
FISTAPruner: Layer-wise Post-training Pruning
for Large Language Models

Anonymous ACL submission

Abstract001

Pruning is a critical strategy for compressing002
trained large language models (LLMs), aim-003
ing at substantial memory conservation and004
computational acceleration without compromis-005
ing performance. However, existing pruning006
methods typically necessitate inefficient retrain-007
ing for billion-scale LLMs or rely on heuristi-008
cally designed metrics to determine pruning009
masks, leading to performance degradation.010
This paper presents, for the first time, a LASSO-011
like convex optimization model crafted to in-012
duce sparsity in LLMs. By leveraging the013
FISTA, we introduce FISTAPruner, a novel014
method that includes a cumulative error elim-015
ination mechanism within decoder layers and016
supports parallel pruning for unstructured prun-017
ing. Additionally, we extend this method to018
2:4 semi-structured pruning. We comprehen-019
sively evaluate FISTAPruner on models such as020
OPT and LLaMA variants with 125M to 70B021
parameters under unstructured and 2:4 semi-022
structured sparsity, showcasing superior perfor-023
mance over existing methods across various024
language benchmarks. Notably, it can remove025
50% of the model parameters for LLaMA-3-026
70B while retaining 98.6% and 95.6% of the027
zero-shot task performance under these two028
sparsity patterns, respectively.029

1 Introduction030

In recent years, large language models (LLMs)031

have revolutionized natural language processing032

fields, achieving impressive results in tasks such as033

machine translation, sentiment analysis, question034

answering, and text generation (Lyu et al., 2023;035

Yao et al., 2023; Zhang et al., 2023a,b; Wang et al.,036

2023; Arefeen et al., 2024; Li et al., 2024). Ad-037

vanced LLMs such as OpenAI’s GPT-4 (OpenAI,038

2023), Meta’s LLaMA-3 (Meta AI, 2023), and039

Google’s Gemini (Gemini Team et al., 2023) excel040

in generating coherent text with extensive parame-041

ters. However, the growth in model sizes outpaces042

hardware improvements, posing significant deploy- 043

ment and inference challenges (Steiner et al., 2023). 044

For example, operating OPT-175B (Zhang et al., 045

2022) requires over 320GB of memory and at least 046

five 80GB A100 GPUs for loading its parameters in 047

FP16 precision. This challenge becomes more pro- 048

nounced in environments with limited resources, 049

such as mobile devices, edge computing systems, 050

and real-time applications. Consequently, there has 051

been considerable interest in compressing LLMs 052

to enhance their efficiency and practicality for de- 053

ployment across various applications. 054

Pruning is a key method for compressing LLMs, 055

aiming to eliminate redundant weights to reduce 056

model size and computational demands while striv- 057

ing to maintain performance. Methods such as 058

those in (Huang et al., 2020; Ma et al., 2023; 059

Zhang et al., 2023c) require a retraining phase 060

post-pruning, which is inefficient for billion-scale 061

LLMs. PERP (Zimmer et al., 2023) introduces an 062

efficient retraining approach after pruning to re- 063

cover the performance of pruned model. Recent 064

developments, including SparseGPT (Frantar and 065

Alistarh, 2023) and Wanda (Sun et al., 2023), em- 066

ploy post-training pruning techniques for LLMs 067

without retraining. These methods, however, rely 068

on the heuristic-based optimal brain surgeon (OBS) 069

framework (Hassibi and Stork, 1992) or utilize 070

heuristic-based pruning metrics to determine prun- 071

ing masks, potentially compromising performance. 072

DSnoT (Zhang et al., 2023d) introduces a training- 073

free fine-tuning approach that updates the results 074

of other pruning methods, such as SparseGPT and 075

Wanda, which also depend on heuristic-based ad- 076

justment metrics. 077

In this work, we first introduce a LASSO-like 078

convex optimization model for layer-wise post- 079

training unstructured pruning of LLMs. Figure 080

1 provides an overview of our method, which is ap- 081

plied to each linear operator. We employ the Frobe- 082

nius norm of the difference between the outputs ob- 083

1

FISTAPruner

Input

Attention

FFN

+

+

weights

activations

Input

Attention

FFN

+

+

weights

pruned

Figure 1: Overview of the proposed FISTAPruner. Given a weight matrix W and its corresponding input feature
activation X , we employ the proposed convex optimization model, utilizing FISTA, to derive the pruned weights.

tained from the dense and pruned weights to quan-084

tify the output error. Additionally, we integrate085

an ℓ1-norm regularization term, the optimal con-086

vex approximation of the ℓ0-norm (Candès et al.,087

2006), into each row of weights to promote spar-088

sity. The solutions of the proposed optimization089

model demonstrate a balanced trade-off between090

output error and sparsity, governed by our proposed091

adaptive tuning method that meticulously adjusts092

the hyperparameter λ. To solve this optimization093

problem efficiently, we utilize the Fast Iterative094

Shrinkage-Thresholding Algorithm (FISTA) (Beck095

and Teboulle, 2009), which ensures a convergence096

rate of O(1/k2). Following this, we name our pro-097

posed method FISTAPruner. We further extend it098

to accommodate 2:4 semi-structured pruning by099

incorporating a hard thresholding step following100

FISTA’s convergence, thus achieving the desired101

sparsity structures.102

In addition, our approach effectively mitigates103

the cumulative error within decoder layers resulting104

from pruning by incorporating an intra-layer error105

correction mechanism. Due to discrepancies be-106

tween the outputs of dense and pruned weights, er-107

rors can accumulate, as the output from one pruned108

weight becomes the input for the next operator.109

FISTAPruner addresses this by sequentially prun-110

ing the weights of each linear operator within a111

decoder layer, using the output from the pruned112

weights of one operator as the input for the next,113

thus minimizing output discrepancies. Addition-114

ally, FISTAPruner treats each decoder layer as an115

independent unit for pruning, allowing for the si-116

multaneous pruning of multiple decoder layers and117

significantly increasing efficiency.118

We empirically evaluate FISTAPruner on the119

widely adopted OPT (Zhang et al., 2022),120

LLaMA (Touvron et al., 2023a), and LLaMA-121

2 (Touvron et al., 2023b) model families, as well as122

the latest LLaMA-3 (Touvron et al., 2023a) mod-123

els. FISTAPruner’s layer-by-layer pruning imple- 124

mentation allows for the pruning of these LLMs 125

ranging from 125M to 70B parameters on a single 126

NVIDIA A100 GPU with 40GB of memory. Our 127

results confirm that FISTAPruner can efficiently 128

create sparse networks from pretrained LLMs with- 129

out retraining. Moreover, our approach exceeds 130

the performance of state-of-the-art methods such 131

as SparseGPT, Wanda, DSnoT, and PERP across 132

various language benchmarks. We also perform a 133

series of ablation studies to validate our methods. 134

We believe our work sets a new direction and base- 135

line for future research in this area and encourages 136

further exploration into understanding sparsity in 137

LLMs with the tools of convex optimization. 138

2 Background and Related Work 139

Pruning of LLMs. Pruning is a widely used strat- 140

egy to compress LLMs by generating sparse weight 141

matrices under unstructured, semi-structured, and 142

structured sparsity based on calibration data. Un- 143

structured sparsity of rate s%, eliminates s% of 144

the entries in a weight matrix. Semi-structured 145

sparsity with proportion n : m maintains a fixed 146

overall sparsity level n/m, and allows at most n 147

non-zero entries in every group of m consecutive 148

entries. Pruning weights into semi-structured spar- 149

sity, especially with proportion 2:4, could yield up 150

to 2× inference speedup using NVIDIA GPUs with 151

the Ampere architecture (Mishra et al., 2021) and 152

hence is of particular interest. Structured sparsity, 153

which zeroes entire rows or columns, offers signif- 154

icant computational and memory benefits but can 155

lead to greater performance losses. 156

Pruning with Retraining. Traditional pruning 157

pipelines often include a retraining step to offset 158

performance losses (Huang et al., 2020; Ma et al., 159

2023; Zhang et al., 2023c). However, the sheer 160

scale of LLMs makes this additional retraining 161

costly in both time and computational resources. 162

2

(Dinh et al., 2020; Holmes et al., 2021; Xie et al.,163

2023) integrate retraining directly into the prun-164

ing process by targeting the minimization of the165

highly non-convex loss function related to the cal-166

ibration dataset, using the alternating direction167

method of multipliers (ADMM) to derive pruned168

weights. Nonetheless, this approach imposes sig-169

nificant computational demands and the use of170

ADMM in non-convex optimization often results171

in unstable performance (He and Yuan, 2012).172

Pruning without Retraining. Pruning without173

retraining offers a straightforward alternative, elim-174

inating the need for post-pruning retraining. These175

methods prune LLMs in a single step, simplifying176

implementation and reducing both time and compu-177

tational demands. Consequently, various methods178

have been developed under different sparsity frame-179

works. For structured pruning, SliceGPT (Ashk-180

boos et al., 2024) utilize principal component analy-181

sis to prune rows and columns of weights to reduce182

model dimensions. ZipLM (Kurtić et al., 2024)183

adopts an OBS-based approach for structured prun-184

ing and updates remaining weights to maintain185

performance. Our proposed FISTAPruner focuses186

on unstructured and semi-structured pruning, and187

thus is orthogonal to these structured pruning meth-188

ods, enabling further model compression. For un-189

structured and semi-structured pruning, SparseGPT190

(Frantar and Alistarh, 2023) and ISC (Shao et al.,191

2024) leverage the OBS framework to calculate192

saliency for each entry using the inverse Hessian193

of the loss metric, based on which pruning masks194

are generated and weights are updated. Wanda195

(Sun et al., 2023) implements a heuristic approach,196

removing weights based on the product of their197

magnitudes and activations without compensation.198

DSnoT (Zhang et al., 2023d) updates the results199

of other pruning methods, such as SparseGPT and200

Wanda, which also relies on heuristic-based adjust-201

ment metrics. (Boža, 2024) employs ADMM to202

optimize weight updates under iteratively refined203

pruning masks chosen through heuristic methods204

based on Wanda. These methods adopt a layer-wise205

pruning strategy, where errors between the pruned206

output and the original output of each operator ac-207

cumulates. Moreover, due to their heuristic nature,208

the performances of the pruned models are unstable209

and compromised.210

Error Corrections. Error correction techniques211

are increasingly used to mitigate error accumula-212

tions from layer-wise pruning by minimizing re-213

construction errors between the pruned network214

and the original one (Park et al., 2024; El Halabi 215

et al., 2022). However, their implementations and 216

applications to pruning LLMs vary widely. Promi- 217

nent methods like SparseGPT (Frantar and Alistarh, 218

2023) focus on pruning without explicit error cor- 219

rection, while approaches like K-prune (Park et al., 220

2024) minimize global reconstruction error, facing 221

scalability challenges as globally correcting prun- 222

ing errors will require global sequential pruning. 223

Our work introduces intra-layer error corrections 224

for better accuracy and computational efficiency. 225

By focusing on intra-layer adjustments, our method 226

provides a scalable and effective solution for prun- 227

ing LLMs. 228

3 Methodology 229

In this section, we introduce our post-training prun- 230

ing method, FISTAPruner, which comprises three 231

main components. First, we address the error accu- 232

mulation issue in layer-wise pruning with an intra- 233

layer error correction mechanism and develop a 234

novel convex optimization model tailored for this 235

purpose. We then detail the process for unstruc- 236

tured pruning using FISTA and adapt the frame- 237

work for n : m semi-structured pruning. Finally, 238

we present an adaptive method that finely tunes 239

the hyperparameter λ in our model to minimize 240

the output discrepancies between dense and pruned 241

operators while achieving the desired sparsity level. 242

3.1 Post-Training Pruning Model 243

Post-training compression is typically achieved by 244

decomposing the full-model compression problem 245

into layer-wise subproblems (Frantar and Alistarh, 246

2023). For instance, a typical Transformer decoder 247

layer (Vaswani et al., 2017) comprises six crucial 248

linear operators: WQ, WK , WV , WO, Wfc1 , and 249

Wfc2 . We leverage an intra-layer error correction 250

mechanism that sequentially prunes the weights 251

while explicitly accounting for the cumulative error 252

introduced at each step. Consider a dense weight 253

matrix W ∈ Rm×n and the corresponding input 254

activation X ∈ Rn×p. The output is Z = WX . 255

Our goal is to find the pruned weights W ∗ that 256

minimize the discrepancy between the outputs of 257

the dense and pruned models: 258

min
W ∗

∥W ∗X∗ −WX∥2F s.t. W ∗ ∈ S, (1) 259

where ∥ · ∥F denotes the Frobenius norm, and S 260

defines the permissible sparsity patterns. The input 261

activation X∗ are defined based on the position 262

3

of the operator within the layer. Specifically, if263

the operator is at the top of the layer, then X∗ =264

X . Conversely, if the operator follows previously265

pruned operators, X∗ is set to Z∗
prev, where Z∗

prev266

is the pruned output from the preceding operator.267

As illustrated in Figure 2, consider two sequen-268

tial operators with weights W1 and W2. When269

pruning W1 to obtain its pruned counterpart W ∗
1 ,270

Equation 1 quantifies the output error between271

W1X and W ∗
1X , where the input X∗ remains272

the same as X since this operator is at the top of273

the layer. However, for the second operator W ∗
2 ,274

the corresponding input becomes W ∗
1X instead of275

W1X due to the pruning applied to W1. Conse-276

quently, the deviation between the outputs of W2277

and W ∗
2 is computed by comparing W2(W1X)278

and W ∗
2 (W

∗
1X). This approach ensures that cu-279

mulative error is appropriately considered, as each280

pruning step accounts for both the changes in the281

weights and the modified input activations resulting282

from previous pruning. Note that we use intra-layer283

error corrections within each decoder layer, en-284

abling parallel pruning and improved performance285

(see Section E.1 for details).286

Unstructured pruning essentially transforms287

dense weight matrices into sparse structures. The288

ℓ0-norm, which directly counts the number of non-289

zero entries in a vector, is the most straightfor-290

ward measure of unstructured sparsity. Despite291

the intuitive appeal of the ℓ0-norm, it induces non-292

convex and NP-hard optimization challenges. As293

a result, we adopt the ℓ1-norm, its optimal convex294

approximation (Candès et al., 2006), to achieve295

similar sparsity with tractable computational de-296

mands. Specifically, we apply the ℓ1-norm to each297

row of W ∗, thereby promoting sparsity throughout298

the matrix (see Appendix A for detailed explana-299

tions):300 ∥∥W ∗
i,:

∥∥
1
, i = 1, 2, . . . ,m, (2)301

where W ∗
i,: represents the i-th row of W ∗. Then,302

we construct our optimization model by integrating303

Equation 1 and Equation 2:304

min
W ∗∈Rm×n

1

2
∥W ∗X∗−WX∥2F +λ

m∑
i=1

∥W ∗
i,:∥1.

(3)305

This model aims to simultaneously minimize both306

the output error and the sum of the ℓ1-norm values307

while the hyperparameter λ > 0 balances these308

two terms.309

Remark 1. The proposed optimization model in 310

Equation 3 is convex. This is due to the fact that the 311

square of the Frobenius norm is a convex function, 312

as is the ℓ1-norm. Thus, the objective function, 313

being a sum of these two convex functions, is also 314

convex. Since the problem is an unconstrained 315

optimization with a convex objective function, the 316

overall optimization model is convex. 317

3.2 Optimization based on FISTA 318

To deal with the non-smooth regularization term 319

in Equation 3, a straightforward approach is us- 320

ing sub-gradient descent methods (Beck, 2017). 321

However, its slow convergence rate of O(1/
√
k) is 322

not desirable. We thus turn to FISTA (Beck and 323

Teboulle, 2009) with convergence rate O(1/k2) to 324

solve the proposed model Equation 3 efficiently. 325

Specifically, starting with t0 = 1 and an initial W ∗
0 , 326

the k-th iteration of FISTA reads: 327

W
∗
k+1

3
= W

∗
k −

1

L

(
W

∗
k X(X

∗
)
⊤ − WX(X

∗
)
⊤
)
,

W
∗
k+2

3
= SoftShrinkage λ

L

(
W

∗
k+1

3

)
,

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
,

W
∗
k+1 = W

∗
k+2

3
+

tk − 1

tk+1

(
W

∗
k+2

3
− W

∗
k

)
,

(4a)

(4b)

(4c)

(4d)

328

where L = ∥X∗(X∗)⊤∥2 is the maximum eigen-
value of X∗(X∗)⊤ and the SoftShrinkageρ(·) op-
erator with parameter ρ ≥ 0 on a matrix X =
(xij) ∈ Rm×n performs elementwise transforma-
tions defined by

SoftShrinkageρ(X) = X ′,

where

x′ij =

xij − ρ, if xij > ρ,

xij + ρ, if xij < −ρ,

xij = 0, otherwise.

Step Equation 4a executes a gradient descent 329

update on the parameter W ∗
k , aiming to minimize 330

the function 1/2∥W ∗
kX

∗ − WX∥2F with a step 331

size of 1/L. Step Equation 4b does a proximal 332

update, defined as: 333

W
∗
k+2

3
= argmin

W∗

{
L

2

∥∥∥∥W ∗ − W
∗
k+1

3

∥∥∥∥2

F

+ λ
m∑

i=1

∥∥∥W ∗
i,:

∥∥∥
1

}
.

(5) 334

Steps Equation 4c and Equation 4d calculate 335

a linear combination of the previous two points, 336

4

output error

output error

Figure 2: Illustration of the proposed intra-layer error correction mechanism. W1 and W2 represent the weights of
two sequential layers within the network architecture.

{
W ∗

k+2/3,W
∗
k

}
, to facilitate accelerated conver-337

gence. Detailed derivations of these steps are pro-338

vided in Appendix B. The FISTA iteration termi-339

nates either when the maximum number of itera-340

tions, K, is reached or when the following stopping341

criterion is satisfied:342 ∥∥W ∗
k −W ∗

k−1

∥∥
F
< 1× 10−6. (6)343

3.3 Extension to 2:4 Semi-structured Pruning344

While our convex optimization framework effec-345

tively addresses unstructured pruning, practical346

deployment often necessitates structured or semi-347

structured sparsity patterns to fully leverage hard-348

ware acceleration capabilities. One notable pattern349

is the 2:4 semi-structured sparsity, which is sup-350

ported by NVIDIA’s Ampere architecture (Mishra351

et al., 2021), enabling significant speedups in infer-352

ence.353

The inclusion of the n : m sparsity constraint354

render the optimization problem non-convex due355

to the combinatorial nature of selecting which el-356

ements to prune within each group. To tackle this357

challenge, we adopt FISTA updates, incorporating358

a hard thresholding step as follows:359

W ∗
K+1 = H (W ∗

K , n : m) , (7)360

where W ∗
K denote result from the K-th iteration of361

FISTA satisfying the stopping criterion, and H(·)362

is the hard thresholding, which, for each group of363

four consecutive elements in every row, sets the364

two elements with the smallest absolute values to365

zero and retains the other two.366

We acknowledge that the non-convex nature of367

this extension introduces complexities in theoret-368

ical analysis. However, the empirical success ob-369

served in our experiments provides confidence in370

the practical applicability of our approach.371

3.4 Adaptive Hyperparameter Tuning372

In Equation 3, the regularization parameter λ plays373

a pivotal role in balancing the trade-off between the374

output error and the sparsity of the pruned weights 375

W ∗. A larger λ emphasizes sparsity, potentially 376

increasing the output error, while a smaller λ fo- 377

cuses on minimizing the output error, resulting in 378

less sparsity. To attain a specific desired sparsity 379

level, it is essential to select an appropriate value 380

of λ that guides the optimization toward the target 381

sparsity. 382

To automate the selection of λ, we propose em- 383

ploying an adaptive hyperparameter tuning mecha- 384

nism based on the bisection method. This method 385

iteratively adjusts λ within a predefined interval 386

[0,M], where M is a sufficiently large upper 387

bound, to find the optimal value that yields the tar- 388

get sparsity upon solving the optimization problem 389

using FISTA. We establish theoretical guarantees 390

for the convergence of this method in the context 391

of unstructured pruning, as stated in the following 392

theorem: 393

Theorem 1. Define s(λ) as the function that maps 394

the regularization parameter λ to the sparsity level 395

obtained after resolving the optimization problem. 396

Let s denote the desired sparsity level. The adap- 397

tive hyperparameter tuning mechanism leveraging 398

the bisection method is guaranteed to converge to 399

a λ∗ such that the resultant sparsity level s(λ∗) sat- 400

isfies the inequality |s(λ∗) − s| ≤ ϵ, where ϵ is a 401

predefined tolerance. 402

The proof is detailed in Appendix C. Although 403

the adaptive hyperparameter tuning effectively 404

identifies a regularization parameter λ∗ that yields 405

a sparsity level close to the desired one, it may not 406

always achieve the exact target due to the inherent 407

continuous nature of the optimization process and 408

limitations in numerical precision. To precisely 409

attain the desired unstructured sparsity, we also im- 410

plement a final hard thresholding step similar to 411

Equation 7: after obtaining the optimized weights, 412

the smallest-magnitude weights to zero until the 413

exact sparsity level is achieved. To adjust λ con- 414

sidering this hard thresholding step, we define the 415

5

Algorithm 1 FISTAPruner
Inputs: original output WX , input activation X∗, W ∗

0 ,
λ, K, T , ϵ, s% or n : m
t← 0; W ∗

best ←W ∗
0 ; Ebest ← ∥W ∗

0 X
∗ −WX∥F

repeat
W ∗

K ← FISTA (WX,X∗, λ,W ∗
best,K)

W ∗
K+1 ← H (W ∗

K , s% or n : m)
Etotal ← ∥W ∗

K+1X
∗ −WX∥

F
Eround ← Etotal − ∥W ∗

KX∗ −WX∥F
if Etotal < Ebest then

W ∗
best ←W ∗

K+1

Estop = (Ebest − Etotal)/Ebest
Ebest ← Etotal

else
t← t+ 1

end if
update λ based on Eround/Etotal as in Section 3.4

until t ≥ T or Estop < ϵ
return W ∗

best

total error Etotal and the rounding error Eround as416

Etotal :=
∥∥W ∗

K+1X
∗ −WX

∥∥
F
,417

Eround := Etotal − ∥W ∗
KX∗ −WX∥F .418

A high Eround/Etotal suggests that the majority of419

the error originates from the hard thresholding420

step. This suggests that the sparsity level of WK421

achieved via FISTA falls short of the desired spar-422

sity, implying a need to increase the value of λ423

to enhance the emphasis on the ℓ1-norm in Equa-424

tion 3. Conversely, a low Eround/Etotal indicates that425

the sparsity in W ∗
K is adequate. This observation426

implies that a reduction in λ might be beneficial.427

Such an adjustment would shift the model’s em-428

phasis towards minimizing output errors, thereby429

potentially decreasing the total error. Incorporat-430

ing the above insights, we apply a threshold ξ for431

Eround/Etotal.432

3.5 FISTAPruner Pseudocode433

While the intra-layer error correction mechanism434

requires sequential pruning of the operators within435

a decoder layer, we could treat each decoder layer436

as an independent pruning unit, enabling parallel437

pruning across multiple decoder layers on differ-438

ent devices, which significantly enhances the effi-439

ciency. Within each decoder layer, the proposed440

FISTAPruner sequentially prune weights to elimi-441

nate error accumulations, as detailed in Section 3.1.442

Algorithm 1 presents FISTAPruner for the dense443

weight matrix W . It leverages FISTA to generate444

candidate sparse weights based on the model Equa-445

tion 3, as detailed in Section 3.2. It then applies446

a hard thresholding step to meet specified sparsity447

constraints. Additionally, the parameter λ is adap- 448

tively tuned, as detailed in Section 3.4, to optimize 449

the trade-off between output error and sparsity. The 450

algorithm iteratively updates the weights, preserv- 451

ing the best solution W ∗
best, based on the lowest 452

total error Etotal. It terminates when the number of 453

consecutive iterations without an improvement in 454

W ∗
best reaches T , or when the improvement ratio 455

(Ebest − Etotal)/Ebest falls below the threshold ϵ. 456

4 Experiments 457

In this section, we detail a comprehensive set of 458

experiments designed to validate the efficacy of 459

FISTAPruner. We begin with an in-depth review 460

of our experimental setup. Following this, we ex- 461

plore the perplexity and zero-shot capabilities of 462

the pruned LLMs through rigorous testing and a 463

series of ablation studies. Due to page length con- 464

straints, a portion of the results are presented in 465

Appendix D and E. 466

4.1 Settings 467

Models. We utilize models from the OPT (Zhang 468

et al., 2022), LLaMA (Touvron et al., 2023a), 469

LLaMA-2 (Touvron et al., 2023b), and LLaMA- 470

3 (Meta AI, 2023) families. 471

Benchmarks. Our primary assessment focuses 472

on evaluating the perplexity of pruned LLMs, a 473

metric renowned for its reliability in assessing 474

LLM performance. Following methodologies from 475

previous studies (Frantar and Alistarh, 2023; Sun 476

et al., 2023), we measure model perplexity using 477

the WikiText-2-raw (Merity et al., 2016) (here- 478

after shortened to WikiText), PTB (Marcus et al., 479

1994), and C4 (Raffel et al., 2020) datasets. Addi- 480

tionally, we perform a comprehensive evaluation 481

of the zero-shot capabilities of pruned LLaMA-3- 482

70B models using several standard common-sense 483

benchmark datasets. These include ARC Easy and 484

ARC Challenge (Clark et al., 2018), WinoGrande 485

(Sakaguchi et al., 2021), BoolQ (Clark et al., 2019), 486

RTE (Wang et al., 2018), QNLI (Wang et al., 2018), 487

and WNLI (Wang et al., 2018) tasks, facilitated by 488

the LM Harness library (Gao et al., 2021). 489

Baselines. We compare FISTAPruner against 490

two state-of-the-art pruning methods: SparseGPT 491

(Frantar and Alistarh, 2023) and Wanda (Sun et al., 492

2023). Additionally, we evaluate against the lat- 493

est training-free approach, DSnoT (Zhang et al., 494

2023d), which updates the results of other pruning 495

methods, and the recent efficient prune-retrain ap- 496

6

Table 1: WikiText perplexity (↓) of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms state-of-the-art methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 27.66 22.00 14.63 12.47 10.86 10.13 9.56
SparseGPT 50% 37.01 31.53 17.55 13.46 11.60 11.15 9.77
Wanda 50% 38.96 36.22 18.41 14.22 11.98 11.93 10.03
FISTAPruner 50% 33.54 28.89 17.21 13.22 11.36 10.95 9.71
SparseGPT 2:4 60.02 50.15 23.83 17.20 14.13 12.94 10.92
Wanda 2:4 80.32 113.00 28.25 21.25 15.90 15.56 13.40
FISTAPruner 2:4 45.16 40.41 22.46 15.70 13.16 12.21 10.54

Table 2: WikiText perplexity (↓) of pruned LLaMA, LLaMA-2 and LLaMA-3 models under 50% unstructured and
2:4 semi-structured sparsity. FISTAPruner outperforms state-of-the-art methods.

LLaMA LLaMA-2 LLaMA-3

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B
Dense 0% 5.68 5.09 4.10 3.53 5.12 4.57 3.12 5.54 2.59
SparseGPT 50% 7.24 6.22 5.33 4.60 6.54 5.63 3.99 8.64 5.30
Wanda 50% 7.26 6.15 5.25 4.60 6.46 5.58 3.97 9.06 5.33
FISTAPruner 50% 6.97 6.06 5.09 4.39 6.35 5.47 3.93 8.00 5.09
SparseGPT 2:4 11.32 9.11 7.21 6.24 10.37 8.29 5.38 14.65 8.63
Wanda 2:4 11.54 9.61 6.91 6.24 11.34 8.35 5.20 22.56 8.34
FISTAPruner 2:4 9.82 8.27 6.70 5.82 9.63 7.69 5.16 14.54 7.55

proach, PERP (Zimmer et al., 2023). We evaluate497

two types of sparsity configurations: unstructured498

and 2:4 semi-structured sparsity.499

Setup. We implement FISTAPruner using PyTorch500

(Paszke et al., 2019) and leverage the Hugging-501

Face Transformers library (Wolf et al., 2019) for502

model and dataset management. All pruning ex-503

periments are conducted on NVIDIA A100 GPUs,504

each equipped with 80GB of memory. We observe505

that FISTAPruner efficiently prunes all LLMs using506

a single GPU and no more than 40GB of memory.507

For calibration data, we adhere to the approach out-508

lined in previous works (Frantar and Alistarh, 2023;509

Sun et al., 2023), utilizing 128 sequences. Each510

sequence is composed of tokens sampled from the511

first shard of the C4 dataset, with the number of512

tokens equal to the maximum embedding length of513

the LLMs. For parameters of FISTAPruner, we set514

the initial value of λ to 1× 10−5, K to 20, T to 3,515

M to 106, and ξ to 0.3. For the OPT model family,516

we use the result of SparseGPT as a warm start for517

the FISTA iteration and set ϵ to 1× 10−6. For the518

LLaMA model family, we use the result of Wanda519

as a warm start and set ϵ to 1× 10−3.520

4.2 Perplexity Experiment Results521

In Tables 1 and 2, we present the perplexity re-522

sults for the pruned OPT, LLaMA, LLaMA-2, and523

LLaMA-3 models of various sizes on WikiText.524

For results on PTB and C4, please refer to Ap-525

Table 3: WikiText perplexity (↓) of pruned LLaMA,
LLaMA-2 and LLaMA-3 models under 50% unstruc-
tured and 2:4 semi-structured sparsity. FISTAPruner
outperforms DSnoT.

Method Sparsity 7B 13B 30B 2-7B 2-13B 3-8B
Wanda + DSnoT 50% 7.12 6.16 5.20 6.49 5.57 9.07
FISTAPruner 50% 6.97 6.06 5.09 6.35 5.47 8.00
Wanda + DSnoT 2:4 11.54 9.49 7.09 11.53 8.52 20.56
FISTAPruner 2:4 9.82 8.27 6.70 9.63 7.69 14.54

Table 4: WikiText perplexity (↓) of pruned OPT models
under 50% sparsity. FISTAPruner outperforms prune-
retrain approach PERP.

Method Sparsity 2.7B 6.7B 13B 30B
SparseGPT + PERP 50% 13.40 11.47 10.85 9.76
Wanda + PERP 50% 13.88 11.83 11.06 10.04
FISTAPruner 50% 13.22 11.36 10.95 9.71

pendix D.1 and D.2. We achieved a 50% unstruc- 526

tured or 2:4 semi-structured sparsity level by prun- 527

ing all linear operators, excluding embeddings and 528

the model head. The data in Tables 1 and 2 illus- 529

trate consistent improvements with FISTAPruner 530

over SparseGPT and Wanda. 531

In Tables 3, we detail the comparison between 532

FISTAPruner and DSnoT on LLaMA, LLaMA-2, 533

and LLaMA-3 models of various sizes on WikiText. 534

The data consistently indicate that FISTAPruner 535

achieves lower perplexity scores, thereby surpass- 536

ing DSnoT in performance. 537

7

Table 5: Zero-shot results (accuracy, ↑) of the pruned LLaMA-3-70B model under 50% unstructured and 2:4
semi-structured sparsity. FISTAPruner outperforms state-of-the-art methods on most of the tasks and yields much
higher average accuracies especially under 2:4 semi-structured sparsity.

Method Sparsity ARC-c ARC-e WinoGrande RTE BoolQ QNLI WNLI Mean
Dense 0% 0.6024 0.8685 0.8035 0.6859 0.8560 0.5190 0.7183 0.7219
SparseGPT 50% 0.5401 0.8340 0.7979 0.7040 0.8480 0.5035 0.7042 0.7045
Wanda 50% 0.5427 0.8320 0.7814 0.7076 0.8480 0.5045 0.6338 0.6928
FISTAPruner 50% 0.5614 0.8410 0.8035 0.6895 0.8645 0.5055 0.7183 0.7120
SparseGPT 2:4 0.4590 0.7830 0.7609 0.6426 0.8165 0.4985 0.5493 0.6443
Wanda 2:4 0.4829 0.7860 0.7174 0.6354 0.7615 0.5390 0.6056 0.6468
FISTAPruner 2:4 0.4735 0.7985 0.7751 0.7004 0.8540 0.5675 0.6620 0.6901

0 10 20 30 40 50
Sparsity (%)

28

30

32

34

36

38

40

Pe
rp

le
xi

ty
 o

n
W

ik
iT

ex
t-

2-
ra

w SparseGPT
Wanda
FISTAPruner
Dense

(a) Perplexity-vs-Sparsity on OPT-125M.

0 10 20 30 40 50
Sparsity (%)

6

7

8

9

Pe
rp

le
xi

ty
 o

n
W

ik
iT

ex
t-

2-
ra

w SparseGPT
Wanda
FISTAPruner
Dense

(b) Perplexity-vs-Sparsity on LLaMA-3-8B.

Figure 3: Comparative analysis of sparsity versus per-
plexity across different methods for OPT-125M and
LLaMA-3-8B models on WikiText dataset.

We also compare FISTAPruner with the prune-538

retrain method PERP, with results presented in Ta-539

ble 4. These results demonstrate that FISTAPruner,540

without any retraining, outperforms the results of541

SparGPT/Wanda retrained using PERP. Moreover,542

our method is also compatible with retraining meth-543

ods and could serve as a superior initialization point544

in the retraining process.545

To further investigate FISTAPruner’s perfor-546

mance under different unstructured sparsity lev-547

els, we conducted experiments on the OPT-125M548

and LLaMA-3-8B models, with perplexity results549

visualized in Figure 3 and measured using Wiki-550

Text. The results indicate that FISTAPruner consis-551

tently outperforms existing methods across differ-552

ent levels of unstructured sparsity. Notably, at 20%553

unstructured sparsity on the OPT-125M model, 554

FISTAPruner’s performance even surpasses that 555

of the dense network. 556

4.3 Zero-Shot Task Results 557

The results of zero-shot tasks on pruned LLaMA-3- 558

70B models, with 50% unstructured and 2:4 semi- 559

structured sparsity, are detailed in Table 5. These re- 560

sults indicate that FISTAPruner surpasses existing 561

methods on most tasks. Furthermore, when evalu- 562

ating the average accuracy across the seven tasks 563

we examined, FISTAPruner consistently shows su- 564

perior performance compared to existing methods, 565

particularly with 2:4 semi-structured sparsity. 566

4.4 Ablation Study 567

We conduct a series of ablation studies to evaluate 568

the impact of the intra-layer error correction mech- 569

anism, calibration data, and warm-start mechanism. 570

The results are presented in Appendix E. 571

5 Conclusion 572

In this paper, we introduce FISTAPruner, a layer- 573

wise post-training pruning method for LLMs. Ini- 574

tially, we develop a convex optimization model that 575

employs the ℓ1-norm to induce unstructured spar- 576

sity in the weights, complemented by an intra-layer 577

error correction mechanism to eliminate cumula- 578

tive errors across operators in the traditional prun- 579

ing process. Subsequently, we utilize FISTA to 580

efficiently solve the proposed model. Additionally, 581

we extend FISTAPruner to accommodate n : m 582

semi-structured pruning. FISTAPruner supports 583

parallel pruning, which can reduce the total prun- 584

ing time by utilizing various devices simultane- 585

ously. Extensive experiments on the OPT, LLaMA, 586

LLaMA-2, and LLaMA-3 model families demon- 587

strate FISTAPruner’s superior performance com- 588

pared to existing methods. 589

8

Limitations590

Despite the rigorous theoretical foundation and im-591

pressive pruning performance of FISTAPruner, the592

time required for pruning remains a limitation of593

our method compared to SparseGPT and Wanda.594

This is primarily due to the iterative nature of595

FISTA and the process of tuning λ. Pruning time596

varies with model size; for instance, it takes about597

10 minutes for OPT-125M, while LLaMA-3-70B598

requires approximately 12 hours on a single Nvidia599

A100 GPU with 40GB of memory. However, the600

parallel-pruning capability of FISTAPruner, which601

allows for simultaneous pruning of multiple de-602

coder layers across various devices, can mitigate603

this issue to some extent. Furthermore, as post-604

training pruning is typically an offline process, time605

sensitivity may not be a critical factor in real-world606

applications. In addition, FISTAPruner represents607

an attempt to integrate convex optimization theory608

and algorithms into LLM applications, potentially609

inspiring further advancements in this area.610

References611

Md Adnan Arefeen, Biplob Debnath, and Srimat612
Chakradhar. 2024. Leancontext: Cost-efficient613
domain-specific question answering using llms. Nat-614
ural Language Processing Journal, 7:100065.615

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-616
nari do Nascimento, Torsten Hoefler, and James617
Hensman. 2024. Slicegpt: Compress large language618
models by deleting rows and columns. arXiv preprint619
arXiv:2401.15024.620

Amir Beck. 2017. First-order methods in optimization.621
SIAM.622

Amir Beck and Marc Teboulle. 2009. A fast itera-623
tive shrinkage-thresholding algorithm for linear in-624
verse problems. SIAM journal on imaging sciences,625
2(1):183–202.626

Vladimír Boža. 2024. Fast and optimal weight update627
for pruned large language models. arXiv preprint628
arXiv:2401.02938.629

Emmanuel J Candès, Justin Romberg, and Terence Tao.630
2006. Robust uncertainty principles: Exact signal631
reconstruction from highly incomplete frequency in-632
formation. IEEE Transactions on information theory,633
52(2):489–509.634

Christopher Clark, Kenton Lee, Ming-Wei Chang,635
Tom Kwiatkowski, Michael Collins, and Kristina636
Toutanova. 2019. Boolq: Exploring the surprising637
difficulty of natural yes/no questions. arXiv preprint638
arXiv:1905.10044.639

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 640
Ashish Sabharwal, Carissa Schoenick, and Oyvind 641
Tafjord. 2018. Think you have solved question an- 642
swering? try arc, the ai2 reasoning challenge. arXiv 643
preprint arXiv:1803.05457. 644

Thu Dinh, Bao Wang, Andrea Bertozzi, Stanley Os- 645
her, and Jack Xin. 2020. Sparsity meets robustness: 646
Channel pruning for the feynman-kac formalism prin- 647
cipled robust deep neural nets. In Machine Learn- 648
ing, Optimization, and Data Science: 6th Interna- 649
tional Conference, LOD 2020, Siena, Italy, July 19– 650
23, 2020, Revised Selected Papers, Part II 6, pages 651
362–381. Springer. 652

Marwa El Halabi, Suraj Srinivas, and Simon Lacoste- 653
Julien. 2022. Data-efficient structured pruning via 654
submodular optimization. Advances in Neural Infor- 655
mation Processing Systems, 35:36613–36626. 656

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 657
sive language models can be accurately pruned in 658
one-shot. In International Conference on Machine 659
Learning, pages 10323–10337. PMLR. 660

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, 661
Anthony DiPofi, Charles Foster, Laurence Golding, 662
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, 663
et al. 2021. A framework for few-shot language 664
model evaluation. Version v0. 0.1. Sept, page 8. 665

Gemini Team, Rohan Anil, Sebastian Borgeaud, 666
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, 667
Radu Soricut, Johan Schalkwyk, Andrew M Dai, 668
Anja Hauth, et al. 2023. Gemini: a family of 669
highly capable multimodal models. arXiv preprint 670
arXiv:2312.11805. 671

Babak Hassibi and David Stork. 1992. Second order 672
derivatives for network pruning: Optimal brain sur- 673
geon. Advances in neural information processing 674
systems, 5. 675

Bingsheng He and Xiaoming Yuan. 2012. On the o(1/n) 676
convergence rate of the douglas–rachford alternat- 677
ing direction method. SIAM Journal on Numerical 678
Analysis, 50(2):700–709. 679

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu. 680
2021. Nxmtransformer: Semi-structured sparsifica- 681
tion for natural language understanding via admm. 682
Advances in neural information processing systems, 683
34:1818–1830. 684

Zhongzhan Huang, Wenqi Shao, Xinjiang Wang, Liang 685
Lin, and Ping Luo. 2020. Convolution-weight- 686
distribution assumption: Rethinking the criteria of 687
channel pruning. arXiv preprint arXiv:2004.11627. 688

Eldar Kurtić, Elias Frantar, and Dan Alistarh. 2024. Zi- 689
plm: Inference-aware structured pruning of language 690
models. Advances in Neural Information Processing 691
Systems, 36. 692

9

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,693
and Ji-Rong Wen. 2024. Pre-trained language mod-694
els for text generation: A survey. ACM Computing695
Surveys, 56(9):1–39.696

Chenyang Lyu, Jitao Xu, and Longyue Wang. 2023.697
New trends in machine translation using large lan-698
guage models: Case examples with chatgpt. arXiv699
preprint arXiv:2305.01181.700

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.701
Llm-pruner: On the structural pruning of large lan-702
guage models. arXiv preprint arXiv:2305.11627.703

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,704
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen705
Katz, and Britta Schasberger. 1994. The penn tree-706
bank: Annotating predicate argument structure. In707
Human Language Technology: Proceedings of a708
Workshop held at Plainsboro, New Jersey, March709
8-11, 1994.710

Stephen Merity, Caiming Xiong, James Bradbury, and711
Richard Socher. 2016. Pointer sentinel mixture mod-712
els. arXiv preprint arXiv:1609.07843.713

Meta AI. 2023. Llama-3: Meta ai’s latest714
language model. https://ai.meta.com/blog/715
meta-llama-3/.716

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko717
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong718
Yu, and Paulius Micikevicius. 2021. Accelerat-719
ing sparse deep neural networks. arXiv preprint720
arXiv:2104.08378.721

OpenAI. 2023. Gpt-4 technical report. arXiv, pages722
2303–08774.723

Seungcheol Park, Hojun Choi, and U Kang. 2024. Ac-724
curate retraining-free pruning for pretrained encoder-725
based language models. In The Twelfth International726
Conference on Learning Representations.727

Adam Paszke, Sam Gross, Francisco Massa, Adam728
Lerer, James Bradbury, Gregory Chanan, Trevor729
Killeen, Zeming Lin, Natalia Gimelshein, Luca730
Antiga, et al. 2019. Pytorch: An imperative style,731
high-performance deep learning library. Advances in732
neural information processing systems, 32.733

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine734
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,735
Wei Li, and Peter J Liu. 2020. Exploring the lim-736
its of transfer learning with a unified text-to-text737
transformer. Journal of machine learning research,738
21(140):1–67.739

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-740
ula, and Yejin Choi. 2021. Winogrande: An adver-741
sarial winograd schema challenge at scale. Commu-742
nications of the ACM, 64(9):99–106.743

Hang Shao, Bei Liu, and Yanmin Qian. 2024. One-shot744
sensitivity-aware mixed sparsity pruning for large745
language models. In ICASSP 2024-2024 IEEE Inter-746
national Conference on Acoustics, Speech and Signal747
Processing (ICASSP), pages 11296–11300. IEEE.748

Benoit Steiner, Mostafa Elhoushi, Jacob Kahn, and 749
James Hegarty. 2023. Model: memory optimiza- 750
tions for deep learning. In International Conference 751
on Machine Learning, pages 32618–32632. PMLR. 752

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 753
Kolter. 2023. A simple and effective pruning ap- 754
proach for large language models. arXiv preprint 755
arXiv:2306.11695. 756

Robert Tibshirani. 1996. Regression shrinkage and se- 757
lection via the lasso. Journal of the Royal Statistical 758
Society Series B: Statistical Methodology, 58(1):267– 759
288. 760

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 761
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 762
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 763
Azhar, et al. 2023a. Llama: Open and effi- 764
cient foundation language models. arXiv preprint 765
arXiv:2302.13971. 766

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 767
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 768
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 769
Bhosale, et al. 2023b. Llama 2: Open founda- 770
tion and fine-tuned chat models. arXiv preprint 771
arXiv:2307.09288. 772

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 773
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 774
Kaiser, and Illia Polosukhin. 2017. Attention is all 775
you need. Advances in neural information processing 776
systems, 30. 777

Alex Wang, Amanpreet Singh, Julian Michael, Felix 778
Hill, Omer Levy, and Samuel R Bowman. 2018. 779
Glue: A multi-task benchmark and analysis platform 780
for natural language understanding. arXiv preprint 781
arXiv:1804.07461. 782

Yubo Wang, Xueguang Ma, and Wenhu Chen. 2023. 783
Augmenting black-box llms with medical textbooks 784
for clinical question answering. arXiv preprint 785
arXiv:2309.02233. 786

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 787
Chaumond, Clement Delangue, Anthony Moi, Pier- 788
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 789
et al. 2019. Huggingface’s transformers: State-of- 790
the-art natural language processing. arXiv preprint 791
arXiv:1910.03771. 792

Xiufeng Xie, Riccardo Gherardi, Zhihong Pan, and 793
Stephen Huang. 2023. Hollownerf: Pruning 794
hashgrid-based nerfs with trainable collision mitiga- 795
tion. In Proceedings of the IEEE/CVF International 796
Conference on Computer Vision, pages 3480–3490. 797

Binwei Yao, Ming Jiang, Diyi Yang, and Junjie 798
Hu. 2023. Empowering llm-based machine trans- 799
lation with cultural awareness. arXiv preprint 800
arXiv:2305.14328. 801

10

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

Biao Zhang, Barry Haddow, and Alexandra Birch.802
2023a. Prompting large language model for ma-803
chine translation: A case study. In International Con-804
ference on Machine Learning, pages 41092–41110.805
PMLR.806

Susan Zhang, Stephen Roller, Naman Goyal, Mikel807
Artetxe, Moya Chen, Shuohui Chen, Christopher De-808
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.809
Opt: Open pre-trained transformer language models.810
arXiv preprint arXiv:2205.01068.811

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan,812
and Lidong Bing. 2023b. Sentiment analysis in the813
era of large language models: A reality check. arXiv814
preprint arXiv:2305.15005.815

Yuxin Zhang, Mingbao Lin, Yunshan Zhong, Fei Chao,816
and Rongrong Ji. 2023c. Lottery jackpots exist in817
pre-trained models. IEEE Transactions on Pattern818
Analysis and Machine Intelligence.819

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun,820
Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,821
and Rongrong Ji. 2023d. Dynamic sparse no train-822
ing: Training-free fine-tuning for sparse llms. arXiv823
preprint arXiv:2310.08915.824

Max Zimmer, Megi Andoni, Christoph Spiegel, and825
Sebastian Pokutta. 2023. Perp: Rethinking the prune-826
retrain paradigm in the era of llms. arXiv preprint827
arXiv:2312.15230.828

11

A Derivations of the Proposed829

Optimization Model830

We present detailed derivations of Model Equa-831

tion 3 in the following. Given X∗ ∈ Rn×p and832

WX ∈ Rm×p, we want to find a sparse solution833

W ∗ ∈ Rm×n that minimizes the pruning metric834

∥W ∗X∗ −WX∥F . (8)835

We observe its similarities to the well-known836

least absolute shrinkage and selection operator837

(LASSO) (Tibshirani, 1996) problem and thus838

transform it into a standard LASSO model, which839

could be efficiently solved by operator-splitting840

algorithms such as FISTA. To achieve such a trans-841

formation, first, we leverage the following equality842

to write the decision variable W ∗ in its vector form:843

∥W ∗X∗ −WX∥2F844

=
∥∥∥(X∗)⊤(W ∗)⊤ − (WX)⊤

∥∥∥2

F
845

=

m∑
i=1

∥∥∥(X∗)⊤(W ∗
i,:)

⊤ − (WX)⊤i,:

∥∥∥2

2
846

=

∥∥∥∥∥∥∥∥∥
(X∗)⊤

. . .
(X∗)⊤

(W ∗
1,:)

⊤

(W ∗
2,:)

⊤

...
(W ∗

m,:)
⊤

−

(WX)⊤1,:
(WX)⊤2,:

...
(WX)⊤m,:

∥∥∥∥∥∥∥∥∥
2

2

847

Then we can rewrite the square of the pruning848

metric in its vector form,849

∥Ax− b∥22 , (9)850

where851

A =

(X∗)⊤

. . .
(X∗)⊤

 ∈ Rpm×nm,852

x =

(W ∗

1,:)
⊤

(W ∗
2,:)

⊤

...
(W ∗

m,:)
⊤

 ∈ Rnm, b =

(WX)⊤1,:
(WX)⊤2,:

...
(WX)⊤m,:

 ∈ Rpm.853

Note that finding a sparse W ∗ to minimize Equa-
tion 8 is equivalent to finding a sparse x to mini-
mize Equation 9, which could be modeled by the
LASSO formulation

min
x

1

2
∥Ax− b∥22 + λ∥x∥1.

Now, we have854

1

2
∥Ax− b∥22 + λ∥x∥1 855

=
1

2
∥W ∗X∗ −WX∥2F + λ

∥∥∥∥∥∥∥∥∥

(W ∗

1,:)
⊤

(W ∗
2,:)

⊤

...
(W ∗

m,:)
⊤

∥∥∥∥∥∥∥∥∥
1

856

=
1

2
∥W ∗X∗ −WX∥2F + λ

m∑
i=1

∥∥∥(W ∗
i,:)

⊤
∥∥∥
1
, 857

and hence, we obtain the proposed optimization 858

model Equation 3. 859

B Derivations of the FISTA Iterations 860

We derive here the FISTA Iterations for the op- 861

timization problem Equation 3 in which one full 862

iteration includes a gradient descent step of the 863

quadratic term 1
2∥W

∗X∗ −WX∥2F , a proximal 864

step of the regularization term λ
∑m

i=1

∥∥∥(W ∗
i,:)

⊤
∥∥∥
1

865

and a Nestrov acceleration term that yields a im- 866

proved convergence rate of O(1/k2) (Beck and 867

Teboulle, 2009). 868

Let f : Rm×n → R+ be a function defined by

f(Y) :=
1

2
∥Y X∗ −WX∥2F .

The gradient of f at Y = W ∗
k is computed as 869

∇f(W ∗
k) = (W ∗

kX
∗ −WX)(X∗)⊤ 870

= W ∗
kX

∗(X∗)⊤ −WX(X∗)⊤. 871

Thus, given optimal step size 1/L where L is
the maximum eigenvalue of X∗(X∗)⊤ (Beck and
Teboulle, 2009), the gradient descent step Equa-
tion 4a of FISTA reads as

W ∗
k+ 1

3
= W ∗

k −
1

L

(
W ∗

kX(X∗)⊤ −WX(X∗)⊤
)
.

In the second step Equation 4b, we do a proximal 872

update with respect to the regularization term by 873

solving 874

min
W∗∈Rm×n

L

2

∥∥∥W ∗ −W ∗
k+ 1

3

∥∥∥2

F
+ λ

m∑
i=1

∥W ∗
i,:∥1. (10) 875

Let h : R → R+ be a function defined by

h(y|z) := 1

2
(y − z)2 +

λ

L
|y|.

Observe that 876

12

L

2

∥∥∥W ∗ −W ∗
k+ 1

3

∥∥∥2

F
+ λ

m∑
i=1

∥W ∗
i,:∥1877

= L
∑
i,j

h
(
W ∗

ij

∣∣∣W ∗
k+ 1

3
,ij

)
.878

879

Hence problem Equation 10 can be split into m×n
independent subproblems of dimension 1 and we
only need to focus on solving each one of them.
Note that h is convex but not smooth. It suffices to
find a point W ∗

k+ 2
3
,ij

such that

0 ∈ ∂h
(
W ∗

k+ 2
3
,ij

∣∣∣W ∗
k+ 1

3
,ij

)
,

where ∂ denotes the sub-differential operator. Ob-
serve that

∂h(y|z) =

y − z + λ

L , if y > 0,

y − z − λ
L , if y < 0,

{y − z + u λ
L | u ∈ [−1, 1]}, if y = 0.

We now solve for 0 ∈ ∂h(y|z) by considering the880

following cases:881

• If y > 0, then we set y − z + λ
L = 0. This882

gives y = z − λ
L and requires z > λ

L .883

• If y < 0, then we set y − z − λ
L = 0. This884

gives y = z + λ
L and requires z < − λ

L .885

• If y = 0, then we want 0 ∈ {y−z+u λ
L | u ∈886

[−1, 1]}. This requires − λ
L < z < λ

L .887

Hence, 0 ∈ ∂h
(
W ∗

k+ 2
3
,ij

∣∣∣W ∗
k+ 1

3
,ij

)
yields888

W ∗
k+ 2

3
,ij =

W ∗

k+ 1
3
,ij
− λ

L
, if W ∗

k+ 1
3
,ij

> λ
L
,

W ∗
k+ 1

3
,ij

+ λ
L
, if W ∗

k+ 1
3
,ij

< − λ
L
,

0, otherwise,

which is exactly the value given by889

SoftShrinkageλ/L

(
W ∗

k+ 1
3
,ij

)
.890

Finally, according to (Beck and Teboulle, 2009),891

we add a Nestrov acceleration step by setting t0 = 1892

and computing893

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
, (11)894

W ∗
k+1 = W ∗

k+ 2
3
+

tk − 1

tk+1

(
W ∗

k+ 2
3
−W ∗

k

)
, (12)895

which gives steps Equation 4c and Equation 4d.896

The above illustrates the details of the FISTA897

iterations.898

C Proof of Theorem 1 899

The function s(λ) is continuous because small 900

changes in λ lead to small changes in the spar- 901

sity level due to the continuity of the optimization 902

problem’s solution with respect to λ. Besides, s(λ) 903

is non-decreasing because increasing λ enhances 904

the sparsity-promoting effect of the ℓ1-norm, poten- 905

tially resulting in more zero entries in W ∗. There- 906

fore, s(λ) is a continuous and non-decreasing func- 907

tion of λ over the interval [0,M] for the bisection 908

method. At λ = 0, the problem reduces to minimiz- 909

ing the reconstruction error without regularization, 910

yielding the least sparse solution (s(0) = 0% spar- 911

sity). At a sufficiently large λ = M , the regulariza- 912

tion term dominates, driving most weights to zero 913

(s(M) = 100% sparsity). Since s(λ) is continu- 914

ous and s(0) ≤ s ≤ s(M), the Intermediate Value 915

Theorem guarantees the existence of λ∗ ∈ [0,M] 916

such that s(λ∗) = s. The bisection method halves 917

the interval [λmin, λmax] in each iteration, ensur- 918

ing convergence to λ∗ within a tolerance δ after 919

k ≥ log2(
λmax−λmin

δ) iterations. Since s(λ) is con- 920

tinuous and non-decreasing, the sparsity level sk 921

achieved at each iteration converges to s. The bi- 922

section methods terminates when |sk − s| ≤ ϵ, 923

ensuring that the final λ∗ = λk yields a sparsity 924

level within the desired tolerance. 925

D Additional Results 926

D.1 Perplexity Results on PTB 927

We present the PTB perplexity results of pruned 928

OPT, LLaMA, LLaMA-2, and LLaMA-3 models 929

under 50% unstructured and 2:4 semi-structured 930

sparsity in Tables 6 and 7. FISTAPruner outper- 931

forms state-of-the-art methods on all OPT, LLaMA 932

and LLaMA-3 models, as well as on most LLaMA- 933

2 models on the PTB dataset. The sole exception 934

is the pruning of the LLaMA-2-70B model under 935

50% unstructured sparsity, where FISTAPruner sur- 936

passes Wanda but falls short of SparseGPT. This 937

underperformance may be due to the generally 938

poorer performance of LLaMA-2 models com- 939

pared to similarly sized models from other fam- 940

ilies. For instance, the dense LLaMA-2-13B model 941

exhibits a PTB perplexity of 56.52, even higher 942

than the smaller LLaMA-2-7B model, which has 943

a perplexity of 50.19. Moreover, we observe that 944

the PTB perplexity results for all dense LLaMA 945

and LLaMA-2 models are consistently higher than 946

those for similarly sized OPT models; for exam- 947

ple, the LLaMA-2-13B’s perplexity of 56.52 far 948

13

exceeds the smallest OPT-125M model’s 38.99. In949

contrast, LLaMA-3 models show significantly bet-950

ter performance on the PTB dataset.951

D.2 Perplexity Results on C4952

The C4 perplexity results of pruned OPT, LLaMA,953

LLaMA-2, and LLaMA-3 models under 50% un-954

structured and 2:4 semi-structured sparsity are955

shown in Tables 6 and 7. FISTAPruner performs956

consistently better than the state-of-the-art meth-957

ods.958

E Ablation Studies959

0 10 20 30 40 50
Sparsity (%)

28

30

32

34

36

38

40

Pe
rp

le
xi

ty
 o

n
W

ik
iT

ex
t-

2-
ra

w SparseGPT
Wanda
FISTAPruner without Error Corrections
FISTAPruner
Dense

(a) Intra-layer error corrections ablation.

8 16 32 64 128 256 512 1024
Number of Calibration Samples

34

36

38

40

42

Pe
rp

le
xi

ty
 o

n
W

ik
iT

ex
t-

2-
ra

w SparseGPT
Wanda
FISTAPruner

(b) Calibration samples ablation.

Figure 4: Studies of FISTAPruner on the WikiText
dataset on OPT-2 125M, showcasing the effects of intra-
layer error correction and varying calibration sample
sizes.

E.1 Ablation Study on Intra-layer Error960

Corrections961

We perform ablation studies on the OPT-125M962

model with 50% unstructured sparsity to evalu-963

ate the intra-layer error correction mechanism. We964

compare the performance of FISTAPruner with and965

without the intra-layer error correction mechanism,966

with perplexity results on the WikiText, PTB and967

C4 datasets displayed in Figures 4(a), 5(a), and 6(a).968

We observe that the perplexity of the pruned model969

incorporating this mechanism consistently outper-970

forms the version without it, thereby confirming its971

0 10 20 30 40 50
Sparsity (%)

40

45

50

55

60

Pe
rp

le
xi

ty
 o

n
PT

B

SparseGPT
Wanda
FISTAPruner without Error Corrections
FISTAPruner
Dense

(a) Intra-layer error corrections ablation.

8 16 32 64 128 256 512 1024
Number of Calibration Samples

48

50

52

54

56

58

Pe
rp

le
xi

ty
 o

n
PT

B

SparseGPT
Wanda
FISTAPruner

(b) Calibration samples ablation.

Figure 5: Studies of FISTAPruner on the PTB dataset on
OPT-125M, showcasing the effects of intra-layer error
correction and varying calibration sample sizes.

0 10 20 30 40 50
Sparsity (%)

26

28

30

32

34

36

Pe
rp

le
xi

ty
 o

n
C

4

SparseGPT
Wanda
FISTAPruner without Error Corrections
FISTAPruner
Dense

(a) Intra-layer error corrections ablation.

8 16 32 64 128 256 512 1024
Number of Calibration Samples

32

34

36

Pe
rp

le
xi

ty
 o

n
C

4

SparseGPT
Wanda
FISTAPruner

(b) Calibration samples ablation.

Figure 6: Studies of FISTAPruner on the C4 dataset on
OPT-125M, showcasing the effects of intra-layer error
correction and varying calibration sample sizes.

effectiveness. Moreover, FISTAPruner, even with- 972

out the intra-layer error correction mechanism, out- 973

performs existing methods such as SparseGPT and 974

Wanda. This underscores the effectiveness of ap- 975

plying convex optimization theory and algorithms 976

14

Table 6: PTB perplexity of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms state-of-the-art methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 38.99 31.07 20.29 17.97 15.77 14.52 14.04
SparseGPT 50% 55.38 43.58 25.64 20.52 17.38 15.98 14.97
Wanda 50% 57.60 55.47 27.98 21.85 17.92 17.45 15.47
FISTAPruner 50% 49.79 41.26 25.08 20.15 17.08 15.87 14.92
SparseGPT 2:4 94.21 72.82 37.30 26.87 21.65 18.69 16.56
Wanda 2:4 111.55 135.98 43.85 34.64 25.07 22.16 21.65
FISTAPruner 2:4 67.80 59.51 36.26 24.43 20.04 18.08 16.18

Table 7: PTB perplexity (↓) of pruned LLaMA, LLaMA-2 and LLaMA-3 models under 50% unstructured and 2:4
semi-structured sparsity.

LLaMA LLaMA-2 LLaMA-3

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B
Dense 0% 41.15 28.10 23.51 25.07 50.19 56.52 22.68 10.17 7.87
SparseGPT 50% 79.67 37.49 26.14 27.64 1020.01 95.41 24.87 14.00 9.24
Wanda 50% 80.48 36.43 26.64 25.77 97.58 86.79 26.07 15.54 9.44
FISTAPruner 50% 58.67 35.30 25.63 25.15 96.72 78.23 25.36 12.93 8.88
SparseGPT 2:4 154.62 71.68 32.44 32.91 1163.57 154.15 31.51 23.42 13.01
Wanda 2:4 211.40 74.29 35.56 33.39 587.54 224.55 33.97 48.96 14.17
FISTAPruner 2:4 91.84 64.04 30.86 30.78 361.16 136.84 31.49 22.60 11.11

to pruning problems. Additionally, we treat each977

decoder layer as an independent pruning unit with978

intra-layer error correction, rather than using both979

intra- and inter-layer error correction for a global980

mechanism, for the following reasons: (1) Intra-981

layer error correction allows independent pruning982

of each decoder layer, enabling distribution of the983

task across multiple devices and improving overall984

efficiency. (2) While combining intra- and inter-985

layer error correction can reduce error accumu-986

lation, it is effective only at low sparsity levels.987

At higher sparsity, global error correction domi-988

nates layer-specific pruning, leading to worse per-989

formance. A detailed analysis of this is provided990

in Appendix F.991

E.2 Impact of Calibration Data and Warm992

Start993

We conduct studies to evaluate the impact of the994

number of calibration samples and warm start.995

Amount of Calibration Data. We investigate the996

performance of FISTAPruner and existing methods,997

SparseGPT and Wanda, in relation to the number of998

calibration data samples, which we vary in powers999

of two. The results for the WikiText dataset with1000

the OPT-125M model at 50% sparsity are shown1001

in Figure 4(b). We observe that using more calibra-1002

tion samples significantly enhances performance,1003

but only up to a certain point as the improvement1004

curve quickly flattens. This finding aligns with ob-1005

servations in (Frantar and Alistarh, 2023; Sun et al.,1006

2023). Given that using more samples increases 1007

computational and memory costs, we consistently 1008

use 128 calibration samples in all our experiments. 1009

The results of pruning performance in relation to 1010

the number of calibration data samples on PTB and 1011

C4 datasets are displayed in Figures 5(b) and 6(b). 1012

The same curve pattern as shown in Figure 4(b) is 1013

observed. 1014

Warm Start. Warm start is a widely recognized 1015

technique in optimization that leverages starting at 1016

a point near the optimal solution to significantly re- 1017

duce the total convergence time. In our framework, 1018

we evaluate the efficiency of warm start mechanism 1019

as follows: Dense Weights < Magnitude Pruning 1020

≈ Wanda < SparseGPT. Dense weights, though 1021

readily obtainable, slow down the convergence due 1022

to their significant deviation from the target spar- 1023

sity level. Magnitude pruning, involving absolute 1024

value computations and comparisons, meets spar- 1025

sity requirements but generally yields lower-quality 1026

solutions. Wanda, requiring absolute value compu- 1027

tations, ℓ2-norm calculations of activation columns, 1028

and element-wise multiplication, is nearly as ef- 1029

ficient as magnitude pruning. This near parity in 1030

efficiency is due to our model’s reliance on activa- 1031

tion data from calibration, allowing ℓ2-norm com- 1032

putations to occur incidentally during the process. 1033

Despite their similar efficiencies, Wanda’s solu- 1034

tions markedly outperform those from magnitude 1035

pruning. SparseGPT is less efficient compared with 1036

magnitude pruning and Wanda but may provide a 1037

15

Table 8: C4 perplexity (↓) of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms state-of-the-art methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 26.56 22.59 16.07 14.34 12.71 12.06 11.45
SparseGPT 50% 33.52 29.14 19.23 15.77 13.73 12.98 11.96
Wanda 50% 34.89 34.46 20.63 16.44 14.25 13.57 12.32
FISTAPruner 50% 30.93 27.36 18.56 15.58 13.61 12.94 11.92
SparseGPT 2:4 52.11 46.36 25.77 19.35 16.44 14.85 13.18
Wanda 2:4 64.73 88.62 28.59 22.88 19.00 16.19 16.18
FISTAPruner 2:4 38.08 36.45 24.29 17.82 15.35 14.19 12.78

Table 9: C4 perplexity (↓) of pruned LLaMA, LLaMA-2 and LLaMA-3 models under 50% unstructured and 2:4
semi-structured sparsity. FISTAPruner outperforms state-of-the-art methods.

LLaMA LLaMA-2 LLaMA-3

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B
Dense 0% 7.34 6.80 6.13 5.81 7.04 6.52 5.53 9.01 6.82
SparseGPT 50% 9.33 8.14 7.34 6.66 9.00 7.96 6.25 13.93 9.34
Wanda 50% 9.34 8.15 7.29 6.71 8.94 8.04 6.30 14.97 9.80
FISTAPruner 50% 8.90 7.96 7.05 6.49 8.62 7.73 6.22 13.12 8.94
SparseGPT 2:4 13.65 11.38 9.50 8.41 13.58 11.39 7.99 24.16 14.81
Wanda 2:4 14.47 12.11 9.46 8.78 15.07 12.13 7.89 36.70 14.47
FISTAPruner 2:4 11.95 10.27 8.81 7.82 12.41 10.34 7.59 23.15 12.18

stronger initial point.1038

To further illustrate the impact of warm start on1039

FISTAPruner, we conduct additional tests using1040

both dense weights and magnitude pruning results1041

as starting points. The results are presented in1042

Table 10, which indicates that FISTAPruner still1043

can achieve comparable results.1044

F Why Intra-Layer Error Correction Is1045

Preferred Over Intra- and Inter-Layer1046

Error Correction1047

We apply only the intra-layer error correction mech-1048

anism for two reasons:1049

1. Parallelization: Intra-layer error correction1050

enables independent pruning of each decoder1051

layer, allowing us to distribute the pruning1052

task across multiple devices by assigning dif-1053

ferent decoder layers to different devices. This1054

increases the overall pruning efficiency.1055

2. Sparsity Sensitivity: While combining intra-1056

and inter-layer error correction could intu-1057

itively reduce error accumulation across the1058

network, we found that this approach is effec-1059

tive only at low sparsity levels. When the prun-1060

ing task becomes harder (i.e., higher sparsity),1061

global error correction tends to overshadow1062

the pruning process of individual layers, ulti-1063

mately leading to worse performance.1064

The first reason is straightforward; we will ex- 1065

plain the second reason in more detail below. 1066

We conducted a series of comparison experi- 1067

ments on OPT-125M at sparsity levels of 5%, 10%, 1068

20%, and 50%. The experiments included three 1069

conditions: intra-layer error correction only, both 1070

intra- and inter-layer error correction, and no error 1071

correction. The results are presented in the follow- 1072

ing tables. 1073

As shown in the results above, we summarize 1074

the perplexity comparison across different sparsity 1075

levels as follows: 1076

• 5% and 10%: intra- and inter-layer error 1077

correction < intra-layer error correction only 1078

< no error correction. 1079

• 20%: intra-layer error correction only < intra- 1080

and inter-layer error correction < no error cor- 1081

rection. 1082

• 50%: intra-layer error correction only < no 1083

error correction < intra- and inter-layer error 1084

correction. 1085

First, the results confirm the effectiveness of our 1086

intra-layer error correction mechanism, as it con- 1087

sistently outperforms the no-error-correction ap- 1088

proach. 1089

Second, the results confirm the effectiveness of 1090

using both intra- and inter-layer error correction at 1091

16

Table 10: Perplexity (↓) results for WikiText, PTB and C4 under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner is initialized with magnitude pruning and dense weights.

Method Sparsity WikiText PTB C4
Magnitude 25% 31.38 38.99 26.56
FISTAPruner (initialized with magnitude pruning) 25% 28.67 40.29 27.07
FISTAPruner (initialized with dense weights) 25% 28.66 40.27 27.07
Magnitude 50% 193.35 276.17 141.00
FISTAPruner (initialized with magnitude pruning) 50% 38.62 52.26 32.87
FISTAPruner (initialized with dense weights) 50% 38.62 52.43 32.89
Magnitude 2:4 343.91 810.42 223.98
FISTAPruner (initialized with magnitude pruning) 2:4 57.43 78.37 45.20
FISTAPruner (initialized with dense weights) 2:4 58.55 80.72 45.51

Table 11: OPT-125M under 5% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.64 26.57 38.99
Intra-layer and Inter-layer Error Correction 27.63 26.56 38.98
No Error Correction 27.69 26.60 38.98

Table 12: OPT-125M under 10% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.47 26.59 39.00
Intra-layer and Inter-layer Error Correction 27.43 26.58 39.04
No Error Correction 27.52 26.69 39.07

Table 13: OPT-125M under 20% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.36 26.71 39.39
Intra-layer and Inter-layer Error Correction 27.37 26.72 39.53
No Error Correction 27.61 26.91 39.85

Table 14: OPT-125M under 50% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 33.54 30.93 49.79
Intra-layer and Inter-layer Error Correction 35.90 32.93 55.24
No Error Correction 34.48 32.24 54.11

low sparsity levels, as it consistently outperforms1092

the intra-layer error correction alone at 5% and1093

10% sparsity.1094

Third, the results show that using both intra- and1095

inter-layer error correction is sensitive to sparsity1096

levels and tends to perform worse at higher spar-1097

sity. Specifically, at 20% sparsity, it underperforms1098

compared to intra-layer error correction alone, and1099

at 50% sparsity, it even performs worse than the1100

no-error-correction approach.1101

To explain why the use of both intra- and inter- 1102

layer error correction is sensitive to sparsity levels, 1103

we believe this occurs because higher sparsity lev- 1104

els make the pruning task more difficult, leading 1105

to greater error accumulation across layers. When 1106

both intra- and inter-layer error correction are ap- 1107

plied, mitigating the accumulated error from previ- 1108

ous layers may dominate the optimization objective 1109

in deeper layers, causing the pruning performance 1110

of the current layer to suffer. 1111

17

Mathematically, let Wk and Xk represent the1112

weight matrix and the activation of the k-th layer1113

in the original network, respectively. Similarly, let1114

W ∗
k and X∗

k denote the pruned weight matrix and1115

the corresponding activation in the pruned network.1116

In a layer-wise pruning scheme with both intra-1117

and inter-layer error correction mechanisms, we1118

minimize the loss for each layer individually:1119

∥W ∗
kX

∗
k −WkXk∥2F . (13)1120

Xk depends on the activation from the previous1121

layer:1122

Xk = fk(Wk−1Xk−1), (14)1123

where fk represents some operations (e.g., activa-1124

tion function or normalization). Therefore, we can1125

express the pruned activations recursively as:1126

X∗
k = fk(W

∗
k−1X

∗
k−1). (15)1127

The error at layer k is defined as:1128

∆Xk = fk(W
∗
k−1X

∗
k−1)− fk(Wk−1Xk−1).

(16)1129

Under high sparsity levels, this amplification1130

often results in the accumulated error ∆Xk becom-1131

ing dominant at deeper layers. Thus, for large k,1132

considering both intra- and inter-layer error correc-1133

tion mechanisms, we have:1134

∥W ∗
k (Xk +∆Xk)−WkXk∥2F (17)1135

≈ ∥W ∗
k∆Xk −WkXk∥2F . (18)1136

As a result, the optimization process shifts focus1137

towards correcting this accumulated error rather1138

than pruning the current weight matrix Wk.1139

In other words, minimizing the term in Equa-1140

tion 17 primarily addresses the error correction1141

from previous layers rather than properly pruning1142

the weight matrix Wk, which negatively impacts1143

the pruning performance in deeper layers.1144

18

	Introduction
	Background and Related Work
	Methodology
	Post-Training Pruning Model
	Optimization based on FISTA
	Extension to 2:4 Semi-structured Pruning
	Adaptive Hyperparameter Tuning
	FISTAPruner Pseudocode

	Experiments
	Settings
	Perplexity Experiment Results
	Zero-Shot Task Results
	Ablation Study

	Conclusion
	Derivations of the Proposed Optimization Model
	Derivations of the FISTA Iterations
	Proof of Theorem 1
	Additional Results
	Perplexity Results on PTB
	Perplexity Results on C4

	Ablation Studies
	Ablation Study on Intra-layer Error Corrections
	Impact of Calibration Data and Warm Start

	Why Intra-Layer Error Correction Is Preferred Over Intra- and Inter-Layer Error Correction

