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ABSTRACT

This paper presents and investigates a novel and timely application domain for
deep learning: sub-second traffic flow modelling in IP networks. Traffic flows
are the most fundamental components in an IP based networking system. The
accurate modelling of the generative patterns of these flows is crucial for many
practical network applications. However, the high nonlinearity and dynamics of
both the traffic and network conditions make this task challenging, particularly at
the time granularity of sub-second. In this paper, we cast this problem as a repre-
sentation learning task to model the intricate patterns in data traffic according to
the IP network structure and working mechanism. Accordingly, we propose a cus-
tomized Flow Neural Network, which works in a self-supervised way to extract
the domain-specific data correlations. We report the state-of-the-art performances
on both synthetic and realistic traffic patterns on multiple practical network appli-
cations, which provides a good testament to the strength of our approach.

1 INTRODUCTION

Deep Learning (DL) has gained substantial popularity in light of its applicability to real-world tasks
across computer vision, natural language processing (Goodfellow et al., 2016), protein structure
prediction (Senior et al., 2020) and challenging games such as Go (Silver et al., 2017). Typically, the
data for these learning tasks takes the form of either grids, sequences, graphs or their combinations.
The tremendous efforts on customizing neural network structures (Krizhevsky et al., 2012; Kiros
et al., 2015; Hochreiter & Schmidhuber, 1997) and learning strategies (Sermanet et al., 2018; Oord
et al., 2019) to explore the data-specific properties underpin the success of modern DL in these
domains. Following the same design philosophy, we wish to capitalize on these advancements to
develop a customized neural network and self-supervised learning strategy to tackle the crucial and
timely challenge of traffic flow modelling in IP networks.

1.1 TRAFFIC FLOW MODELLING IN IP NETWORKS

An IP network is a communication network that uses Internet Protocol (IP) to send and receive
messages between one or more devices such as computers, mobile phones. The messages could be
general application data such as video, emails or control signals of any connected devices. When
sending the messages from a source to a destination, the source device encapsulates the bit chunks
of encoded messages into a set of IP packets. The packets then travel through communications
links and routers or switches in a given routing path sequentially, thus forming the traffic flows in
an IP network (Hunt, 1992). As one of the most commonly used global networks, the IP network
provides the majority of such data transmission services to support today’s Internet applications
such as video streaming, voice-over-IP, and Internet of Things. Therefore, a good understanding
of the behaviorial patterns of the underlying traffic flows plays a crucial role in network planning,
traffic management, as well as optimizing Quality of Service (QoS, e.g., transmission rate, delay).
This challenge is termed as traffic flow modelling and is fundamental to IP networking research
and practice. However, the high nonlinearity, randomness and complicated self similarity (Leland
et al., 1994) of these traffic thwart extensive traditional analytical and learning models, particularly
at fine-grained time scales, such as traffic flow modelling at a sub-second level.

Consider the illustrative example in Fig. 1, which depicts multiple packet flows with shared for-
warding nodes and links in their routing paths. The sender of each flows streams data packets to the
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Figure 1: Traffic flows in IP networks.

receiver at a dynamic sending rate, which is determined according to many factors such as its rate
demand, existing traffic loads, available link bandwidth, and etc. The packets usually experience
various delays on the journey due to actions such as forwarding processing, link transmission, pack-
et queueing. For example, when the sum rate of Sender 2 and 3 exceeds 10 Gbps, the router R2–R4
will hold off and cache the arriving packets in their buffers until the links from R2 to Receiver 1
become free, causing what is known as the queueing delay. The extent of these delays depends on
multiple factors, including the amount of traffic going on, the capacity of the router’s output queue,
link bandwidth etc. The random establishment, interaction and termination of massive flow con-
nections give rise to network dynamics. This illustrates the complexity of traffic flow modelling in
IP network even for the simple example. This challenge is exacerbated when the traffic loads are
running at over 100 Gbps and in a network with significantly larger size in practice.

1.2 MOTIVATING FLOWNN BASED TRAFFIC FLOW MODELLING

A flow pattern can be defined as anything that follows a trend and exhibits some kind of regularity,
e.g., distribution, periodicity etc. The modelling of traffic flow patterns can be done mathematically
or by the use of data-driven learning algorithms. We argue that developing a customized FlowNN in
the context of IP traffic flow modelling is important in two aspects: 1) improving the performances
of supported network applications from the accurate modelling towards the behavioral patterns of
traffic flows in IP network, particularly at the time scale of sub-second level; 2) providing an exciting
new “playground” and neural network model for the DL community to solve real-world-motivated
research challenges by deeply combining its structure and working mechanisms. Next, we make the
following two clarifications.

Why not using traditional mathematical models. The past decades have seen numerous traffic
models proposed to mathematically model the traffic characteristics of networks (Gebali, 2015). For
example, extensive studies use the Poisson model to characterize the traffic by assuming the arrival
pattern between two successive packets follows Poisson process. Considering the heavy tailed distri-
bution and burstiness of the data-center traffic, recent work in Benson et al. (2010) models the traffic
arrival pattern as a log-normal process. To capture the temporal patterns and make predictions ac-
cordingly, Seasonal Autoregressive Integrated Moving Average (SARIMA) is exploited in (Ergenc
& Ertan, 2019) to model the traffic time series. These analytical models may generate outputs that
are easier to interpret, but are bonded to the specific working circumstance and assumptions. More
importantly, these statistical models function at coarse time scales of hours and assume relatively s-
moother traffic patterns. However, as reported in many practical traffic measurements in e.g. Benson
et al. (2010; 2011); Greenberg et al. (2009), most flows last less than 1 minute. This implicates tasks
requiring traffic models at finer-grained time scales are beyond the capability of these traditional
models.

Fig. 2 plots the traffic traces we collected from a practical backbone network–WIDE1, which shows
the realistic traffic patterns when the packet flows are sampled by two different time scales. The
long time-scale plot in Fig. 2b shows clear a “tide-effect” associated with daily human activities. By
contrast, the traffic traces in Fig. 2a get more noisy and difficult to recognize obvious patterns when
they are counted by millisecond.

1http://mawi.wide.ad.jp/˜agurim/index.html
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Figure 2: Time series of practical traffic traces from WIDE backbone network binned by two differ-
ent time scales.

Why not using existing neural network models. When put in the context of data-driven learning,
the traffic flow modelling problem can be reduced to the representation learning task. If treating
the traffic flows as the general spatio-temporal data, extensive existing neural networks fit such task,
including Convolutional Neural Net (CNN, (Mozo et al., 2018)), Graph Neural Net (GNN, (Rusek
et al., 2019)), Recurrent Neural Net (RNN) as well as their variants and combinations (e.g., STHGC-
N (Kalander et al., 2020), STGCN (Yu et al., 2018), and Xiao et al. (2018); Polson & Sokolov (2017);
Cui et al. (2020); Guo et al. (2019); Lin et al. (2019)). The customized designs to the data-specific
properties make the success of these existing models, such as the convolutional operation to capture
the spatially local correlations in CNN and the aggregation operation to extract the adjacent link cor-
relations in GNN, and so on. As a human-engineered industrial system with clear system structure
and working mechanism, the IP network creates domain-specific spatio-temporal data correlations,
which are difficult to capture for the incumbent spatio-temporal models if without any modification.
One of the most important difference is that the spatial data in IP networks is not only correlated to
other spatial data at the same point in time, but also able to directly influence the future realizations
of correlated locations with strict order (i.e., the Spatio-Temporal Induction effect as we will disclose
later). Moreover, these existing studies only target at a coarse-grained timescale above minutes or
even hours. Models at a sub-second granularity, as FlowNN functions, require deeply combining the
spatio-temporal data trends, as well as the system structural knowledge and working mechanism.

1.3 OUR CONTRIBUTIONS

We claim two critical contributions: 1) we formulate the crucial traffic flow modelling problem in
IP networks as the representation learning task in deep learning, and develop a customized neu-
ral network–FlowNN and the associated Induction Operation to extract the domain-specific spatio-
temporal data correlations in IP traffic flows. To the best of our knowledge, this is the first work to
design customized neural network and learning strategy by deeply combining the IP network struc-
ture and working mechanism. The Induction Operation also makes it the first time for a data-driven
learning model able to infer the data features at a millisecond granularity, which is usually treated
as the ‘noise’ region by existing coarse-grained models; 2) we report the state-of-the-art perfor-
mance over the baselines in different type of practical network applications, which provides a good
testament of our model.

2 SPATIO-TEMPORAL INDUCTION

By stacking the networking feature timeseries sampled at all the nodes that a flow passes through,
the IP traffic flow data can be organized in the form of high-dimensional tensor time series, as shown
in Fig. 3a. The feature (denoted as xt

f,n) could be the average flow rate (i.e., the amount of packet
bits received in each unit measurement time) at each node or the average per-hop packet delay etc.
The routing path herein constitutes the most significant attribute for the generative process of each
IP traffic flow. This creates many peculiar properties in such flow data. For example, for a flow
with a routing path [1→4→12] in Fig. 3a, the current data at node 4 was originated from the history
data at its predecessor node 1, but delayed by at least2 the link delay ∆t. These data will also flow
to its successor node after certain delays. This shows that the flow state at a node is physically

2Packet processing and queueing will also impose extra delay.
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Figure 3: (a) IP traffic data in the form of flow tensor time series. The S-shaped curve characterizes
the data correlationship along the spatio-temporal dimensions; (b) A sample of data rates of a flow
and the rate difference recorded at two neighboring nodes.

driven3 by the past flow state at its predecessor node. Therefore, such time-resolved flow data not
only tells us who is related to whom but also when and in which order relations occur. This forms
the S-shaped data correlation pattern, as exemplified in Fig. 3a. An accurate modelling of the flow
data requires attention to such domain-specific data properties, which are absent in the majority of
existing learning models if not all of them.

Fig. 3b plots a sample of flow traces at two neighboring path nodes from the WIDE dataset. We
can observe that an exceeding of data rate at node 1 over node 2 for some duration (e.g., T1) will
always induce a subsequent duration T2 when the data rate at node 2 is greater than that at node
1. Moreover, the cumulative amount of data bits the two nodes forward in such two durations are
almost same, as indicated by the rate difference between the two nodes at the bottom of Fig. 3b.
This illustrates that there is a stronger correlation among the data in these two durations, and the
future realizations at T2 are subject to the constraint of the states at T1 by local flow conservation4

between the two nodes.

In analogy to the concept of Electromagnetic Induction5 in Physics, in what follows, we introduce
the Spatio-Temporal Induction (STI) effect in IP traffic flows. Accordingly, a learning model is
proposed to model the network traffic flows at a fine-grained timescale.

Definition 1. Spatio-Temporal Induction is the production of the temporal evolutions of a flow from
the history spatial patterns at its correlated locations.

The STI builds a physical relationship between the spatial and temporal patterns of IP flow data. This
provides a more accurate interpretation to the underlying data generating process than the trending
information manifested by the data itself. Such induction effect is created by the IP network structure
and working mechanism, which is preserved when the flow data is sampled at any timescale in
practice.

Next, we develop an Induction Operation to concretely capture the S-shaped data correlation in IP
flow data and propose what we call FlowNN to generate the desired traffic model for IP networks.

3 FLOW NEURAL NETWORK

As aforementioned, after the packet flows leave the source devices, they may experience delays from
many factors (e.g., link transmission, packet processing, queueing etc) during the journey throughout
the routing path. Accordingly, each node in the path will record a transformed time-series view
of the same source flow due to the transmission and forwarding actions from the network. This

3The exotic competition from other co-located flows also drives the flow evolution in part. This can be
included by appending the aggregated coflows as an auxiliary feature.

4Flow conservation is the network property that except the source and sink, the total incoming flow of a
node is same as its outgoing flow or incoming flow of its successor node in the routing path if no packet is lost.

5Electromagnetic induction is the production of electric currents across a conductor in a changing magnetic
field, which determines a relationship between electricity and magnetism.
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Figure 4: Framework of FlowNN. With the raw feature data xt
f,n as inputs, FlowNN extracts both

the path-level and the induced node-level feature patterns as learned feature vectors, which can then
be used for different application tasks by changing the Readout layer.

implicates the existence of similarity among these time series since they are from the same source
flow. Such path-wide similarity reflects the shared forwarding policies all path nodes follow, as
well as the original behaviors of the source flows at the sending side, such as the dynamics of user
demands. On the other hand, the flow patterns recorded at each node may end up being different
from the patterns at the sending side, depending on the experienced networking actions. With all
these in mind, we attend to such similarities and differences by two key blocks–Path-level Coding
and Node-level Induction, and build the framework of FlowNN as Fig. 4.

Path-level Coding: This block constructs an encoding network to extract the patterns that can repre-
sent the state of the whole path. Such path-level patterns capture the similar part of behaviors within
the time series received from all path nodes and will be the base to derive the evolved patterns at
each path node. Technically, we tested both the very recent Siamese net (Maron et al., 2020; Ye
et al., 2019) and GNN based encoders (Rusek et al., 2019) to extract the path-level patterns. Sur-
prisingly, they are not outperforming a direct encoding by the Gated Recurrent Unit (GRU) with all
raw node data as inputs. This stands to the reason that the raw data from the correlated locations
conveys the direct guidance for the near future realization at a node. The operations in above model-
s, e.g., SumPooling or node aggregation, actually destroy such data correlations and introduce more
‘noise’. More details are provided in later experiments. Consequently, in the following, we directly
apply a GRU to encode all the raw inputs.

Node-level Induction: This block encodes the individual patterns at different nodes conditioned on
the path-level patterns from the source flows. Looking into how flows are induced in Fig. 3b, we
can observe an explicit data correlations subject to local flow conservation among the correlated
data sequences. Next, we propose the Induction Operation and the associated Contrastive Induction
Learning to extract such data correlations.

As illustrated in Fig. 3b, the induction process operates on any two consecutive durations like T1

and T2, which can be identified through the rate differences between two neighboring nodes. The
induction is performed separately for each path node, as shown in Fig. 4. For ease of exposition, we
denote the data sequences at all path nodes in T1 and the data sequence at the induced node in T2 as
S and T , respectively. Then, the Induction Operation performs the conditional induction function
f(T |S) to capture the correlations between source sequence S and target sequence T . The function
f(T |S) can be approximated by a specialized Contrastive Induction Learning in a self-supervised
manner as follows.

Contrastive Induction Learning: As discussed in Path-level Coding, we first take the outputs of
path-level feature patterns, {ht

S}t∈T1
, as the initial coding states of source sequence S. A recur-

rent encoder (e.g., GRU6 (Chung et al., 2014)) is then applied to generate the context c of S with
{ht
S}t∈T1 as inputs. Conditioned on the context c, a GRU decoder can be then used to produce the

6Note that the encoder is not limited to GRU, but any type of recurrent models can be used. More recent
recurrent models stacked with modules e.g., attention blocks could help improve results further.
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state codes, {ĥt
T }t∈T2

, for the target sequence T . With the state codes of both S and T at hand,
the key of the induction function f(T |S) is to force the learned state codes of S and T to express
the data correlations subject to local flow conservation. Inspired by Contrastive Predictive Coding
(CPC) (Oord et al., 2019), we learn the mappings from S to T in a way that maximally preserves
the mutual information of the source and target sequences defined as follows:

I(T ; c) =
∑
T ,c

p(T , c) log
p(T |c)
p(T )

(1)

where p(·) is the probability function.

In analogy to CPC, we rely on a contrastive loss function to train the model. As the practice of
contrastive learning (Chen et al., 2020; Oord et al., 2019), we first construct a training batch of
Nb sequence samples, Φ = {T ?

1 , T2, · · · , TNb
}. T ?

1 is the positive sample from the conditional
distribution p(T |c) for the target sequence T and other Nb − 1 sequences are the negative samples
from the original distribution p(T ). Accordingly, we define the following contrastive induction loss
LI to optimize the mutual information in Equation 1 as follows:

LI = −EΦ

[
log

f(T ?
1 , c)∑

Tj∈Φ f(Tj , c)

]
(2)

where f(·) is a score function proportional to the ratio p(T |c)/p(T ). As the way done in CPC, this
can be technically implemented by using a simple log-bilinear model:

f(Tj , c) =
∑
t∈T2

exp(trans[ht
Tj ] · ĥt

T ?
1

) (3)

where trans[ht
T ] is the transpose of the state coding ht

T from the initial embedding layer in Fig. 4.

The induction lossLI defines a categorical cross-entropy of classifying the positive sample correctly.
Optimizing LI will result in high similarity between the true embedding codes ht

T ?
1

and the induced

state codes ĥt
T ?
1

. The above induction pattern is learned by directly comparing the target coding with
the codings of randomly sampled negative samples in latent space in a self-supervised manner. Such
process requires no direct labels in the output space, which makes it easier to generalize the induced
knowledge to diverse applications in IP networks.

4 EXPERIMENTS

We validate the efficiencies of FlowNN on two crucial networking application tasks in IP networks–
flow rate prediction and end-to-end delay inference.

Datasets. We conduct experiments on two publicly available flow datasets–WIDE and NumFabric7.
WIDE are the realistic traffic traces collected from real-world network environment, and NumFabric
are the synthetic traffic widely applied in recent networking researches (Nagaraj et al., 2016; Lei
et al., 2019). The network topology includes 4 core nodes, 8 leaf nodes and 8× 16 hosts organized
in accordance with Fat-Tree network architecture (Al-Fares et al., 2008). We sampled the flow rates
of 50 flows as well as the associated aggregated flow rates at each nodes at the time scale of 1ms
for total length 18432ms. Each flow traverses a routing path with 5 nodes. We found that the flow
tensor time series of such length are enough to learn a stable flow pattern at a sub-second granularity.

Baselines. We compare the proposed FlowNN with the following baselines: 1) Seasonal Auto-
Regression Integrated Moving Average (SARIMA) (Hyndman & Khandakar, 2008; Wang et al.,
2006); 2) GRU (Chung et al., 2014); 3) multiple GRUs (multiGRU); 4) STHGCN (Kalander et al.,
2020), and 5) STGCN (Yu et al., 2018). Particularly, GRU encodes and predicts each time-series
sequence stand-alone without any reference to the information from other spatial nodes. In con-
trast, multiGRU uses separate GRUs to encode each time-series sequence but predicts with Fully-
connected Neural Network (FNN) by jointly concatenating the codings of sequences from all spatial
nodes. STHGCN is the recent work for networking traffic analysis, which uses graph convolutional

7The data can be generated by running the simulation code released in https://knagaraj@
bitbucket.org/knagaraj/numfabric.git
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Figure 5: (a) Validation MSELoss; (b) Normalized flow rate predicted by different models.

network (Kipf & Welling, 2016) and GRU to predict the spatial states of all nodes at each time.
Finally, STGCN is a widely applied model for transportation traffic analysis, which is build upon
the spatio-temporal graph convolution.

Implementation Details. We use Adam (Kingma & Ba, 2014) with a learning rate of 1e−4. All
hidden dimensions are set to 128 and the layer size for GRUs is 3. We train on sampled time series
window of length 256. A batch of Nb = 10 is used to draw the samples for the contrastive induction
loss in Equation 2. The initial embedding layer in FlowNN is performed for each node data by
separated FNNs. We first pre-train the FlowNN with the contrastive induction loss until convergence
and then fine-tune the model with MSE loss (Equation 4) for different application tasks.

Evaluation metrics. The following metrics are adopted for evaluating quality of prediction ŷ with
the ground truth y.

Mean squared error: MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4)

Relative absolute error: RAE =
1

n

n∑
i=1

| yi − ŷi
yi

| (5)

Correlation coefficient: Corr =

∑n
i=1(yi − ȳ)(ŷi − ˆ̄y)√∑n

i=1 (yi − ȳi)2
∑n

i=1 (ŷi − ˆ̄y)2
(6)

where ȳ and ˆ̄y are the mean values of y and ŷ.

4.1 PATH-WIDE VIEWS MATTER FOR IP TRAFFIC FLOW MODELLING!

We first use the one-step-ahead prediction task to demonstrate that path-wide views of FlowNN are
more informative than the widely used single-node view or graph-level views in the literature.

Fig. 5a shows the validation MSE loss across training epochs for the one-step-ahead prediction
task. Naive solution directly uses the previous observation as the next-step prediction. The results
of Naive and SARIMA provide a good testament to the prediction difficulty for traditional non-
DL solutions in a millisecond-granularity networking prediction task. We can see that the loss of
SARIMA is still as high as 80% of the Naive solution. However, the losses of all DL based solutions
are less than 20% of Naive. This shows the powerful advantages of the deep learning principle in
difficult tasks. Table 1 shows the test performances of different methods. Specifically, GRU holds
a single node view and learns the time series of each node separately and the achieved loss is only
22.5% of SARIMA. By contrast, the other DL solutions harvest the information from all path nodes
to predict (i.e., the path-wide views) and the loss are remarkably reduced further against GRU. As
discussed in Path-level Coding, STGCN and STHGCN inherit the graph aggregation operation,
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Table 1: Test performance comparison of different models on one-step-ahead prediction task

Model NumFabric WIDE
MSE RAE Corr MSE RAE Corr

Naive 0.5074 1.6818 0.7462 1.0017 5.7229 0.2619
SARIMA 0.4043 1.5122 0.7924 0.7164 4.4304 0.2979
GRU 0.0911 1.3441 0.9514 0.4634 3.8070 0.7038
multiGRU 0.0409 0.9406 0.9784 0.3972 3.7637 0.7532
STGCN 0.0738 0.8510 0.9608 0.4351 2.9718 0.6791
STHGCN 0.0716 0.8930 0.9587 0.4341 3.2210 0.5620
FlowNN 0.0297 0.7960 0.9843 0.3523 3.6223 0.7703
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Figure 6: Test performances of different DL models on multi-step-ahead predictions task.

their performances are better than GRU, but are inferior to multiGRU. Such findings discourage the
spatial aggregation operation in GCN as the data correlation exploited by GCN deviates a lot from
the truly S-shaped correlation in IP flow data. Finally, the proposed FlowNN outperforms all the
baselines.

Fig. 5b compares the predictions by different models against the ground truth. We can observe that
FlowNN and multiGRU capture the trend of ground truth accurately. Benefiting from the Induction
Operation, FlowNN avoids over-reliance on the far distant history as the vanilla GRU and its variants
function and shows the fastest response to the dynamic changes among the traffic flows.

4.2 WIDE APPLICABILITY ON DIFFERENT APPLICATION TASKS

Multi-step-ahead predictions: We first exam the effectiveness of FlowNN on the multi-step-ahead
prediction task. In this task, we first pretrain FlowNN based on the contrastive induction loss in
Equation 2 until convergence. Following the practice of the recent work for the short-term (second-
level granularity) traffic forecasting in (Mozo et al., 2018), we then take the output of pre-trained
FlowNN and finetune a FNN based Readout layer in Fig. 4 to infer the mean of multi-step-ahead
predictions. The mean realizations of the multi-step ahead are crucial to many short-term networking
planning and control tasks in IP networks. Fig. 6 compares the test performances of different DL
models on the NumFabric dataset. The test results shows that FlowNN outperforms all these recent
baselines on all metrics.

End-to-end delay inference: In today’s IP network, it is important to guarantee that the provided
QoS meets the subscribed service agreement, such as end-to-end transmission delay less than 50ms
for online gaming. However, it is difficult to build an accurate delay model for human experts
(Xiao et al., 2018; Rusek et al., 2019) in practical networks since many factors may influence the
delay, including the dynamic traffic demands, packet processing and queueing etc. In this task, we
apply the learned traffic flow model from FlowNN to perform the traffic-driven delay inference.
Specifically, we apply the same FlowNN model pretrained as in multi-step-ahead prediction task,
and finetune a new FNN based Readout layer to infer the next-step delay. Table 2 shows the test
performances of different models. Although pretrained on the dataset of traffic flow rates, FlowNN
still achieves the best results on the task of inferring the data with different physical meaning. This
shows the robustness of FlowNN across different tasks.

8



Under review as a conference paper at ICLR 2021

Table 2: Test performance comparison of different models on end-to-end delay inference

Model MSE RAE Corr
GRU 0.1364 1.8333 0.9300

multiGRU 0.1011 1.4008 0.9466
STGCN 0.1263 2.0247 0.9412

STHGCN 0.0922 1.4683 0.9533
FlowNN 0.0724 1.3570 0.9617

Table 3: One-step-ahead prediction performances of different models in Out-Of-Distribution test.
For Same dataset test, both the model training and test are conducted on WIDE. By contrast, in
Cross dataset test, models are first trained on NumFabric, but then test on WIDE by finetuning their
Readout layers.

Model Same dataset test Cross dataset test
MSE RAE Corr MSE RAE Corr

multiGRU 0.3972 3.7637 0.7532 0.4272 3.7717 0.7126
STHGCN 0.4341 3.2210 0.5620 0.5236 3.3330 0.4715
FlowNN 0.3523 3.6223 0.7703 0.4173 3.9001 0.7213

4.3 GENERALITY TEST ON OUT-OF-DISTRIBUTION DATASET

In this subsection, we test the model generality when a FlowNN model, pretrained with the con-
trastive induction loss on one dataset, say NumFabric, is used to work in an environment that is
different from the trained one. This is performed by testing with the one-step-ahead prediction task
on Out-Of-Distribution dataset (i.e., cross dataset test). Specifically, we take the FlowNN model
pretrained on the NumFabric dataset and finetune the FNN based Readout layer to test its prediction
performances on the WIDE dataset. As comparison, we also finetune the Readout layers of multi-
GRU and STHGCN already trained on NumFabric to test their performances on WIDE. From the
test results shown in Table 3, we can observe that FlowNN achieves the best performances except
that RAE is slightly higher. Moreover, the performances of FlowNN achieved in cross dataset test is
even better than the results of other baselines achieved in same dataset test (except multiGRU). This
shows the good generality and robustness of FlowNN.

Discussions: We observe that multiGRU, to certain extent, also works well in above experiments,
although is inferior to FlowNN. This can be interpreted by the shortcut learning, as disclosed in
(Geirhos et al., 2020). As illustrated by the data correlation in Section 2, the near future realization of
a node is highly correlated to the path-wide values at last step. This makes a shortcut for multiGRU
that a prediction by directly weighting the last-step path-wide value will capture such kind of data
correlation, although this can not further extract the effect of local flow conservation along the
routing path as FlowNN functions.

5 CONCLUSION

In this paper, we formulated the crucial traffic flow modelling problem in IP networks, and de-
velop a customized neural network–FlowNN and the associated Induction Operation to extract the
domain-specific spatio-temporal data correlations in IP traffic flows. This study makes the pioneer-
ing work to design customized neural network and learning strategy by deeply combining the IP
network structure and working mechanism. We reported the state-of-the-art performances for mul-
tiple practical networking application tasks, which demonstrates the strength of our approach. As
a new ‘playground’ for both networking and deep learning communities, the research of network
intelligence is still in its infancy. We hope this work will inspire more innovations in this field in
future.
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