
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTEGRATION FLOW MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, ordinary differential equation (ODE) based generative models have
emerged as a cutting-edge method for producing high-quality samples in many ap-
plications. Generally, these methods typically involve learning continuous trans-
formation trajectories that map a simple initial distribution (i.e., Gaussian noise)
to the target data distribution (i.e., images) by multiple steps of solving different
ODE functions in inference to obtain high-quality results. However, the ODE-
based methods either suffer the discretization error of numerical solvers of ODE,
which restricts the quality of samples when only a few NFEs are used, or strug-
gle with training instability. In this paper, we proposed Integration Flow, which
learns the results of ODE-based trajectory paths directly without solving the ODE
functions. Moreover, Integration Flow explicitly incorporates the target state x0

as the anchor state in guiding the reverse-time dynamics and we have theoreti-
cally proven this can contribute to both stability and accuracy. To the best of our
knowledge, Integration Flow is the first model with the unified structure to esti-
mate ODE-based generative models. Through theoretical analysis and empirical
evaluations, we show that Integration Flows achieve improved performance when
it is applied to existing ODE-based model, such as diffusion models, Rectified
Flows, and PFGM++. Specifically, Integration Flow achieves one-step genera-
tion on CIFAR10 with FID of 2.63 for Variance Exploding (VE) diffusion model,
3.4 for Rectified Flow without relflow and 2.96 for PFGM++. By extending the
sampling to 1000 steps, we further reduce FID score to 1.71 for VE, setting state-
of-the-art performance.

1 INTRODUCTION

Recently, ordinary differential equation (ODE) based generative models have emerged as a cutting-
edge method for producing high-quality samples in many applications including image, audio (Kong
et al., 2021; Popov et al., 2022), and video generation (Rombach et al., 2022; Saharia et al., 2022; Ho
& Salimans, 2022). Generally, these methods typically involve learning continuous transformation
trajectories that map a simple initial distribution (i.e. Gaussian noise) to the target data distribution
(i.e. images) by solving ODEs (Figure 1).

Figure 1: An illustration of ODE-based methods,
including PF-ODE, PFGM++, and Rectified Flow.

Among those ODE-based models, the diffu-
sion models have attracted the most attention
due to their exceptional ability to generate re-
alistic samples. The diffusion models employ
a forward process that gradually adds noise
to the data and a reverse process that recon-
structs the original data by gradually removing
the noise. To enhance sampling effectiveness,
this reverse process is often reformulated as
a probability flow Ordinary Differential Equa-
tions (PF-ODEs)(Song et al., 2020b). Despite
their success, PF-ODE-based diffusion mod-
els face drawbacks due to their iterative nature,
leading to high computational costs and prolonged sampling times during inference.

Another ODE-based approach, rectified flow models (Liu et al., 2022; Lipman et al., 2022), aims to
model the transformation between distributions via neural ODEs. These models focus on learning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

smoother ODE trajectories that are less prone to truncation errors during numerical integration. By
reducing the curvature of the generative paths, rectified flow enhances sampling efficiency and de-
creases the computational burden. However, even with smoother trajectories, rectified flow models
still require considerable iterations to produce high-quality samples.

Building on the flow-based paradigm, Poisson Flow Generative Models (PFGM) and their extension
PFGM++ have been introduced (Xu et al., 2022; 2023). Inspired by concepts from electrostatics,
PFGM++ embeds data into a higher-dimensional space, specifically, an N +D dimensional space
where D is the number of augmented dimensions. The generative process involves solving an ODE
derived from the Poisson equation, tracing a path from a simple initial distribution (e.g., noise on a
large hemisphere) to the target data distribution residing on a lower dimensional hyperplane. Similar
to diffusion models and Rectified Flow, PFGM++ requires multiple steps during inference,

All aforementioned methods required multiple steps of solving different ODE functions in inference
to obtain high-quality results. Furthermore, the ODE-based models naturally inherit the discretiza-
tion error of numerical solvers of ODE, which restricts the quality of samples when only a few NFEs
are used, or struggle with training instability when neural ODEs are used to approximate the ODE
solution using neural networks. Given these challenges associated with ODE-based models, a nat-
ural question arises: can we learn the result of ODE-based trajectory paths directly without solving
the ODE functions? Therefore, we can take the ODE function-defined generative model and solve
this without an ODE solver. The answer is yes. Here we proposed Integration Flow, to the best of
our knowledge, the first model with the unified structure to estimate ODE-based generative models.

Integration Flows represent a new type of generative models. Unlike traditional ODE-based ap-
proaches that focus on approximating the instantaneous drift term of an ODE or depend on itera-
tive sampling methods, Integration Flows directly estimate the integrated effect of the cumulative
transformation dynamics over time. This holistic approach allows for the modeling of the entire
generative path in a single step, bypassing the accumulation of errors associated with high-curvature
trajectories and multiple function evaluations. Integration Flows do not employ the ODE solver and
eliminate the need for multiple sampling iterations, significantly reducing computational costs and
enhancing efficiency.

Moreover, to increase the training stability and accuracy in reconstructing, Integration Flow explic-
itly incorporating the target state x0 as the anchor state in guiding the reverse-time dynamics from
the intermediate state xt. We have theoretically proven that incorporating the target state x0 as the
anchor state can provide a better or at least equal accurate estimation of x0.

In summary, Integration Flows addresses the limitations of existing ODE-based generative models
by providing a unified and efficient approach to model the transformation between distributions. Our
contributions can be outlined as follows:

• Introduction of Integration Flows: We present Integration Flows, a novel generative model-
ing framework that estimates the integrated dynamics of continuous-time processes without
relying on iterative sampling procedures or traditional ODE solvers, that is, it supports one-
step generation for (any) ODE-based generative models.

• Unified ODE-Based Generative Modeling: Integration Flows can adapt different ODE-
based generative process, offering flexibility and unification across different generative
modeling approaches.

• Enhanced Sampling Efficiency and Scalability: Through empirical evaluations, we show
that Integration Flows achieve improved sampling efficiency and scalability compared to
existing ODE-based models, such as diffusion models, Rectified Flows, and PFGM++.
Specially, we set the state-of-the-art performance for one-step generation using Rectified
Flow and PFGM++.

2 BACKGROUND AND RELATED WORKS

Variance Exploding (VE) Diffusion Model. The forward process in the Variance Exploding (VE)
diffusion model(Song et al., 2020b; Karras et al., 2022) adds noise to the data progressively. This
process is described as:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

xt = x0 + σtϵ, t ∈ [0, T]

where x0 ∼ pdata ,σt denotes noise schedule that increases with time t, ϵ ∼ N (0, I).

The reverse process aims to denoise the data by starting from a noisy sample xT and evolving it
back to the clean data distribution pdata . This is achieved using the PF-ODEs, which models the
continuous denoising process in the reverse direction. The PF-ODE is given by:

dxt

dt
= −1

2

dσ2
t

dt
∇xt

log pt (xt)

where ∇xt log pt (xt) is the score function, representing the gradient of the log-probability of the
data distribution pt (xt) at time t. dσ2

t

dt is the time derivative of the noise variance function σ2
t , which

controls how fast the noise is reduced as we reverse the process.

Rectified Flows. (Liu et al., 2022; Albergo & Vanden-Eijnden, 2022; Lipman et al., 2022) uses
linear interpolation to connect the data distribution pdata and a standard normal distribution pz by
introducing a continuous forward process that smoothly transitions between these two distributions,
which is defined as:

zt = (1− t)x0 + tz, t ∈ [0, 1]

where x0 is a sample drawn from the data distribution pdata, z is sampled from the standard normal
distribution. This interpolation ensures that at t = 0, it recovers the original data point, i.e., z0 = x0,
and at t = 1, the point has been mapped entirely into the noise distribution, i.e., z1 = z. Thus, a
straight path is created between the data and the noise distributions.

Liu et al.(Liu et al., 2022) demonstrated that for z0 ∼ px, the dynamics of the following ODE
produce marginals that match the distribution of xt for any t :

dzt
dt

= v (zt, t)

Since the interpolation ensures that x1 = z, the forward ODE transports samples from the data
distribution px to the noise distribution pz. To reverse this process, starting with z1 ∼ pz, the ODE
can be integrated backward from t = 1 to t = 0, ultimately reconstructing samples from the data
distribution.

Poisson Flow Generative Models (PFGM) PFGM++ (Xu et al., 2023) is a generalization of
PFGM(Xu et al., 2022) that embeds generative paths in a high-dimensional space. It reduces to
PFGM when D = 1 and to diffusion models when D →∞.

In PFGM++, each data point x ∈ RN is augmented by additional variables z = (z1, . . . , zD) ∈ RD,
resulting in an augmented data representation x̃ = (x, z) ∈ RN+D. Due to the rotational symmetry
of the electric field in the augmented space, the problem can be simplified by considering only the
radial norm r = ∥z∥2. This reduces the augmented data representation to x̃ = (x, r),where r acts
as a scalar anchor variable.

The electric field E(x̃) drives the dynamics of the generative process and can be decomposed into
two key components:

E(x̃) = (E(x̃)x,E(x̃)r) ,

where E(x̃)x represents the component of the electric field in the data space (i.e., along the original
data dimensions x), and E(x̃)r denotes the radial component in the augmented space. They are used
to formulate the generative ODE.

Using the radial symmetry of the electric field, the backward ODE that governs the generative pro-
cess can be expressed as:

dx

dr
=

E(x̃)x
E(x̃)r

By solving this ODE in reverse, one can transport points from the high dimensional augmented
space back to the original data space, completing the generative process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

In this section, we will introduce the Integration Flow Models based on the general form of ODE-
based generative models.

3.1 GENERAL FORM OF ODE-BASED GENERATIVE MODELS

Consider an initial state xT drawn from a distribution p(xT), typically chosen to be a simple dis-
tribution such as a Gaussian. The goal is to estimate x0, which is aligned with the data distribution
pdata, by mapping xT back through a continuous transformation process. Let {xs}Ts=0 represent a
continuous transformation trajectory from xT to x0, where xs denotes the state at intermediate time
s ∈ [0, T]. To describe the reverse-time dynamics that map xT back to x0, we define a reverse-time
ODE:

dxs

ds
= v(xs, s), (1)

where v : Rn × [0, T] → Rn is a continuous function defining the system’s dynamics in reverse
time.

The process of obtaining x0 from xT involves solving this reverse-time ODE, which can be under-
stood as computing the integral:

∫ 0

T

dxs

ds
ds =

∫ 0

T

v(xs, s) ds⇐⇒ x0 = xT +

∫ 0

T

v(xs, s) ds (2)

The solution of the reverse-time ODE aligns marginally in distribution with the forward process,
meaning that the distribution of x0 obtained by solving the reverse ODE starting from xT ∼ pT (x)
approximates the target distribution pdata.

While traditional ODE solvers and neural ODE methods are commonly used to solve the equation 2
they come with notable drawbacks. The numerical solvers of ODE can not avoid the discretiza-
tion error (Bortoli et al., 2023) , which restricts the quality of samples when only a few NFEs are
used. Second, neural ODEs (Chen et al., 2018), which approximate the ODE solution using neural
networks, faces a high challenge during gradient backpropagation due to their high memory con-
sumption (Gholami et al., 2019).

3.2 INTEGRATION FLOWS

To overcome the challenges associated with ODE solvers and neural ODEs, we propose Integration
Flow to directly estimate the integrated effect of continuous-time dynamics. Integration Flow ex-
plicitly incorporating the target state x0 as the anchor state in guiding the reverse-time dynamics
from the intermediate state xt, which contributes to both stability and accuracy in reconstructing x0

from intermediate states xt. Since Integration Flow bypasses the ODE solver, it provides a unified
framework for ODE-based generative models, allowing for one-step generation across a variety of
processes.

The cumulative effect of the reverse-time dynamics over the interval [0, t], which is defined in inte-
gral

∫ 0

t
v(xs, s)ds, can be obtained as:∫ 0

t

v(xs, s)ds = V (x0, 0)−V (xt, t)

where V(xs, s) is an antiderivative of v(xs, s) with respect to s. Then, we defined a function
F(x0,xt, t) as follows:

F(x0,xt, t) := V (xt, t)−V (x0, 0)

This function encapsulates the total influence of the dynamics from an intermediate time t to the
final time 0, which leads to the equation:

x0 = xt − F(x0,xt, t).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Next, we define the function:

f(x0,xt, t) := xt − F(x0,xt, t). (3)

Therefore, we have:
x0 = f(x0,xt, t). (4)

Thus, f(x0,xt, t) is the solution of the reversed time ODE from initial time t to final time 0, which
encapsulates the cumulative effect of the reverse dynamics from the initial time t to the final time
0, providing an accumulation description of how the the target state x0 transformed from the in-
termediate state xt. The inclusion of x0 in f(x0,xt, t) helps stabilize the generative process by
incorporating information about the final state, leading to improved accuracy in reconstructing the
intermediate states while maintaining consistency with the target distribution.

3.3 NEURAL NETWORK APPROXIMATION

In practice, the exact form of F(x0,xt, t) is usually intractable or unknown. Therefore, we model F
using a neural network parameterized by θ. The approximated predictive model is thus defined as:

fθ (x0,xt, t) = xt − Fθ (x0,xt, t) (5)

where Fθ approximates F.

To improve performance, especially in complex scenarios such as VE case of diffusion model or the
PFGM++ model (will be shown in section 4), a more robust and flexible formulation is required to
ensure the stability of the integration flow. We redefine the dynamics fθ(x0,xt, t) as the following:

fθ(x0,xt, t) = atxt + btFθ(x0,xt, t). (6)

where at and bt are time-dependent scalar functions designed to modulate the contributions of xt

and F(x0,xt, t), respectively. This formulation introduces greater flexibility in the evolution of the
integration flow over time, particularly in scenarios where the straightforward application (equa-
tion 5) of integration may introduce instability, especially when the magnitudes of the intermediate
state xt become large.

To achieve accurate recovery of x0, it is essential that:

fθ (x0,xt, t) ≈ f (x0,xt, t)

Recovering x0 from xt is achieved through an iterative refinement process. Starting with an initial
x
(0)
0 , the estimate is progressively refined using the update rule:

x
(n+1)
0 = fθ

(
x
(n)
0 ,xt, t

)
= atxt + btFθ

(
x
(n)
0 ,xt, t

)
Through this iterative process and proper defined loss, the neural network will effectively minimize
the discrepancy between the iteratively estimated x

(n)
0 and the true initial state x0.

3.4 THEORETICAL JUSTIFICATION

Theorem 1 (Stability): Let x0 represent the target state, xt represent an intermediate state, and t

represent the time. Let x(n)
0 be an auxiliary estimate of x0 obtained through an iterative process.

Consider the following two estimators: (a) x̂0 = fθ (xt, t), which estimates x0 based only on xt

and t, analogous to E [x0|xt]. (b) x̃0 = fθ

(
x
(n)
0 ,xt, t

)
, which estimates x0 based on both x

(n)
0 ,xt,

and t, analogous to E[x0|xt,x
(n)
0]. Then, the estimator x̃0, which includes additional conditional

information x
(n)
0 , provides a more accurate estimation of x0 compared to x̂0, in terms of mean

squared error (MSE). That is,

E
[
∥x0 − x̃0∥2

]
≤ E

[
∥x0 − x̂0∥2

]
Moreover, it can be expand to any convex metric d(·, ·). That is,

E[d (x0, x̃0)] ≤ E [d (x0, x̂0)] .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: The different design choice of Integration Flow for different ODE-based methods. For
training, we use the discrete time steps with T = 1000.

VE(Song et al., 2020b) Rectified Flow(Liu et al., 2022) PFGM++Xu et al. (2023)
Training

Noise scheduler σmin

(
σmax
σmin

)t/T

Linear interpolation, σ = 0 Rtvt, where σt ∼ p(σt),

rt = σt

√
D, Rt ∼ prt(R),

vt =
ut

∥ut∥2
,ut ∼ N (0, I)

Steps t ∈ [1, 2, ..., T] t ∼ Uniform[0, 1] t ∈ [1, 2, ..., T]
Network and preconditioning
Architecture of Fθ ADM ADM ADM
at σmin/σt 0 σmin/Rt

bt 1− σmin/σt 1 1− σmin/Rt

Sampling
One step x

(est)
0 = atxt + btFθ

(
x
(0)
0 ,xt, t

)
Multistep n x

(est)
0 = atxt + btFθ

(
x
(n)
0 ,xt, t

)
Parameters

σmin = 0.01 σmin = 0.01
σmax = 50 —— σmax = 50

D = 2048

Theorem 1 justifies that the estimator x̃0 is at least as accurate as x̂0 under the same convex metric
d(·, ·), illustrating that x̃0 = fθ

(
x
(n)
0 ,xt, t

)
provides a better or at least equal estimation compared

to x̂0 = fθ (xt, t) .

Theorem 2 (Non-Intersection): Suppose the neural network is sufficiently trained and θ∗ is ob-
tained, such that: fθ∗(x

(n)
0 ,xt, t) ≡ f(x0,xt, t) for any t ∈ [0, T] and x0 sampled from pdata, and

v (xs, s) meets Lipschitz condition.

Then for any t ∈ [0, T], the mapping fθ∗(x
(n)
0 ,xt, t) : RN → RN is bi-Lipschitz. Namely, for any

xt,yt ∈ RN

e−Lt ∥xt − yt∥2 ≤
∥∥∥fθ∗(x

(n)
0 ,xt, t)− fθ∗(y

(n)
0 ,yt, t)

∥∥∥
2
≤ eLt ∥xt − yt∥2 .

This implies that if given two different starting point, say xT ̸= yT , by the bi-Lipschitz above, it
can be conculde that fθ∗(x

(n)
0 ,xT , T) ̸= fθ∗(y

(n)
0 ,yT , T) i.e., x(n+1)

0 ̸= y
(n+1)
0 , which indicate the

reverse path of Integration Flow does not intersect.

The proof of Theorems presented in Appendix B.

4 INTEGRATION FLOW FOR DIFFERENT ODE-BASED GENERATIVE MODELS

In this section, we explain how Integration Flow can be applied to three ODE-based generative
models. More training settings can be seen in Table 1.

VE case of diffusion models: For the intermediate state xt = x0+σtϵ, We adopt the noise scheduler

as σmin

(
σmax

σmin

)t/T

, where noise increases exponentially over time from σmin to σmax, and time step
t is designed as t ∈ [1, 2, ..., T].

The integration flow can be expressed as:

fθ (x0,xt, t) =
σmin

σt
xt +

(
1− σmin

σt

)
Fθ(x0,xt, t)

where the preconditioning terms are set as at = σmin/σt, and bt = 1 − σmin/σt, which modu-
late the network’s response to different noise levels throughout training. The detailed derivation of
Integration Flow for VE diffusion model is in A.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Rectified Flows: the intermediate is expressed as: zt = (1 − t)x0 + tz, time step t is sampled
from Uniform[0, 1]. Since this is a deterministic linear interpolation, so there is no need of noise
scheduler.

The integration flow of Rectified Flows can be expressed as:

x0 = fθ (x0, zt, t) = Fθ (x0, zt, t)

Equivalent to at = 0, bt = 1 in equation 6. The detailed derivation of Integration Flow for Rectified
Flow is in A.2. Moreover, Integration Flow supports Stochastic Interpolants as well.

PFGM++: PFGM++ introduces an alignment method to transfer hyperparameters from diffusion
models (where D →∞) to finite-dimensional settings. The alignment is based on the relationship:

r = σ
√
D

This formula ensures that the phases of the intermediate distributions in PFGM++ are aligned with
those of diffusion models. The relation allows transferring finely-tuned hyperparameters like σmax

and p(σ) from diffusion models to PFGM++ using:

rmax = σmax

√
D, p(r) =

p(σ = r/
√
D)√

D

Further, (Xu et al., 2023) showed
dx

dr
=

dx

dσ

where σ changes with time. Thus, we adopt the noise scheduler same as in VE case. And the
perturbation to the original data x0 can be written as:

xt = x0 +Rtvt

Specifically, for each data point x0, a radius Rt is sampled from the distribution prt(R)(See Ap-
pendix B in (Xu et al., 2023) to sample Rt). To introduce random perturbations, uniform angles are
sampled by first drawing from a standard multivariate Gaussian, ut ∼ N (0, I), and then normaliz-
ing these vectors to obtain unit direction vectors vt = ut

∥ut∥2
. This perturbation acts as a forward

process in PFGM++, analogous to the forward process in diffusion models.

The Integration Flow fθ (x0,xt, σt) of PFGM++ can be expressed as

fθ(x0,xt, t) =
σmin

Rt
xt + (1− σmin

Rt
)Fθ(x0,xt, t)

with at = σmin/Rt and bt = 1−σmin/Rt, and the detailed derivation of at, bt is shown in Appendix
A.3.

5 EXPERIMENTS

To evaluate our method for image generation, we train several Integration Flow Models on CIFAR-
10 Krizhevsky et al. (2009) and benchmark their performance with competing methods in the lit-
erature. Results are compared according to Frechet Inception Distance (FID, Heusel et al. (2017)),
which is computed between 50K generated samples and the whole training set. The training and
sampling algorithm can be found in Appendix A.

5.1 IMPLEMENTATION DETAILS

Architecture. We use the U-Net architecture from ADM Dhariwal & Nichol (2021) for the dataset.
For CIFAR-10, we use a base channel dimension of 128, multiplied by 1,2,2,2 in 4 stages and 3
residual blocks per stage. Dropout Srivastava et al. (2014) of 0.3 is utilized for this task. Following
ADM, we employ cross-attention modules not only at the 16x16 resolution but also at the 8x8
resolution, through which we incorporate the conditioning image x

(n)
0 into the network.We also

explore deeper variants of these architectures by doubling the number of blocks at each resolution,
which we name Integration Flow-deep. All models on CIFAR-10 are unconditional.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparing the quality of unconditional
samples on CIFAR-10

Method NFE(↓)FID(↓)IS(↑)

Fast samplers & distillation for diffusion models
DDIM Song et al. (2020a) 10 13.36
DPM-solver-fast Lu et al. (2022) 10 4.70
3-DEIS Zhang & Chen (2022) 10 4.17
UniPC Zhao et al. (2023) 10 3.87
DFNO (LPIPS) Zheng et al. (2023) 1 3.78
2-Rectified Flow Liu et al. (2022) 1 4.85 9.01
Knowledge Distillation Luhman & Luhman (2021) 1 9.36
TRACT Berthelot et al. (2023) 1 3.78

2 3.32
Diff-Instruct Luo et al. (2023) 1 4.53 9.89
CD (LPIPS) Song et al. (2023) 1 3.55 9.48

2 2.93 9.75
Direct Generation
Score SDE Song et al. (2020b) 2000 2.38 9.83
Score SDE (deep) Song et al. (2020b) 2000 2.20 9.89
DDPM (Ho et al., 2020) 1000 3.17 9.46
LSGM Vahdat et al. (2021) 147 2.10
PFGM Xu et al. (2022) 110 2.35 9.68
EDM Karras et al. (2022) 35 2.04 9.84
PFGM++ (D=2048) Xu et al. (2023) 35 1.91 9.68
EDM-G++ Kim et al. (2022) 35 1.77
1-Rectified Flow(Liu et al., 2022) 1 378 1.13
NVAE Vahdat & Kautz (2020) 1 23.5 7.18
BigGAN Brock et al. (2018) 1 14.7 9.22
StyleGAN2 Karras et al. (2020a) 1 8.32 9.21
StyleGAN2-ADA Karras et al. (2020b) 1 2.92 9.83
CT (LPIPS) Song et al. (2023) 1 8.70 8.49

2 5.83 8.85
iCT Song & Dhariwal (2023) 1 2.83 9.54

2 2.46 9.80
iCT-deep Song & Dhariwal (2023) 1 2.51 9.76

2 2.24 9.89
Integration Flow(VE) 1 2.87 9.56

2 2.64 9.76
1000 1.89 9.93

Integration Flow (VE-deep) 1 2.63 9.77
2 2.35 9.88

1000 1.71 9.95
Integration Flow (1-Rectified Flow) 1 3.40 9.48
Integration Flow (PFGM++, D=2048) 1 2.96

Figure 2: One-step samples from Inte-
gration Flow-VE

Figure 3: One-step samples from Inte-
gration Flow-VE-deep

Loss function Inspired by Song & Dhariwal (2023), we adopt the Pseudo-Huber metric family
Charbonnier et al. (1997) as the loss function, defined as

d(x,y) =
√
∥x− y∥22 + c2 − c (7)

Figure 4: FID Values vs. Training Iterations for
Different N .

where c is an adjustable hyperparameter. The
Pseudo-Huber metric is more robust to outliers
compared to the squared ℓ2 loss metric because
it imposes a smaller penalty for large errors,
while still behaving similarly to the squared
ℓ2 loss metric for smaller errors. We set c =
0.00015 for VE, c = 0.00014 for Rectified
Flow and c = 0.00014 for PFGM++, respec-
tively.

Other settings. We use Adam for all of our
experiments. For CIFAR-10, we set T =
1000 for baseline model and train the model
for 400,000 iterations with a constant learning
rate of 0.0002 and batch size of 1024.We use
an exponential moving average (EMA) of the
weights during training with a decay factor of
0.9999 for all the experiments. All models are
trained on 8 Nvidia H100 GPUs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 FAST CONVERGENCE OF INTEGRATION FLOW

As shown on Figure 4, the Integration Flow converge fast compared with the (Song & Dhariwal,
2023), especially for the larger values of N (500 and 1000). The steep decline in FID scores during
the early iterations (particularly from 10000 to 100000 iterations) indicates that the models are
learning quickly and that performance stabilizes after a relatively small number of iterations.

5.3 COMPARISON TO SOTA

We compare our model against state-of-the-art generative models on CIFAR-10. Quantitative results
are summarized in Table 2. Our findings reveal that Integration Flow exceed previous distillation
diffusion models and methods that require advanced sampling procedures in both one-step and two-
step generation, which breaks the reliance on the well-pretrained diffusion models and simplifies
the generation workflow. Moreover, our model demonstrates performance comparable to numerous
leading generative models for VE settings. Specifically, baseline Integration Flow obtains FIDs of
2.87 for one-step generation in VE, results exceed that of StyleGAN2-ADA (Karras et al., 2020b).
For deeper architecture, our model achieves one-step generation with FID of 2.63 for VE. Addi-
tionally, VP-deep outperforms the leading model iCT-deep (Song & Dhariwal, 2023) on two-step
generation. With 1000-step sampling, VE-deep push FID to 1.71, setting state-of-the-art perfor-
mance in both cases.

For Rectified Flow, the one-step generation with Integration Flow has reached 3.4 for FID without
reflow, which is also the state-of-the-art performance in the Rectified Flow. Generally, the Rectified
Flow need to be applied at least twice (reflow) to obtain a reasonable on-step generation perfor-
mance(Liu et al., 2022; 2023). For PFGM++, Integration Flow has reached 2.96 of FID in one-step
generation. We are the first to show that the PFGM++ can also achieve one-step generation with
good performance.

6 DISCUSSION

Integration Flow presents a straightforward yet powerful approach that unifies different types of
ODE-based generative models. Its core strength is simplicity: instead of relying on complex iterative
sampling or solving ODEs step-by-step, Integration Flow directly learns the overall transformation
dynamics, allowing for one-step generation. By using a pseudo-Huber loss function—simple and
easy to work with—the model benefits from stable training and minimal parameter tuning, making
it both scalable and adaptable across various ODE-based frameworks.

A key achievement of Integration Flow is its ability to solve different ODE-based models using a
single framework, addressing a significant challenge that prior models struggled with. Fore example,
two important generative models, Rectified Flow and diffusion model, are not unified, but Integra-
tion Flow can successfully integrate them. This not only simplifies the landscape of ODE-based
generative models but also expands their applicability, making them easier to implement across dif-
ferent domains.

Since Integration Flow keeps track of x(n)
0 for each sample in the dataset, there will be additional

memory consumption during training. Specifically, it requires extra 614MB for CIFAR-10. Al-
though it can be halved by using FP16 data type, such memory requirement might still be a chal-
lenge for larger dataset or dataset with high-resolution images. One solution is to store x

(n)
0 in a

buffer or on disk instead of on the GPU. However, this approach will introduce additional overhead
during training due to the need to transfer data back to the GPU. We will fix this out as our future
work.

Although, Integration Flow has achieved best performance on one-step generation for Rectified Flow
and PFGM++, the performance of Integration Flow for VE is still slightly underperformed compared
to current the-state-of-the-art. We hypothesize that this small performance gap may be attributed to
suboptimal hyperparameters in the loss function. Due to limited computation resouce, we are not
able to search the best hyperparameter. Additionally, we recognize that different noise schedulers
can significantly impact the model’s performance. The noise scheduling strategy plays a crucial role
in the training dynamics and final performance of the model. We plan to investigate more complex
schedulers in future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbot, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Deterministic edge-preserving regu-
larization in computed imaging. IEEE Transactions on Image Processing, 6(2):298–311, 1997.
doi: 10.1109/83.551699.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020b.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon. Refining gen-
erative process with discriminator guidance in score-based diffusion models. arXiv preprint
arXiv:2211.17091, 2022.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=a-xFK8Ymz5J.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

10

https://openreview.net/forum?id=a-xFK8Ymz5J

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
arXiv preprint arXiv:2305.18455, 2023.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Kudinov, and Jiansheng
Wei. Diffusion-based voice conversion with fast maximum likelihood sampling scheme, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-
tion Processing Systems, 35:36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola. Poisson flow generative models. Ad-
vances in Neural Information Processing Systems, 35:16782–16795, 2022.

Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark, and Tommi Jaakkola.
Pfgm++: Unlocking the potential of physics-inspired generative models. In International Con-
ference on Machine Learning, pp. 38566–38591. PMLR, 2023.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867,
2023.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. In International Conference on Machine
Learning, pp. 42390–42402. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A PRECONDITIONING SETTINGS AND ALGORITHMS

In this Appendix, we give detailed derivation of Integration Flow for the VE case of Diffusion
Model, Rectified Flow and PFGM++.

A.1 INTEGRATION FLOW FOR VE DIFFUSION MODELS

The PF-ODE of VE diffusion models is formulated as:

dxt

dt
= −1

2

dσ2
t

dt
∇xt

log pt (xt)

We do the reversed time integration on both sides over the interval [0, t]:

∫ 0

t

dxs

ds
=

∫ 0

t

−1

2

dσ2
t

dt
∇xt

log pt (xt)

and obtain:

x0 − xt = V (x0, 0)−V (xt, t) = −F (x0,xt, t)

Thus:
x0 = xt − F (x0,xt, t) = f (x0,xt, t)

For stable training purpose, we rewrite f (x0,xt, t) as following:

f (x0,xt, t) = xt − F (x0,xt, t)

= κ (σt)xt + (1− κ (σt))

[
xt −

1

1− κ (σt)
F (x0,xt, t)

]

We define the neural network as:

fθ (x0,xt, t) = κ (σt)xt +
1

1− κ (σt)
Fθ (x0,xt, t) ,

where we use neural network to estimate the value of xt − (1− κ (σt))F (x0,xt, t).

For VE Diffusion model, we have a(σt) = κ(σt) and b(σt) = 1−κ(σt). There are a few choices for
the design of κ(σt), such as κ(σt) =

σdata
σt+σdata

, κ(σt) =
σ2

data
σ2
t+σ2

data
, which are in a manner of (Karras

et al., 2022). We set κ(σt) =
σmin
σt

in this work.

Algorithm 1 Integration Flow Training Algorithm for VE Diffusion Model

Input: pdata, T , model parameter θ, initialize x
(0)
0 ∼ N (0, I), epoch n← 0

repeat
Sample x0 ∼ pdata, t ∼ U [1, T] and ϵ ∼ N (0, I)
xt = x0 + σtϵ

x
(n+1)
0 ← fθ

(
x
(n)
0 ,xt, t

)
L(n+1)

IFM (θ)← d
(
fθ

(
x
(n)
0 ,xt, t

)
,x0

)
θ ← θ − η∇θL (θ)
n← n+ 1

until convergence

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 2 Integration Flow Sampling Algorithm for VE Diffusion Mode

Input: T , trained model parameter θ, sampling step k, initialize x
(0)
0 ∼ N (0, I), xT ∼ N (0, I)

xT = σmaxxT

for k = 0 to k − 1 do
x
(k+1)
0 ← fθ

(
x
(k)
0 ,xT , T

)
end for
Output: x(k+1)

0

A.2 INTEGRATION FLOW FOR RECTIFIED FLOW

To analyze the integration flow associated with this process, we consider the derivative of zt with
respect to time t ∈ [0, 1]:

dzt
dt

= v (zt, t)

Integrating the both side, we obtain:

∫ 1

0

dzs
ds

ds = z− x0.

This confirms that the total change over the entire path from t = 0 to t = 1 is simply the difference
between the endpoints z1 and x0.

For any intermediate time t ∈ [0, 1], reserve-time integration over [0, t] yields:

∫ 0

t

dzs
ds

ds = x0 − zt = V (x0, 0)−V (xt, t) = −F (x0, zt, t),

where we define the accumulated change F (x0, zt, t) as:

F (x0, zt, t) = zt − x0.

Substituting the expression for zt, we have:

zt − x0 = [(1− t)x0 + tz]− x0 = t(z− x0).

Thus, the accumulated change is proportional to the time parameter t and the difference z− x0:

F (x0, zt, t) = t(z− x0).

Rearranging this expression allows us to solve for z− x0:

z− x0 =
F (x0, zt, t)

t
.

This relationship indicates that the total accumulated change z − x0 can be expressed in terms of
the accumulated change F (x0, zt, t) scaled by 1/t.

We can now define the Integration Flow of the Rectified Flow process by expressing x0 in terms of
F (x0, zt, t) and the endpoint z:

x0 = z− F (x0, zt, t)

t
= f (x0,xt, t) .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

In practice, since z is deterministic, it can be absorbed into the neural network; for stable training,
we take F (x0, zt, t) /t as a whole.

Thus ,we have:

fθ (x0,xt, t) = Fθ (x0,xt, t) ,

which indicates at = 0 and bt = 1.

By employing this enhanced dynamic model within the Rectified Flow framework, we can achieve
a more accurate and stable reconstruction of the initial data point x0, facilitating effective generative
modeling and data synthesis.

Algorithm 3 Integration Flow Training Algorithm for Rectified Flows

Input: couple (x0, z) from pdata and pz, respectively; model parameter θ, initialize x
(0)
0 ∼

N (0, I), epoch n← 0
repeat

Sample x0 ∼ pdata, t ∼ Uniform[0, 1]
zt = (1− t)x0 + tz

x
(n+1)
0 ← fθ

(
x
(n)
0 , zt, t

)
L(n+1)

IFM (θ)← d
(
fθ

(
x
(n)
0 , zt, t

)
,x0

)
θ ← θ − η∇θL (θ)
n← n+ 1

until convergence

Algorithm 4 Integration Flow Sampling Algorithm for Rectified Flows

Input: t = 1, trained model parameter θ, draw z ∼ pz, initialize x
(0)
0 ∼ N (0, I), sampling step

k, initialize x
(0)
0 ∼ N (0, I)

for k = 0 to k − 1 do
x
(k+1)
0 ← fθ

(
x
(k)
0 , z, t

)
end for
Output: x(k+1)

0

A.3 INTEGRATION FLOW FOR PFGM++

The backward ODE of PFGM++ is characterized as:

dx

dr
=

E(x̃)x
E(x̃)r

(8)

Since (Xu et al., 2023) showed that dx/dr = dx/dσ,where σ changes with time.

We modify the equation 8 as:
dx

dt
=

dx

dr

dσt

dt
=

E(x̃)x
E(x̃)r

dσt

dt

We do the reversed time integration on both sides with respect to t over the interval [0, t], leading to:

∫ 0

t

dx

dt
dt =

∫ 0

t

E(x̃)x
E(x̃)r

dσt

dt
dt,

which is equivalent to:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

x0 − xt = V (x0, 0)−V (xt, t) = −F (x0,xt, t)

Rearranging the equation, we express the initial data point in terms of the integration flow:

x0 = xt − F (x0,xt, t) = f (x0,xt, t) .

For stable training purpose, we rewrite f (x0,xt, t) as following:

f (x0,xt, t) = xt − F (x0,xt, t)

= atxt + (1− at)

[
xt −

1

1− at
F (x0,xt, t)

]
Since xt = x0 + Rtvt, inspired by the settings of at, bt in VE case of diffusion model, we set
at = σmin/Rt, bt = 1− at = 1− σmin/Rt.

Algorithm 5 Integration Flow Training Algorithm for PFGM++

Input: pdata, T , model parameter θ, initialize x
(0)
0 ∼ N (0, I), epoch n← 0

repeat
Sample x0 ∼ pdata, t ∼ U [1, T] and Rtvt, where rt = σt

√
D,Rt ∼ prt(R),vt =

ut/ ∥ut∥2 ,ut ∼ N (0, I)
xt = x0 +Rtvt

x
(n+1)
0 ← fθ

(
x
(n)
0 ,xt, t

)
L(n+1)

IF (θ)← d
(
fθ

(
x
(n)
0 ,xt, t

)
,x0

)
θ ← θ − η∇θL (θ)
n← n+ 1

until convergence

Algorithm 6 Integration Flow Sampling Algorithm for PFGM++

Input: T , trained model parameter θ, sampling step k, rT = σT

√
D,RT ∼ prT (R),v = u

∥u∥2
,

with u ∼ N (0, I), initialize x
(0)
0 ∼ N (0, I)

xT = RTv
for k = 0 to k − 1 do
x
(k+1)
0 ← fθ

(
x
(k)
0 ,xT , T

)
end for
Output: x(n+1)

0

B PROOF OF THEOREMS

B.1 PROOF OF THEOREM 1:

Proof. Before proving the theorem, we prove the corollary first:

Corollary:
E
[
(A− E[A | B,C])

2
]
≤ E

[
(A− E[A | B])

2
]
,

The variance of a random variable A can be decomposed as follows:

Var(A) = E[Var(A | B)] + Var(E[A | B]).

Now, introduce the extra information C. The variance of A, conditioned on both B and C, is:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Var(A|B,C) = E[Var(A|B,C)|B] + Var(E[A|B,C]|B)

Since conditioning on more information reduces uncertainty, we know that:

Var(A|B,C) ≤ Var(A|B).

We also have:
E
[
(A− E[A|B,C])

2
]
= E[Var(A|B,C)]

and
E
[
(A− E[A|B])

2
]
= E[Var(A|B)]

Since Var(A|B,C) ≤ Var(A|B), it follows that:

E
[
(A− E[A|B,C])

2
]
≤ E

[
(A− E[A|B])

2
]

let x0 = A,xt = B,x
(n)
0 = C, plug into the corollary, we complete the proof

The following is the proof of any convex metric d(·, ·).

Proof. x̂0 = E [x0 | xt] : The conditional expectation of x0 given xt

x̃0 = E
[
x0 | xt,x

(n)
0

]
: The conditional expectation of x0 given both xt and additional information

x
(n)
0 .

d (x0, a) is convex in a. The σ-algebra (information set) generated by
(
xt,x

(n)
0

)
is denoted by F ,

and that generated by xt is denoted by G. Thus, F ⊇ G.

For a convex loss function d, the conditional expectation E [x0 | I] minimizes the expected loss
E [d (x0, a) | I] over all a measurable with respect to the information set I. Therefore:

x̃0 = E [x0 | F] minimizes E [d (x0, a) | F] .
x̂0 = E [x0 | G] minimizes E [d (x0, a) | G] .

Since F ⊇ G, conditioning on F provides at least as much information as conditioning on G.

Next, we use Jensen’s Inequality for Conditional Expectations.

For a convex function d, and any estimator a measurable with respect to G,

E [d (x0, a) | F] ≥ d (E [x0 | F] , a) = d (x̃0, a)

Since x̃0 minimizes E [d (x0, a) | F],

E [d (x0, x̃0) | F] ≤ E [d (x0, a) | F] ∀a measurable with respect to F

Specifically for a = x̂0 :

E [d (x0, x̃0) | F] ≤ E [d (x0, x̂0) | F]

Taking the expectation over both sides with respect to the entire probability space,

E [d (x0, x̃0)] ≤ E [d (x0, x̂0)]

we complete the proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 PROOF OF THEOREM 2:

Proof. The initial value problem (IVP) of the reversed time ODE can be expressed as:
dxs

ds
= v (xs, s) s ∈ [0, t]

xt = x̂t

(9)

if putting x̃s := xt−s, we get 
dx̃s

ds
= −v (x̃s, s) s ∈ [0, t]

x̃0 = x̂t

(10)

The IVP 9 and 10 are equivalent and can be used interchangeably.

From the Lipschitz condition on v, we have:

∥v(x̃s, s)− v(ỹs, s)∥2 ≤ L ∥x̃s − ỹs∥2 .

Use the integral form:

∥f (x0,xt, t)− f (y0,yt, t)∥2 ≤ ∥x̃0 − ỹ0∥2 +
∫ t

0

L ∥x̃s − ỹs∥2 ds

By using Gröwnwall inequality, we have:

∥f (x0,xt, t)− f (y0,yt, t)∥2 ≤ eLt ∥x̃0 − ỹ0∥2 = eLt ∥x̂t − ŷt∥2
Next, consider the inverse time ODE, we have:

∥xt − yt∥2 ≤ ∥f(x0,xt, t)− f(y0,yt, t)∥2 +
∫ t

0

L ∥xs − ys∥2 ds

Again, by using Gröwnwall inequality,

∥xt − yt∥2 ≤ eLt ∥f(x0,xt, t)− f(y0,yt, t)∥2
Therefore,

∥f (x0,xt, t)− f (y0,yt, t)∥2 ≥ e−Lt ∥xt − yt∥2

and we complete the proof of:

e−Lt ∥xt − yt∥2 ≤ ∥f(x0,xt, t)− f(y0,yt, t)∥2 ≤ eLt ∥xt − yt∥2 . (11)

Since the neural network is sufficiently trained, fθ∗

(
x
(n)
0 ,xt, t

)
≡ f (x0,xt, t), replace

f (x0,xt, t) , f (y0,yt, t) with fθ∗

(
x
(n)
0 ,xt, t

)
, fθ∗

(
y
(n)
0 ,yt, t

)
respectively in equation 11, we

obtain:

e−Lt ∥xt − yt∥2 ≤
∥∥∥fθ∗

(
x
(n)
0 ,xt, t

)
− fθ∗

(
y
(n)
0 ,yt, t

)∥∥∥
2
≤ eLt ∥xt − yt∥2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C ADDITIONAL SAMPLES

Figure 5: One-step samples from the Integration Flow-VE model (FID=2.87)

Figure 6: Two-step samples from the Integration Flow-VE model (FID=2.64)

Figure 7: 1000-step samples from the Integration Flow-VE model (FID=1.89)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: One-step samples from the Integration Flow-VE model (FID=2.63).

Figure 9: Two-step samples from the Integration Flow-VE model (FID=2.35).

Figure 10: 1000-step samples from the Integration Flow-VE model (FID=1.71).

19

	Introduction
	Background and Related Works
	Method
	general form of ODE-based generative models
	Integration Flows
	Neural Network Approximation
	theoretical justification

	Integration Flow for different ODE-based generative models
	Experiments
	Implementation Details
	Fast Convergence of Integration Flow
	Comparison to SOTA

	Discussion
	preconditioning settings and algorithms
	Integration Flow for VE diffusion models
	Integration Flow for Rectified Flow
	Integration Flow for PFGM++

	Proof of Theorems
	Proof of Theorem 1:
	Proof of Theorem 2:

	Additional Samples

