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Abstract

Quantifying the effects of textual interventions001
in social systems, such as reducing anger in002
social media posts to see its impact on en-003
gagement, is challenging. Real-world inter-004
ventions are often infeasible, necessitating re-005
liance on observational data. Traditional causal006
inference methods, typically designed for bi-007
nary or discrete treatments, are inadequate for008
handling the complex, high-dimensional tex-009
tual data. This paper addresses these chal-010
lenges by proposing CAUSALDANN, a novel011
approach to estimate causal effects using text012
transformations facilitated by large language013
models (LLMs). Unlike existing methods, our014
approach accommodates arbitrary textual in-015
terventions and leverages text-level classifiers016
with domain adaptation ability to produce ro-017
bust effect estimates against domain shifts,018
even when only the control group is observed.019
This flexibility in handling various text inter-020
ventions is a key advancement in causal estima-021
tion for textual data, offering opportunities to022
better understand human behaviors and develop023
effective interventions within social systems.024

1 Introduction025

Causal inference is essential for studying social026

phenomena from observational data, as it distin-027

guishes true effects from spurious correlations (Ok-028

tay et al., 2010). Unlike predictive models, causal029

inference explores counterfactual scenarios, offer-030

ing deeper insights into individual and social be-031

haviors (Adhikari and Zheleva, 2023; Russo et al.,032

2024) and informing effective interventions (Pan033

et al., 2016; Kleven et al., 2024). Given that much034

of online data is textual, estimating the causal035

effects of language presents an important chal-036

lenge (Russo et al., 2023; Egami et al., 2022; Weld037

et al., 2022; Gligorić et al., 2019). Without causal038

inference, studies risk hidden biases and mislead-039

ing conclusions (Leeb et al., 2025). Given the040

complexity of human behavior and society, robust041

Figure 1: The causal diagram of the problem setup.
We aim to estimate the effect from the treatment T to
the outcome Y, accounting for confounding and/or non-
confounding covariates.

causal methods are crucial for producing reliable, 042

actionable insights. 043

However, causal inference on utterances of lan- 044

guage presents unique challenges both for identifi- 045

cation and estimation (Chen and Chu, 2023; Feder 046

et al., 2022). Consider the question of whether an- 047

grier social media posts receive more attention (Fig- 048

ure 1). The key challenge is that the latent attribute 049

of “anger,” which can be considered the treatment 050

variable, is embedded in text and never directly 051

observed. Instead, it must itself be inferred, fur- 052

ther complicating causal-effect estimation (Pryzant 053

et al., 2021). Any inaccuracies or biases in anger 054

estimation can distort the causal estimate. This is 055

the fundamental challenge of identifying the causal 056

effect of a treatment that is itself a latent attribute 057

of text. Another challenge is that identifying and 058

adjusting for confounders is particularly difficult in 059

observational studies, making results susceptible to 060

various biases from hidden confounding. 061

We propose CAUSALDANN, a framework that 062

crafts a hypothetical intervention on the observed 063

text, which can be implemented as a text transfor- 064

mation using a large language model (LLM), and 065

estimates the effect by predicting the outcomes for 066

both observed and transformed data. This approach 067

enables causal inference via language even when 068

an intervention group is missing, overcoming a key 069

limitation of conventional methods. 070
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To the best of our knowledge, we are the first to071

address the estimation of causal effects of direct072

text interventions. Our first contribution is using073

LLMs to formulate text interventions. These inter-074

ventions operate in the high-dimensional embed-075

ding space of language and can be implemented by076

prompting an LLM, such as rephrasing text to ex-077

press more anger while preserving all other proper-078

ties. This intervention allows the treatment variable079

in a potential-outcomes framework (Rubin, 1974)080

to be an entire text, and allows for causal analysis081

even in the absence of an intervention group. It082

also reduces the need for identifying and adjusting083

for confounders already embedded in the texts.084

Our second contribution is a method to predict085

unobserved outcomes of text interventions. Af-086

ter transformation, we have both non-intervened087

(observed) and intervened text, but outcomes for088

the latter remain unobserved. However, predicting089

the outcomes for unseen data is challenging due090

to domain shift (Ryu et al., 2022) between the ob-091

served training data and the unobserved intervened092

data. To tackle this, we propose CAUSALDANN,093

which adapts domain adaptation neural network094

(DANN) (Ganin and Lempitsky, 2015) as the out-095

come predictor. Experiments show that DANN096

leads to less bias in causal estimation than alterna-097

tives like inverse propensity weighting (IPW).098

We evaluate CAUSALDANN on three semi-099

synthetic datasets constructed using LLM simu-100

lations, and find that it outperforms baselines for101

estimating causal effects of direct text interventions.102

In our evaluation, we analyze potential sources of103

bias, but recognize the larger need to evaluate and104

mitigate bias in LLM-generated text in future ap-105

plications, which can impact whether the chosen106

LLM transformations truly isolate the causal vari-107

able while preserving all else. Future works may108

assess whether this framework generalizes to real-109

world settings beyond the semi-synthetic datasets.1110

2 Related Works111

Causal Inference with Text The field of causal112

inference in machine learning is rapidly advanc-113

ing, as does its intersection with language model-114

ing. Prior works on causal effect estimation with115

text (Sridhar and Blei, 2022) does not usually con-116

sider the text as the treatment variable. Rather,117

text embeddings are used as covariate informa-118

1Our code can be found at https://anonymous.4open.
science/r/CausalDANN-8294/README.md.

tion (Veitch et al., 2020), or some discrete coding 119

of the text is used as the treatment (Pryzant et al., 120

2021; Egami et al., 2022; Cheng et al., 2022; Zhou 121

and He, 2023; Jiang et al., 2024). As far as we 122

know, we are the first to introduce a method for es- 123

timating the effects of direct interventions on text. 124

Efforts to mitigate spurious correlations in text 125

classifiers (Veitch et al., 2021; Bansal and Sharma, 126

2023) mirrors some of the techniques used for 127

causal effect estimation, as their statistical implica- 128

tions resemble confounding. Generally, spurious 129

correlations are of concern for model generaliza- 130

tion (Feder et al., 2023), and causal effect estima- 131

tion can be seen as a special case of generalization 132

to the interventional domain. 133

Our approach is motivated by the lack of overlap 134

between control and treatment groups (section 3.2). 135

Prior work has addressed similar overlap viola- 136

tions when treatment is a deterministic function 137

of text (Gui and Veitch, 2023). In our case, this 138

arises from defining potential outcomes under in- 139

tervention without assuming access to observed in- 140

tervened text. While lack of overlap is a significant 141

practical challenge, it receives less attention (Zhao 142

et al., 2024). 143

LLMs for Causal Inference LLMs offer poten- 144

tial for advancing causal inference with text (Kıcı- 145

man et al., 2023; Zhang et al., 2023; Ashwani et al., 146

2024; Jin et al., 2023). However, spurious corre- 147

lations in large text corpora often obscure causal 148

relationships (Zečević et al., 2023). This weakness 149

may stem from a fundamental limitation of LLM 150

training—causal inference requires extrapolating 151

to novel conditions, such as interventions (Peters 152

et al., 2017; Imbens and Rubin, 2015). Querying 153

an LLM about text interventions places it in a low- 154

probability regime of its training data, where recent 155

work suggests LLM reasoning struggles (Udan- 156

darao et al., 2024). 157

To integrate LLMs into causal inference without 158

relying on their limited causal reasoning, new esti- 159

mation methodologies are needed. One promising 160

direction is counterfactual data generation (Hamil- 161

ton and Piper, 2022; Mishra et al., 2024; Bhat- 162

tacharjee et al., 2024; Li et al., 2023). In our work, 163

we leverage LLMs in two ways: (1) imposing in- 164

terventions on text (e.g., modifying sentiment in 165

text) without requiring causal reasoning, and (2) 166

generating counterfactual outcomes to construct 167

evaluation datasets. 168
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Domain Adaptation Pre-training followed by169

fine-tuning on specific tasks has become a stan-170

dard paradigm in large language modeling (Devlin171

et al., 2018; Brown et al., 2020; Dubey et al., 2024).172

However, fine-tuning often leads to performance173

degradation on unseen data due to domain shift174

between training and test data (Ma et al., 2019;175

Ryu et al., 2022; Bet,ianu et al., 2024). To mitigate176

this, domain adaptation techniques have been de-177

veloped, including sample reweighting (Li et al.,178

2016), structural correspondence learning (Blitzer179

et al., 2006), joint distribution matching (Long180

et al., 2013), and mixture of experts (Guo et al.,181

2018). A notable approach is Domain Adversarial182

Neural Network (DANN)(Ganin and Lempitsky,183

2015), which integrates a domain classifier as an184

adversary to encourage domain-invariant features,185

improving adaptation. This method has been ef-186

fective in NLP tasks such as stance and morality187

detection (Allaway et al., 2021; Guo et al., 2023).188

Domain adaptation helps address the covariate189

shift in causal estimation, by aligning the distri-190

butions of treated and control groups (Abdullahi,191

2021). Some classic causal methods to adjust for192

confounders, such as inverse propensity weight-193

ing (IPW) (Hirano and Imbens, 2001), can also be194

viewed as a form of domain adaptation by align-195

ing the distributions. However, advanced deep196

learning-based adaptation remains underexplored197

in causal estimation. In our work, we evaluate both198

IPW and DANN for predicting potential outcomes.199

3 Methods200

We tackle the challenge of causal estimation for201

textual data where the treatment variable (e.g., emo-202

tion) is unobserved and constructing the treated or203

control group is difficult. We propose CAUSAL-204

DANN (Figure 2), a framework that (1) apply a205

transformation on observed text to construct the206

intervened group, (2) predicts potential outcomes207

using a domain-adaptation model trained on non-208

intervened data, and (3) estimates causal effects209

from the predicted outcomes.210

3.1 Preliminaries211

We formalize our inference problem on text with212

potential outcomes (Imbens and Rubin, 2015; Ru-213

bin, 1974). For text W , observed confounders X ,214

outcome Y , we construct causal estimands through215

an intervention on the text defined by a transfor-216

mation W 7→ g(W ). Central to the motivation of217

our method is being able to handle cases where 218

interventional outcomes have not been observed. 219

Specifically, with potential outcomes Y (w) for any 220

text w, we only ever observe Y (W = w) and not 221

Y (g(w)). Three core assumptions help potential 222

outcomes become identifiable: first, that a unit’s 223

potential outcomes are only a function of its own 224

text and not that of any other units (SUTVA, the 225

stable unit treatment value assumption); second, 226

that every unit’s conditional distribution of text val- 227

ues is supported in a common set W (the overlap or 228

positivity assumption); and third, that potential out- 229

comes Y (w) are independent of the realized text 230

W after conditioning on observed covariates X 231

(ignorability, i.e. no hidden confounding). These 232

assumptions enable the identification of potential 233

outcomes by conditioning on the treatment. 234

E[Y (w) | X = x] = E[Y | W = w,X = x] 235

The potential-outcomes framework is especially 236

helpful when the notion of a treatment becomes 237

more complex. In our case, we consider interven- 238

tions on text as defined by some mapping g(·), like 239

summarization, or making the text angrier. 240

In addition to observed covariates X (e.g. prod- 241

uct type when studying the effect of sentiment in 242

product reviews on sales), we define C as latent co- 243

variates of interest that are recovered from the text 244

(e.g., topics in social media posts when analyzing 245

the effect of anger on engagement). 246

3.2 Interventions on Text using an LLM 247

When the intervention transforms text and is not 248

observed separately, we propose to estimate causal 249

effects without an explicit treatment variable. For 250

example, the intervention could be to restate the 251

text with a higher level of anger while preserv- 252

ing all other linguistic properties, as determined 253

by an LLM with the appropriate prompt. The 254

causal estimand can be phrased as the intervened 255

(transformed) outcomes contrasted with the non- 256

intervened (observed) outcomes. 257

This framing could appear to violate a key iden- 258

tifiability assumption: we never directly observe 259

transformed outcomes, apparently leading to a com- 260

plete lack of overlap. However, we do not actually 261

restrict our analysis to the dichotomy of a binary 262

treatment variable. Instead, we leverage the high- 263

dimensional nature of text embeddings—and inter- 264

ventions on them. Lifting the treatment variable 265

into a high-dimensional embedding space is more 266
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Figure 2: We first apply an LLM transformation or sampling to the observed text and outcome (non-intervened
group) to generate text data for the intervened group. The outcomes for the transformed data remain unobserved.
To predict the outcomes, we use (a) the BERT-based baseline predictor or (b) the proposed CAUSALDANN with
domain adaptation. We then predict outcomes for both groups and compute the causal effects.

likely to induce overlap under mild assumptions on267

the data-generating process. For instance, to study268

the effect of angry social media posts on engage-269

ment, we may construct an intervention to rephrase270

posts with more or less anger, and then estimate271

the effect of these transformations. We substitute272

the causal question of how anger A affects engage-273

ment Y with how an anger-transformation on text274

W 7→ gA(W ) affects Y , where W is the text and275

gA is the function parameterized by a prompted276

LLM. If gA faithfully adjusts anger while preserv-277

ing other attributes, it could approximate A → Y .278

It may be questioned whether an intervention de-279

fined through an LLM with a certain prompt really280

disentangles and modifies one aspect of language281

while preserving the others. LLMs’ capabilities in282

counterfactual generation are well-known (Brown283

et al., 2020; Dubey et al., 2024; Mishra et al., 2024;284

Li et al., 2023); however, they are not free of all285

social bias. We conduct manual inspections and an-286

alyze potential biases in our data (see Appendix A).287

Future applications of our framework should vali-288

date the fidelity of specific LLM-defined transfor-289

mations using techniques such as improved prompt-290

ing (Li et al., 2023), human-in-the-loop annota-291

tions, and improved alignment. Our work studies292

how to estimate the effect of a given intervention.293

We introduce different kinds of transformations294

W 7→ g(W ) on observed text W to generate data295

in the intervened group.296

1. Textual transformation with LLMs. This297

reduces the burden of controlling for latent298

confounders C in text. For instance, an LLM299

can be prompted to rephrase text to heighten300

anger while preserving other linguistic prop-301

erties (Section 4.4). 302

2. Substituting the data-generating process. 303

This involves alternative data sources for the 304

same observational unit. For example, to 305

study the effect of positive reviews on sales, 306

we can sample 5-star reviews as positive and 1- 307

or 2-star reviews as negative while controlling 308

for product type (Section 4.2). 309

3.3 Counterfactual Generation with LLMs 310

Even after applying transformation techniques to 311

construct the intervened group, outcomes remain 312

unobserved, and ground truth causal effects are 313

unavailable. Thus, generating synthetic data is cru- 314

cial for evaluation. LLMs, with their extensive 315

training and reinforcement learning from human 316

feedback (RLHF), can simulate outcomes for unob- 317

served data, such as modeling social norms (Brown 318

et al., 2020; Dubey et al., 2024). In Sections 4.3 319

and 4.4, we use LLMs to simulate social judgments 320

on posts from Reddit’s /r/AmITheAsshole. We 321

acknowledge that using LLMs for counterfactual 322

generation in evaluation data may introduce biases. 323

We include analyses and mitigation strategies in 324

Appendix A. 325

3.4 Outcome Prediction 326

Since the outcomes of the generated (intervened) 327

data are never observed, we need a prediction 328

model to estimate the outcomes for all the data 329

in order to estimate the causal effects. 330

3.4.1 BERT 331

BERT (Devlin et al., 2018) provides an efficient 332

way to learn textual representations and excels in 333
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supervised classification. Thus, we use it as our334

baseline outcome predictor. We assume that condi-335

tioning on the textual embeddings learned by BERT336

effectively adjust for the latent confounding parts337

of the texts. We train a vanilla BERT model using338

only non-intervened text, where outcomes are ob-339

served and serve as labels for supervised learning.340

The trained model then predicts potential outcomes341

for intervened text with unobserved outcomes. This342

serves as our first baseline method.343

We build the outcome predictor by appending a344

linear classification layer to the BERT embedding345

model (see model specifications in Appendix B).346

To obtain the predicted outcome for all data, we347

randomly split the data into five folds. Each time348

we train the outcome predictor with four-fifths of349

the data, which is further split into training and350

validation sets by 80%-20% ratio. Finally, we pre-351

dict on the remaining one-fifth data to obtain their352

predicted outcomes. Given the i-th text Wi and its353

observed covariate Xi, the predicted outcome is354

Ŷi = µBERT (Wi, Xi) from the BERT-based clas-355

sification model. The Average Treatment Effect356

(ATE) can be estimated as357

τ̂ =
1

N

N∑
i

µBERT (g(Wi), Xi)− µBERT (Wi, Xi) (1)358

where N is the total number of data points and359

g(·) is the text transformation function. The latent360

covariates C and other covariates X can be used to361

obtain the Conditional Average Treatment Effect362

(CATE) as363

τ̂(c, x) =
1

Nc,x

Nc,x∑
i:Ci=c,Xi=x

µBERT (g(Wi), Xi)

−µBERT (Wi, Xi) ∀c ∈ C, x ∈ X

(2)364

In conventional settings (e.g. T is anger), adjusting365

for latent language properties C (e.g. grammar) is366

difficult, but our framework reduces this burden.367

3.4.2 CAUSALDANN368

Fine-tuned BERT often suffers performance drops369

on unseen data (Ma et al., 2019; Ryu et al., 2022).370

Since our outcome predictor must perform well on371

both non-intervened data with observed outcomes372

and transformed data with unobserved outcomes373

(section 3.2), we adopt Domain Adversarial Neural374

Network (DANN) instead of vanilla BERT. Guo375

et al. (2023) demonstrated DANN’s strong perfor-376

mance in domain adaptation for textual data.377

DANN mitigates data shift by mapping text em-378

beddings from both labeled source and unseen379

target domains onto a shared space. CAUSAL- 380

DANN consists of three modules (Figure 2b): (1) a 381

BERT encoder for textual representation, (2) an out- 382

come predictor—a linear classifier same as in the 383

vanilla BERT outcome predictor, and (3) a domain 384

predictor—another linear classifier but with cross- 385

entropy loss trained adversarially to be maximized, 386

ensuring domain-invariant embeddings. This is 387

achieved by connecting the domain classifier to the 388

other parts of the model with a gradient reversal 389

layer. The loss term is: 390

L = Loutcome − λD · Ldomain (3) 391

where λD is a loss-balancing hyperparameter (see 392

training details in Appendix B). 393

In our setup, the source domain is non- 394

intervened (observed) data, while the target do- 395

main is intervened (unobserved) data. We train 396

the model in a semi-supervised way, providing 397

both the labeled non-intervened training data and 398

the unlabeled intervened data in each batch, bal- 399

anced in size. Both pass through the BERT en- 400

coder to learn textual representations. Next, the 401

non-intervened data go through both the outcome 402

and domain predictors, while intervened data, lack- 403

ing outcome labels, only pass through the domain 404

classifier. This adversarial setup pushes the encoder 405

to learn domain-invariant embeddings, aligning in- 406

tervened data closer to the non-intervened labeled 407

data (see training details in Appendix B). After ob- 408

taining predicted outcome by CAUSALDANN, the 409

ATE and CATE can be caculated in the same way 410

as in Section 3.4.1. 411

3.5 Inverse Propensity Weighting 412

The second baseline is Inverse Propensity Weight- 413

ing (IPW), a popular causal estimation method. 414

IPW accounts for confounders by adjusting an es- 415

timate with the inverse of the propensity score 416

π(W,X) = P (T = 1 | W,X). However, in our 417

scenario, direct IPW is infeasible since intervened 418

outcomes are unobserved. Nevertherless, IPW can 419

also be seen as a sample reweighting technique, a 420

commonly used domain adaptation technique (Li 421

et al., 2016) that aligns the distributions of the ob- 422

served non-intervened data and the unobserved in- 423

tervened data. When propensity scores are accu- 424

rately estimated, IPW helps debias outcome pre- 425

dictions. We can apply IPW on top of predictions 426

from vanilla BERT or CAUSALDANN. 427

We estimate the propensity score π(W,X) us- 428

ing a separate BERT model, structured as in Sec- 429
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tion 3.4.1. We train this propensity predictor on430

both intervened and non-intervened texts, using431

T = 1transformed as labels. To obtain the propen-432

sity score as a probability, we calibrate it with tem-433

perature scaling (Guo et al., 2017) on a validation434

set that also includes intervened and non-intervened435

data. See details in Appendix B.436

Once the propensity scores are obtained, we com-437

pute the ATE as438

τ̂ =
1

N1

N1∑
i:Ti=1

µBERT (g(Wi), Xi)

π(Wi, Xi)

− 1

N0

N0∑
i:Ti=0

µBERT (Wi, Xi)

1− π(Wi, Xi)

(4)439

where the first term includes all data points that are440

intervened (Ti = 1) and the second term includes441

all data points that are non-intervened (Ti = 0).442

The CATE can be computed as443

τ̂(c, x) =
1

N1,,x

N1,c,x∑
i:Ti=1,Ci=c,Xi=x

µBERT (g(Wi), Xi)

π(Wi, Xi)

− 1

N0,c,x

N0,c,x∑
i:Ti=0,Ci=c,Xi=x

µBERT (Wi, Xi)

1− π(Wi, Xi)

(5)

444

4 Experiments445

We use real-world data from Amazon prod-446

uct reviews (Ni et al., 2019) and Reddit447

r/AmITheAsshole discussions of social dilemmas 2448

to form three research questions for model evalua-449

tion: (1) How much does a positive product review450

impact sales? (2) Does viewing a top-upvoted com-451

ment influence people’s judgment about a social452

dilemma? (3) Does increasing anger in texts alter453

social judgments?454

4.1 Baselines and Setups455

We compare two baselines (1) BERT and456

(2) BERT+IPW against the proposed (3)457

CAUSALDANN. We also evaluate (4) CAUSAL-458

DANN+IPW to assess whether IPW further459

improves domain adaptation. Additionally, we460

compare with (5) TextCause (Pryzant et al.,461

2021), a causal estimation method that, like ours,462

adjusts for confounding using BERT embeddings.463

However, TextCause assumes observations exist464

in both control and treatment groups, using these465

labeled data to train BERT for potential outcome466

estimation. While effective when both groups have467

2https://github.com/iterative/aita_dataset

observed outcomes, it fails when the treatment 468

variable is unobserved or when one group lacks 469

data. In contrast, our method, with better domain 470

adaptation, handles missing observations more 471

effectively. The TextCause performance tells us 472

how good the effect estimation can get to even 473

with more training data from both control and 474

treated groups. 475

We evaluate performance using two metrics: (1) 476

∆ATE, the absolute difference between predicted 477

and ground truth ATE, and (2) mean squared er- 478

ror (MSE) of the CATE vector across all covariate 479

dimensions. For both, lower values indicate bet- 480

ter performance. Each experiment is repeated five 481

times to report the average and standard deviation. 482

4.2 Amazon Reviews 483

4.2.1 Data 484

We first evaluate our method on a semi-synthetic 485

dataset based on Amazon reviews (Ni et al., 2019), 486

a benchmark also used in (Pryzant et al., 2021). 487

This dataset consists of 5.6K reviews on products 488

in the categories of mp3, CD, or Vinyl. Reviews 489

for products worth more than $100 or fewer than 5 490

words are excluded. 491

Following (Pryzant et al., 2021), we estimate 492

the effect of positive sentiment in reviews on sales, 493

hypothesizing that positive reviews increase click 494

and purchase likelihood, though product type may 495

confound this effect. Since sentiment is embedded 496

in text and not explicitly observed, defining the 497

treatment variable in a conventional causal setting 498

is challenging. 499

Based on our framework, we define a transfor- 500

mation function g(·) that intervenes on the posi- 501

tive sentiment of the reviews without manipulating 502

other attributes like grammar. In this experiment, 503

we do not use an LLM, but instead we sample 504

the positive and non-positive reviews from the ob- 505

served data itself, labeling reviews as positive if 506

they have 5 stars and non-positive if they have 1 or 507

2 stars. The intervention is T = 1positive. This set- 508

ting (1)evaluates our framework without potential 509

biases from LLM-generated text, and (2) mirrors a 510

traditional causal estimation setup, enabling a fair 511

comparison with TextCause. 512

The observed covariate X is a binary indicator 513

for whether the associated review is a CD or not. 514

The outcome Y , a binary variable for whether a 515

product received a click or not, is simulated based 516

on the textual intervention T = 1positive and the 517
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covariate X as following:518

Y ∼ Bernoulli(σ(βX(π − β0) + βTT + ε)) (6)519

where σ(·) is the sigmoid function, π = P (T |X) is520

the propensity, βX controlling confound strength is521

set to 4.0, βT controlling treatment strength is set to522

0.8, β0 controlling propensity is set to 0.8. All these523

hyperparameters are set as the same as a harder-to-524

estimate scenario in (Pryzant et al., 2021).525

We then follow our framework and train the out-526

come and propensity predictors. We assume that527

we do not observe the outcomes in the intervened528

(positive) group. Therefore, we only use the non-529

intervened reviews and their labels Y (T = 0) to530

train the outcome predictors. For the propensity531

predictor in the IPW method, we use T as the train-532

ing labels and both intervened (T = 1) and non-533

intervened (T = 0) groups.534

4.2.2 Results535

Table 1 shows that CAUSALDANN gives us the536

ATE and CATE estimation closest to the ground537

truth, outperforming other baselines including538

BERT, BERT+IPW and also CAUSALDANN+IPW.539

The fact that CAUSALDANN achieves lower error540

than the vanilla BERT baseline tells us the effective-541

ness of domain adaptation by DANN. In addition,542

the results show that applying IPW to either BERT543

or DANN significantly worsens performance, sug-544

gesting issues with propensity score estimation. We545

notice that the propensity predictor easily classifies546

reviews as positive or negative, yielding probability547

outputs near 0 or 1, even after temperature scaling.548

This extreme weighting might lead to ill behavior549

in inverse propensity weighting. Last, TextCause550

sets an upper bound on performance by leveraging551

more observations in the intervened group. It is552

no surprise that TextCause performs better. How-553

ever, CAUSALDANN achieves a ∆ATE close to554

TextCause and matches its MSE for CATE, demon-555

strating that its estimations are less biased.556

∆ATE (↓) MSE of CATE (↓)
TextCause 0.05± 0.02 0.01± 0.01

BERT 0.12± 0.05 0.02± 0.01

BERT+IPW 1.05± 0.24 1.16± 0.53

CAUSALDANN 0.09± 0.04 0.01± 0.01

CAUSALDANN+IPW 3.18± 0.27 10.21± 1.67

Table 1: Causal estimation errors in Amazon Reviews.

4.3 Reddit AITA Comments 557

4.3.1 Data 558

Next we evaluate our methods on the Reddit 559

r/AmITheAsshole (AITA) data, where users share 560

social dilemmas and receive judgements on who 561

is at fault. This data provides insights into human 562

perspectives (Botzer et al., 2022) and moral judg- 563

ments (Plepi et al., 2022) and has been used as a 564

benchmark for causal estimation (Marmarelis et al., 565

2024). To reduce computational complexity, we 566

select posts with fewer than 140 words. 567

In AITA, the verdict is shaped by upvotes on 568

comments, with the most upvoted comment re- 569

maining at the top, increasing its visibility. A key 570

research question is whether exposure to the top 571

comment affects individual judgment, due to influ- 572

ences of mainstream opinions. Conducting such 573

an experiment in real life is challenging, but our 574

framework enables causal estimation using LLMs. 575

To create a semi-synthetic evaluation dataset, we 576

perform LLM counterfactual generation by prompt- 577

ing GPT-4 3 to act as a moral judge on these 578

real-world posts and generate verdicts (Marmarelis 579

et al., 2024). This simplifies the problem from es- 580

timating effects on human behavior to analyzing 581

impact in an LLM-simulated scenario. See Ap- 582

pendix C for prompting procedure. Table 5 shows 583

example generations, which exhibit good quality. 584

The intervention T = 1top comment is a bi- 585

nary variable denoting whether the GPT judge is 586

prompted with a top comment or a randomly se- 587

lected comment, together with the post, to out- 588

put the verdict. The outcome Y is binary, with 589

Y = 1 when GPT assigns fault and Y = 0 other- 590

wise (we categorize YTA (you are the asshole) and 591

ESH (Everyone sucks here) into Y = 1, and NTH 592

(not the asshole) and NAH (no asshole here) into 593

Y = 0). For each post, we generate both outcomes 594

Y (T = 1) and Y (T = 0) to compute synthetic 595

ground truth treatment effects. We discuss poten- 596

tial LLM generation biases in Appendix A. 597

Following the approach in Section 3, we train 598

the outcome predictor and the propensity predic- 599

tor. Both predictors use concatenated post and 600

comment text, adjusting for latent confounders 601

in texts. The outcome predictor is trained using 602

only non-intervened data with observed ground 603

truth Y (T = 0) labels, while the propensity pre- 604

dictor uses T = 1top comment labels from both 605

groups. Additionally, we compute CATE con- 606

3https://openai.com/index/gpt-4/
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ditioned on post topics, which we extract using607

BERTopic (Grootendorst, 2022). We focus on the608

top 30 topics, represented as a binary vector C for609

each post. See this procedure in Appendix D.610

4.3.2 Results611

∆ATE (↓) MSE of CATE (↓)
TextCause 0.04± 0.01 0.01± 0.00

BERT 0.01± 0.01 0.01± 0.01

BERT+IPW 0.56± 0.50 1.04± 0.93

CAUSALDANN 0.01± 0.01 0.00± 0.00

CAUSALDANN+IPW 0.50± 0.46 0.84± 0.77

Table 2: Causal estimation errors in AITA comments.

Table 2 shows that CAUSALDANN performs612

exceptionally well on this dataset. It has similar613

performance to BERT because top and random614

comments are often similar in perspective and writ-615

ing style, leading to minimal data shift between616

non-intervened and intervened data. As a result,617

BERT also performs well here. The similarity be-618

tween the top and random comments also leads to619

inaccurate propensity score estimation. IPW-based620

methods performing significantly worse due to low621

accuracy in the propensity prediction (F1-score is622

0.52 ± 0.01). Finally, although TextCause can-623

not handle unobserved outcomes in the intervened624

group, we run it by providing LLM-generated coun-625

terfactuals. We find CAUSALDANN slightly out-626

performs TextCause using more information.627

4.4 Anger in AITA Posts628

4.4.1 Data629

In the same AITA dataset, we investigate whether630

the anger level in posts affects people’s verdicts.631

Posts with higher anger or aggression may lead to632

a higher likelihood of being deemed the author’s633

fault. Anger, a latent attribute in texts, is not a634

directly observed treatment variable. Under a con-635

ventional setup, we would need to use a proxy treat-636

ment variable which could be susceptible to more637

bias (Pryzant et al., 2021). In our framework, we638

define an intervention T = 1anger, where we use639

Claude 3.5 Sonnet 4 to transforms each post to in-640

crease its anger level while preserving style, seman-641

tics, and perspective. To mitigate bias from LLM642

transformations, we also rephrase the original post643

keeping the same anger level. Manual inspection644

4We use Claude 3.5 Sonnet (https://www.anthropic.
com/news/claude-3-5-sonnet), as GPT is more conserva-
tive and does not significantly alter the anger level.

confirms the quality of the transformations (details 645

in Appendix C). Similar to section 4.3, we create 646

a semi-synthetic evaluation data by counterfactual 647

generation of Y , verdicts based on the rephrased 648

posts and the anger-transformed posts. This simpli- 649

fies the evaluation to an LLM-simulated scenario. 650

Similar to previous experiments, we only use 651

the non-intervened (rephrased) posts and their cor- 652

responding Claude-generated verdicts to train the 653

outcome predictor. To train the propensity predic- 654

tor, we use all data and T = 1anger as the label. 655

The input to both predictors are the post texts. In 656

addition, we also have the covariates C to be the 657

binary vector of the top 30 frequent topics obtained 658

from BERTopic for computing CATE. The train- 659

ing procedure is similar to previous experiments 660

(Appendix B). 661

4.4.2 Results 662

From Table 3, we see that CAUSALDANN outper- 663

forms other methods and matching the performance 664

of TextCause (using more training data from the 665

intervened group). Methods using DANN architec- 666

ture are better than methods based on vanilla BERT, 667

again showing the effectiveness of domain adap- 668

tation in predicting potential outcomes. Applying 669

IPW again lowers the performance on CATE esti- 670

mation, indicating that propensity score estimation 671

and IPW can be less reliable and robust, and its 672

performance varies based on dataset properties. 673

∆ATE (↓) MSE of CATE (↓)
TextCause 0.05± 0.01 0.02± 0.01

BERT 0.09± 0.07 0.03± 0.02

BERT+IPW 0.10± 0.05 0.31± 0.38

CAUSALDANN 0.05± 0.03 0.01± 0.01

CAUSALDANN+IPW 0.08± 0.06 0.13± 0.19

Table 3: Causal estimation errors in AITA-anger data.

5 Conclusions 674

In this work, we target the problem of causal esti- 675

mation for textual data especially when the treat- 676

ment variable is not directly observed. We propose 677

CAUSALDANN, a framework for estimating the 678

causal effect of tailored interventions on text. Us- 679

ing domain-adaptive text classifiers, our approach 680

produces robust effect estimates while handling 681

domain shifts. We demonstrate CAUSALDANN’s 682

strong performance across three experiments. 5 683

5This manuscript was drafted by the authors with the as-
sistance of ChatGPT to refine the language and improve read-
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Limitations First, LLM-generated data is prone684

to biases and limited diversity (Appendix A). We685

mitigate these issues through manual inspection of686

the generations, and by applying LLM rephrasing687

to the non-intervened group alongside the transfor-688

mation of intervened group. This ensures a fair689

comparison when estimating effects as a relative690

difference between the two groups. If the trans-691

formation intervention does contain biases from692

LLMs, then this bias would propagate to effect es-693

timation. Our evaluation on three different datasets694

shows that our method achieves lower biases in695

causal estimation than the baselines. Bias mit-696

igation in counterfactual generation is an active697

research area, including strategies like enhanced698

prompting and human-in-the-loop annotation (Li699

et al., 2023; Bhattacharjee et al., 2024). However,700

this topic is beyond the scope of our paper.701

Second, our experiments evaluate the proposed702

framework using LLM-generated semi-synthetic703

data, meaning the estimated effects reflect simu-704

lated LLM textual transformations. However, ap-705

plying this approach to causal estimation on real706

data requires the assumption that LLMs can reli-707

ably infer unobserved data points through text trans-708

formation based on observed human behavior—an709

assumption that may not always hold. For instance,710

although we control for linguistic properties such as711

semantics and grammar through prompting, mod-712

ifying anger levels via LLM transformation may713

also unintentionally alter toxicity. Future applica-714

tions of our framework should also carefully vali-715

date this assumption. We also plan to explore fine-716

tuning LLMs with observed data, enabling them to717

learn specific personas and more closely align their718

behavior with human social systems.719

The third limitation is the potential presence of720

unobserved confounders that are not accounted for721

in our experiments. While we adjust for confound-722

ing by conditioning on textual representations and723

estimated propensity scores, there may still be la-724

tent factors influencing both the treatment and out-725

come that our models fail to capture. For example,726

in the AITA dataset, implicit biases in user interac-727

tions in the Reddit threads could affect verdicts in728

ways not reflected in the observed text. Addressing729

unobserved confounding remains a fundamental730

challenge in causal inference from observational731

data, and future work could explore the proper sen-732

sitivity analysis to bound the uncertainty.733

ability. All content was reviewed and verified for accuracy.

Ethics Statement In this research, we utilized 734

Large Language Models (LLMs) to generate data 735

for analysis. We acknowledge the ethical considera- 736

tions associated with the use of LLMs, particularly 737

concerning potential biases, data validity, and the 738

broader implications of AI-generated content. The 739

raw Reddit AITA and Amazon reviews data we 740

use contain information like names or uniquely 741

identifies individuals, and contain offensive con- 742

tent. All the user names are anonymized to ID 743

strings. Additionally, we only present the aggre- 744

gated average effects, without revealing any in- 745

dividual information. To maintain transparency, 746

we have detailed the methodology used for data 747

generation and the steps taken to address ethical 748

concerns in this paper. We encourage readers to 749

consider these factors when interpreting our find- 750

ings. Furthermore, our causal estimation frame- 751

work, while effective in controlled semi-synthetic 752

settings, may not generalize perfectly to real-world 753

scenarios. In real data applications, unobserved 754

confounders and biased treatment effect estima- 755

tions could lead to misleading conclusions. Users 756

of our method should be cautious when applying 757

it to real-world interventions, particularly in high- 758

stakes domains such as policy-making, healthcare, 759

or legal decision-making, ensuring appropriate val- 760

idation and sensitivity analyses. 761
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A Mitigation of LLM-related Biases1040

LLM-generated text can be biased due to imperfec-1041

tions in training data, affecting both (1) counterfac-1042

tual generation for synthetic test data and (2) text1043

interventions via LLM transformations.1044

For the first point, we assume LLMs have1045

learned social norms and common sense from ex-1046

tensive online data. To assess potential biases, we1047

analyze the distribution of LLM-generated AITA1048

verdicts across self-reported gender and age groups,1049

detected via regex from real posts (e.g., "I (30F)...").1050

We observe differences in verdict distributions by1051

age and gender (Figure 3), such as younger authors1052

being labeled "ESH" more often and older authors 1053

receiving "NAH" more frequently. However, this 1054

may be a reflection of real-world human behav- 1055

iors where people with different ages tend to talk 1056

about different types of stories, rather than reflect- 1057

ing LLM bias. To further test for bias, we rerun the 1058

same prompt on identical stories while randomly 1059

altering age or flipping gender. The verdict remains 1060

unchanged 91% of the time with a random age and 1061

93% with a flipped gender, suggesting minimal bias 1062

in LLM-generated verdicts. In addition, we man- 1063

ually check 50 randomly selected generations to 1064

ensure the quality (see Appendix C for prompting 1065

procedure and Table 7 for example GPT genera- 1066

tions). Last, using GPT-generated verdicts for both 1067

treated and control data also mitigates the biases 1068

propagating into our causal estimation. 1069

Disclaimer: we binarize gender labels here for 1070

simplicity, but we acknowledge that gender is not 1071

binary, and this simplification does not fully cap- 1072

ture the diversity of gender identities. 1073

Figure 3: GPT generated AITA verdicts in different (a)
age and (b) gender groups. We use regex to capture
these.

With respect to the biases in interventions on 1074

text using LLM text transformation, we also manu- 1075

ally review 50 randomly selected generations and 1076

do not observe bias present. See Appendix C 1077

for prompting procedure and Table 5 for exam- 1078

ple GPT generations, which exhibit good quality. 1079
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To further mitigate this bias, other than performing1080

the text transformation defined as the intervention1081

(e.g., increasing anger), we also rephrase the orig-1082

inal textual data using an LLM. In this way, both1083

non-intervened and intervened groups are LLM-1084

generated. The estimated effect is a relative dif-1085

ference between the two groups. With text and1086

outcomes in both groups being LLM-generated,1087

the biases should cancel out to a large extent.1088

B Model Training and Hyperparameters1089

BERT baseline We build the outcome predic-1090

tor by appending linear classification layer to the1091

BERT embedding model, with cross-entropy loss1092

and sigmoid normalization for the binary clas-1093

sification task. We add a dropout layer with a1094

rate of 0.3. Adam optimizer with an initial learn-1095

ing rate of 5e-5 is used, along with a scheduler1096

lr = lrinit/((1+α ·p)β), where p = current epoch
total epoch1097

and α = 10 and β = 0.25, following (Guo et al.,1098

2023). To obtain the predicted outcome for all data,1099

we randomly split the data into five folds. Each1100

time we train the outcome predictor with four-fifths1101

of the data, which is further split into training and1102

validation sets by 80%-20% ratio. We train for 201103

epochs and stop early when the model achieves1104

the best validation F1 score. The batch size is 64.1105

Finally, we predict on the remaining one-fifth data1106

to obtain their predicted outcomes.1107

We use BERT model on hugging-1108

face (https://huggingface.co/docs/1109

transformers/en/model_doc/bert) which1110

is open sourced and permitted for research. The1111

parameter size is about 110 millions.1112

CAUSALDANN Same to BERT baseline, we per-1113

form training and prediction by randomly splitting1114

the data into five folds. We train with 20 epochs1115

in total. However, during the first three epochs the1116

model is trained without the domain adversarial1117

module activated, the model to better learn the out-1118

come labels first. The batch size is 32. The Adam1119

optimizer, the learning rate and the scheduler are1120

the same as those for the BERT baseline.1121

Equation 3 describes the loss to be minimized1122

for DANN training. Following (Guo et al., 2023),1123

we balance the loss terms between the outcome pre-1124

dicting module and the domain predicting module1125

by controlling λD indirectly by1126

λD = 2/(1 + e−γ·p)− 1 (7)1127

where p = current epoch−epochs trained w/o adversary
total epochs ,1128

and γ is now the hyperparameter. We performed a 1129

grid search for γ in [0.1, 1, 10] and decide to set 1130

γ = 1. 1131

We build our model on top of https://github. 1132

com/NaJaeMin92/pytorch-DANN and https:// 1133

github.com/fionasguo/DAMF which are both 1134

open sourced and permitted for research. The pa- 1135

rameter size is about 110 millions. 1136

Propensity predictor The model archetecture, 1137

the training procedure and hyperparameters are the 1138

same as those for BERT baseline. The parameter 1139

size is about 110 millions. 1140

Computing resource Each experiment was con- 1141

ducted on an RTX A6000 GPU with 48GB memory. 1142

On average, training and testing took 9.5 hours for 1143

BERT baselines and 11.2 hours for DANN models. 1144

The extended training time is due to the need for 1145

outcome and propensity prediction, each requiring 1146

five-fold cross-validation. 1147

C Prompting LLMs 1148

C.1 AITA-comments Data 1149

For the experiment AITA-comments in Section 4.3, 1150

we use the prompt in Table 4 to ask GPT-4 to pro- 1151

vide a verdict based on a given AITA post and a top 1152

or a random comment. We remove the responses 1153

that GPT refuses to answer, possibly in cases where 1154

topics are sensitive. 1155

The following Table 5 shows some example 1156

posts with their top and random comments, and 1157

the GPT generated verdicts. For some posts (e.g. 1158

row 1) the top and random comments are very simi- 1159

lar in perspectives, and the GPT-generated verdicts 1160

also are the same when different comments are 1161

given. Interestingly, the top and random comments 1162

in the second example have different perspectives. 1163

Nevertheless, GPT still gives the same verdict, pos- 1164

sibly because the random comment was very short. 1165

The last example show how GPT changes verdict 1166

when the top and random comments are different 1167

in perspectives. 1168

C.2 AITA-anger Data 1169

For the experiment AITA-anger in Section 4.4, we 1170

use the prompt in Table 6 to ask Claude-3.5-Sonet 1171

to (1) transform text to a version with higher anger, 1172

but keeping the semantic and all other linguis- 1173

tic properties the same; (2) rephrase text without 1174

changing the anger level (the purpose is to rephrase 1175

the non-intervened group too so that both groups 1176
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system_prompt = """\
You are a moral arbiter hired by r/AmITheAsshole.\
When presented with a story, you respond objectively with your verdict.\
As is customary in that subreddit, you always begin your response with one of [NTA, YTA, ESH, NAH].

"""

def query_judge(story, comment):
response = openai.ChatCompletion.create(

model = model, temperature=1, max_tokens=2,
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"The author said--\n{story}"},
{"role": "user", "content": f"The community said--\n{comment}"},
{"role": "user", "content": "What do you say? Is the verdict NTA, YTA, ESH, or NAH? No explanations."}
])

return response

Table 4: Code to prompt GPT-4 to generate verdicts based on a given AITA post and a comment.

are LLM-generated and bias from LLM generation1177

can be mitigated), or (3) provide a verdict.1178

We remove the responses that Claude refuses to1179

answer, possibly in cases where topics are sensitive.1180

The following Table 7 shows some examples of the1181

rephrased and anger-transformed posts, as well as1182

the Claude generated verdicts. We see that Claude1183

has transformed the text into very aggressive and1184

angry version. Warning: Table 5 contains offensive1185

language.1186

D BERTopic1187

To detect the top frequent topics in the AITA1188

dataset, we use BERTopic. We first preprocess1189

all posts to remove url links and stop words in En-1190

glish. We run BERTopic with UMAP dimension1191

reduction and HDBSCAN clustering algorithms,1192

and we use hyperparamters top_n_words = 10,1193

n_gram_range = (1, 1), min_topic_size = 101194

and nr_topic = 10. Table 8 shows the top 301195

topics detected and their post counts.1196
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Post and Comments Verdict
Post: So I recently graduated high school and I’m attending a program lasting all of July that helps ease students
into college life. My roomate met a girl there whom she really likes, and he told me and his other friends that he
intends to ask her out to be his girlfriend. Keep in mind they just met. However, this girl told me that she does not
reciprocate these feelings. I’m afraid to disclose this to my roommate, and I’m extremely confused if I’m the asshole
in this situation.
Top Comment: I don’t think you are an asshole for not telling him. It sounds like something he needs to hear from
this girl. You can tell him if you feel it is the right thing to do. He may get angry with you and accuse you of having
feeling for her. It can hurt not to have feeling reciprocated and sometimes

NAH

Random Comment: You’re not an asshole. Don’t get involved. This is between your roommate and this girl, and it
would be inappropriate and unwise to get between the two.

NAH

Post: My parents are diabetic, morbidly obese, and addicted to food. I’m the same, minus the diabetes. I’ve been
trying for a while to eat healthily and lose weight. So have they, but yet every time they go to the store, they bring
home junk food. I understand that it’s hard for them, but it’s also hard to stay on track with my healthier lifestyle
when there’s junk food all around me. Plus, they’re getting older, so it is crucial for them to get healthy now. A few
weeks ago, they brought home 4 bags of donuts, and I emptied each pack into the trash. Am I an asshole for this?
**Edit:** I love all the responses. Got one "no", one "maybe", and one "yes". I agree with all of you. **Edit 2:**
You guys are right–I’m the asshole.
Top Comment: Yep. You’re the asshole. If you want to make the commitment to work hard on improving your
health and your diet, then that is your job. If those who live with you want to support you by changing their lifestyle,
too, that would be fabulous. But, it’s not for you to dictate to them, or to throw away their property.

YTA

Random Comment: What? No man. YTA
Post: In a nutshell I was at a hardcore punk show. I got a beer between bands. I was drinking it up front waiting for
the next band to start. They did and a ferocious pit opened up near me. So I got knocked around and so did my beer.
I spilled over multiple people around me and they got beer over their clothes and hair. After I talked about this to
some people who clearly don’t go to punk shows they seemed to think I was rude, but frankly every person near the
center of the crowd at such a show knows they’ll possibly get beer spilled on them. It’s happened to me multiple
times. So AITA?
Top Comment: YTA. I go to local punk shows regularly and have worked a lot with booking agents and in music
journalism. When the band takes the stage and the pit goes nuts you back to the side with the beer or put it down
somewhere else. Spilling beer all over everyone is not normal, at least not in any of the

YTA

Random Comment: Never been to a show like this. If it’s not common to take a drink where you know you’re
going to get tossed around, YTA. If it’s basically expected to have a drink, then not the asshole. People can be
annoyed they get beer spilled on them, but they know people have drinks and it can happen. Then they shouldn’t

NAH

Table 5: Example generations of verdicts by GPT-4 given AITA posts along with top or random comments.
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def get_response(post, task):

if task == 'anger_transformation':
system_prompt = f"\

Here is a Reddit post: {post}. Rephrase it while maintaining the semantics, writing style,
structures and paragraphs, but express much more anger. The output length should be 10 words
more or less than the original post. Please only output the rephrased texts:

"
elif task == 'rephrasing':

system_prompt = f"\
Here is a Reddit post: {post} Rephrase it while maintaining the semantics, writing style,
structures and paragraphs. The output length should be 10 words more or less than the original
post. Please only output the rephrased texts:

"
elif task == 'give_verdict':

system_prompt = f"\
Given a Reddit post from r/AmItheAsshole, classify it into one of the following four
categories: \
YTA (You're the asshole): The submitter is deemed to be in the wrong; \
NTA (Not the asshole): The other party is considered to be wrong; \
ESH (Everyone sucks here): Both parties are wrong; \
NAH (No asshole): Both parties acted appropriately, but the situation just sucks. \
Your task is to analyze the post and determine which category it belongs to based on the
narrative provided by the submitter. Consider the actions, intentions, and attitudes of all
involved parties to make an accurate classification. Only output one of these labels: YTA,
NTA, ESH, or NAH. No explanation is needed. Limit your response to 3 characters:

"
else:

assert

message = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
temperature=1,
messages=[

{
"role": "user",
"content": [

{
"type": "text",
"text": system_prompt

}]}]
)
return message.content[0].text

Table 6: Code to prompt Claude to transform a post to higher anger level but keeping other linguistic properties the
same, or to rephrase a post, or to provide a verdict based on a given post.
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Posts Verdict
Original: So I recently graduated high school and I’m attending a program lasting all of July that helps ease students
into college life. My roomate met a girl there whom she really likes, and he told me and his other friends that he
intends to ask her out to be his girlfriend. Keep in mind they just met. However, this girl told me that she does not
reciprocate these feelings. I’m afraid to disclose this to my roommate, and I’m extremely confused if I’m the asshole
in this situation.
Rephrased: Having recently completed high school, I’m participating in a July program designed to smoothly
transition students into college life. My roommate encountered a girl there whom he’s deeply attracted to, and
he confided in me and our other friends his intention to ask her to be his romantic partner, despite their recent
acquaintance. However, this young woman revealed to me that she doesn’t share his amorous sentiments. I’m
hesitant to divulge this information to my roommate, leaving me utterly perplexed about whether I’m the one in the
wrong in this predicament.

NTA

Anger-Transformed: I just finished that goddamn high school hell, and now I’m stuck in this idiotic college prep
program for the entire fucking July. My moronic roommate met some chick there and instantly developed a pathetic
crush on her, telling me and our other dumbass friends that he plans to ask her out as his girlfriend. Can you believe
this imbecile’s audacity? They barely know each other! But here’s the real kicker: that girl confided in me that she
doesn’t share his delusional feelings at all. I’m torn between ripping the truth out of his thick skull or letting him
make a fool of himself. Either way, I’m caught in this infuriating mess, and I can’t decide if I’m the raging asshole
here or not.

ESH

Original: My parents are diabetic, morbidly obese, and addicted to food. I’m the same, minus the diabetes. I’ve
been trying for a while to eat healthily and lose weight. So have they, but yet every time they go to the store, they
bring home junk food. I understand that it’s hard for them, but it’s also hard to stay on track with my healthier
lifestyle when there’s junk food all around me. Plus, they’re getting older, so it is crucial for them to get healthy now.
A few weeks ago, they brought home 4 bags of donuts, and I emptied each pack into the trash. Am I an asshole for
this? **Edit:** I love all the responses. Got one "no", one "maybe", and one "yes". I agree with all of you. **Edit
2:** You guys are right–I’m the asshole.
Rephrased: My parents suffer from diabetes, extreme obesity, and food addiction. Like them, I’m obese but without
diabetes. I’ve been striving to eat healthily and shed pounds for some time. They’ve also attempted this, yet they
consistently bring unhealthy snacks home from the grocery store. While I understand their struggle, it’s challenging
to maintain my healthier lifestyle amidst the temptation of junk food. Moreover, as they age, it becomes crucial
for them to prioritize their well-being. A few weeks ago, they purchased four bags of donuts, and I discarded the
contents of each bag. Was I wrong for doing so? **Edit:** I appreciate all the responses – one "no," one "maybe,"
and one "yes." I concur with you all. **Edit 2:** You’re correct – I was the one in the wrong.

ESH

Anger-Transformed: My goddamn parents are fucking diabetic, disgustingly morbidly obese, and pathetically
addicted to food like a bunch of pigs. I’m the same, minus the shitty diabetes. I’ve been trying for a fucking eternity
to eat healthily and lose weight, but those assholes keep sabotaging me. So have they, but yet every damn time they
go to the store, they bring home junk food like the brainless morons they are. I understand that it’s hard for those
idiots, but it’s also hard to stay on track with my healthier lifestyle when there’s junk food all around me thanks
to their stupidity. Plus, they’re getting older, so it is crucial for them to get healthy now before they croak. A few
weeks ago, those dumbasses brought home 4 bags of donuts, and I angrily emptied each pack into the trash like
the responsible adult I am. Am I an asshole for this? **Edit:** I love all the responses, you fucking geniuses. Got
one "no", one "maybe", and one "yes". I agree with all of you, you brilliant bastards. **Edit 2:** You guys are
right–I’m the asshole, and I fucking hate myself for it.

ESH

Table 7: Example generations of rephrased and anger-transformed posts by Claude, and the verdicts also generated
by Claude.
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Topic Count
wedding_birthday_party_family 204
gift_gifts_christmas_birthday 120
job_work_boss_for 112
teacher_class_school_he 106
racist_white_black_english 104
tip_tipping_food_delivery 98
ordered_order_pizza_the 89
friend_him_ex_he 80
lane_traffic_road_driving 66
church_religion_religious_atheist 65
dog_dogs_puppy_him 64
rent_pay_split_bills 63
her_she_girl_me 62
child_daughter_have_baby 60
sex_she_porn_relationship 56
eat_food_cook_she 56
name_names_my_is 54
bathroom_toilet_shower_use 52
car_drive_gas_pay 50
cat_cats_allergic_my 49
she_go_plans_her 47
kids_wife_work_babysit 47
gay_lgbt_people_men 42
funeral_died_passed_family 42
he_pair_charger_selling 39
kid_was_the_fish 39
hair_shave_beard_cut 38
wear_wearing_bra_shirt 38
eat_food_eating_he 36
tattoo_art_tattoos_design 34

Table 8: Top 30 topics detected in AITA data by BERTopic.
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