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Abstract

When training a variational autoencoder (VAE) on a given dataset, determining the num-
ber of latent variables requires human supervision and to fully train one or more VAEs. In
this paper, we explore ways to simplify this time-consuming process through the lens of the
polarised regime. Specifically, we show that the discrepancies between the variance of the
mean and sampled representations of a VAE reveal the presence of passive variables in the
latent space, which, in well-behaved VAEs, indicates a superfluous number of dimensions.
After formally demonstrating this phenomenon, we use it to propose FONDUE: an unsu-
pervised algorithm which efficiently finds a suitable number of latent dimensions without
fully training any models. We additionally show that FONDUE can be extended in a num-
ber of ways, providing a principled and unified method for selecting the number of latent
dimensions for VAEs and deterministic autoencoders.

1 Introduction

“How many latent variables should I use for this model?” is the question that many practitioners using vari-
ational autoencoders (VAEs) or autoencoders (AEs) have to deal with. When the task has been studied
before, this information is available in the literature for the specific architecture and dataset used. How-
ever, when it has not, answering this question becomes more complicated. Indeed, the current methods
to estimate the latent dimensions require human supervision or at least one fully trained model (Doersch,
2016; Mai Ngoc & Hwang, 2020; Yu & Príncipe, 2019; Boquet et al., 2021). Moreover, most of the proposed
solutions are not theoretically grounded.

One could wonder if, instead of looking for an appropriate number of dimensions, it would be sufficient
to use a very large number of latent dimensions in all cases. However, beside defeating the purpose of
learning compressed representations, this may lead to a range of issues. For example, one would obtain
lower accuracy on downstream tasks (Mai Ngoc & Hwang, 2020) and—if the number of dimensions is
sufficiently large—very high reconstruction loss (Doersch, 2016). This would also hinder the interpretability
of downstream task models such as linear regression, prevent investigating the learned representation with
latent traversal (Locatello et al., 2019b), and increase the correlation between the latent variables (Bonheme
& Grzes, 2021).

VAEs with isotropic Gaussian priors have been shown to learn in a polarised regime (Dai & Wipf, 2018;
Rolinek et al., 2019; Bonheme & Grzes, 2023) where superfluous dimensions—the passive variables—are
“ignored” by the decoder during reconstruction. This regime leads to discrepancies between the mean
and sampled representations, which are indicative of the amount of passive variables present in the latent
representation (Bonheme & Grzes, 2021). Thus, one can reasonably assume that a “good” number of latent
dimensions corresponds to the maximum number of active variables (i.e., variables used by the decoder for
reconstruction) a model can learn before the appearance of passive variables.

In this paper, we demonstrate that the amount of passive variables present in a latent representation can easily
be detected by analysing the discrepancies between the mean and sampled representations. Specifically, we
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show that one can bound the difference between the traces of the covariance matrices of both representations.
Based on this property, we then design a simple yet efficient unsupervised algorithm which fulfills the criteria
of the current methods (i.e., low reconstruction loss, high accuracy on downstream tasks, high compression,
etc.), without requiring to fully train any models.

Our contributions are as follows:

(i) We prove that the discrepancies between the mean and sampled representations of well-
behaved VAEs can be used to monitor the type of variables (active or passive) learned by a VAE.

(ii) Based on this theoretical insight, we propose FONDUE: an algorithm which finds the number of
latent dimensions that leads to a low reconstruction loss and good accuracy. In opposition to current
methods (Doersch, 2016; Mai Ngoc & Hwang, 2020; Yu & Príncipe, 2019; Boquet et al., 2021), it
does not require human supervision or to fully train multiple models.

(iii) The library created for this experiment is available in supplemental work and can be reused with
other models or techniques (see paragraph on extending FONDUE of Section 3) for further research
in the domain. A notebook illustrating the usage of FONDUE can also be found at https://
anonymous.4open.science/r/fondue-demo-CD5A.

Notational considerations Throughout this paper, we will use the superscript (i) to denote the values
obtained for the ith sample x(i) of the random variable x, and represent the jth dimension of a vector
representation using the subscript j . Similarly, given a subset of indexes a = 1, · · · , k, the superscript (a)

will denote the values obtained for the samples x(1,...,k) of the random variable x, and the subscript a will
represent the dimensions 1, ..., k of a vector representation. As shown in Figure 1, we will also use a shortened
version of the mean, variance and sampled representations, such that µ ≜ µ(x; ϕ), σ ≜ diag[Σ(x; ϕ)], and
z ≜ µ+ϵσ1/2, respectively. Here ϵ is a noise variable such that ϵ ∼ N (0, I), ϕ denotes the parameters of the
encoder, and the diag[·] operator returns the diagonal values of a matrix. For example, σ = diag[Σ(x; ϕ)]
is the vector of variance values obtained from the diagonal of the covariance matrix Σ(x; ϕ). Similarly,
for a specific data example x(i) and noise sample ϵ(i), µ(i) ≜ µ(x(i); ϕ), σ(i) ≜ diag[Σ(x(i); ϕ)] and z(i) ≜
µ(i) + ϵ(i)(σ(i))1/2. For multiple data examples X = {x(i)}h

i=0, M ≜ [µ(0) · · ·µ(h)]T , S ≜ [σ(0) · · ·σ(h)]T ,
E ≜ [ϵ(0) · · · ϵ(h)]T , and Z ≜ [z(0) · · · z(h)]T .

2 Background

2.1 Intrinsic dimension estimation

It is generally assumed that a dataset X = {x(i)}h
i=0 of h i.i.d. data examples x(i) ∈ Rm is a locally smooth

non-linear transformation g of a lower-dimensional dataset Y = {y(i)}h
i=0 of h i.i.d. samples y(i) ∈ Rd, where

d ⩽ m (Campadelli et al., 2015; Chollet, 2021). The goal of Intrinsic dimension (ID) estimation is to recover
d given X. In recent years, these techniques have successfully been applied to deep learning to empirically
show that the intrinsic dimension of images was much lower than their extrinsic dimension (i.e., the number of
pixels) (Gong et al., 2019; Ansuini et al., 2019; Pope et al., 2021). Based on these findings, we will use Intrinsic
Dimension Estimates (IDEs) as the initial number of dimensions n for FONDUE in Section 3.2. In practice,
we compute the IDEs using two ID estimation techniques: MLE (Levina & Bickel, 2004) and TwoNN (Facco
et al., 2017). See Appendix E and Campadelli et al. (2015) for more details on ID estimation techniques.

2.2 Non-Variational Autoencoders

Deep deterministic autoencoders (AEs) (Kramer, 1991) can be thought of as a non-linear version of
PCA (Baldi & Hornik, 1989). They are composed of an encoder fϕ(x) which maps an input x to a compressed
representation z, and a decoder gθ(z) which attempts to reconstruct x from a compressed representation z.
AEs are optimised to minimise the reconstruction error L(x, gθ(z)) (e.g., MSE).
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Figure 1: Illustration of a VAE. The distributions are generally assumed to be multivariate Gaussian, µ is
the mean representation and σ is the variance representation. µ and σ are the parameters of the posterior
over z.

2.3 Variational Autoencoders

VAEs (Kingma & Welling, 2014; Rezende & Mohamed, 2015) are deep probabilistic generative models based
on variational inference. As illustrated in Figure 1, the encoder maps an input x to a latent representation
z, and the decoder attempts to reconstruct x using z. This can be optimised by maximising L, the evidence
lower bound (ELBO)

L(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL
(
qϕ(z|x) ∥ p(z)

)︸ ︷︷ ︸
regularisation term

, (1)

where p(z) is generally modelled as a standard multivariate Gaussian distribution N (0, I) to permit a
closed form computation of the regularisation term (Doersch, 2016). qϕ(z|x) and pθ(x|z) are also commonly
assumed to be Gaussians (Dai et al., 2017; Dai & Wipf, 2018). The regularisation term can be further
penalised by a weight β (Higgins et al., 2017) such that

L(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−βDKL
(
qϕ(z|x) ∥ p(z)

)︸ ︷︷ ︸
regularisation term

, (2)

reducing to equation 1 when β = 1 and to a deterministic autoencoder when β = 0 (where only the
reconstruction loss is optimised).

2.4 Polarised regime

The polarised regime (a.k.a selective posterior collapse) is the ability of VAEs to “shut down” superfluous
dimensions of their sampled latent representations z while providing a high precision on the remaining
variables (Rolinek et al., 2019; Dai & Wipf, 2018; Dai et al., 2020). As a result, for each input x(i), the
sampled representation can be separated into two subsets of variables, active and passive. The active variables
correspond to the subset of the latent representation that is needed for the reconstruction. In opposition,
the passive variables do not have any influence on the decoder and are thus only optimised with respect to
the KL divergence. Given a Gaussian decoder with diagonal covariance γΣθ, Dai & Wipf (2018) proved that
for any active variable j, limγ→0 z(i)

j = µ
(i)
j . In the same way, for any passive variable j, limγ→0 z(i) = ϵ(i).

In practice, this limit is approached very early in the training (i.e., after a few epochs), as shown in Dai &
Wipf (2018, Fig.1.a).

Bonheme & Grzes (2021) proposed an extension of the polarised regime for multiple data examples. They
hypothesised that the polarised regime could lead to three cases: (1) a variable is active for all the data
samples, (2) a variable is passive for all the data samples, (3) a variable is mixed: passive for some samples
and active for others. This results in the following definition.
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Definition 1 (Polarised regime of Z). When a VAE learns in a polarised regime, its sampled representation
Z is composed of a set of passive, active and mixed variables Vp ∪ Va ∪ Vm such that:

(i) limγ→0 Zj = Ej ∀ j ∈ Vp,

(ii) limγ→0 Zj = Mj ∀ j ∈ Va,

(iii) limγ→0 Z
(p)
j = E

(p)
j and limγ→0 Z

(a)
j = M

(a)
j ∀ j ∈ Vm.

They concluded that mixed and passive variables were responsible for any discrepancies between the mean
and sampled representations. This finding will be the base of our analysis in Section 3.

Assumptions In the rest of this paper, we assume that the considered models are learning under the
polarised regime, which naturally happens for VAEs whose prior is Gaussian with diagonal covariance (Ro-
linek et al., 2019; Bonheme & Grzes, 2023) and reasonable values of β (i.e., when β is not large enough to
lead to posterior collapse). As discussed above, Dai & Wipf (2018) have also shown that active and passive
variables can be observed very early in the training of such models (i.e., after the first few epochs) and we
will see in Section 3 that this early convergence assumption plays an important role on the computational
time of FONDUE. These requirements can be made without loss of generality as it has been shown that the
polarised regime was necessary for VAEs to learn properly (Dai & Wipf, 2018; Dai et al., 2018; 2020) and
happens very early in training (Dai & Wipf, 2018; He et al., 2019; Bonheme & Grzes, 2022).

2.5 Related work

To the best of our knowledge, the literature on finding an appropriate number of latent dimensions for VAEs is
limited, and the existing techniques—mostly designed for deterministic autoencoders—generally rely on
approaches requiring human supervision. A great majority of these techniques are based on the Elbow
(a.k.a. scree plot) method (James et al., 2013) which visually finds the point where a curve “bends” before
diminishing returns occur.

Elbow method using the reconstruction error Doersch (2016) trained multiple models with different
numbers of latent dimensions and selected the ones with the lowest reconstruction error. They noted that
models’ performances were noticeably worse when using extreme numbers of latent dimensions n. In their
experiment, this happened for n < 4 and n > 10, 000 on MNIST.

Elbow method using the accuracy on downstream tasks Mai Ngoc & Hwang (2020) suggested
to train multiple models with different numbers of latent dimensions, and then compare the accuracy of
the latent representations on a downstream task. They observed that while a higher number of latent
dimensions could lead to a lower reconstruction error, it generally caused instability on downstream tasks.
They thus concluded that the best number of latent dimensions for VAEs should be the one with the smallest
classification variance and the highest accuracy, and they obtained similar results for AEs.

Automated evaluation based on information theory Yu & Príncipe (2019) observed that, from the
data preprocessing inequality, I(x, x̂) ⩾ H(z). From this, Boquet et al. (2021) proposed to automatically
find the number of latent dimensions of deterministic autoencoders by comparing the values of I(X, X̂) and
H(Z). While no formal proof was provided, they hypothesised that given an optimal number of dimensions
n∗, any number of latents n < n∗ would result in I(x, x̂) > H(z), and any n ⩾ n∗ would lead to I(x, x̂) ≈ H(z).
From this, they proposed to do a binary search over a sorted array of latent dimensions n = [1, ..., n] defined
by the user. At each iteration, they trained a new autoencoder with a bottleneck size ni, estimated I(x, x̂)
and H(z) for each batch, and averaged the results over each epoch. Each model was fully trained unless
I(x, x̂) ≈ H(z) (i.e., the algorithm requires at least one fully trained model). As Yu & Príncipe (2019)1, they
used a kernel estimator of the Rényi’s α-order entropy with an RBF kernel but with the order of α = 2. We
will refer to their algorithm as the Information Bottleneck (IB) algorithm in the rest of the paper.

1More details about Yu & Príncipe (2019) can be found in Appendix J
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Differences with our contribution The work the most closely related to ours is the IB algorithm
of Boquet et al. (2021) which is the only one proposing some level of automation. However, our contribution
differs from theirs in several aspects: 1) our approach is based on the polarised regime, not on information
theory; 2) we provide a theoretical justification of our algorithm and a proof of convergence while this was left
for future work in Boquet et al. (2021); 3) our solution is generally faster than the original implementation of
the IB algorithm as we do not require to fully train any model; 4) the IB algorithm requires human supervision
to select a range of likely latent dimensions which is not needed by FONDUE. We will further see in Section 5
that the number of dimensions obtained with FONDUE provides a better trade-off between reconstruction
quality and accuracy on downstream task than IB. In other words, we will see that FONDUE provides results
closer to Elbow methods than IB.

3 Mean and sampled representations under the polarised regime

As we have seen in Section 2.4, the polarised regime leads to discrepancies between mean and sampled repre-
sentations (Locatello et al., 2019a) which can be indicative of the type of variables learned by a VAE (Bon-
heme & Grzes, 2021). The aim of this section is to provide some theoretical insight into how the different
types of variables impact the difference between the two representations.

Specifically, we will study the difference between the traces of the covariance matrices of both representations
when the latent variables are composed of a combination of different types of variables. This will allow us to
use bounded quantities to detect when passive variables start appearing. From this, we will show that the
bounds of this difference are specific to the types of variables present in the latent representations.

Finally, to illustrate a possible usage of these bounds, we will propose an algorithm for Facilely Obtaining
the Number of Latent Dimensions by Unsupervised Estimation (FONDUE) which can quickly provide an
estimate of the maximum number of latent dimensions that a VAE can have without containing any (unused)
passive variables. The proofs of all the propositions and theorems of this section can be found in Appendix A,
and the impact of FONDUE on the reconstruction and downstream task performance will further be studied
in the next section.

3.1 Identifying the types of variables learned

In this section we will derive the difference between the traces of the covariance matrices of M and Z when
the latent representation is composed of: 1) only active variables, 2) active and passive variables, 3) active
and mixed variables. From these results we will then present the bounds of the difference between the traces
of the covariance matrices of M and Z at n + 1 latent variables when 1) n is the maximal number of active
variables, and 2) n is the maximal number of non-passive variables. We will see in Section 3.2 that these two
cases will inform the choice of the threshold value for FONDUE. The proofs of all the following propositions
and theorems can be found in Appendix A.1.To make the distinction between the cross-covariance matrices
and variance-covariance matrices clear, we will use Cov[A, B] for the former and Var[A] ≜ Cov[A, A] for
the latter.

First, let us consider the case where all variables are active. As mentioned in Section 2.4, in this case
limγ→0 Z = M . Thus, Proposition 1 trivially follows:
Proposition 1. If all the n latent variables of a VAE are active, then limγ→0 Tr(Var[Z])−Tr(Var[M ]) = 0.

When the latent representation is composed of active and passive variables only, one can decompose the
variances into active and passive parts. Then, recalling that passive variables have a variance of 1 in sampled
representations and close to 0 in mean representations, and using Proposition 1 again for the active part, it
follows that:
Proposition 2. If s of the n latent variables of a VAE are passive and the remaining n − s variables are
active, then limγ→0 Tr(Var[Z])− Tr(Var[M ]) = s.

While mixed variables (i.e., variables that are passive for some input and active for others) are less trivial to
analyse, using the same techniques as Proposition 2, and recalling that mixed variables come from a mixture
distribution, we have:
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Proposition 3. If s of the n latent variables of a VAE are mixed and the remaining n − s variables are
active, then 0 < limγ→0 Tr(Var[Z])− Tr(Var[M ]) < s.

We are now interested in how the difference of the traces evolves when we increase the number of latent
dimensions. When we have n active variables, we know form Proposition 1 that the difference of trace will
be close to 0. Using Propositions 2 and 3 with s = 1, we know that if the next variable is not active, the
difference will increase by at most 1.
Theorem 1. n is the maximal number of dimensions for which a VAE contains only active variables if

• for n latent variables, limγ→0 Tr(Var[Z])− Tr(Var[M ]) = 0,

• and for n + 1 latent variables, 0 < limγ→0 Tr(Var[Z])− Tr(Var[M ]) ⩽ 1.

When we have n non-passive variables, using Proposition 3 with s ⩽ n, the difference of the trace will be
between higher than 0 but lower than n. Using Proposition 2 with s = 1, we know that if the next variable
is passive, the difference will increase by 1.
Theorem 2. n is the maximal number of dimensions for which a VAE contains only non-passive variables
if

• for n latent variables, 0 ⩽ limγ→0 Tr(Var[Z])− Tr(Var[M ]) < n,

• and for n + 1 latent variables, 1 ⩽ limγ→0 Tr(Var[Z])− Tr(Var[M ]) < n + 1.

A useful property of Theorems 1 and 2 is that they hold very early in training. Indeed, the variance of the
decoder very quickly approaches 0 (Dai & Wipf, 2018; Dai et al., 2018) leading to observations of the polarised
regime after a few epochs (Rolinek et al., 2019; Bonheme & Grzes, 2022). This allows Theorems 1 and 2
to provide stable estimates using mean and sampled representations which reflect accurately the number of
active and passive variables present in the final model. While these theorems can be useful by themselves
to study the type of representations learned by an already trained VAE, we believe that they can also help
to design new tools to improve models’ quality. For example, by providing an estimation of the maximum
number of non-passive latent dimensions that a VAE can reach for a given dataset. We will see in Section 3.2
that this can be done in an unsupervised way, without fully training any models or manually applying the
Elbow method.

3.2 Finding the number of dimensions by unsupervised estimation

As discussed in Section 3.1, the traces of the covariance matrices of the mean and sampled representations
start to diverge when non-active variables appear. We can thus use Theorems 1 and 2 to find the number
of latent dimensions retaining the most information while remaining highly compressed (i.e., no passive
variables).

For example, let us consider a threshold t = 1. We know from Theorem 1 that if the difference between traces
is lower than or equal to t for n latent dimensions but higher than t for n+1 latent dimensions, then n is the
largest number of dimensions for which the latent representation contains only active variables. If, on the
other hand we allow t to be higher, the model can encode additional non-active variables, as per Theorem 2.
After selecting a suitable value for t depending on the desired level of compression, we can thus iteratively
check the difference between traces for different values of n after training each model for a few steps until we
obtain the largest n for which the difference is lower than the threshold t that we defined. To this aim, we
propose an algorithm to Facilely Obtaining the Number of Latent Dimensions by Unsupervised Estimation
(FONDUE).
Theorem 3. Any execution of FONDUE (Algorithm 1) returns the largest number of dimensions n for
which Tr(Var[Z])− Tr(Var[M ]) ⩽ t:

• If t < 1, FONDUE returns the maximal number of latent dimensions for which a VAE contains only
active variables.
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• If t ⩾ 1, FONDUE returns the maximal number of latent dimensions for which a VAE contains only
non-passive variables.

Sketch Proof. In Algorithm 1, we define a lower and upper bound of n, l and u, and update the predicted
number of latent variables n until, after i iterations, ni = li. Using the loop invariant li ⩽ ni ⩽ ui, we can
show that the algorithm terminates when li = ni = floor

(
li+ui

2
)
, which can only be reached when ui = ni+1,

that is, when ni is the maximum number of latent dimensions for which we have Tr(Var[Z])−Tr(Var[M ]) ⩽ t.
The threshold t is determined according to Theorems 1 and 2, as discussed above. See Appendix A.6 for the
full proof.

How does FONDUE work? FONDUE will seek to reach the maximum number of dimensions for which
the difference between Tr(Var[Z]) and Tr(Var[M ]) is lower than or equal to the threshold t, as illustrated
in Figure 2. The number of dimensions is first initialised to the IDE of the dataset IDEdata to start from a
reasonable number of latents. Note that a random initialisation will not impact the number of dimensions
predicted by FONDUE but may slow the algorithm down if the value is very far from the predicted number
of dimensions. Indeed, FONDUE will need more iterations to converge in that case. However, as shown
in Appendix H, even with extreme initialisation values, FONDUE remains faster than fully training one
model. After initialisation, at each iteration, FONDUE will train a VAE for a few epochs (generally just
two) and retrieve the mean and sampled representations corresponding to 10,000 data examples. We then
compute the traces of the covariance matrices of the mean and sampled representations (i.e., Tr(Var[Z])
and Tr(Var[M ])) and the difference between them. If this difference is lower than or equal to the threshold,
we set our lower bound to the current number of latent dimensions and train a VAE again with twice the
number of latents, as illustrated in Figure 3. If the difference is higher than the threshold, we set the current
number of latent dimensions to our upper bound and train a VAE again with half of the sum of the lower
and upper bound, as illustrated in Figure 4. We iterate these two steps until our current number of latent
dimensions is the largest possible dimensionality for which the difference is smaller than or equal to the
threshold.

0 50 100 150 200
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100
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200
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e

t

Mean
Sampled

Figure 2: Traces of the covariance matrices of the mean and sampled representations of VAEs trained on
Celeba with an increasing number of latent dimensions n. FONDUE retrieves the largest n for which the
difference is smaller or equal to a given threshold t.

Extending FONDUE Note that one could use different flavours of FONDUE by replacing the difference
Tr(Var[Z]) − Tr(Var[M ]) by any metric as long as its score is 1) consistently lower than some threshold
t before a “good” n and higher or equal afterwards, 2) stable early in the training. One such example is
IDEz−IDEµ which generally provides consistent results with the original algorithm as shown in Appendix F.
We will see in Section 4.2 that the information theoretic metric of Boquet et al. (2021) can also be readily
integrated into FONDUE.
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Algorithm 1 FONDUE

1: procedure FONDUE(t, IDEdata, e)
2: l← 0 ▷ Lower bound
3: u←∞ ▷ Upper bound
4: n← IDEdata ▷ Current number of latent dimensions
5: m← {}
6: while n ̸= l do
7: Tr(Var[Z]), Tr(Var[M ])← GET-MEM(m, n, e)
8: if Tr(Var[Z])− Tr(Var[M ]) ⩽ t then ▷ Figure 3
9: l← n

10: n← min(n× 2, u)
11: else ▷ Figure 4
12: u← n
13: n← floor

(
l+u

2
)

14: end if
15: end while
16: return n
17: end procedure

Algorithm 2 GET-MEM

1: procedure GET-MEM(m, n, e)
2: if m[n] = ∅ then
3: vae← TRAIN-VAE(dim = n, n_epochs = e)
4: Tr(Var[Z]), Tr(Var[M ])← Traces(vae)
5: m[n]← Tr(Var[Z]), Tr(Var[M ])
6: end if
7: return m[n]
8: end procedure

Figure 3: Update l and increase n un-
til Tr(Var[Z])− Tr(Var[M ]) > t.

Figure 4: Update u and decrease n
until Tr(Var[Z])− Tr(Var[M ]) ⩽ t.

4 Experimental setup

After computing the IDEs of the datasets on which the models will be trained, we will use them to ini-
tialise FONDUE. We will then assess the performance of FONDUE by comparing it with the existing
techniques of dimension selection discussed in Section 2.5. This will be done by ensuring that the number
of dimensions selected by the Elbow method for reconstruction and downstream tasks is consistent with the
values proposed by FONDUE, and by comparing the results obtained with FONDUE and the IB algorithm
of Boquet et al. (2021).

4.1 General setup

Datasets We use three datasets with an increasing number of intrinsic dimensions: Symmetric solids (Mur-
phy et al., 2021), dSprites (Higgins et al., 2017), and Celeba (Liu et al., 2015). The numbers of generative
factors of the first two datasets are 2 and 5, respectively, and the IDE of these two datasets should be close
to these values. While we do not know the generative factors of Celeba, Pope et al. (2021) reported an
IDE of 26 when using k = 20 neighbours with MLE, indicating a higher number of intrinsic dimensions than
dSprites and Symsol.
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Data preprocessing Each image is resized to 64× 64× c, where c = 1 for Symmetric solids and dSprites,
and c = 3 for Celeba. We also removed duplicate images (i.e., cases where different rotations resulted in
the same image) and labels from Symmetric solids and created a reduced version: symsol_reduced which
is available at https://t.ly/G7Qp.

VAE training We use the β-VAE architecture detailed in Higgins et al. (2017) for all the datasets, together
with the standard learning objective of VAEs, as presented in Equation 1. Each VAE is trained 5 times with
a number of latent dimensions n = 3, 6, 8, 10, 12, 18, 24, 32, 42 on every dataset. For Celeba, which has the
highest IDE, we additionally train VAEs with latent dimensions n = 52, 62, 100, 150, 200.

Estimations of the ID For all the datasets, we estimate the ID using 10,000 data examples. As in Pope
et al. (2021), the MLE scores are computed with an increasing number of neighbours k = 3, 5, 10, 20.
Moreover, we repeat the MLE computations 3 times with different seeds to detect any variance in estimates.

Downstream tasks To monitor how good the learned latent representations are on downstream tasks,
we train gradient boosted trees to classify the labels of each dataset based on the mean representations.
Each label is learned as a separate classification task, and we evaluate the results on a dataset based on the
averaged test accuracy over all these tasks, similarly to (Locatello et al., 2019a;b).

4.2 Comparing FONDUE with the IB algorithm

As the IB algorithm is the most closely related to FONDUE, we will compare the results of both algorithms.
However, we will see that a few modifications to the IB algorithm are required to ensure a fair comparison
in the unsupervised setting. For completeness, we also combine the results of Theorems 1 and 2 with binary
search to compare with the IB algorithm in the supervised setting in Appendix K.

Why the IB algorithm cannot be directly compared with FONDUE Because the IB algorithm
performs binary search over a user-defined array of likely dimensions, its execution time is greatly dependent
on the size of this array. Indeed, each time the dimension selected in the IB algorithm is lower than n∗,
the corresponding model is trained until convergence. Thus, if we select a range of values from 1 to n such
that floor( n−1

2 ) is lower than n∗ we will always have at least one full model training, which, for the tested
dataset is slower than FONDUE. For example, if n∗ = 30, any n < 61 would trigger at least one full model
training. Comparing the execution time of FONDUE and the original IB algorithm will thus mostly be based
on whether the binary search encounters a situation where n ⩾ n∗ and require to fully train one or more
models or not. Moreover, the original IB algorithm will give a value that depends on the range selected.
For example, if n∗ = 30 but the selected range is from 1 to 20, the original IB algorithm will return 20.
Thus, manually selecting the results could also impact the quality of the predicted number of dimensions.
For example one could force the IB algorithm to provide good predictions by selecting a very small range
of values consistent with the Elbow methods while a larger range of values would provide worse predictions.
To summarise, the human supervision plays an important role in the quality of the IB algorithm predictions,
making it unpractical to compare with a fully unsupervised algorithm such as FONDUE. We thus propose
to use a unified algorithm which does not require to define a range of values to circumvent this issue. As
mentioned above, we also compare the original IB algorithm where all models are trained for a fixed number
of epochs and a binary search for a fixed range of the number of dimensions using the difference between
traces obtained in Theorem 3 in Appendix K. Appendix K is thus a comparison between the IB algorithm
and Theorem 3 in a supervised context, where the range of dimensions to search is manually defined.

Using FONDUEIB for a fair comparison The IB algorithm relies on the assumption that if the
current number of dimensions n is lower than the target number of dimensions n∗, H(z) − I(x, x̂) < 0 and
H(z) − I(x, x̂) ≈ 0 otherwise. One can thus directly use this inequality to provide an alternative version
of FONDUE, FONDUEIB , which will also be completely unsupervised and will not require to fully train one
or more models. This is done by replacing Tr(Var[Z]) and Tr(Var[M ]) by H(z) and I(x, x̂) in the original
algorithm, as illustrated in Algorithms 3 and 4. In Boquet et al. (2021), the scores of H(z) and I(x, x̂) are
truncated to 2 decimals, making H(z) − I(x, x̂) < 0 equivalent to H(z) − I(x, x̂) ⩽ −0.01. We thus set the
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threshold to t = −0.01 for FONDUEIB and keep the original truncation. As in Boquet et al. (2021), we use
an RBF kernel and set α = 2.

Additional details on our implementation can be found in Appendix C and our code is available in supple-
mental work, and a demonstration of FONDUE is available in a notebook at https://anonymous.4open.
science/r/fondue-demo-CD5A.

5 Results

In this section, we will analyse the results of the experiments detailed in Section 4. First, we will review
the IDE of the different datasets in Section 5.1 obtained from MLE and TwoNN, the two ID estimators
discussed in Section 2.1. Then, in Section 5.2, we will evaluate the results of FONDUE by comparing the
selected number of dimensions with the reconstruction loss and downstream task accuracy.

Algorithm 3 FONDUEIB

1: procedure FONDUEIB(t, IDEdata, e)
2: l← 0
3: u←∞
4: n← IDEdata

5: m← {}
6: while n ̸= l do
7: H(z), I(x, x̂)← GET-MEMIB(m, n, e)
8: if H(z)− I(x, x̂) ⩽ t then
9: l← n

10: n← min(n× 2, u)
11: else
12: u← n
13: n← floor

(
l+u

2
)

14: end if
15: end while
16: return n
17: end procedure

Algorithm 4 GET-MEMIB

1: procedure GET-MEMIB(m, n, e)
2: if m[n] = ∅ then
3: vae← TRAIN-VAE(dim = n, n_epochs = e)
4: H(z), I(x, x̂)← IB(vae)
5: m[n]← H(z), I(x, x̂)
6: end if
7: return m[n]
8: end procedure

5.1 Estimating the intrinsic dimensions of the datasets

Symsol dSprites Celeba
Dataset

0

5

10

15

20

25

30

ID
E

Estimator
MLE(k=3)
MLE(k=5)
MLE(k=10)
MLE(k=20)
TwoNN

Figure 5: IDEs of dSprites, Celeba, and Symsol using different ID estimation methods.

As mentioned in Section 4, we have selected 3 datasets of increasing intrinsic dimensionality: Symsol (Murphy
et al., 2021), dSprites (Higgins et al., 2017), and Celeba (Liu et al., 2015). Following Karbauskaitė et al.
(2011), we will retain for our analysis the MLE estimates which are stable for the largest number of k values.
We can see in Figure 5 that the MLE estimations become stable when k is between 10 and 20, similar to
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(b) dSprites
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(c) Celeba

Figure 6: Reconstruction loss and accuracy obtained for generation and downstream tasks of VAEs for
Symsol, dSprites, and Celeba with an increasing number of latent variables. The black and grey vertical
lines indicate the number of dimensions found by FONDUE and FONDUEIB .

what was reported by Levina & Bickel (2004). These IDEs are also generally close to TwoNN estimations,
except for Celeba, where TwoNN seems to overestimate the ID, as reported by Pope et al. (2021).

Celeba’s IDE was previously estimated to be 26 for MLE with k = 20 (Pope et al., 2021) neighbours, and we
know that Symsol and dSprites have 2 and 5 generative factors, respectively. We thus expect their IDEs to
be close to these values. We can see in Figure 5 that MLE and TwoNN overestimate the IDs of Symsol
and dSprites, with IDEs of 4 and 11 instead of the expected 2 and 5. Our result for Celeba is close to Pope
et al. (2021) with an estimate of 22; the slight difference may be attributed to the difference in our averaging
process (Pope et al. (2021) used the averaging described by MacKay & Ghahramani (2005) instead of the
original averaging of Levina & Bickel (2004)).

Because stability is more important than overestimation for our purposes, in the rest of this paper, we will
consider the IDEs obtained from MLE with k = 20. Specifically, we will initialise FONDUE with n = 4 for
Symsol, n = 11 for dSprites and n = 22 for Celeba.

5.2 Evaluating FONDUE

Using the IDEs reported in the previous section to initialise FONDUE, we will now report the results of
FONDUE and FONDUEIB for the considered datasets.

Obtaining stable estimates To ensure stable estimates, we computed FONDUE multiple times, grad-
ually increasing the number of epochs e until the predicted dimensionality n stopped changing (i.e., until
γ is sufficently small). As reported in Table 1, the results were already stable after two epochs2. We set a
fixed threshold of t = 1 in all our experiments and used memoisation (see Algorithm 2) to avoid unnecessary
retraining and speed up Algorithm 1. For FONDUEIB we followed the same process, with a fixed threshold
of t = −0.01.

Analysing the results of FONDUE As shown in Table 1, the execution time for finding the number
of dimensions for one dataset is much shorter than for fully training one model, which is approximately
2h using the same GPUs. Moreover, on dSprites and Celeba, FONDUE finds the number of dimensions
corresponding to low reconstruction loss and good accuracy, which is consistent with the results obtained
manually from the Elbow methods (Doersch, 2016; Mai Ngoc & Hwang, 2020). It is worth noting that the
number of dimensions provided by FONDUE for dSprites is also close to the dimensionality of 10 generally
used in the literature (Higgins et al., 2017; Burgess et al., 2018; Kim & Mnih, 2018; Locatello et al., 2019b).
When compared to FONDUE, FONDUEIB is always slower as it requires more epochs to provide stable

2Note that the numbers of epochs given in Table 1 correspond to the minimum number of epochs needed for FONDUE to
be stable. For example, if we obtain the same score after 1 and 2 epochs, the number of epochs given in Table 1 is 1.
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Table 1: Number of latent variables n obtained with FONDUE and FONDUEIB . The results are averaged
over 10 seeds, and computation times are reported for NVIDIA A100 GPUs. The computation time is given
for one run of the algorithm over the minimum number of epochs needed to obtain a stable score.

Dataset n (avg ± SD) Time/run Models
trained

Epochs/training

FONDUE Symsol 19.1 ± 0.7 6 min 8 1
FONDUE dSprites 10.9 ± 0.7 42 min 4 2
FONDUE Celeba 32.6 ± 0.7 17 min 6 2
FONDUEIB Symsol 23.3 ± 0.5 40 min 8 6
FONDUEIB dSprites 15.7 ± 0.5 52 min 5 2
FONDUEIB Celeba 18.4 ± 0.7 21 min 5 3

estimates. Furthermore, we can see in Figure 6 that it displays an inconsistent behaviour, overestimating the
number of dimensions for dSprites and underestimating them for Celeba. Both FONDUE and FONDUEIB

overestimate the number of dimensions for Symsol, with a stronger overestimation of FONDUEIB . Indeed, it
is apparent in Figure 6a that 15 dimensions would be enough to ensure a low reconstruction error and a high
accuracy, but FONDUE overestimates it by 4 dimensions and this overestimation is doubled by FONDUEIB .
We hypothesise that the performance of both FONDUE versions may be impacted by noisy environments
as the VAEs trained on Symsol present the largest variance of reconstruction loss. Despite this, Figure 6
shows that FONDUE estimates generally locate the Elbow point correctly, ignoring diminishing returns for
more complex datasets like Figure 6c. It thus consistently provides a number of dimensions corresponding
to a good trade-off between low reconstruction loss and high accuracy, which is not always the case with
FONDUEIB .

Are the results obtained with FONDUE on VAEs applicable to deterministic AEs? We can
see in Figure 7 that FONDUE estimates obtained on VAEs also agree with the Elbow method for deter-
ministic AEs with equivalent architectures. Overall, these results indicate that the dimensionality selected
by FONDUE on VAEs can be reused for AEs trained on the same dataset with an identical architecture.
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(b) dSprites
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(c) Celeba

Figure 7: Reconstruction loss and accuracy obtained for generation and downstream tasks of deterministic
AEs for Symsol, dSprites, and Celeba with an increasing number of latent variables. The black and grey
vertical lines indicate the number of dimensions found by FONDUE and FONDUEIB for VAEs with the
same architectures.

Can FONDUE be applied to other architectures, hyperparameters and learning objectives?
To assess the generalisability of FONDUE to other hyperparameters and learning objectives, we compared
the results obtained by FONDUE with the Elbow methods for β-VAEs with β = [0.5, 2, 4] and for DIP-VAE
II (Kumar et al., 2018), with hyperparameter values λod = [0.5, 1, 2, 4]. A full presentation of DIP-VAE II is
available in Appendix I. We can see in Figure 8 that FONDUE generalises well to different hyperparameter
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(a) Symsol, β-VAE, β = 4
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(b) dSprites, DIP-VAE II, λod = 0.5

Figure 8: Reconstruction loss and accuracy obtained for generation and downstream tasks with an increasing
number of latent variables. (a) shows the results for β-VAE with β = 4 on Symsol, and (b) shows the results
for DIP-VAE II with λod = 0.5 on dSprites. The vertical lines indicate the number of dimensions found by
FONDUE.

Table 2: Number of latent variables n obtained with FONDUE with different β values for β-VAE. The results
are averaged over 10 seeds, and computation times are reported for NVIDIA A100 GPUs. The computation
time is given for one run of the algorithm over the minimum number of epochs needed to obtain a stable
score.

β Dataset n (avg ± SD) Time/run Models
trained

Epochs/training

0.5 Symsol 26 ± 0.7 18 min 8 3
0.5 dSprites 13.6 ± 1.2 80 min 6 3
0.5 Celeba 49.9 ± 1.5 46 min 8 4
2 Symsol 13.6 ± 0.8 4 min 6 1
2 dSprites 7.4 ± 0.5 26 min 5 1
2 Celeba 21.9 ± 0.3 8 min 6 1
4 Symsol 10 ± 0.5 4 min 6 1
4 dSprites 6.3 ± 0.7 24 min 5 1
4 Celeba 15.9 ± 1.0 23 min 6 3

values, and learning objectives, with results on par with the Elbow method, as before. As shown in Tables 2
and 3, the number of dimensions predicted are consistent with the pressure applied on the bottleneck: models
with higher β (or λod) apply a more agressive pruning and have a lower number of active variables than
models with lower β (or λod). Overall, the results obtained are still faster to compute than fully training
one model. Additional results for different learning objectives, hyperparameters and datasets can be found
in Appendix L. FONDUE also seems to be robust to architectural changes as reported in Appendix D.

6 Conclusion

By studying the effect of the polarised regime on the mean and sampled representations, we have shown
that one can detect the types of variables (active, passive or mixed) learned by VAEs. These observations
lead to FONDUE: an algorithm which can find the number of latent dimensions after which the mean and
sampled representations start to strongly diverge. Increasing the number of dimensions beyond this number
will result in adding passive or mixed variables which will generally not contribute much to the reconstruction
quality and downstream task accuracy. Hence, FONDUE will locate the Elbow point of the performance
curves. After proving the correctness of our algorithm, we have shown that it is a faster, automated and
unsupervised alternative to existing methods which does not require to fully train any model, is not impacted
by architectural changes, and can be used for deterministic AEs.
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Table 3: Number of latent variables n obtained with FONDUE with different λod values for DIP-VAE II.
The results are averaged over 10 seeds, and computation times are reported for NVIDIA A100 GPUs. The
computation time is given for one run of the algorithm over the minimum number of epochs needed to obtain
a stable score.

λod Dataset n (avg ± SD) Time/run Models
trained

Epochs/training

0.5 Symsol 17.5 ± 1.1 7 min 8 1
0.5 dSprites 10.2 ± 0.6 19 min 4 1
0.5 Celeba 27.3 ± 1.7 8 min 6 1
1 Symsol 15.9 ± 2.0 7 min 7 1
1 dSprites 9.5 ± 1.0 25 min 5 1
1 Celeba 22.7 ± 2.3 8 min 6 1
2 Symsol 12.4 ± 1.1 7 min 6 1
2 dSprites 7.9 ± 0.7 55 min 6 2
2 Celeba 20.9 ± 1.8 16 min 6 2
4 Symsol 11.7 ± 0.9 13 min 6 2
4 dSprites 8.1 ± 0.7 28 min 6 1
4 Celeba 18.7 ± 1.4 23 min 6 3

Future work While FONDUE has been demonstrated to be an efficient algorithm, it could be improved
and extended in several ways: 1) we have shown that the dimensions given by FONDUE could also be used for
deterministic AEs, but it would be interesting to see if this applies to a larger range of unsupervised models
(e.g., GANs, clustering methods, etc.); 2) FONDUE can be extended in a number of ways by replacing the
difference of Trace in Algorithm 2 by any function that reliably provides different results in mean and sampled
representations early in the training process, as illustrated with IDEs in Appendix F. These extensions could
be beneficial both in terms of execution time (if the function is faster or convergence is reached earlier) and
complementary theoretical insights (if the function is also theoretically grounded); 3) One could also extend
FONDUE to find a good hyperparameter value for β-VAE by replacing n by β in Algorithms 1 and 2.
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A Proofs

A.1 Proof of Proposition 1

Proof. We know from Definition 1 that when a latent representation is only composed of active variables,
limγ→0 Z = M . Thus, limγ→0 Var[Z] = Var[M ] and limγ→0 Tr(Var[Z]) = Tr(Var[M ]).
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A.2 Proof of Proposition 2

Proof. Let us consider the partitioned matrices

Var[Z] =
[

Var[Za] Cov[Za, Zp]

Cov[Zp, Za] Var[Zp]

]
, (3)

and

Var[M ] =
[

Var[Ma] Cov[Ma, Mp]

Cov[Mp, Ma] Var[Mp]

]
, (4)

where ·a and ·p denote the subsets of active and passive variables, respectively. We know from Definition 1
that limγ→0 Var[Zp] = Is×s and limγ→0 Var[Mp] = 0s×s. Thus,

lim
γ→0

Tr(Var[Z]) = Tr(Var[Za]) + Tr(Var[Zp]), (5)

= Tr(Var[Za]) + Tr(Is×s), (6)
= Tr(Var[Za]) + s, (7)

and

lim
γ→0

Tr(Var[M ]) = Tr(Var[Ma]) + Tr(Var[Mp]), (8)

= Tr(Var[Ma]) + Tr(0s×s), (9)
= Tr(Var[Za]). (10)

Combining equations 7 and 10 and recalling from Proposition 1 that limγ→0 Tr(Var[Za]) = Tr(Var[Ma]),
we obtain

lim
γ→0

(
Tr(Var[Z])− Tr(Var[M ])

)
= Tr(Var[Za]) + s− Tr(Var[Za]) = s, (11)

as expected.

A.3 Proof of Proposition 3

Proof. Let us consider the partitioned matrices

Var[Z] =
[

Var[Za] Cov[Za, Zm]

Cov[Zm, Za] Var[Zm]

]
, (12)

and

Var[µ] =
[

Var[Ma] Cov[Ma, Mm]

Cov[Mm, Ma] Var[Mm]

]
, (13)

where ·a and ·m denote the subsets of active and mixed variables, respectively. We know from Definition 1
that up to some permutations a mixed variable Zi =

[
Z

(a)
i , Z

(p)
i

]
, where a is the subset of data examples

indexes for which the variable is active and p the subset of data example indexes for which the variable is
passive. Given h data examples, we thus have h = card(a) + card(b) where card(·) denotes the cardinality
of a set. Let us define wi ≜

card(a)
h with 0 < wi < 1. We have (1 − wi) = h−card(a)

h = card(b). Given the
mean of the mixed variable i of the sampled representation Z̄i, we thus obtain:

lim
γ→0

Z̄i = wiZ̄
(a)
i + (1− wi)Z̄(p)

i = wiZ̄
(a)
i . (14)
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Now, let us calculate the variance of Zi, Var[Zi]:

lim
γ→0

Var[Zi] = wi

(
Z̄

(a)
i − Z̄i

)2
+ (1− wi)wi

(
Z̄

(p)
i − Z̄i

)2
+ wiVar

[
Z

(a)
i

]
+ (1− wi)Var

[
Z

(p)
i

]
, (15)

= wi(1− wi)2
(

Z̄
(a)
i

)2
+ w2

i (1− wi)
(

Z̄
(a)
i

)2
+ wiVar

[
Z

(a)
i

]
+ 1− wi, (16)

= wi(1− wi)
(

Z̄
(a)
i

)2
+ wiVar

[
Z

(a)
i

]
+ 1− wi, (17)

= κi + 1− wi, (18)

where κi = wi(1− wi)
(

Z̄
(a)
i

)2
+ wiVar

[
Z

(a)
i

]
. Writing Mi =

[
M

(a)
i , M

(p)
i

]
, we obtain in the same way

lim
γ→0

M̄i = wiM̄
(a)
i + (1− wi)M̄ (p)

i = wiM̄
(a)
i = wiZ̄

(a)
i , (19)

and

lim
γ→0

Var[Mi] = wi

(
M̄

(a)
i − M̄i

)2
+ (1− wi)wi

(
M̄

(p)
i − M̄i

)2
+ wiVar

[
M

(a)
i

]
(20)

+ (1− wi)Var
[
M

(p)
i

]
, (21)

= wi(1− wi)
(

M̄
(a)
i

)2
+ wiVar

[
M

(a)
i

]
, (22)

= wi(1− wi)
(

Z̄
(a)
i

)2
+ wiVar

[
Z

(a)
i

]
, (23)

= κi. (24)

Using Equation 18, we have

lim
γ→0

Tr(Var[Z]) = Tr(Var[Za]) + Tr(Var[Zm]) = Tr(Var[Za]) +
s∑

i=1
(κi + 1− wi) . (25)

In the same way, from Equation 24 we obtain

lim
γ→0

Tr(Var[M ]) = Tr(Var[Ma]) + Tr(Var[Mm]) = Tr(Var[Za]) +
s∑

i=1
κi. (26)

Thus, limγ→0 Tr(Var[Z]) − Tr(Var[M ]) =
∑s

i=1(1 − wi). Given that for all i, 0 < wi < 1, for the s mixed
variables 0 <

∑s
i=1(1− wi) < s, and 0 < limγ→0 Tr(Var[Z])− Tr(Var[M ]) < s, as required.

A.4 Proof of Theorem 1

Proof. We know from Proposition 1 that if all the variables are active, limγ→0 Tr(Var[Z])−Tr(Var[M ]) = 0.
Once their maximum number n is reached, the next variable learned will be either passive or mixed. Recall
from Proposition 2 that for s = 1 passive variables, limγ→0 Tr(Var[Z]) − Tr(Var[M ]) = 1. Moreover,
using Proposition 3 with s = 1 mixed variables, 0 < limγ→0 Tr(Var[Z])− Tr(Var[M ]) < 1. As a result, if n
is the maximum number of active variables, at n + 1, 0 < limγ→0 Tr(Var[Z])− Tr(Var[M ]) ⩽ 1, where the
upper bound is tight when the (n + 1)th variable is passive.

A.5 Proof of Theorem 2

Proof. Here we consider the case where n is the maximum number of mixed and active variables that can
be reached. Using Proposition 3 with 0 ⩽ s ⩽ n, at n we have:

0 ⩽ lim
γ→0

Tr(Var[Z])− Tr(Var[M ]) < n, (27)
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where the lower bound is tight when s = 0. As the (n+1)th variable will always be passive, using Proposition 2
with s = 1, we obtain

1 ⩽ lim
γ→0

Tr(Var[Z])− Tr(Var[M ]) < n + 1, (28)

as expected.

A.6 Proof of Theorem 3

This section provides the full proof of Theorem 3. To ease its reading, let us first recall from Theorems 1
and 2 that the mean and sampled representations start to diverge only after the number of latent dimensions
has become large enough for non-active variables to appear.
Remark 1. Given that l and u only take values of latent dimensions for which Tr(Var[Z])−Tr(Var[M ]) ⩽ t
and Tr(Var[Z])− Tr(Var[M ]) > t, respectively, Theorems 1 and 2 imply that for all iterations i, li < ui.

Using the loop invariant li ⩽ ni ⩽ ui for each iteration i, we will now show that Algorithm 1 terminates
when li = ni = floor

(
li+ui

2
)
, which can only be reached when ui = ni + 1, that is when ni is the maximum

number of latent dimensions for which we have Tr(Var[Z])− Tr(Var[M ]) ⩽ t.

Proof.

Initialisation: l0 = 0, n0 = IDEdata, u0 =∞, thus l0 < n0 < u0.

Maintenance: We will consider both branches of the if statement separately:

• For Tr(Var[Z])−Tr(Var[M ]) ⩽ t (lines 9-11), ui = ui−1, ni = min(ni−1× 2, ui), and li = ni−1. We
directly see that ni ⩽ ui. We know from Remark 1 that li < ui and we also have li < ni−1 × 2, it
follows that li < ni. Grouping both inequalities, we get li < ni ⩽ ui.

• For Tr(Var[Z]) − Tr(Var[M ]) > t (lines 12-14), ui = pi−1, li = li−1, and ni = floor
(

li+ui

2
)
. Us-

ing Remark 1 we can directly see that li ⩽ floor
(

li+ui

2
)

< ui and we obtain li ⩽ ni < ui.

Termination: The loop terminates when li = ni. Given that li < ni when Tr(Var[Z]) − Tr(Var[M ]) ⩽ t,
this is only possible when Tr(Var[Z]) − Tr(Var[M ]) > t, which is when ni = floor

(
li+ui

2
)
. We know

from Remark 1 that li < ui, so we must have (li +ui) mod 2 > 0. As a mod 2 ∈ {0, 1}, the only possible value
for ui to satisfy li = ni = floor

(
li+ui

2
)

is ui = ni + 1. Thus, ni is the largest number of latent dimensions
for which Tr(Var[Z])− Tr(Var[M ]) ⩽ t.

B Resources

As mentioned in Sections 1 and 4, we released the code of our experiment, a demo of FONDUE and the
pre-trained models:

• The demonstration of FONDUE is available at https://anonymous.4open.science/r/
fondue-demo-CD5A

• symsol_reduced, the reduced version of Symmetric solids, can be downloaded using an anonymous
Google account using the following tiny URL https://t.ly/G7Qp

• The code can be found in supplemental work

• Our pre-trained models are large and could not be shared with the reviewers using an anonymous
link. The URL to the models will, however, be available in the non-anonymised version of this paper.

The 300 models correspond to 5 runs of VAEs trained with:
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• 8 choices of latent dimensions for Symsol and dSprites, using convolutional and fully-connected
architectures, resulting in 160 models

• 14 choices of latent dimensions for Celeba, using convolutional and fully-connected architectures,
resulting in 140 models

The total 300 pre-trained models were then used to compute estimate IDs as described below. Note that
while these models would save some computational time if used to reproduce the experiment, they are only
provided to reduce the carbon footprint of reproducing the experiment as one could easily retrain the models
using the details of our implementation.

C Experimental setup

Our implementation uses the same hyperparameters as Locatello et al. (2019b), as listed in Table 4. We
reimplemented the Locatello et al. (2019b) code base, designed for Tensorflow 1, in Tensorflow 2 using Keras.
The model architectures used are also similar, as described in Tables 5 and 6. We used the convolutional
architecture in the main paper and the fully-connected architecture in Appendix D. Each model is trained
5 times with seed values from 0 to 4. Every image input is normalised to have pixel values between 0 and
1. TwoNN is used with an anchor of 0.9, and the hyperparameters for MLE can be found in Table 7. More
details about these two ID estimators can be found in Section 2.1 and Appendix E.

Table 4: VAEs hyperparameters

Parameter Value
Batch size 64
Latent space dimension 3, 6, 8, 10, 12, 18, 24, 32.

For Celeba only: 42, 52, 62, 100, 150, 200
Optimizer Adam
Adam: β1 0.9
Adam: β2 0.999
Adam: ϵ 1e-8
Adam: learning rate 0.0001
Reconstruction loss Bernoulli
Training steps 300,000
Train/test split 90/10
β 1

Table 5: Architecture

Encoder Decoder
Input: R64×63×channels R10

Conv, kernel=4×4, filters=32, activation=ReLU,
strides=2

FC, output shape=256, activation=ReLU

Conv, kernel=4×4, filters=32, activation=ReLU,
strides=2

FC, output shape=4x4x64, activation=ReLU

Conv, kernel=4×4, filters=64, activation=ReLU,
strides=2

Deconv, kernel=4×4, filters=64, activation=ReLU,
strides=2

Conv, kernel=4×4, filters=64, activation=ReLU,
strides=2

Deconv, kernel=4×4, filters=32, activation=ReLU,
strides=2

FC, output shape=256, activation=ReLU,
strides=2

Deconv, kernel=4×4, filters=32, activation=ReLU,
strides=2

FC, output shape=2x10 Deconv, kernel=4×4, filters=channels, activa-
tion=ReLU, strides=2
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Table 6: Fully-connected architecture

Encoder Decoder
Input: R64×63×channels R10

FC, output shape=1200, activation=ReLU FC, output shape=256, activation=tanh
FC, output shape=1200, activation=ReLU FC, output shape=1200, activation=tanh
FC, output shape=2x10 FC, output shape=1200, activation=tanh

Table 7: MLE hyperparameters

Parameter Value
k 3, 5, 10, 20
anchor 0.8
seed 0
runs 5

D FONDUE on fully-connected architectures

We report the results obtained by FONDUE for fully-connected (FC) architectures in Table 8 and Fig-
ure 9. As shown in Table 8, the execution time for estimating the number of dimensions for one dataset
is much shorter than for training one model (this is approximately 2h on the same GPUs), consistently
with convolutional VAEs. As in Section 5.2, FONDUE correctly finds the number of latent dimensions that
would be selected by Elbow methods, as shown in Figure 9. FONDUEIB predictions are more consistent
with those of FONDUE for FC architectures, except for dSprites where the number of dimensions is largely
overestimated.

As in Section 5.2, we gradually increase the number of epochs until FONDUE reaches a stable estimation
of the latent dimensions. As these models have fewer parameters than the convolutional architecture used
in Section 5.2, they converge more slowly and need to be trained for more epochs on Celeba and Symsol
before reaching a stable estimation (Arora et al., 2018; Sankararaman et al., 2020). As before, FONDUEIB

generally requires more epochs than FONDUE to converge, except for Celeba.

Overall, we can see that FONDUE also provides good results on the FC architectures, despite a slower
convergence, showing robustness to architectural changes.

E Additional details on ID estimation

In this section, we will detail two ID estimation techniques which use the statistical properties of the neigh-
bourhood of each data point to estimate d, and provide good results for approximating the ID of deep neural

Table 8: Number of latent variables n obtained with FONDUE and FONDUEIB for fully-connected VAEs.
The results are averaged over 10 seeds, and computation times are reported for NVIDIA A100 GPUs. The
computation time is given for one run of the algorithm over the minimum number of epochs needed to obtain
a stable score.

Dataset n (avg ± SD) Time/run Models
trained

Epochs/training

FONDUE Symsol 7.6 ± 0.7 9 min 5 3
FONDUE dSprites 5.2 ± 0.6 16 min 5 1
FONDUE Celeba 22.0 ± 0. 23 min 6 4
FONDUEIB Symsol 11 ± 0.5 14 min 6 4
FONDUEIB dSprites 12.3 ± 0.5 28 min 5 2
FONDUEIB Celeba 16.4 ± 0.7 5 min 5 1
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Figure 9: Reconstruction loss and accuracy obtained for generation and downstream tasks of fully-
connected VAEs for test data from Symsol, dSprites, and Celeba with an increasing number of latent
variables. The plain and dashed vertical lines indicate the number of dimensions found by FONDUE and
FONDUEIB .

network representations and deep learning datasets (Ansuini et al., 2019; Gong et al., 2019; Pope et al.,
2021).

E.1 Maximum Likelihood Estimation

Levina & Bickel (2004) modelled the neighbourhood of a given point Xi as a Poisson process in a d-
dimensional sphere SXi(R) of radius R around Xi. This Poisson process is denoted {N(t, Xi), 0 ⩽ t ⩽ R},
where N(t, Xi) is a random variable representing the number of neighbours of Xi within a radius t, and is
distributed according to a Poisson distribution3. This Poisson process, {N(t, Xi), 0 ⩽ t ⩽ R}, will count the
total number of points falling into the successive d-dimensional spheres of radius 0 ⩽ t ⩽ R.

Intuitively, when d = 3 this can be thought of as an onion to which we add an outer peel for each increasing
radius value t, until we reach the maximum radius R. Thus, each N(t, Xi) will give us a snapshot of the
number of points contained in all the peels stacked so far in the onion of radius t. As N(t, Xi) is a function
of the surface area of the sphere, its rate is a function of d and one can estimate d using MLE. However,
we generally cannot access all the existing neighbours of Xi in a given radius without infinite data, so we
approximate the process using a fixed number of neighbours.

More formally, each point Xj ∈ SXi(R) is thus considered as an event, its arrival time t = T (Xi, Xj) being
the Euclidean distance from Xi to its jth neighbour Xj . By expressing the rate λ(t, Xi) of the process
N(t, Xi) as a function of the surface area of the sphere—and thus relating λ(t, Xi) to d—they obtain
a maximum likelihood estimation (MLE) of the ID d:

d̄R(Xi) =

 1
N(R, Xi)

N(R,Xi)∑
j=1

log R

T (Xi, Xj)

−1

. (29)

Equation 29 is then simplified by fixing the number of neighbours, k, instead of the radius R of the sphere,
such that

d̄k(Xi) =

 1
k − 1

k−1∑
j=1

log T (Xi, Xk)
T (Xi, Xj)

−1

, (30)

where the last summand is omitted, as it is zero for j = k. The final IDE d̄k is the averaged score over n
data examples (Levina & Bickel, 2004)

d̄k = 1
n

n∑
i=1

d̄k(Xi). (31)

3Note that this does not imply any distributional assumption about the dataset
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To obtain an accurate estimation of the ID with MLE, it is very important to choose a sufficient number of
neighbours k to form a dense small sphere (Levina & Bickel, 2004). On one hand, if k is too small, MLE will
generally underestimate the ID, and suffer from high variance (Levina & Bickel, 2004; Campadelli et al.,
2015; Pope et al., 2021). On the other hand, if k is too large, the ID will be overestimated (Levina & Bickel,
2004; Pope et al., 2021).

A worked example Now, let us consider the point Xi = (0, 0, 0) and 3 closest neighbours Y =
{(0, 1, 0)(1, 0, 0), (2, 0, 0)}. We have N(t = 1, Xi) = 2 and N(t = 2, Xi) = 3 because Y1, Y2 are within
a radius t = 1 of Xi, and all Yj are within a radius t = 2.

Using the distances between Xi and its neighbours, T (Xi, Yj), the dimensionality can be estimated by Equa-
tion 30 as follows

d̄3(Xi) =

1
2

2∑
j=1

log T (Xi, Y3)
T (Xi, Yj)

−1

,

=

1
2

2∑
j=1

log 2
T (Xi, Yj)

−1

,

= [log 2]−1
,

≈ 3.3,

(32)

which is reasonably close to the true data ID.

To make sure that the estimate is stable, we repeat this estimation over multiple data points and average
the results as per Equation 31.

E.2 TwoNN

Facco et al. (2017) proposed an estimation of the ID based on the ratio of the two nearest neighbours of Xi,
rXi = T (Xi,Xl)

T (Xi,Xj) , where Xj and Xl are the first and second closest neighbours of Xi, respectively. r follows
a Pareto distribution with scale s = 1 and shape d, and its density function f(r) is

f(r) = dsd

rd+1 = dr−(d+1). (33)

Its cumulative distribution function is thus

F (r) = 1− sd

rd
= 1− r−d, (34)

and, using Equation 34, one can readily obtain d = − log(1−F (r))
log r . From this, we can see that d is the slope of

the straight line passing through the origin, which is given by the set of coordinates S = {( log rXi
,− log(1−

F (rXi)) ) | i = 1, · · · , m}, and can be recovered by linear regression.

As TwoNN uses only two neighbours, it can be sensitive to outliers (Facco et al., 2017) and does not perform
well on high ID (Pope et al., 2021), overestimating the ID in both cases.

E.3 Ensuring an accurate analysis

Given the limitations previously mentioned, we take two remedial actions to guarantee that our analysis
is as accurate as possible. To provide an IDE which is as accurate as possible with MLE, we will mea-
sure the MLE with an increasing number of neighbours and, similar to Karbauskaitė et al. (2011), retain
the IDE which is stable for the largest number of k values. TwoNN will be used as a complementary metric to
validate our choice of k for MLE. In case of significant discrepancies with a significantly higher TwoNN IDE,
we will rely on the results provided by MLE.
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F FONDUE based on intrinsic dimension estimation

In this section, we are interested in replacing Tr(Var[z]) − Tr(Var[µ]) by IDEz − IDEµ in Algorithm 1.
While we will not provide a formal proof of the relationship between the polarised regime and ID estimation,
we will show that ID estimation match the constraints discussed in Section 3.2 as it is 1) sensitive to the
different types of variables in mean and sampled representations 2) stable early during the training. We
generally obtain similar results as in Section 5, and any discrepancies may be attributed to the choice of t
value as, in opposition to Section 3.2, we lack a principled way of choosing it.

F.1 IDEs of the mean and sampled representations of VAEs

Mean and sampled representations have different IDEs Looking into the IDEs of mean and sampled
representations in Figure 10, we see a clear pattern emerges: when increasing the number of latent variables,
the IDEs remain similar up to a point, then abruptly diverge. As discussed in Section 2.4, once a VAE
has enough latent variables to encode the information needed by the decoder, the remaining variables will
become passive to minimise the KL divergence in Equation 2. This phenomenon will naturally occur when
we increase the number of latent variables. We can thus hypothesise that the difference between the mean
and sampled IDEs grows with the number of mixed and passive variables. This is verified by computing
the number of active, mixed, and passive variables using the method of Bonheme & Grzes (2021), as shown
in Figure 11.
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Figure 10: IDE of the mean and sampled representations of VAEs trained with an increasing number of
latent dimensions n. (a), (b), and (c) shows the results on Symsol, dSprites, and Celeba, respectively.

3 6 8 10 12 18 24 32

n

0

10

20

30

Nu
m

be
r o

f v
ar

ia
bl

es Type of variable
Active variables
Mixed variables
Passive variables

(a) Symsol

3 6 8 10 12 18 24 32

n

0

10

20

30

Nu
m

be
r o

f v
ar

ia
bl

es Type of variable
Active variables
Mixed variables
Passive variables

(b) dSprites

3 6 8 10 12 18 24 32 42 52 62 10
0

15
0

20
0

n

0

50

100

150

200

Nu
m

be
r o

f v
ar

ia
bl

es Type of variable
Active variables
Mixed variables
Passive variables

(c) Celeba

Figure 11: Quantity of active, mixed, and passive variables of VAEs trained with an increasing number of
latent dimensions n. (a), (b), and (c) show the results on Symsol, dSprites, and Celeba.

The IDEs of the model’s representations do not change much after the first epoch The IDEs of
the different layers do not change much after the first epoch for well-performing models (see Figure 12).
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Figure 12: The evolution over multiple epochs of the IDE of the representations learned by VAEs using 10
latent variables on Symsol, dSprites, and Celeba.

However, for Celeba, whose number of latent dimensions is lower than the data IDE and thus cannot
reconstruct the data well, the IDEs tend to change more in the early layers of the encoder, displaying a
higher variance.

F.2 FONDUE with IDE

As discussed above, the IDEs of the mean and sampled representations start to diverge when (unused) passive
variables appear, and this is already visible after the first epochs of training. The difference of IDEs between
the mean and sampled representations thus meet the two criteria for extension listed in Section 3.2 and can
be used as a new flavour of FONDUE, FONDUEIDE . As for FONDUEIB , we simply replace the difference
between traces by the difference between IDEs as shown in Algorithms 5 and 6.

Algorithm 5 FONDUEIDE

1: procedure FONDUEIDE(t, IDEdata, e)
2: l← 0
3: u←∞
4: n← IDEdata

5: m← {}
6: while n ̸= l do
7: IDEz, IDEµ ← GET-MEM(m, n, e)
8: if (IDEz − IDEµ) ⩽ t then
9: l← n

10: n← min(n× 2, u)
11: else
12: u← n
13: n← floor

(
l+u

2
)

14: end if
15: end while
16: return n
17: end procedure

Algorithm 6 GET-MEMIDE

1: procedure GET-MEM(m, n, e)
2: if m[n] = ∅ then
3: vae← TRAIN-VAE(dim = n, n_epochs = e)
4: IDEz, IDEµ ← IDEs(vae)
5: m[n]← IDEz, IDEµ

6: end if
7: return m[n]
8: end procedure
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Table 9: Number of latent variables n obtained with FONDUE and FONDUEIDE . The results are averaged
over 10 seeds, and computation times are reported for NVIDIA A100 GPUs. The computation time is given
for one run of the algorithm over the minimum number of epochs needed to obtain a stable score.

Dataset n (avg ± SD) Time/run Models
trained

Epochs/training

FONDUE Symsol 19.1 ± 0.7 6 min 8 1
FONDUE dSprites 10.9 ± 0.7 42 min 4 2
FONDUE Celeba 32.6 ± 0.7 17 min 6 2
FONDUEIDE Symsol 12.6 ± 0.5 10 min 6 2
FONDUEIDE dSprites 10.1 ± 0.7 42 min 4 2
FONDUEIDE Celeba 34.7 ± 1.0 32 min 6 4
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(b) dSprites
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(c) Celeba

Figure 13: Reconstruction loss and accuracy obtained for generation and downstream tasks of VAEs for
Symsol, dSprites, and Celeba with an increasing number of latent variables. The plain and dashed vertical
lines indicate the number of dimensions found by FONDUE and FONDUEIDE .

How to select a suitable value of t? As we do not have a theoretical relationship between IDE and the
polarised regime, it is more complicated to provide a principled way to select the threshold of FONDUEIDE .
While t was set to a fixed value of 1 as in Section 4, one could wonder if this would be a good fit for their
particular use case. By looking at Figures 10 and 11, one can see that the difference between the IDEs of the
mean and sampled representations is generally close to the number of additional mixed and passive variables.
Thus, t represents this number of “extra variables” (mixed and passive) that we want to allow the model to
use, indicating that the threshold obtained for FONDUE is readily applicable to FONDUEIDE .

Obtaining stable estimates As in Section 5, to ensure stable estimates, we computed FONDUE multiple
times, gradually increasing the number of epochs e until the predicted p stopped changing. As reported
in Table 9, the results were generally stable after two epochs, except for Celeba which needed four.

Analysing the results of FONDUE As shown in Table 9, the execution time of FONDUEIDE for finding
the number of dimensions for one dataset is much shorter than for fully training one model (approximately
2h using the same GPUs) but generally longer than the original FONDUE algorithm. Moreover, one can see
in Figure 13 that the number of latent dimensions predicted by FONDUE and FONDUEIDE are very close
for dSprites and Celeba. FONDUEIDE also performs better on Symsol with a number of dimensions closer
to what would be chosen with the Elbow method. We hypothesise that FONDUEIDE may cope better with
more noisy setups where multiple runs of a VAE reach very different reconstruction loss. It could thus be
interesting to investigate ID estimation through the lens of the polarised regime to provide a more robust
alternative to FONDUE with theoretical guarantees.
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G Additional results

This section provides additional observations of the IDEs of VAEs which are complementary to Appendix F
but not necessary for understanding FONDUEIDE .
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(b) dSprites
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(c) Celeba
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(d) β-VAE trained on dSprites with 10 latent variables and
β = 20.

Figure 14: IDEs of VAEs trained with an increasing number of latent dimensions n. (a), (b), and (c) show
the results on Symsol, dSprites, and Celeba, respectively. (d) shows the results of β-VAEs trained on dSprites
with 10 latent variables and β = 20 to cause posterior collapse.

What happens in the case of posterior collapse? By using a β-VAE with very large β (e.g., β = 20),
one can induce posterior collapse, where a majority of the latent variables become passive and prevent
the decoder from accessing sufficient information about the input to provide a good reconstruction. This
phenomenon is illustrated in Figure 14d, where the IDEs of the encoder representations are similar to what
one would obtain for a well performing model in the first 5 layers, indicating that these early layers of the
encoder still encode some useful information about the data. The IDEs then drop in the last three layers
of the encoder, indicating that most variables are passive, and only a very small amount of information is
retained. The IDE of the sampled representation (see sampled in Figure 14d) is then artificially inflated
by the passive variables and becomes very close to the number of dimensions n. From this, the decoder is
unable to learn much and has thus a low IDE, close to the IDE of the mean representation (see the points
on the RHS of Figure 14d).

The IDEs of the encoder representations decrease, but the IDEs of the decoder representations
stay constant We can see in Figure 14 that the IDE of the representations learned by the encoder
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decreases until we reach the mean and variance layers, which is consistent with the observations reported
for classification (Ansuini et al., 2019). Interestingly, for dSprites and Symsol, when the number of latent
variables is at least equal to the IDE of the data, the IDE of the mean and variance representations is very
close to the true data ID. After a local increase of the IDE in the sampled representations, the IDE of
the decoder representations stays close to the IDE of the mean representations and does not change much
between layers.

H Impact of the initialisation

In Section 5.2, we used the IDE of the dataset as the initial number of dimensions. To show the impact
of this choice on FONDUE, we run the algorithm with 10 randomly selected initial numbers of dimensions
chosen between 1 and 200 on 10 different seeds. We can see in Tables 10, 11 and 12 that the initialisation
does not change the number of dimensions predicted with IDE initialisation in Table 1, but the execution
time can be longer when the initial number of dimensions is further away from the predicted number of
dimensions. Despite this, all these results remain below the average training time needed for one model on
the same GPU (around 2 hours). To conclude, while using the data IDE as the initial number of dimensions
does not change the results of FONDUE, it allows the algorithm to start closer to the predicted number of
dimensions and thus can shorten its running time.

Table 10: Number of latent variables n obtained with FONDUE with random initial numbers of dimensions
ninit on Symsol. The results are averaged over 10 seeds, and computation times are reported for NVIDIA
A100 GPUs. The computation time is given for one run of the algorithm over the minimum number of
epochs needed to obtain a stable score. The last line is the average over all initial numbers of dimensions.

n (avg ± SD) Time/run Models trained Epochs/training ninit

19.3 ± 0.5 6 min 7 1 5
18.2 ± 0.4 4 min 4 1 19
18.7 ± 0.8 4 min 5 1 22
19.0 ± 0.8 5 min 6 1 39
18.9 ± 0.9 7 min 8 1 74
19.0 ± 0.8 8 min 9 1 94
18.7 ± 0.5 8 min 9 1 116
19.3 ± 0.7 7 min 8 1 145
19.1 ± 0.6 7 min 8 1 180
18.8 ± 0.9 8 min 9 1 182
18.9 ± 0.7 6 min 8 1

I DIP-VAE II

In DIP-VAE II (Kumar et al., 2018), the approach is slightly different from the β-VAE objective presented
in Equation 2. The authors argued that to prevent blurry output, only the distance between the estimated
latent factors and the prior should be penalised, and they proposed a new objective to this end:

Ep(x)
[
Eqϕ(z|x)

[
log pθ

(
x|z
)]
−DKL

(
qϕ

(
z|x
)
∥ pθ(z)

)]
− γDKL

(
qϕ(z) ∥ pθ(z)

)
. (35)

Here DKL
(
qϕ(z) ∥ pθ(z)

)
is measured by matching the moments of the learned distribution qϕ(z) and its

prior pθ(z). The second moment of the learned distribution is given by:

Covqϕ(z)[z] = Covp(x) [µ] + Ep(x) [σ] . (36)

Two divergences are then defined. The first, DIP-VAE I, penalises only the first term of Equation 36:

λDKL
(
qϕ(z) ∥ pθ(z)

)
= λod

∑
i ̸=j

(
Covp(x) [µ]

)2
ij

+ λd

∑
i

(
Covp(x) [µ]ii − 1

)2
,
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Table 11: Number of latent variables n obtained with FONDUE with random initial numbers of dimensions
ninit on Celeba. The results are averaged over 10 seeds, and computation times are reported for NVIDIA
A100 GPUs. The computation time is given for one run of the algorithm over the minimum number of
epochs needed to obtain a stable score. The last line is the average over all initial numbers of dimensions.

n (avg ± SD) Time/run Models trained Epochs/training ninit

32.4 ± 1.9 23 min 8 2 5
32.3 ± 0.8 20 min 7 2 19
32.4 ± 1.2 17 min 6 2 22
31.6 ± 1.8 23 min 8 2 39
31.7 ± 0.8 23 min 8 2 74
31.9 ± 1.1 26 min 9 2 94
32.2 ± 0.4 23 min 8 2 116
32.1 ± 1.1 23 min 8 2 145
32.2 ± 1.3 26 min 9 2 180
31.9 ± 1.3 28 min 10 2 182
32.1 ± 1.2 28 min 8 2

Table 12: Number of latent variables n obtained with FONDUE with random initial numbers of dimensions
ninit on dSprites. The results are averaged over 10 seeds, and computation times are reported for NVIDIA
A100 GPUs. The computation time is given for one run of the algorithm over the minimum number of
epochs needed to obtain a stable score. The last line is the average over all initial numbers of dimensions.

n (avg ± SD) Time/run Models trained Epochs/training ninit

10.6 ± 1.1 63 min 6 2 5
10.6 ± 0.8 63 min 6 2 19
10.7 ± 0.5 53 min 5 2 22
11.2 ± 0.6 74 min 7 2 39
11.2 ± 0.8 74 min 7 2 74
11.1 ± 1.0 84 min 8 2 94
10.5 ± 1.1 84 min 8 2 116
11.0 ± 0.7 84 min 8 2 145
10.9 ± 0.6 84 min 8 2 180
11.1 ± 0.9 84 min 8 2 182
10.9 ± 0.8 75 min 7 2
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where λod and λd are the off-diagonal and diagonal regularisation terms, respectively. The second, DIP-VAE
II, penalises both terms of Equation 36:

λDKL
(
qϕ(z) ∥ pθ(z)

)
= λod

∑
i ̸=j

(
Covqϕ(z) [z]

)2
ij

+ λd

∑
i

(
Covqϕ(z) [z]ii − 1

)2
.

In practical terms, it means that DIP-VAE I enforces the covariance matrix of the mean representation to
be diagonal, while DIP-VAE II explicitly regularises the covariance matrix of the sampled representation.
While the difference may seems minor, it was shown that only enforcing diagonal covariance of the sampled
representation can result in discrepancies between the mean and sampled representations which are not
observed in DIP-VAE I (Locatello et al., 2019b).

J Additional related work

Elbow method based on the Structure Preservation Index In the context of determinis-
tic AEs trained on textual data, Gupta et al. (2016) proposed to apply the Elbow method to the Structure
Preservation Index (SPI) instead of the reconstruction loss. The idea of SPI is to capture structural distor-
tions between the input documents and their reconstruction. It is defined as follows:

SPI = 1
h

∑
i,j

∥Dij − D̂ij∥, (37)

where Dij is the cosine similarity between the documents x(i) and x(j), and D̂ij is calculated the same way
with the reconstructed documents x̂(i) and x̂(j).

Human supervision based on the information plane Yu & Príncipe (2019) studied the information
of the input preserved by the bottleneck layer z of stacked AEs (Vincent et al., 2010) using the information
plane spanned by I(x, z) and I(x̂, z), where I(·, ·) denotes mutual information. In order to approximate the
true entropy, they used a kernel estimator of the Rényi’s α-order entropy. Specifically, given the samples
X =

{
x(i)}h

i=1 of a random variable x, a positive definite kernel κ, the resulting Gram matrix K where
Ki,j ≜ κ(x(i), x(j)), and its normalised version Ai,j ≜ Ki,j

h
√

Ki,iKj,j

, the entropy estimator is

Sα(A) ≜ 1
1− α

log2

(
h∑

i=1
λi(A)α

)
, (38)

where λi(A) denotes the ith eigenvalue of A.

Similarly, the joint entropy is estimated by

Sα(A, B) ≜ Sα

(
A⊙B

Tr(A⊙B)

)
, (39)

where ⊙ denotes the Hadamard product,‘ and A and B are normalised Gram matrices as before. From
Equations 38 and 39, one can thus obtain the mutual information,

Iα(A, B) ≜ Sα(A) + Sα(B)− Sα(A, B). (40)
In their experiment, Yu & Príncipe (2019) set α = 1.01 and chose a Radial Basis Function (RBF) kernel,
such that, given X ∈ Rh×m

κ(x(i), x(j)) = exp
(
−∥x

(i) − x(j)∥2

2s2

)
, (41)

where ∥·∥2 is the squared Euclidean distance. s is estimated based on Silverman’s rule of thumb for Gaussian
density estimation (Silverman, 1998), such that s ≜ σ(X)h−1/(4+m) where σ denotes the standard deviation.
The authors observed that for a large enough n, the information plane started to display curved patterns and
concluded that a good number of latent dimensions n corresponded to the information plane just before the
appearance of this change of pattern, which can be seen as an application of the Elbow method. The proposed
technique requires to fully train multiple models and visually inspect the information planes obtained for
different n.
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K Comparison in the supervised setting

In this section, we compare the results obtained by the IB algorithm with the results obtained with
Tr(Var[Z]) − Tr(Var[M ]) in the supervised setting. To avoid unfair comparison due to IB fully training
one or more models depending on the chosen range, we restrict both implementations to the number of
epochs after which they provide stable estimate for each dataset, as per Table 1. The implementations of
the IB algorithm and the supervised version of Tr(Var[Z]) − Tr(Var[M ]), BSF ONDUE , are shown in Algo-
rithms 7 and 8. We further define l = 1 and u = 200 for all the runs. Note that the GET-MEM functions
are the same as Algorithms 2 and 4 and the thresholds t remain unchanged. For IB, Algorithm 7 is thus
equivalent to the original implementation of (Boquet et al., 2021) except that any model training is fixed to
a given number of epochs. We can see in Table 13 that for the chosen range, IB and BSF ONDUE take longer
to compute than FONDUE and FONDUEIB for all datasets except Symsol where the execution time is sim-
ilar. Indeed, the number of models to partially train is higher with binary search than in the unsupervised
setting for dSprites and Celeba but similar for Symsol. The predicted number of dimensions are consistent
with Table 1, BSF ONDUE being closer to the results obtained with Elbow methods than IB, as before.

Algorithm 7 IB
1: procedure IB(t, l, u, e)
2: m← {}
3: while l < u do
4: n← floor

(
l+u

2
)

5: H(z), I(x, x̂)← GET-MEMIB(m, n, e)
6: if H(z)− I(x, x̂) ⩽ t then
7: l← n + 1
8: else
9: u← n

10: end if
11: end while
12: return l − 1
13: end procedure

Algorithm 8 BSF ONDUE

1: procedure BSF ONDUE(t, l, u, e)
2: m← {}
3: while l < u do
4: n← floor

(
l+u

2
)

5: Tr(Var[Z]), Tr(Var[M ])← GET-MEM(m, n, e)
6: if Tr(Var[Z])− Tr(Var[M ]) ⩽ t then
7: l← n + 1
8: else
9: u← n

10: end if
11: end while
12: return l − 1
13: end procedure
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Table 13: Number of latent variables n obtained with BSF ONDUE and IB. The results are averaged over 10
seeds, and computation times are reported for NVIDIA A100 GPUs. The computation time is given for one
run of the algorithm over the minimum number of epochs needed to obtain a stable score.

Dataset n (avg ± SD) Time/run Models
trained

Epochs/training

BSF ONDUE Symsol 19.2 ± 0.6 6 min 8 1
BSF ONDUE dSprites 11.3 ± 0.8 75 min 8 2
BSF ONDUE Celeba 32.2 ± 1.0 21 min 8 2
IB Symsol 23.6 ± 0.8 40 min 8 6
IB dSprites 15.6 ± 0.5 74 min 8 2
IB Celeba 18.5 ± 0.5 31 min 8 3
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L Generalisation to different learning objectives and hyperparameter values

This section provides additional figures comparing β-VAEs with different β values and DIP-VAEs II with
different λod values with Elbow methods. Overall, we can see in Figures 15 to 18 that FONDUE provides
consistent results across hyperparameter values and learning objectives, with some overestimation for Symsol
as observed in Section 5.2.

5 10 15 20 25 30
n

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

570

580

590

600

610

620

Re
co

ns
tru

ct
io

n 
lo

ss

Accuracy
Reconstruction loss
FONDUE estimate

(a) Symsol, β-VAE, β = 0.5
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(b) Symsol, β-VAE, β = 2
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(c) Symsol, β-VAE, β = 4

Figure 15: Reconstruction loss and accuracy obtained for generation and downstream tasks with an increasing
number of latent variables on Symsol with β-VAE. (a) shows the results for β = 0.5, (b) for β = 2, and (c)
for β = 4
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(a) dSprites, β-VAE, β = 0.5
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(b) dSprites, β-VAE, β = 2
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(c) dSprites, β-VAE, β = 4

Figure 16: Reconstruction loss and accuracy obtained for generation and downstream tasks with an increasing
number of latent variables on dSprites with β-VAE. (a) shows the results for β = 0.5, (b) for β = 2, and (c)
for β = 4
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(a) Symsol, DIP-VAE II, λod = 0.5
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(b) Symsol, DIP-VAE II, λod = 2

Figure 17: Reconstruction loss and accuracy obtained for generation and downstream tasks with an increasing
number of latent variables on Symsol with DIP-VAE II. (a) shows the results for λod = 0.5 and (b) for λod = 2.
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(a) dSprites, DIP-VAE II, λod = 0.5
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(b) dSprites, DIP-VAE II, λod = 2

Figure 18: Reconstruction loss and accuracy obtained for generation and downstream tasks with an increasing
number of latent variables on dSprites with DIP-VAE II. (a) shows the results for λod = 0.5 and (b) for
λod = 2.
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