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Abstract

Recent advances in large language models (LLMs) have transformed the field
of natural language processing (NLP). From GPT-3 to PaLM, the state-of-the-
art performance on natural language tasks is being pushed forward with every
new large language model. Along with natural language abilities, there has been
a significant interest in understanding whether such models exhibit reasoning
capabilities with the use of reasoning benchmarks. However, even though results
are seemingly positive, these benchmarks prove to be simplistic in nature and the
performance of LLMs on these benchmarks cannot be used as evidence to support,
many a times outlandish, claims being made about LLMs’ reasoning capabilities.
Further, these only represent a very limited set of simple reasoning tasks and we
need to look at more sophisticated reasoning problems if we are to measure the true
limits of such LLM-based systems. Motivated by this, we propose an extensible
assessment framework to test the capabilities of LLMs on reasoning about actions
and change, a central aspect of human intelligence. We provide multiple test cases
that are more involved than any of the previously established benchmarks and
each test case evaluates a different aspect of reasoning about actions and change.
Results on GPT-3 (davinci), Instruct-GPT3 (text-davinci-002) and BLOOM (176B),
showcase subpar performance on such reasoning tasks.

1 Introduction

It would be no exaggeration to say that transformer-based large language models (LLMs) have
revolutionized the field of natural language processing (NLP). Kicked off by the advances presented
by the GPT-x models developed by OpenAI [23], these types of language models currently provide
state-of-the-art performance in many of the standard NLP tasks. The latest version of the system,
GPT-3 [4] uses about 175 billion parameters and was trained over an extremely large natural language
training corpus, consisting of, among other things, excerpts from Wikipedia. Triggered by GPT-3, a
plethora of other large language models, which are different variants of the transformer architecture
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[31], have been developed. Some of the most powerful models are PaLM [5], GLaM [7], Megatron-
Turing NLG [26], Meta-OPT [35], Gopher [24], LaMDA [30] and Chinchilla [10]. PaLM currently
provides state-of-the-art performance in NLP tasks such as natural language translation, predicting
long-range text dependencies and even translation to structured representations [5, 19].

Although LLMs were originally developed mostly to do language completion tasks, with no guaran-
tees about the completion beyond its coherence, there have been increasing claims that they can do
other tasks including explaining jokes [14]. Of particular interest is the thread of efforts that aim to
evaluate (and showcase) the LLM’s ability to do reasoning tasks. For example, there are many claims
centered around the fact that GPT-3 may possess some form of reasoning ability [16]. Such sources
generally assume that because the model learned from large amounts of real-world text, it may have
acquired some approximation of simple reasoning. This sparked interest in evaluating the large
language models on various reasoning tasks including common-sense reasoning [29, 25, 8], logical
reasoning [27], and even ethical reasoning [13]. The macro-tenor of the drumbeat of these works has
been suggesting that LLM’s are indeed capable of doing such kinds of reasoning [15, 33, 5].

Thus, in this paper, we want to look at the ability of large language models to do reasoning about
actions and change involving common-sense planning tasks. We develop a suite of benchmarks, 3

based on the kinds of domains employed in the International Planning Competition, to test these
capabilities. Our focus on this specific task is spurred by not only the fact that reasoning about actions
and change is a core aspect of human intelligence, but also that it is required for many of the tasks
considered as potential applications of LLMs including automatic code generation, moral and even
deontological reasoning [9].

We are not the first to point out the need to perform such analyses of the reasoning capabilities
of GPT-3 like LLMs. For example, [18] performed an analysis of GPT-3’s reasoning capabilities
on some example tasks, including different commonsense reasoning tasks varying from biological
reasoning to arithmetic reasoning. However, the goal of this paper is fundamentally distinct from
these earlier works in multiple ways. Firstly, we are not merely trying to point out a few example
cases where GPT-3 fails but rather help establish an assessment framework for evaluating these
systems’ capabilities to perform reasoning about actions and change. While this paper reports the
results of testing vanilla GPT-3, Instruct-GPT3 [20] and BLOOM [1], one could in the future use
this framework to analyse other LLMs that may be fine-tuned for such tasks. Secondly, through this
framework, we are also trying to eliminate the subjective aspect of analysis that forms the core part
of many of these earlier efforts. Instead, we automate and perform the analyses in a mechanistic way
by leveraging automated planning models and tools to generate the queries and validate the system’s
answers. Finally, we propose a curriculum for evaluating reasoning about actions and change, wherein
we identify a set of related but distinct reasoning tasks, that are central for an agent to successfully
perform reasoning about actions and change and introduce a framework for developing code which
is meant to auto-generate the possible queries for each. The conclusion from our evaluation on
GPT-3 and BLOOM is that LLMs are still far from achieving acceptable performance on common
planning/reasoning tasks which pose no issues for humans to do. In particular, our benchmarks do
not require complex long-chain combinatorial reasoning and can be easily understood by lay people.
Therefore, our contributions are twofold, we

1. Provide an extensible suite of benchmarks for evaluating the planning/reasoning capabilities
of LLMs

2. Show that GPT-3 and BLOOM have dismal performance on these benchmarks.

Additionally, we perform a preliminary user study that establishes a human baseline for coming up
with plans in a simple planning domain to compare the LLMs’ performance. Our hope is that these
benchmarks spur other researchers to evaluate out-of-the-box or fined-tuned versions of other LLMs
on these planning tasks.

2 Current Reasoning Benchmarks for LLMs

To the best of our knowledge, current available benchmarks are insufficient to make substantive
claims about LLMs’ ability to reason. The authors of [24] had pointed out that even language

3Link to the github repo: https://github.com/karthikv792/gpt-plan-benchmark
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Figure 1: Example prompts from existing benchmarks (left) compared to an average-length prompt
from one of our test cases (right). (a) GSM8k [6], (b) SvAMP [21], (c) AQuA [17], (d) Common-
SenseQA [29], (e) StrategyQA [8], (f) Tracking Shuffled Objects [27], (g) Date Understanding [27],
(h) Last Letter Concatenation [33], (i) Coin Flip [33], (j) Goal directed reasoning on blocksworld.

models at the scale of 100B or more parameters had struggled on reasoning tasks that require slow
and multi-step reasoning, but the more recent works [15, 33, 32] have showcased and claimed that
LLMs can do various reasoning tasks with a decent performance. These claims have been based
on several reasoning benchmarks (consisting of arithmetic, common-sense and symbolic reasoning
tasks), where the reasoning tasks are relatively simple and require shallow reasoning. Datasets
like GSM8K [6], AQUA [17] and SVAMP [21] have simple math word problems which are used
for evaluating arithmetic reasoning while datasets like CommonsenseQA [29] and StrategyQA [8],
which have generic multiple choice and binary yes/no questions respectively, are used for evaluating
common sense reasoning. There are several logical reasoning tasks in BIG-BENCH [27] and there
are two symbolic reasoning tasks, Last Letter Concatenation and Coin Flip [33], on which LLMs
have been evaluated. However, these tasks are simple in nature and do not provide insight into the
reasoning capabilities of LLMs. As LLMs have been able to perform well on such tasks, there has
been a lot more triumphalism about their reasoning capabilities, which is currently being echoed in
the community.

LLMs can also be used for heuristic guidance with no optimality or completeness guarantees, as long
as the guidance is used by a sound planner underneath. For example, in Say-Can [3], LLMs have
been used as scoring models, which can be seen as providing planning heuristics, for the actions
that the embodied robot can execute. In our work, we are looking at the inherent emergent planning
capabilities of the LLMs, if any. The assessment framework we propose in this paper consists of
multiple tasks each of which evaluate a certain aspect of reasoning about actions and change. Even
though we use a simple common-sense planning domain, the prompts for our tasks are relatively
larger and more complex than any of the prompts in the current benchmarks (as shown in Figure
1). This is due to two main reasons; first, the prompts for our tasks are showcased as few-shot
examples, whereas the prompts in the current benchmarks are zero-shot. Our prompts provide an
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instance and an example completion and then ask for a completion on a new instance. Second, we
use the domain description to explicitly constrain the possible actions. In many everyday scenarios,
we are often asked to take into consideration unforeseen limitations and constraints. Our explicit
domain description allows us to introduce such challenges, and forces the LLMs to go beyond merely
repeating possible information about the domain they may have come across in its training data. The
ability to be conditional on the prompt is critical for the general systems to be customized for the
specific domain of interest.

Our results, contrary to the current claims, show that even simple common-sense planning tasks
(which are, anecdotally, easy for humans) are far beyond the current capabilities of LLMs. This is
actually not surprising given that LLMs only provide the most likely text completion for a given
prompt with no real guarantees on reasoning metrics. There have been works that tried to evaluate
whether LLMs can generate plans in common-sense domains [12] but in those works they had
evaluated on the world knowledge that LLMs already possess and do not provide any information
about the domain in the prompt. Before we delve into the details of our framework, we will first
establish the required background to get a better understanding of the kind of reasoning capability
that we are focusing on.

3 Background

Given that we are interested in investigating the basic reasoning about actions and change problem, we
want to look at the most fundamental planning formalism first, namely the goal-directed deterministic
planning problem. Colloquially referred to as classical planning problem, these problem classes can
be mathematically represented by using the tuple P = ⟨D, I,G⟩. D is referred to as the problem
domain, I is the initial state and G is the goal specification. The state-space for the planning problem
is defined by the possible truth assignment over the predicates. The domain is again defined by the
tuple D = ⟨F ,O⟩. F corresponds to the set of fluents, i.e., the state variable used to define the state
space and each fluent corresponds to a predicate with some arity, and A correspond to the set of
actions that can be performed as part of the planning problem. Each action ai[V] ∈ A (where ai is
the operator label and V is the variable used by the operator and each variable could be mapped to an
object), can be further defined by two components, the precondition prec[V] which describes when an
action can be executed and the effects eff [V] which defines what happens when an action is executed.
We will assume that prec[V] consists of a set of predicates defined over the variables V . An action
is assumed to be executable only if its preconditions are met, i.e, the predicates in the precondition
hold in the given state. The effect set eff [V] is further defined by the tuple ⟨add[V], del[V]⟩, where
add[V] or add effects is the set of predicates that will be set true by the action and del[V] or delete
effects is the set of predicates that will be set false by the action. An action is said to be grounded if
we replace each of the variables with an object, else it is referred to as a lifted domain model (we use
a similar convention to differentiate between lifted and grounded predicates).

Below we have provided a snippet of an action description from a popular benchmark problem called
Blocksworld for action corresponding to picking up a block.

(: action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on -table ?ob) (arm -empty))
:effect (and (holding ?ob) (not (clear ?ob)) (not (on -table ?ob))

(not (arm -empty))))

The parameter line provides the possible variables, in this case ?ob, which can stand for possible
blocks. The precondition says that you can only pick up a block if it is clear (i.e. predicate (clear
?ob) is true for the block), the block is on the table and the arm is empty. The effects tell you that
after you execute the action, the predicate (holding ?ob) becomes true and the block will no longer be
considered clear, and on-table. Finally, the arm will no longer be considered empty. A solution to a
planning problem is called a plan, and corresponds to a sequence of actions that once executed in the
initial state would lead to a state where the goal specification is true. The actions may additionally be
associated with cost, in these cases, one could also talk about optimal plans, i.e., a plan π is called an
optimal one if no plan exists that is less costly than π.

The above description presents one of the simpler classes of planning models and can be extended
in multiple ways including allowing for object typing (including type hierarchy), more complex
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forms of preconditions and conditional effects, not to mention supporting richer classes of planning
formalisms.

4 Assessment Architecture

Our basic test framework consists of two categories of components, the domain-independent ones,
provided as part of the framework, and the domain-dependent components which need to be developed
for each new domain we test.

Domain-independent component: the domain-independent component is built around a planner
and a plan verification component that takes various planning problems and crafts test instances
corresponding to various curriculum items. This component provides the mechanism to verify the
solutions generated by the LLM. The current method is going to operate almost exclusively on
symbolic models (specifically ones specified using PDDL [2]) and other structured inputs compatible
with such representations. The domain-dependent component would be responsible for translating
outputs generated by the LLM into forms that can be used by the system.

Figure 2: The diagrammatic overview of the overall test framework. Broadly, our system consists of
a domain-specific component that allows the generation of various instances of the specific PDDL
planning problems and the translation of the PDDL information to text and back. The domain-
independent component is responsible for generating the various specific test instances that will be
fed into the LLM and to verify the output generated by the LLM.

Domain-dependent component: the domain-dependent component consists of three main parts. A
lifted domain model file, that describes the various actions that may be available to solve any given
planning problem, the various predicates that could be used to describe the various relationships over
the objects that may be present at a given problem instance of the domain, and the various types of
objects that may be part of the given problem. The domain model is lifted because it does not refer to
the actual objects that may be part of the problem, but instead, the actions are defined independently
of the exact objects it may influence.

Problem generator: a planning problem consists of a description of the set of specific objects that
are part of the specific planning problem, the initial state (described in terms of the truth values of the
various predicates), and a goal description. A valid solution consists of a sequence of actions that can
drive the system state to a state that satisfies the goal condition. The role of the problem generator
is therefore to generate random problem instances consisting of various objects, initial states, and
goals. These problems become the basis of generating the various test cases that we will be using
throughout the framework. Any distributional requirements we hope to use in the tests could be built
into this problem generator.

Translator: the translator converts the symbolic model information to natural language text and vice
versa . In particular, we are interested in developing a mechanism to translate state information and
plans into natural language. For the current testbed (described below), we developed a template-based
mechanism to achieve this. In particular, we provide a natural language template for each predicate
and each action, and we form texts of states and plans by concatenating these individual strings. In
terms of parsing natural language text back into structured forms, the particular task we are interested
in is converting plans generated by the LLM back into plan forms that can be used by plan validator
tools like [11]. Since we use our prompts to shape the LLM’s output, we require each action in the
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plan to be listed on a different line. Then, we can parse the exact action and arguments of the action
by either using template-based matching or by assuming that the verb in the sentence corresponds
to the action and each noun corresponds to an object which forms a parameter of the action (then
mapping it to a possible action). The domain-independent component is responsible for generating
the content for the various prompts that would be generated as part of the different test cases and for
validating the output generated by the LLM.

As discussed earlier, the component primarily works on formal representations of the problems, so it
relies on the translator component to convert any information it generates to natural language or to
convert natural language information back to formal representations. For each test case, we mainly
rely on a domain-independent planner and a plan validator to generate the relevant information or to
validate the output provided by the LLM. In each case, there is a test-case-specific component that
uses the problems provided by the problem generator component to craft specific test-case content. In
the next section, we go over each test case and the specific technique we use to generate the contents
for the test case.

5 Current Curriculum for Testing

Each test case is meant to evaluate a central reasoning about actions and change capability and is
tested in the context of a common sense planning domain. Each test case makes use of the few shot
query setting of LLM where the LLM is provided a few sample answers to the specific reasoning
ability being tested and is asked to respond to a new instance. The exact form of the prompt will
depend on the specific test cases, but every instance will start with a description of the lifted planning
domain that describes what actions can be executed, their preconditions and their effects.

The current set of test cases includes the following cases

1. Plan Generation - Can the LLM come up with valid plans that will achieve a specific goal?

2. Cost Optimal Planning - Can the LLM come up with plans that are optimal to achieve a
specific goal?

3. Reasoning about plan execution - Can the LLM reason about what happens when a plan is
executed?

4. Robustness to goal reformulation - Can the LLM recognize the same goal when specified in
different ways?

5. Ability to reuse plans - Can the LLM recognize scenarios where it can reuse part or the
whole of the original plan to achieve the new goal?

6. Replanning - Can the LLM replan for cases where an unexpected change is reported?

7. Plan Generalization - Can the LLM take specific plans, extract underlying procedural
patterns and apply them to a new instance?

Out of the seven test cases, the first two test cases correspond to actual planning problems (i.e. plan
generation and cost-optimal planning) and the rest correspond to simpler auxiliary tasks related to
reasoning about action and change.

Domain: currently, we ground the test cases in a simple common-sense planning domain,
Blocksworld. Blocksworld problems generally consist of a set of blocks, for making it closer
to a common sense domain identified with unique colors, placed either on a table or on top of other
blocks and the goal is to arrange some of these blocks in a stack in a particular order. The general
expectation here would be that one can pick up a block if it is clear, i.e., there are no other blocks on
top of that block and you can only stack a block on top of another block if it is clear. The choice of
this particular domain is motivated by both the fact that this is a simple common sense domain and is
a very popular domain in planning literature, that has a long history of being used to demonstrate
various planning challenges. The domain description is included in the beginning of every prompt
(see Appendix A.1.1 for the domain description). In the rest of the section, we discuss the structure
of the prompt for each of the test cases. We point the reader to Appendix A.2 for an example prompt
and the corresponding completion generated by GPT-3 for each of the test cases.
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5.1 Plan Generation

Following the lifted domain description, the prompt consists of a few instances of planning problem
descriptions (consisting of a description of the initial state, the goal) and the corresponding plan
(which ends with a tag, henceforth referred to as the plan-end tag, that denotes the end of the plan)
and finally, we end the prompt with a planning problem description. The text generated by the LLM
until the plan-end tag is used as a potential candidate for extracting the plan. If the plan-end tag is
missing or if the plan cannot be extracted then we ignore that particular instance in our evaluation.

5.2 Optimal Planning

The prompt is quite similar to the one used in the earlier test case with a few changes. We modify
the lifted domain description by including a statement that associates a cost with each action (see
Appendix A.1.2). To make the concept of action cost better fit into common sense domains, we can
map the cost to more common concepts like the time taken for executing the action or the amount of
money that needs to be spent to execute an action. In the case of each problem description, before
the plan is presented we need to explicitly mention that the plan is trying to minimize cost (which
depending on the scenario might correspond to saying that the plan takes the least amount of time or
the plan correspond to the cheapest plan). The result generated by the LLM is evaluated similarly to
the previous query, but in addition to checking if the plan is valid, we also check if the cost of the
plan corresponds to the optimal plan cost.

5.3 Reasoning about plan execution

Here the objective is not to check whether the LLM can come up with plans, but rather if they can
predict the outcome of executing an action. The prompt here again starts with the domain description,
but instead of providing planning problems and plans, we provide a state, an action sequence and
then questions about the state that would result from executing that action sequence in the provided
state. Finally the prompt ends with a new state, a new action sequence, and a question about the
resulting state. The LLM is expected to come up with an answer, which is checked by applying a
plan executor that will try to identify what state will result from the execution of the current action
sequence on the state.

5.4 Robustness to goal formulation

In this test case, we will see if the LLM can recognize goals it has seen before if they are slightly
modified. Here the prompt remains the same as the one used for goal-directed reasoning. However,
all the example problems have the same initial state, and the last problem provided has not only the
same initial state but also the same goal. Here the goal may be obfuscated in a few ways, for example,
the goal facts may be reordered or one might only include a subset of the original goal specification
(meaning the same plan would still work). We can again use the same evaluation technique as the
goal-directed reasoning test case to validate the output.

5.5 Ability to Reuse Plans

In this test case, we are interested in seeing if the LLM can reuse plans or parts of plans that it has
seen before. The prompt is again the same as the goal-directed reasoning, but the prompt ends with
a problem that can be solved by a prefix of a previously seen plan. We again keep the initial state
the same across the example problems shown. The evaluation remains the same as the goal-directed
reasoning test case.

5.6 Replanning

Replanning corresponds to the problem where there may be an unexpected event that occurs while
executing a plan and the system needs to come up with a new plan in response to the event. Here,
we focus on the ability of the LLM to replan when unexpected changes are reported. The prompt
here starts with a domain description, then a set of instances where an unexpected event occurred
during execution, and a new plan in response to the event. In each instance, a planning problem and
a corresponding plan are provided at the beginning, the execution of the plan is described and then
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an unexpected event is noted (event corresponds to some facts unexpectedly turning true or false)
and then a new plan from the changed state is presented. The prompt ends with a new case where
the plan after replanning is left out and the LLM is expected to complete. The evaluation involves
checking whether the new plan is valid from the changed state. The LLM output is evaluated to be
true if the new plan it generates achieves the goals from the unexpectedly changed state.

For the Blocksworld domain, we constrain the unexpected event to be of a specific type. We execute
a random prefix of the plan which ensures that some block is held at the end of that prefix. We then
change the resulting state by stacking the held block onto another random block which is clear and
make the hand empty. This change is reported and the LLM is asked to replan from the changed state.

5.7 Plan Generalization

In this test case, we want to evaluate whether LLMs can recognize the underlying pattern in the
plans provided in the prompt and reuse it for a new planning problem. The prompt is the same as
the goal-directed reasoning case, except that all plans were generated by a fixed program. Here the
program may contain loops or conditional statements, but can only solve certain types of problems,
that is, the initial state and goals meet certain conditions. Such programs can be thought of as a direct
generalization of line plans that we have considered in the rest of the paper [28]. Execution of this
program for a specific planning problem generates a sequence of actions. In this case, we will provide
some example traces generated from the program and ask LLM to come up with a plan for a new
problem that could be solved by it. The evaluation again would be to take the generated plan and see
if it is valid for the given problem.

6 Evaluation

6.1 Results on the Blocksworld domain

Our evaluation here primarily focuses on two Large Language Models, GPT-3 and BLOOM. In
particular, we evaluated the test framework on the Blocksworld domain. In Table 1, we have presented
the results of vanilla GPT-3 (Davinci), Instruct-GPT3 (text-davinci-002), and BLOOM on six of the
test cases. For vanilla GPT-3 and Instruct-GPT3, we had tested on 500 instances while with BLOOM,
we had tested on 200 instances for plan generation and 100 instances for the rest of the test cases.
The experiments with GPT-3 (both the vanilla and instruct versions) took ∼30 minutes for each test
case (500 instances) while BLOOM took ∼36 hours (every 100 instances). The best results (within
each model) were for the auxiliary goal reformulation test cases. For these three cases, all that was
required for the LLM was to repeat the same plan as the one shown in the example. Even then,
vanilla GPT-3 and Instruct-GPT-3 failed to do that for some of the instances in the first two cases
and the majority of the instances in the third case. BLOOM, on the other hand, was poor in all three
cases. Coming to the two test cases that correspond to actual planning problems (plan generation and
optimal planning), all three models performed poorly with Instruct-GPT3 performing better than the
other two. Overall, the performance of these LLMs on our benchmark shows that, as of right now,
LLMs are pretty ineffective in reasoning about actions and change. It would be interesting to see the
utility of fine-tuning or even that of prompt engineering applied to our experiments.

6.2 Human Baseline for the Blocksworld domain

We have previously mentioned that planning tasks on the blocksworld domain are anecdotally simple
enough for humans to perform. To establish this and come up with a baseline to compare LLMs
performance, we conducted a preliminary study where we asked 50 participants to come up with
a plan for a blocksworld instance picked at random, from the set of 500 instances that we used for
the evaluation of LLMs. We presented the same domain description as we did for the LLMs (see
Appendix A.1.1) and then primed them with an example instance. Further, we provided them with an
interface where they had two phases of interaction. In the first phase, they could write up plans by
themselves for the given instance and then in the second phase, translate them (by picking the closest
action from a list of grounded actions). The translated plans were used in the back-end and were
evaluated in an automated fashion4. They went through this procedure first for an example instance

4We had also manually evaluated the plans that they wrote in case they made a mistake during the translation
phase
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Task Instances correct

GPT-3 Instruct-
GPT3

BLOOM

Plan Generation
We showcase an instance and the respective plan as an example and prompt the machine with a
new instance.

3/500
(0.6%)

25/500
(5%)

1/200
(0.5%)

Optimal Planning
We showcase an instance, the respective optimal plan and the associated cost as an example
and prompt the machine with a new instance.

1/500
(0.2%)

16/500
(3.2%)

0/100
(0%)

Replanning
We showcase an instance, the respective plan and present an unexpected change of the state.
We then also present a new plan from the changed state. Finally, for a new instance we repeat
the same except we ask the machine for the new plan.

28/500
(5.6%)

24/500
(4.8%)

3/100
(3%)

Plan Generalization
We showcase an instance and the respective plan as an example and prompt the machine with a
new instance. The plans for both the instances can be generated by a fixed program containing
loops and conditionals.

33/500
(6.6%)

49/500
(9.8%)

11/100
(11%)

Plan Reuse
We showcase an instance and the respective plan as an example and prompt the machine with
an instance which requires only a certain prefix of the plan provided in the example.

0/500
(0%)

72/500
(14.4%)

0/100
(0%)

Robustness to Goal Reformulation (Shuffling goal predicates)
We showcase an instance and the respective plan as an example and prompt the machine with
the same instance but shuffle the ordering of the goals.

387/500
(77.4%)

384/500
(76.8%)

21/100
(21%)

Robustness to Goal Reformulation (Full → Partial)
We showcase an instance with a fully specified goal state and the respective plan as an example
and prompt the machine with the same instance but provide a partially specified goal state.

346/500
(69.2%)

380/500
(76%)

9/100
(9%)

Robustness to Goal Reformulation (Partial → Full)
We showcase an instance with a partially specified goal state and the respective plan as an
example and prompt the machine with the same instance but provide a fully specified goal state.

110/500
(22%)

301/500
(60.2%)

5/100
(5%)

Table 1: LLM Assessment Suite Results on vanilla GPT-3 (davinci), Instruct-GPT3 (text-davinci-002)
and BLOOM (176B model). The tasks in the highlighted rows correspond to actual planning problems
while the others correspond to simpler auxiliary planning tasks.

(where they were provided with a glimpse of the example solution before using the interface) and
then for the actual instance. We provided them with a bonus if they come up with a valid plan.

Out of the 50 participants, 39 of them (78%) came up with a valid plan. Along with validity, we also
tested the optimality of their plans even though they were not required to come up with an optimal
plan. Out of the 39 participants, 35 (89.7%) participants came up with an optimal plan. These initial
results show that the blocksworld domain is a simple enough domain where most humans are able
to come up with plans (which are also optimal) while LLMs, on the other hand, showcase subpar
performance. A more extensive human subject study is underway to establish a more concrete human
baseline for performance comparisons.

7 Conclusion and Future Work

In this paper, we looked at a reasoning assessment suite for large language models (LLMs) that
consists of various test cases each evaluating a central aspect of reasoning about actions and change.
Our results show that even in simple common-sense planning domains where humans could easily
come up with plans, LLMs like GPT-3 and BLOOM seem to display a dismal performance. However,
we do not claim that no LLM system could potentially ever perform effective reasoning about actions
and change. Our goal is to establish an extensible benchmark where researchers can evaluate current
and future large language models. Our assessment suite is still in progress and we look to improve it
in multiple ways in the future. Firstly, we plan to include a modified version of the reasoning about
plan execution task to ask questions that require a more descriptive answer and provide automated
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validations for the answers. Secondly, we also plan to look at how fine-tuning would impact the
performance of the LLMs on our benchmarks, although as [34] points out that LLMs tend to focus
on correlational features even with extensive training, we are not expecting a major improvement.
Finally, we plan to add an evaluation metric that also considers partial correctness of plans. This
benchmark can also be extended to other domains, either to other common-sense domains (like
Virtual Home [22]) or to specialized ones. It would also be interesting to probe these models to come
up with explanations for the generated plans and see if these make sense to humans in the loop. In
conclusion, we hope that this benchmark 5 encourages other researchers to test the capabilities of
their systems across different LLM models [5, 7, 26, 35, 24, 30, 10] and even those that are finetuned
for such tasks.
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A Appendix

A.1 Domain description included in the prompts

A.1.1 Domain included in the prompt

=====================================================================
I am playing with a set of blocks where I need to arrange the blocks

into stacks. Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block

is clear. A block is clear if the block has no other blocks on top
of it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I
am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the block I
am unstacking is clear.

Once I pick up or unstack a block , I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the

block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block , my hand becomes empty.
=====================================================================

Listing 1: Blocksworld Domain Description

A.1.2 Domain included in the prompt (for Optimal planning)

=====================================================================
I am playing with a set of blocks where I need to arrange the blocks

into stacks. Here are the actions I can do:

Pick up a block. It takes 1 minute to pick up a block.
Unstack a block from on top of another block. It takes 1 minute to

unstack a block from on top of another block.
Put down a block. It takes 1 minute to put down a block.
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Stack a block on top of another block. It takes 1 minute to stack a
block on top of another block.

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block

is clear. A block is clear if the block has no other blocks on top
of it and if the block is not picked up.

I can only unstack a block from on top of another block if the block I
am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the block I
am unstacking is clear.

Once I pick up or unstack a block , I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the

block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block , my hand becomes empty.
=====================================================================

Listing 2: Blocksworld Domain Description

A.2 Example prompts and completion by GPT-3

Below we present the first instance of our 500 instances for each of the tasks and the corresponding
completion by GPT-3 as an example.

A.2.1 Plan generation

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that , the red block is clear , the yellow

block is clear , the hand is empty , the red block is on top of the
blue block , the yellow block is on top of the orange block , the
blue block is on the table and the orange block is on the table.

My goal is to have that the orange block is on top of the red block.

My plan is as follows:

[PLAN]
--------- GPT3 response ---------
unstack the yellow block from on top of the orange block
put down the yellow block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]
--------- Extracted plan ---------
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(unstack yellow orange)
(put -down yellow)
(pick -up orange)
(stack orange red)

-------- Ground truth plan ---------
(unstack yellow orange)
(put -down yellow)
(pick -up orange)
(stack orange red)

=============================== SUCCESS ===============================

Listing 3: Plan Generation

A.2.2 Optimal Planning

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table ..

My goal is to have that the orange block is on top of the blue block.
I want to minimize the time taken to achieve my goal.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]
The total time to execute the plan is 4 minutes.

[STATEMENT]
As initial conditions I have that , the red block is clear , the yellow

block is clear , the hand is empty , the red block is on top of the
blue block , the yellow block is on top of the orange block , the
blue block is on the table and the orange block is on the table ..

My goal is to have that the orange block is on top of the red block. I
want to minimize the time taken to achieve my goal.

My plan is as follows:

[PLAN]
--------- GPT3 response ---------
unstack the yellow block from on top of the orange block
put down the yellow block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]
The total time to execute the plan is 4 minutes.
--------- Extracted plan ---------
(unstack yellow orange)
(put -down yellow)
(pick -up orange)
(stack orange red)

-------- Ground truth plan ---------
(unstack yellow orange)
(put -down yellow)
(pick -up orange)
(stack orange red)

----------------Optimal Plan ----------------
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---------Correct cost output by LLM ---------
=============================== SUCCESS ===============================

Listing 4: Optimal planning

A.2.3 Replanning

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block.
My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

During execution , an unexpected event has occurred.
After executing the action "pick up the orange block" at step 3 in the

plan , the following facts unexpectedly became true:
the orange block is clear ,
the hand is empty ,
the orange block is on top of the red block.

The following facts became unexpectedly false:
the red block is clear ,
the hand is currently holding orange block.

After re -planning from the new state , the plan is as follows:
[PLAN]
unstack the orange block from on top of the red block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that , the red block is clear , the yellow

block is clear , the hand is empty , the red block is on top of the
blue block , the yellow block is on top of the orange block , the
blue block is on the table and the orange block is on the table.

My goal is to have that the orange block is on top of the red block.
My plan is as follows:

[PLAN]
unstack the yellow block from on top of the orange block
put down the yellow block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]

During execution , an unexpected event has occurred.
After executing the action "pick up the orange block" at step 3 in the

plan , the following facts unexpectedly became true:
the orange block is clear ,
the hand is empty ,
the orange block is on top of the red block.

The following facts became unexpectedly false:
the red block is clear ,
the hand is currently holding orange block.
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After re -planning from the new state , the plan is as follows:
[PLAN]
--------- GPT3 response ---------
unstack the orange block from on top of the red block
put down the orange block
stack the orange block on top of the yellow block
[PLAN END]
--------- Extracted plan ---------
(unstack orange red)
(put -down orange)
(stack orange yellow)

-------- Ground truth plan ---------

=============================== FAILURE ===============================

Listing 5: Replanning when an unexpected event occurs and changes the state.

A.2.4 Plan Generalization

[STATEMENT]
As initial conditions I have that , the blue block is clear , the yellow

block is clear , the magenta block is clear , the black block is
clear , the cyan block is clear , the green block is clear , the
violet block is clear , the gold block is clear , the hand is empty ,
the blue block is on the table , the yellow block is on the table ,
the magenta block is on the table , the black block is on the

table , the cyan block is on the table , the green block is on the
table , the violet block is on the table and the gold block is on
the table.

My goal is to have that the blue block is on top of the cyan block ,
the yellow block is on top of the blue block , the magenta block is
on top of the green block , the black block is on top of the

yellow block , the cyan block is on top of the gold block , the
green block is on top of the black block and the violet block is
on top of the magenta block.

My plan is as follows:

[PLAN]
pick up the cyan block
stack the cyan block on top of the gold block
pick up the blue block
stack the blue block on top of the cyan block
pick up the yellow block
stack the yellow block on top of the blue block
pick up the black block
stack the black block on top of the yellow block
pick up the green block
stack the green block on top of the black block
pick up the magenta block
stack the magenta block on top of the green block
pick up the violet block
stack the violet block on top of the magenta block
[PLAN END]

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the black block is clear , the cyan block is clear ,
the green block is clear , the violet block is clear , the silver

block is clear , the hand is empty , the red block is on the table ,
the blue block is on the table , the black block is on the table ,
the cyan block is on the table , the green block is on the table ,
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the violet block is on the table and the silver block is on the
table.

My goal is to have that the red block is on top of the blue block , the
blue block is on top of the silver block , the black block is on

top of the red block , the cyan block is on top of the green block ,
the violet block is on top of the black block and the silver

block is on top of the cyan block.

My plan is as follows:

[PLAN]
--------- GPT3 response ---------
pick up the red block
stack the red block on top of the blue block
pick up the blue block
stack the blue block on top of the silver block
pick up the black block
stack the black block on top of the red block
pick up the cyan block
stack the cyan block on top of the green block
pick up the violet block
stack the violet block on top of the black block
pick up the silver block
stack the silver block on top of the cyan block
[PLAN END]
--------- Extracted plan ---------
(pick -up red)
(stack red blue)
(pick -up blue)
(stack blue silver)
(pick -up black)
(stack black red)
(pick -up cyan)
(stack cyan green)
(pick -up violet)
(stack violet black)
(pick -up silver)
(stack silver cyan)

-------- Ground truth plan ---------
(pick -up cyan)
(stack cyan green)
(pick -up silver)
(stack silver cyan)
(pick -up blue)
(stack blue silver)
(pick -up red)
(stack red blue)
(pick -up black)
(stack black red)
(pick -up violet)
(stack violet black)

=============================== FAILURE ===============================

Listing 6: Plan generalization

A.2.5 Plan Reuse

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.
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My goal is to have that the orange block is on top of the blue block.
My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the red block is clear , the orange block is
clear , the yellow block is clear , the hand is currently holding
blue block , the red block is on the table , the orange block is on
the table and the yellow block is on the table.

My plan is as follows:

[PLAN]
--------- GPT3 response ---------
unstack the blue block from on top of the red block
put down the blue block
pick up the red block
stack the red block on top of the orange block
[PLAN END]

-------- Ground truth plan ---------
(unstack blue orange)

=============================== FAILURE ===============================

Listing 7: Using a certain prefix of the plan provided in the example

A.2.6 Robustness to Goal Reformulation (Shuffling goal predicates)

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block.

My plan is as follows:
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[PLAN]
--------- GPT3 response ---------
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]
--------- Extracted plan ---------
(unstack blue orange)
(put -down blue)
(pick -up orange)
(stack orange blue)

-------- Ground truth plan ---------
(unstack blue orange)
(put -down blue)
(pick -up orange)
(stack orange blue)

=================== (GOAL ORDERING CHANGE) SUCCESS ===================

Listing 8: Changing the order of goal predicates

A.2.7 Robustness to Goal Reformulation (Full→Partial)

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block ,
the red block is clear , the red block is on the table , the blue
block is on the table , the hand is empty , the yellow block is on
the table , the orange block is clear and the yellow block is clear
.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
--------- GPT3 response ---------
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]
--------- Extracted plan ---------
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(unstack blue orange)
(put -down blue)
(pick -up orange)
(stack orange blue)

-------- Ground truth plan ---------
(unstack blue orange)
(put -down blue)
(pick -up orange)
(stack orange blue)

====================== (Full ->Partial) SUCCESS ======================

Listing 9: Providing an example with fully specified goal and asking to complete for the same
example with a partially specified goal

A.2.8 Robustness to Goal Reformulation (Partial→Full)

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that , the red block is clear , the blue

block is clear , the yellow block is clear , the hand is empty , the
blue block is on top of the orange block , the red block is on the
table , the orange block is on the table and the yellow block is on
the table.

My goal is to have that the orange block is on top of the blue block ,
the red block is clear , the red block is on the table , the blue
block is on the table , the hand is empty , the yellow block is on
the table , the orange block is clear and the yellow block is clear
.

My plan is as follows:

[PLAN]
--------- GPT3 response ---------
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
unstack the red block from on top of the orange block
put down the red block
pick up the yellow block
stack the yellow block on top of the red block
[PLAN END]
--------- Extracted plan ---------
(unstack blue orange)
(put -down blue)
(pick -up orange)
(stack orange blue)
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(unstack red orange)
(put -down red)
(pick -up yellow)
(stack yellow red)

-------- Ground truth plan ---------
(unstack blue orange)
(put -down blue)
(pick -up orange)
(stack orange blue)

====================== (Partial ->Full) FAILURE ======================

Listing 10: Providing an example with partially specified goal and asking to complete for the same
example with a fully specified goal
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