ci)g, i = 1; : : : ; n.

Refining the distilled contour with gradient-search (GS). Then, we refine the outer contour using
gradient search (Figure 1, top (c)). With the distilled inscribed spheres SI , we create a Metaball
model x̂ = f(ri; ci)g to represent the primary outer contour of target particles. We then define a
piecewise loss function, L(x̂), to calculate gradient information based on the distilled point hull H
instead of the traditional Mean Square Error (MSE) to avoid distorted Metaball models and improve
the adaptability to complex geometry:

L(x̂) =

8><>:
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wheref l
i (x̂ ) =

P m
j =1

r i
(H j � c i )2 andm is the number of surface points (we treat it as a constant).

Finally, we can optimize model parameters through gradient descent:

�x  x̂ � � � r x̂ L(x̂ ); (2)

where� is the learning rate andr x̂ L(x̂ ) is the gradient ofL (x̂ ) with respect to the input̂x . We use a
combination of Adam and SGD for the gradient updates to strike a balance between ef�ciency and
convergence capability [26]. The process continues until the termination condition is met, which is
determined by the number of generationsE gs (see Algorithm 2).

Algorithm 2 The Gradient Search for re�nement of outer contour.
1: Require: the particle point hullH , the number of generationsE gs, the learning rate� , the

distilled set of inscribed spheresSI .
2: S I is taken as the Metaball model of principle outer-contour, the initial valuex̂ .
3: for i = 1 ; 2; :::; to E gs do
4: �x  x̂ � � � r x̂ L(x̂ ).
5: end for
6: Return: the searched parameter�x .

3.4 Conditional Generation

Here we employ conditional generative networks (cGAN) to conduct the conditional particle gen-
eration [27, 28]. We take the distilled Metaball avatar�x and the corresponding shape featuresy
as training data,i.e., �D := f ( �x ; y )g. As shown in Figure 1bottom, we learn a generator and a
discriminator, where the generator outputs a fake sample from a (vector) noise instancez and the
conditional variabley , and the discriminator distinguishes input samples as real or fake. Speci�cally,
we train the discriminator with the following adversarial loss:

L D = � E�x ;y � �D [logD( �x ; y )] � Ez;y [log(1 � D (G(z; y ); y ))] : (3)

To train the generator, in addition to the standard discriminator-guided objective, we introduce two
additional components (L real andL shape ):

L G = w1 � Ez;y [log(1 � D (G(z; y ); y ))] + w2 � L real + w3 � L shape ; (4)

whereL real = 1
N

P N
i =1 (G(z; y ) � �x)2 accounts for producing real samples, which serves to stabilize

the training process and prevent signi�cant deviations between the generated output and the input
data [29], andL shape is provided by a shape estimator (see below). The weightsw1, w2, andw3
are dynamically adjusted to balance the contributions of the various loss components, enhancing the
overall performance of the model while maintaining stability.

Shape estimator.Since the generated result takes the form of a Metaball model corresponding to a
speci�c 3D particle, its shape features can be inferred from the corresponding cloud points of that
particle. However, this approach isn't compatible with the training of SPRIG, making it dif�cult
to incorporate shape constraints into the optimization of the generator. Therefore, we introduce
the Shape Estimator - a neural network based surrogate model - to predict accurate shape features
from the generated results. It is seamlessly integrated into the computational graph of the generator
network, providing morphological information for the generated results and guiding their training.
The training of the shape estimator is based on the dataset�D := f ( �x ; y )g. In particular, instead of
direct training, we use a variational autoencoder (VAE) to distill regularised latent embeddings of�x .
We then make predictions based onz using a Multilayer Perceptron (MLP).

4 Experiments

Implementation details. In MI, we set the Metaball parameters withn = 40, � = 0 :001, and
E gs = 5000. The neural network models used for training are built using Pytorch. We apply MLP
as the base model of the generator and discriminator. As for the shape estimator, we compare the
VAE-MLP with various models and the quantitative comparison result can be found in Appendix B.
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Figure 2: Representative particles, XRCT images (green particles), and corresponding MI avatars
(blue particles) of the Ottawa sand.

Figure 3: The Cumulative Distribution Function of the selected shape features of the Ottawa sand.

4.1 Datasets

As for the dataset,D := f (x ; y )g, x stands for the XRCT image of the Ottawa sand andy stands for
the selected shape features. In this paper,x consists of 290 Ottawa sands, which is a typical grain of
pure quartz mined in Ottawa, Canada, as shown in Figure 2 (a). Due to geological transport, it has
smooth and angled characteristics. For XRCT imaging, the ZEISS Xradia 610 Versa is used. The
voltage of the X-ray source is set to 80 kV. The 0.4X detector is selected in the scan recipes, which
means that the corresponding optical magni�cation is 0.4. The voxel size is 18.56�m . On average,
the particle in XRCT images contains more than 7.9� 106 voxels to represent a real grain geometry.
Particle segmentation is performed by "ilastik", a machine learning driven edge detection algorithm
for XRCT images [30]. The imaged particles are shown in Figure 2 (b) with green particles. As
for the shape features, we consider four dimensionless shape factors: sphericity� and circularity
C [17], a combinationDns of nominal diameterDn and surface equivalent sphere diameterD s, and
the Corey Shape Factor (CSF). The de�nitions of these shape descriptors can be found in Appendix
C. These shape features are calculated directly with thex, as shown by the black dashed lines in
Figure 3.

4.2 Results of Metaball-Imaging

We use 40 control points to transform the samples presented in Section 4.1 into the Metaball avatar�x ,
as shown in Figure 2 (c) with blue particles (They are only for visualization and those avatars are in
the form of Metaball function). For better generation performance, we carry out data augmentation on
the distilled�x , where slightly modi�ed synthetic data is introduced. Here we employ particle rotation
and parameter shuf�ing, where particle rotation is a popular strategy based on the rotation invariant
property, and parameter shuf�ing is a random recombination off ki ; x i g in the Metaball avatar�x .
Employing parameter shuf�ing is because changing the order of the control spheres does not change
the corresponding Metaball model. Such processing can effectively avoid the over�tting problem and
improve convergence performance. During augmentation, each particle is rotated 5 times and the
corresponding Metaball parameter is shuf�ed 50 times. The augmented datasets then contain 145,000
Ottawa sand samples. We calculate the shape characteristics of these Metaball avatars through the
corresponding point clouds as shown by the red lines in Figure 3. And a good agreement between the
real particles and the captured Metaball avatars can be observed.

4.3 Conditional Generation with Different Shape Features

In this section, we examine at the conditional generation of MI avatars under different con�gurations
of shape features. Figure 4 (a) illustrates the resulting generated avatars. It can be seen that the
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