
Legendre-SNN on Loihi-2: Evaluation and Insights

Ramashish Gaurav1∗ Terrence C. Stewart2 Yang Yi1
1Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA

2National Research Council Canada, University of Waterloo, Waterloo, ON N2L3G1, Canada

Abstract
A majority of the works on Spiking Neural Networks (SNNs) do not deploy and
evaluate their network on a neuromorphic hardware. This not only limits the cred-
ibility of their claims of energy-efficiency and latency gains, but also discounts
the opportunity to appraise neuromorphic technology for real-world computing.
Herein, we especially study the technical facets of deploying and evaluating a
recently formulated State-Space Model based spiking network called “Legendre-
SNN” on Loihi-2 neuromorphic hardware. Legendre-SNN is a highly resource-
efficient reservoir-based univariate Time-Series Classification (TSC) model. This
work’s emphasis is not only on its deployment on Loihi-2, but also on leveraging
the Loihi-2 embedded Lakemont (LMT) cores for its non-spiking reservoir de-
ployment and spike encoding. Since the documentation to program LMT is very
limited, researchers often implement their non-spiking operations on less power-
efficient CPUs (than LMTs). Here, we present the technical know-how to program
LMT (as part of our reservoir deployment) that can be employed by later works.
In our evaluation of Legendre-SNN on Loihi-2 hardware, we pleasantly find that
it outperforms a complex LSTM-Conv integrated architecture on 3 of 15 datasets.
We also present the energy & latency metrics of Legendre-SNN on Loihi-2, where
we find that (for our settings) the reservoir on LMT consumes more than 85% of
total energy; consequently, we advocate for a spiking reservoir in Legendre-SNN.

1 Introduction
AI computing with Spiking Neural Networks (SNNs) is progressively gaining traction in the wake of
calls for Green AI [1, 2, 3]. Training Deep Learning (DL) models on power-hungry GPUs is highly
energy intensive [4, 5], and inference too - consumes notable amount of energy, e.g., ResNet-50
consumes more than 2.5K Joules per sample in inference mode [6]. SNNs on the other hand have
proven highly energy efficient when deployed (generally for inference) on neuromorphic hardware
[7], e.g., Loihi [8, 9]. Note that SNNs are still trained primarily on GPUs with methods falling under
two categories: ANN-to-SNN conversion and Direct Training. Under ANN-to-SNN conversion, an
ANN is first trained via conventional Back-propagation followed by its conversion to an isomorphic
SNN [10, 11, 12]. Under Direct Training, an SNN is directly trained either via non-gradient methods
[13, 14] or by accounting for its non-differentiable spike function [15], e.g., SLAYER [16].

Time-Series Classification (TSC) is one popular AI domain that has ubiquitous applications in Edge
Computing/Smart Wearables/IoT devices. RNNs and their specialized types, e.g., GRUs and LSTMs
have proven quite effective for a variety of TSC tasks, however, at the cost of high energy consump-
tion - owing to their deployment on multi-CPUs/GPUs. Training RNNs is also computationally com-
plex and time consuming in contrast to training Reservoir Computing (RC) networks [17], where,
the recurrent reservoir is kept static, and learning adapts only the linear readout layer. RC networks
have outperformed RNNs on a variety of tasks with ample room for improvements [17]. Note that
the simplicity of RC networks also allows for their efficient hardware implementations [18]. A few
popular RC models are Echo State Networks (ESNs) [19] and Liquid State Machines (LSMs) [20],
where the ESNs are composed of non-spiking neurons and LSMs are composed of spiking neurons.

∗Corresponding author: rgaurav@vt.edu, https://r-gaurav.github.io/

38th Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024(MLNCP 2024).



Recently, a novel reservoir-based SNN called Legendre-SNN (LSNN) was formulated by Gaurav et
al. [21] that outperformed the LSM-based models. The LSNN consists of a static reservoir followed
by an encoding layer and a trainable non-linear spiking readout layer – unlike conventional RC. The
reservoir in LSNN is actually a State-Space Model (SSM) implemented via simple matrix operations
(no neurons) and its output is encoded to spikes, while the non-linear readout layer comprises one
spiking hidden layer followed by a classification layer – more architectural details in Sec 2.4. Note:
the authors [21] in their ablation study found that the LSNN without a hidden layer still outperformed
the LSM-based models; they also energy-profiled LSNN on Loihi-1 (only the post-reservoir spiking
part). We chose LSNN for our deployment because it offers a unique blend of crucial non-spiking &
spiking components that enable the utilization of Loihi-2’s two computational resources: Lakemont
cores & Neuro-Cores; also, quantized SSMs are gaining traction [22]. SSMs are dynamical systems
that accept an input u(t) and maintain an internal state x(t), where x(t) captures the latent dynamics
governing the response y(t); state x(t) evolves over time guided by a defined state-transition rule,
and is used to predict the future states and generate the output y(t) via an observation rule [23]. The
SSM used in LSNN is called Legendre Delay Network (LDN) [24, 25] – more details in Sec 2.3.

In this study, given that the authors of LSNN did not evaluate it (on any dataset) on a neuromorphic
chip, we put its performance to test on Loihi-2. Note: the mix of non-spiking & spiking also makes
LSNN non-trivial to port entirely on Loihi-2. With these motivations, our contributions are:

• We deploy & evaluate LSNN on physical Loihi-2 and report energy & latency metrics. This
work can be considered one of the firsts to deploy a RC-based TSC model on Loihi-2 [26].

• In a first (to our best knowledge), we implement a quantized SSM (i.e., the LDN) on the
embedded Lakemont cores of Loihi-2 and energy-profile it. As part of this implementation:

– We add to the scarce technical documentation to program Lakemont cores (Appx F)

2 Background
We now present the necessary background relevant to our work. We start with a short description of
Loihi-2 & Lava, followed by the description of the LDN (an SSM used as reservoir) and the LSNN.

2.1 Loihi-2 chip
Loihi-2 [27] is the 2nd generation neuromorphic chip from Intel, which improves upon Loihi-1 [28].
Notably, Loihi-2 comes with 1, 048, 576 spiking units, 120 million synapses, and 6 embedded x86
Lakemont (LMT) cores per chip; it has 128 Neuromorphic Cores (Neuro-Cores), each housing 8192
spiking units. The LMT cores are responsible for many essential tasks, e.g., facilitating spike-based
communication, data I/O (i.e., encoding and decoding), and network management/configuration, etc.
The embedded LMTs execute standard C code, however, with support for only 32-bit operations; this
implies that only quantized operations can be executed on LMTs. The spiking units on Neuro-Cores
are asynchronous programmable CUrrent BAsed (CUBA) neurons that generate binary (as well as,
32-bit graded) spikes; the Neuro-Cores also support Three-Factor Rules [29] based On-chip training.

2.2 Lava software suite
The Loihi-2 chips can be programmed using Intel’s “Lava” software suite; the suite consists of mul-
tiple libraries e.g., lava, lava-dl, etc., that can be used to build and train a variety of spiking net-
works, along with support for their deployment and profiling on Loihi-2. A concise documentation
and programming features of Lava2 can be found in [30]; herein, we describe only those program-
ming paradigms of Lava that are most relevant to our work. The two important lava paradigms used
to build (our) Loihi-2 deployable networks are Process and ProcessModel. Note that a Process
can have multiple corresponding ProcessModels depending on the hardware backend the Process
is intended to be deployed upon. A Process defines the interface of a component of the network,
while the corresponding ProcessModel defines the implementation of its Process (on the desired
backend). Lava supports 3 types of ProcessModels: PyLoihiProcessModel (meant for Python
implementations to be deployed on CPU), CLoihiProcessModel (meant for C implementations to
be deployed on embedded LMT), and NcProcessModel (meant for NxCore implementations to be
deployed on Neuro-Cores). The ProcessModels of different Processes synchronize among them-
selves via a protocol called LoihiProtocol that consists of multiple execution phases implemented
by the participating Processes (details in Appx A). Coming to lava-dl, it assists in building and
directly training the SNNs on GPUs (via its slayer [16] API), and their deployment on Loihi-2 (via
its netx API). Lava also provides a simulation backend for the physical Loihi-2 chip; the switch to
simulation and physical backends can be made via Lava’s Loihi2SimCfg and Loihi2HwCfg APIs.

2https://lava-nc.org/

2



2.3 Legendre Delay Network (LDN)
LDN – a type of an SSM introduced by Voelker et al. [24, 25] is a neural approximation of a Linear
Time-Invariant system implementing a delay of θ secs, i.e., for a univariate input signal u(t) to the
LDN, its output is y(t) = u(t−θ). Following are the state equations of the LDN in continuous-time
i.e., Eqs (1) & (2), and discrete-time i.e., Eqs. (3) & (4) (note: Legendre-SNN uses only Eq (3)):

ẋ(t) = Ax(t) +Bu(t) (1)
y(t) = Cx(t) +Du(t) (2)

x[t+ 1] = Ax[t] +Bu[t] (3)
y[t] = Cx[t] +Du[t] (4)

where the Eq (1) (& Eq (3)) is the state-transition equation and the Eq (2) (& Eq (4)) is the obser-
vation equation. Note that u(t)∈R, x(t)∈Rd, and y(t)∈R (u[t], x[t], and y[t]) are the LDN’s input,
state-vector, and output in continuous-time (and discrete-time). The values of the state-matrices A,
B, C, & D (and A, B, C, & D) in the equations above that define an LDN are stated in Appx B.

2.4 Legendre-SNN (LSNN) [21]

INP

LDN

⋏

⋏

⋏

⋏

⋏

⋏

ENC

⋏

⋏

⋏

⋏

⋏

⋏

⋏

⋏

HDN

⋏

⋏

OTP CLS

Relay Node

⋏ CUBA Neuron

Signal Input Node

Class Output Node

Figure 1: Our adapted LSNN model [21].
Connections ENC to HDN to OTP are all-to-all.

LSNN is a highly resource efficient reservoir-based SNN
for TSC tasks. In their experiments, the authors [21] used
a maximum of 120 “Integrate & Fire” (IF) neurons and
achieved SoTA spiking performance on 5 univariate-TSC
datasets. The LSNN constitutes of an LDN functioning as
a static reservoir followed by an SNN comprising an en-
coding layer, one hidden and an output layer – both train-
able. The LDN accepts a univariate signal u[t] and out-
puts a d-dimensional state-vector x[t] (authors [21] refer
x[t] as the temporal features of input u[t]). The features
x[t] are rate-encoded to binary spikes via a two-neuron
(IF) encoder layer (ENC). Note that the scalars in x[t] can
either be positive or negative, therefore, one needs a pair
of neurons, each sensitive to the sign of the scalar, to en-
code. Thus, the number of neurons in ENC is 2×d (hence-
forth, 2d). The ENC layer is followed by a hidden layer
(HDN) of 3×d (henceforth, 3d) number of IF neurons; the
spikes of which are forwarded to the non-spiking output
layer (OTP), where, the classes are inferred on the maximally accumulated voltage of OTP nodes.
Thus, the total number of IF neurons in LSNN is 2d+3d=5d and the number of trainable connec-
tions is 2d×3d+3d×c=6d2+3dc (where c is number of OTP nodes/classes). Compared to the orig-
inal LSNN, there are two distinctions in our adapted LSNN (see Fig 1): (1) Instead of a non-spiking
OTP layer, for programming constraints/ease on Loihi-2 we use a spiking OTP layer; we forward these
OTP spikes to a new classification layer (CLS) that infers class on the maximally firing OTP neuron,
& (2) Except the ENC layer IF neurons, all the neurons in HDN and OTP are CUBA neurons (details
later). Henceforth, term “LSNN” implies our adapted LSNN. In Fig 1, the number of “Relay” nodes
is equal to d, and each of them duplicates the corresponding scalar in x[t] and forwards it to ENC. The
total number of neurons in our adapted LSNN is 5d+c and the number of trainable connections re-
main same (similar to [21] - only the black connections in Fig 1 are trainable). In the original LSNN,
the authors considered the maximum value of d=24 and c=2; in our experiments, this implies that
the number of neurons=5×24+2=122 and number of connections=6×24(24+1)=3600.

3 LSNN’s Training on GPU, and Evaluation & Profiling on Loihi-2
We now explain our framework to train our adapted LSNN (Fig 1) on GPU and evaluate & profile it
on Loihi-2. Note that the reservoir LDN in LSNN is implemented via regular matrix operations (i.e.,
Eq (3)) and not with spiking neurons; whereas, the spiking network following the LDN is composed
of IF (in ENC) and CUBA neurons (in HDN & OTP). Although the LSNN as a whole can be easily
trained on CPU/GPU, its evaluation & profiling on Loihi-2 is not straightforward, the non-spiking
LDN and spiking network must be accounted appropriately; we do that by deploying the LDN along
with ENC layer on the embedded LMT cores and the following HDN & OTP layers on the Neuro-Cores.
However, implementing the LDN on LMT is not trivial either – because the LMT cores support only
32-bit signed integer operations. Therefore, to implement the LDN (& ENC layer) on LMT, we must
quantize all its real-valued variables and operations to 32-bit integers. Note that for the uniformity of
our experiments, we train the LSNN with quantized LDN (instead of a continuous-valued one). The

3



CPU

INP LDN ENC

CPU/GPU

HDN OTP

CPU

CLS

(a) Backends for training LSNN on CPU/GPU
CPU

INP

LMT

LDN ENC

Neuro-Core

HDN OTP

CPU

CLS

(b) Backends for evaluating LSNN on Loihi-2
Figure 2: Training and Evaluation backends of Legendre-SNN (LSNN). Note that the backends in Fig 2b are
for LSNN’s deployment on physical Loihi-2; for its deployment on Loihi-2’s simulation, all backends are CPU.

Fig 2 above pictorially shows our training and evaluation backends of the LSNN. We next explain
our method to quantize the LDN, followed by the details of LSNN’s training and evaluation.

3.1 Quantization of LDN
Quantization of a floating-point number is commonly achieved by scaling it with a power of 2 (say
P) and taking only the integer part (i.e., clipping away the fractional part after scaling). Note that
the magnitude of scaling factor P determines the precision of quantization; the higher it is, the more
information is preserved during quantization (and precision loss is low). However, considering the
subsequent quantized operations and for numerical stability, P should be appropriately chosen so as
not to overflow the bit limitation. Henceforth, we denote all the quantized variables with a bar over it
e.g., the continuous-valued u[t] is quantized as u[t], where u[t]=⟨P×u[t]⟩ (⟨.⟩ denotes rounding to
nearest integer). We next explain our quantized operations to compute the LDN’s state-vector x[t].
We start with the quantization of Eq (3), where the matrices A & B, states x[t] & x[t+1], and input
u[t] are all floating-point. Therefore, A=⟨P×A⟩, B=⟨P×B⟩, and x[t]=⟨P×x[t]⟩; this implies:

x[t+ 1] = Ax[t] +Bu[t] (5)

where x[t+1] has the contribution from the factor P twice. Therefore, we scale it back as x[t+1] =⌈
x[t+1]

P

⌉
for the next iteration, where ⌈.⌉ is the ceil operation. Now that we have obtained x[t+1], we

rate encode it to binary spikes via the ENC neurons (equations in Appx C). Note: we conduct detailed
spike-train synchrony tests (see Appx D) between the rate encoded x[t] & x[t] (i.e., quantized &
continuous-valued respectively) to confirm the correctness of our LDN quantization process.

3.2 Training LSNN on GPU
Since the LDN reservoir (& ENC) in LSNN is static we do not train it, while the network comprising
HDN & OTP layers is trainable. We build and train that network (i.e., HDN→OTP) using the lava-dl’s
slayer API – henceforth, we call this CPU/GPU trainable network as SlayerSNN. As can be seen in
Fig 2a, the univariate INP, quantized LDN, and the two-neuron ENC layers are implemented on CPU,
such that the x[t]’s encoded spikes are fed to the SlayerSNN i.e., the HDN and OTP layers network
composed of CUBA neurons; we keep the current & voltage decay hyper-parameters (τcur & τvol)
of these neurons tunable. We leverage the SpikeRate loss defined in slayer over the spiking rate
of the OTP layer neurons and the Adam optimizer [31] to train SlayerSNN ; the classes are inferred
on the maximally firing OTP neuron. Note that in each training epoch, we also evaluate the trained
LSNN on the test data and save the network parameters that obtains the best test accuracy. The saved
SlayerSNN is then later used along with the quantized LDN to obtain a Loihi-2 deployable LSNN.

3.3 Evaluating LSNN on Loihi-2
A network composed of Lava Processes can be deployed on physical Loihi-2 chips, as well as on
Loihi-2’s simulation running on CPUs. Therefore, we build our Loihi-2 deployable LSNN from the
saved best-performing SlayerSNN using Lava Processes; henceforth, we call this Loihi-2 deploy-
able LSNN as LavaLSNN. We use lava-dl’s netx API to exchange the saved SlayerSNN to a Lava
Process (say NetxSNN ) that we interface with other constituent Processes of our LavaLSNN. The
other three main Processes of LavaLSNN are: InpSigToLdn, LdnEncToSpk, and OutSpkToCls;
each of these three Processes have one or more corresponding ProcessModels for the backends
they are intended to be deployed upon (see Appx E). Fig 3 shows the architecture of our LavaLSNN
and the supported backends for the constituent Processes. Note that InpSigToLdn Process feeds
an input signal to the LDN, LdnEncToSpk Process implements the quantized LDN and encodes
its x[t] to binary spikes, which are sent to the NetxSNN, and OutSpkToCls Process infers classes
from the NetxSNN ’s output spikes (and computes accuracy). Also note that since a core part of our
contributions is the programming of LDN on LMT, we present its technical know-how in Appx F.

4 Experiments & Results
We now present the details of our experiments conducted with LSNN and related results. We exper-
iment on 15 TSC datasets with number of classes ∈[2, 5], and signal duration ∈[140, 900] time-steps

4



InpSigToLdn

CPU only

LdnEncToSpk

LMT/CPU

NetxSNN

Neuro-Core/CPU

Ξ OutSpkToCls

CPU only
signal spikes spikes spikes

ground truth

Figure 3: LavaLSNN Processes, their connections and supported backends; ‘Ξ’ is an adapter Process to
adapt spikes from Neuro-Core to CPU. For LavaLSNN ’s physical Loihi-2 deployment, blocks are color coded
with Fig 2b (backends are: LMT & Neuro-Core); for deployment on Loihi-2 simulation, all backends are CPU.

(see Appx G). The two parameters that characterize the LDN (in LSNN) are its delay value θ and di-
mension d of its state-vector x[t] (these values define the state-matrices A & B). In our experiments,
we tune θ∈{110, 130, 150} time-steps, and d∈{4, 6, 8, 10, 12, 14, 16, 24}; the CUBA neurons’ τcur
and τvol decays are tuned in {0.00, 0.10, 0.20}. The batch size and number of training epochs vary
with dataset and can be found in our code [32]. For all the experiments we shuffle the train and test
data every 20th epoch and halve the learning rate η every 40th epoch (initial η = 0.001). Note that
we set the factor P=4096, such that the operations in Eq (5) are well represented in 32-bit.
4.1 Training and test procedure on CPU/GPU
As stated above, we train our LSNN (SlayerSNN specifically, with quantized LDN) on GPU (see
Fig 2a). For each dataset, we conduct grid-search on the abovementioned values of θ, d, τcur, & τvol
(we ensure θ ≤ signal duration). Let κm denote one combination of (θi,dj ,τcurk ,τvoll); for each κm

we train the LSNN on 5 different sn∈SEEDs. Note that for each of the training runs for a dataset, we
obtain the best performing LSNN test-accuracy: slyr accκm

sn , and use the same trained network to
obtain the corresponding LavaLSNN accuracy: l2sim accκm

sn on Loihi-2 simulation i.e., on CPU.
We then compute the final test accuracies reported in Tab 1 as follows (where mdl=slyr or l2sim):

mdl best = max
κm,sn

(mdl accκm
sn ) , mdl mean = max

κm

(mean
sn

(mdl accκm
sn )) (6)

4.2 Evaluation procedure on physical Loihi-2
We evaluate our LavaLSNN on physical Loihi-2 for all the 15 datasets; Fig 2b shows LavaLSNN ’s
respective backends for deployment. Since the Loihi-2 boards on Intel’s INRC cloud are on shared
access, we prioritize the variety of LavaLSNN models that we evaluate on physical Loihi-2. There-
fore, for each dataset, we first choose and evaluate all those LavaLSNN models that correspond to
l2sim best, followed by evaluating a next few models with l2sim accκm

sn within 2% or 3% absolute
margin of l2sim best accuracy; we then report the best accuracy (among all) - l2hw best in Tab 1.
4.3 Results Analysis
We now analyze our results in Tab 1, where we compare ours with that of LSTM-FCN [33]. LSTM-
FCN is composed of one LSTM block, three 1D Convolution blocks (each accompanied with batch
normalization), and dropout & average pooling blocks. As the LSTM-FCN is a significantly com-
plex architecture than the LSNN and the related work [33] provides a benchmark on all our experi-
mented datasets, we choose it for comparison. In Tab 1, the simple LSNN either achieves the same
accuracy or outperforms the well established LSTM-FCN on 5 datasets – considering the best and
average performance of both: LSNN on GPU (slyr ∗) and on Loihi-2 simulation (l2sim ∗). Re-
garding the variation of mean(slyr accκm

sn ) and mean(l2sim accκm
sn ) (over SEEDs sn) with hyper-

parameters d, θ, τcur, & τvol, we did not find any conclusive trend between them (similar to [21]);
although, for a few datasets, we observed that higher d results in higher accuracy. Coming to LSNN’s
performance on physical Loihi-2 (l2hw best), we see it outperforming LSTM-FCN on 3 datasets.
It is expected that a typical network’s deployment on a hardware and its simulation should produce
same results, however, we did not observe this in our Loihi-2 experiments. In fact, for a few datasets,
we observed that non l2sim best models achieved better accuracies on Loihi-2 hardware; here too,
we observed that generally higher d achieved better accuracies. Regarding comparison with other
spiking networks, we found other spiking works on 8 of our experimented datasets. For the first five
datasets in Tab 1 -[21] achieved (max) 98.49, 93.56, 82.72, 99.51, 80.43 (%) accuracies (resp.), for
Cofe & Light2: -[34] achieved 100.0 & 80.33 (%) accuracies (resp.), and for ToSe2: -[35] achieved
83.00%. Note: [21] tune their LSNN on a much wider set of hyper-parameters with a different loss
function, and [34] use trainable ReLU Conv layers to extract temporal features – hence, they obtain
higher accuracies. Additionally, we conducted two intrusive experiments with LSNN, where (a) we
used continuous valued LDN and (b) the neuron decays (τcur & τvol, along with the weights) were set
to trainable. For ToSe2 dataset, upon inferring with such an l2sim best model on physical Loihi-2,
we obtained 93.08% accuracy (same as LSTM-FCN, Tab 1); we present more details in Appx H.

5 Discussion & Insights
We now profile the LSNN on physical Loihi-2 and present some insights from its analysis.

5



Table 1: Our results with LSNN on GPU, on Loihi-2 simulation, and on physical Loihi-2 hardware
Method/

Accuracy
Datasets

E5000 FordA FordB Wafer Eqaks Cofe ToSe1 ToSe2 Light2 Wrms WrTC OlOil Meat Comp RDev
slyr best 95.51 91.29 81.61 97.96 79.14 100.0 93.86 93.85 78.69 80.52 87.01 66.67 100.0 71.60 54.40

slyr mean 94.95 90.86 79.73 97.70 76.26 95.71 91.75 88.92 72.13 75.32 84.68 46.68 95.33 68.56 48.75
l2sim best 95.31 90.98 80.12 98.26 76.98 100.0 92.98 93.85 78.69 79.22 85.71 63.33 96.67 69.60 53.33

l2sim mean 94.83 90.71 78.57 97.91 75.40 90.71 91.49 88.31 71.80 75.06 84.94 43.33 92.00 67.68 49.39
l2hw best 95.33 90.61 77.90 98.38 77.70 92.86 92.11 90.77 68.85 75.32 84.42 46.68 98.33 70.40 50.40

LSTM-FCN 94.73 92.72 91.80 99.92 83.54 100.0 98.25 93.08 80.33 66.85 79.56 86.67 91.67 86.00 58.13
Note: We binarized E5000 dataset from 5 to 2 classes (as done in [21]); on E5000, LSTM-FCN obtains accuracy on
all the 5 classes, whereas we experimented with binarized classes, therefore we do not highlight in bold. The terms
slyr ∗, l2sim ∗, and l2hw ∗ denote accuracies on GPU (from SLAYER), on Loihi-2 simulation (on CPU), and on
physical Loihi-2 respectively. The datasets’ names and descriptions are in the Appx G; all numerals in this table are

accuracies in %. For ∗ mean results, std for all the datasets ≤ 0.05; for a few datasets, std approached 0.001.

5.1 Profiling LSNN on physical Loihi-2 chip
To profile SNNs on Loihi-2, it is recommended to run workloads uninterrupted for sufficiently long
- in repeats. Also, when profiling with energy-probes, two settings that control the probe’s buffer
size (Sj) and its information binning over (Bk) time-steps need to be adjusted for sensible measure-
ments. Note: our emphasis here is not on proving energy-efficiency of SNNs on Loihi-2 ([8, 9]
already do), rather on profiling the individual components/backends of LavaLSNN (see Figs 2b &
3). Especially, we are interested in the energy consumption of (1) LMT & Neuro-Core i.e., LdnEnc-
ToSpk→NetxSNN, (2) only LMT i.e., LdnEncToSpk, and (3) only Neuro-Core i.e., NetxSNN. An
important nuance to consider here is that the LavaLSNN has a signal input Process on CPU. The
communication between CPU & chip introduces a lot of variability in execution time and energy
consumption; this overhead also brings instability in running longer workloads. Hence, for stability
and consistency, we hard-code a 140 time-steps (t.s.) quantized sample signal from E5000 dataset
on LMT itself (in its C code) and conduct all our profiling; for (3), as no LDN/LMT is involved,
we stimulate the trained NetxSNN via biased neurons (right on Neuro-Core) that spike every few
t.s. The detailed procedure to obtain LSNN’s energy and latency metrics (for three different orders
d) reported in Tab 2 is mentioned in the Appx I; note that two Neuro-Cores and one LMT core were
utilized. In Tab 2, we clearly see that (2)-LdnEncToSpk on LMT expectedly consumes the major
chunk of energy, while (3)-NetxSNN on Neuro-Cores consumes minimal. In fact, for d=24, we see
the energy metrics of (2) & (3) add up to that of (1); latency for (3) varied with Bk (all < 2ms).
The LSNN authors [21] chose a non-spiking LDN to improve on their precursor - Spiking Reservoir
Computing (SRC) model [36]. The SRC uses Neural Engineering Framework (NEF) principles [37]
to implement a spiking LDN (on Loihi-1); compared to it, the non-spiking LDN helps in improved
feature representation and computation, but that incurs the cost of more than 85% energy proportion
(for d=24, between (2):(1) in Tab 2). This recommends going back to choosing spiking imple-
mentation of LDN in LSNN for reaping the most of Loihi-2’s energy-efficiency (see Appx J). The
spiking LDN may affect LSNN’s performance, however, training methodology is also crucial, not
just quality of features. Note that LSNN employs gradient-based optimization with a dedicated clas-
sification loss function (unlike SRC’s regression one), and even without a HDN layer, it outperforms
SRC [21]; thus, using a spiking LDN in LSNN is promising from performance & energy perspective.

6 Conclusion & Future Work
In this work we evaluated a highly resource- & energy-efficient reservoir-based TSC model on Loihi-
2. We also presented the first implementation of a quantized SSM (i.e., LDN) on the LMT cores of
Loihi-2 (& added to the scarce documentation to program LMTs); our implementation can easily be
adapted to other SSMs by accordingly setting the state-matrices. Considering the perceived inferi-
ority of SNNs, our results (in Tab 1) are noteworthy – LavaLSNN on physical Loihi-2 outperforms
LSTM-FCN on 3 datasets and performs at par on another. Our LSNN’s energy-profiling decisively
ascertains the need of spiking LDN in LSNN (from energy perspective) - with optimism for similar
or better performance. A spiking LDN will also forgo the need of ENC layer, although, implementing
a spiking LDN (via NEF) on Loihi-2’s Neuro-Cores is convoluted due to no dedicated Lava support.

Table 2: Per-sample Energy (Enrg) & Latency (Ltnc) metrics of LavaLSNN components on Loihi-2
(1) LMT & Neuro-Core (2) only LMT (3) only Neuro-Core

Order d→ 8 16 24 8 16 24 8 16 24
Enrg (mJ) 2.46, 0.26 2.45, 0.29 2.88, 0.29 2.44, 0.28 2.46, 0.27 2.52, 0.31 0.31, 0.09 0.31, 0.09 0.32, 0.09
Ltnc (ms) 11.46, 1.19 11.22, 1.15 13.13, 1.26 11.33, 1.13 11.46, 1.09 11.60, 1.33 - - -

Metrics for (1), (2): from hard-coded signal on LMT, for (3): from stimulation on Neuro-Core; (x,y)⇒(mean, std)

6



Acknowledgment

We thank the anonymous reviewer(s) for their inputs to improve the presentation of this work, and
Intel for providing us the access to Loihi-2 boards on their INRC cloud. This work was supported
in part by the U.S. National Science Foundation (NSF) under Grant CCF-1750450, Grant ECCS-
1731928, Grant ECCS-2128594, Grant ECCS- 2314813, and Grant CCF-1937487.

7



Appendix

A LoihiProtocol

Here we briefly describe the LoihiProtocol used to synchronize the Lava Processes, more de-
tails can be found at https://lava-nc.org/. The phases in LoihiProtocol are executed in a
particular order, and all the phases (except one) have an implementable guard method that returns a
boolean value - determining if its corresponding phase should be executed in a given time-step. The
phases and their guard methods are described below; phases are in the order of their execution:

1. Spiking phase (run spk()): This phase is executed 1st in order and has no guard method,
i.e., it is executed unconditionally every time-step.

2. Pre-management phase (run pre mgmt()): Executed 2nd in order, and has a guard method
pre guard() that must return True along with lrn guard() to execute this phase.

3. Learning phase (run lrn()): Executed 3rd in order, and its guard method lrn guard()
must return True for this phase to be executed.

4. Post-management phase (run post mgmt()): Executed 4th in order, and its guard method
post guard() must return True for this phase to be executed.

5. Host phase (run host mgmt()): Executed 5th in order, its guard method host guard()
must return True for this phase to be executed.

Note: one can choose to skip a few phases depending on their implementation requirements.

B LDN’s State-matrices

Below, we mention the values of the state-matrices A, B, C, and D that define an LDN - character-
ized by the dimension d (of its state-vector x(t)) and delay θ (i.e., its encoding memory window):

A =
[a]i,j
θ , ai,j = (2i+ 1)

{
−1 i < j

(−1)i−j+1 i ≥ j
and B = [b]i

θ , bi = (2i+ 1)(−1)i

(7a)

C = [c]i, ci = (−1)i
∑i

j=0

(
i
j

)(
i+j
j

)
(−1)

j and D = 0 (7b)

for i, j ∈ [0, d− 1]. Note: A, B, C, and D in Eqs. (3) & (4) are obtained from A, B, C, and D via
Zero-Order Hold (ZOH) method – Eq. (8) below:

A = e(A∆t), B = A−1(e(A∆t) − I)B, C = C, and D = D (8)

where I is an Identity matrix, e(.) is matrix exponential function, and ∆t=1ms.

C LSNN’s neuron equations

Here we present the neuron equations of our adapted LSNN.

C.1 ENC layer

We rate encode the quantized LDN state-vectors x[t] to binary spikes S[t] (using Heaviside Θ(.)).

J = α < E .x[t] > +β , V [t] = V [t− 1] + J and S[t] = Θ(V [t]− V thr) (9)

where α (=1) & β (=0) are the neuron’s gain & bias values, E is encoder vector ∈ {−1, 1}, and V [t]
& V thr are the neuron’s quantized voltage & threshold respectively (we set Vthr=1, =⇒ V thr=P×1).

8



C.2 HDN & OTP layers

Following are the equations of the CUBA neurons used in HDN and OTP layers. Note that depending
on the voltage decay τvol, the CUBA neurons will function either as LIF or IF neurons.

Ui[t] = (1− τcur)Ui[t− 1] +
∑
j

Wi,jSj [t] , Vi[t] = (1− τvol)Vi[t− 1] + Ui[t] (10a)

Si[t] = Vi[t] ≥ Vthr , Vi[t] = Vi[t](1− Si[t]) (10b)

D Spike-train synchrony tests

Here we present the spike-train synchrony tests to validate our quantization of the LDN. Spike-train
synchrony metrics measure the extent of temporal alignment of two spike-trains, i.e., how similar or
dissimilar they are; for which, a number of methods exists [38], we pick three: (1) Victor-Purpura
distance [39] (VPR-dist) – a popular time-scale dependent metric, (2) Inter-Spike Interval distance
[40] (ISI-dist) – a time-scale independent metric, & (3) SPIKE-synchrony [41] (SPK-sync) – another
time-scale independent metric (libraries: PySpike [42] & Elephant [43]) For any two spike-trains:

• VPR-distance metric measures the dissimilarity between them by computing the minimum
cost of transforming a given spike-train into another – based on certain defined operations.
For highly dissimilar spike-trains, VPR-distance metric will be high, and vice-versa.

• ISI-distance metric also measures the dissimilarity between them by using inter-spike in-
tervals to estimate instantaneous local firing rates of spike-trains and quantifying that dif-
ference. For highly dissimilar spike-trains, ISI-distance will be high, and vice-versa.

• SPIKE-synchrony metric measures the similarity between them by using coincidence win-
dows to determine if a pair of spikes, each from two different spike-trains are coincident or
not. For highly similar spike-trains, SPIKE-synchrony will be high, and vice-versa.

We now explain the procedure of our spike-train synchrony tests. We consider spike-trains generated
from four implementations of LDN: Two Python implementations – (1) Original Continuous-valued
LDN implemented on CPU (OC-LDN-CPU-Py) & (2) Quantized LDN implemented on CPU (QT-
LDN-CPU-Py), and two Lava implementations – (3): Quantized LDN implemented on CPU (QT-
LDN-CPU-Lv) & (4): Quantized LDN implemented on Loihi-2 embedded LMT cores (QT-LDN-
LMT-Lv). Note that in our experiments, we have utilized three (all quantized) implementations
of LDN, i.e., QT-LDN-CPU-Py while training, and QT-LDN-CPU-Lv & QT-LDN-LMT-Lv while
evaluation on Loihi-2’s simulation & physical backends respectively. For comparisons among the
four implementations of LDN, we consider all the 6 pairs (i.e., taking two at a time), denoted below:

• Comparisons between Continuous-valued LDN and its Quantized implementations

1. OCcpu
py -vs-QT cpu

py : Comparison between OC-LDN-CPU-Py and QT-LDN-CPU-Py
2. OC

cpu
py -vs-QT

cpu
lv : Comparison between OC-LDN-CPU-Py and QT-LDN-CPU-Lv

3. OCcpu
py -vs-QT lmt

lv : Comparison between OC-LDN-CPU-Py and QT-LDN-LMT-Lv

• Comparison between two Quantized LDNs in Lava: one on CPU and another on LMT

4. QT cpu
lv -vs-QT lmt

lv : Comparison between QT-LDN-CPU-Lv and QT-LDN-LMT-Lv

• Comparisons between Quantized LDNs in Python and Lava (on CPU & LMT)

5. QT
cpu
py -vs-QT

cpu
lv : Comparison between QT-LDN-CPU-Py and QT-LDN-CPU-Lv

6. QT cpu
py -vs-QT lmt

lv : Comparison between QT-LDN-CPU-Py and QT-LDN-LMT-Lv

With respect to designing the LDN, note that it is characterized by two values: ‘d’ & ‘θ’; for our
tests, we consider all the values of d & θ over which we tune our LSNN, i.e., d ∈ {4, 6, 8, 10,
12, 14, 16, 24} and θ ∈ {110, 130, 150}, thus, a total of 8×3 = 24 combinations or 24 LDNs.
Consider one input signal and two different implementations of an LDN, we get two sets - each
of d-dimensional state-vectors x[t] – that are encoded to binary spikes via the two-neuron encoder
system (ENC in LSNN), thus producing two sets of (2×d)-dimensional spike-trains – i.e., one set for

9



(a) OCcpu
py -vs-QT cpu

py (b) OCcpu
py -vs-QT cpu

lv (c) OCcpu
py -vs-QT lmt

lv

(d) QT cpu
lv -vs-QT lmt

lv (e) QT cpu
py -vs-QT cpu

lv (f) QT cpu
py -vs-QT lmt

lv

Figure 4: Spike-train synchrony tests. All 6 pair-wise comparisons of four LDN implementations. For VPR-
dist & ISI-dist, lower is better, and for SPK-sync, higher is better. Solid line is mean and shaded region is std.

each implementation of LDN. Note that a scalar similarity/dissimilarity score is computed between
two individual spike-trains. Therefore, we align those two sets of spike-trains dimension-wise, and
∀ dimensions i ∈ (2×d) we compute a scorei between the two ith-dimension’s spike-trains followed
by the mean of all scorei, thus producing one final-score – representing how similar or dissimilar are
the (2×d) spike-trains on average (for the considered LDN and input signal). Likewise, for the same
input signal we compute 24 similarity/dissimilarity final-scores for all the 24 LDNs. We repeat this
process for 75 randomly chosen signals (5 each from our 15 datasets), thereby obtaining 75 such 24-
dimensional final-scores; we then again compute mean and std across all these 75 vectors. Thus, for
a considered comparison (out of the six above), this averaged 24-dimensional final-scores represents
how similar/dissimilar are the two compared implementations of LDN over the 15 datasets. For all
our 6 comparisons, Fig 4 below shows the (considered) 3 types of spike-train similarity/dissimilarity
mean final-scores (and corresponding std) for all the 24 LDNs averaged over all 75 random signals.

As can be seen above, in Fig 4a, our quantized LDN implementation (QT cpu
py ) is quite similar to the

continuous-valued LDN (OCcpu
py ), where the mean SPK-sync scores tend to be near 1 and the mean

ISI-dist & VPR-dist scores are closer to 0. Coming to the Figs 4b & 4c, we see that both are same,
this is because the quantized implementations of LDN via Lava on CPU (QT cpu

lv ) & LMT (QT lmt
lv )

are same; this is further proved in the Fig 4d where we see that ISI-dist & VPR-dist are exactly 0 and
SPK-sync is exactly 1, i.e., perfect synchrony. However, note that the Figs 4b & 4c are different from
Fig 4a – ideally, this should not be the case, as the underlying maths for QT cpu

py , QT cpu
lv , & QT lmt

lv is
same; the difference exists because of our programming implementations in Python & Lava.

In our Python implementations (OC
cpu
py & QT

cpu
py ), in the first time-step (of the input signal’s dura-

tion), the signal’s first element is rightly accounted for LDN’s state-vector generation and encoding
to spikes, whereas, in our Lava implementations (QT cpu

lv & QT lmt
lv ), in the first time-step, we gener-

ate an all zero state-vector, thus (certainly) no spikes; rather, from the second time-step onwards the
actual input signal is accounted for LDN’s state-vector generation and encoding to spikes. There-
fore, QT cpu

lv & QT lmt
lv run one time-step late than OCcpu

py & QT cpu
py . This behavior is partly because

of the unique LoihiProtocol that our Lava Process - for inputting signals to the LDN follows.
In this Process, every time-step, the run spk() phase sends a contiguous scalar of the input signal
to the LDN. Note that, by the LoihiProtocol’s design, in every time-step, run spk() phase is the
first phase to be executed. Since in the first time-step, the actual signal is yet to be initialized and the
run spk() phase executes first, it sends a zero scalar to the LDN; the next phase to execute (in the
same first time-step) in our implementation is run post mgmt(), where the input signal then gets
initialized. Thus, from the second time-step onwards, the actual signal is accounted for state-vectors
and subsequent spike generation. We opted for such Lava implementation for our experimental ease,
however, one can choose to implement QT cpu

lv & QT lmt
lv to match QT cpu

py outputs. In the Figs 4e &

10



4f, we explicitly compare our QT
cpu
py with QT

cpu
lv & QT lmt

lv , where, we see that both the plots are
expectedly same, and the spike-trains from QT

cpu
lv & QT lmt

lv are quite similar to those from QT
cpu
py .

Overall, Fig 4a shows the difference purely due to quantization, Figs 4b & 4c show the difference
due to quantization and one time-step late processing, Fig 4d shows that QT cpu

lv & QT lmt
lv are exactly

same, and finally, Figs 4e & 4f show the difference (only) due to one time-step late processing.

E ProcessModels of LavaLSNN
The ProcessModels of our defined InpSigToLdn, LdnEncToSpk, and OutSpkToCls Processes of
LavaLSNN are briefly described below; their implementations are in our code [32].

• InpSigToLdn: For this Process, we implement only one ProcessModel: PyInpSigToLd-
nModel that is inherited from lava’s PyLoihiProcessModel and executes on CPU. It is
responsible for feeding an input signal to the LDN (that runs either on CPU or on LMT).

• LdnEncToSpk : For this Process (considering simulated and physical Loihi-2), we imple-
ment two ProcessModels: (a) CLdnEncToSpkOnLmtModel that is inherited from lava’s
CLoihiProcessModel and executes on LMT, and (b) PyLdnEncToSpkOnCpuModel that
is inherited from lava’s PyLoihiProcessModel and executes on CPU. Depending on the
backend, only one of the two ProcessModels is executed. It is responsible for computing
the quantized state-vectors x[t] i.e., temporal features and encoding these to binary spikes.

• OutSpkToCls: For this Process, we implemented only one ProcessModel: PyOutSpkTo-
ClsModel that is inherited from lava’s PyLoihiProcessModel and executes on CPU. It is
responsible for collecting the output spikes from NetxSNN and inferring classes/accuracy.

When LavaLSNN is deployed on Loihi-2’s simulation i.e., on CPU (via Loihi2SimCfg), following
ProcessModels (of the constituent Processes) are executed: PyInpSigToLdnModel, PyLdnEnc-
ToSpkOnCpuModel, and PyOutSpkToClsModel. And when LavaLSNN is deployed on the physical
Loihi-2 chips (via Loihi2HwCfg), following ProcessModels (of the constituent Processes) are
executed: PyInpSigToLdnModel, CLdnEncToSpkOnLmtModel, and PyOutSpkToClsModel. All
these ProcessModels follow the LoihiProtocol for synchronization. Note that we have to de-
ploy the signal-input Process: InpSigToLdn and output-spikes collection Process: OutSpkToCls
(in case of both - Loihi-2’s simulation and physical hardware) on CPU – as these two Processes are
the I/Os. Also note that Lava automatically deploys Processes obtained from lava-dl’s netx API
(in our case - the NetxSNN Process obtained from slayer-trained SlayerSNN ) on the appropriate
backends depending on the choice of: Loihi2SimCfg (on CPU) & Loihi2HwCfg (on Neuro-Core).

F CLdnEncToSpkOnLmtModel for deploying LDN and ENC layers on LMT
Documentation for programming Loihi-2 chips via Lava can be found at https://lava-nc.org/.
On one hand, where the documentation to program Neuro-Cores is well presented there, on the other,
little to no documentation to program LMT cores is provided – this paucity limits the researchers to
use LMT cores for their Loihi-2 deployments, and prompts them to otherwise use the CPU for imple-
menting non-spiking operations or encoding continuous values to spikes. Note that the embedded
LMT cores are more power-efficient than CPUs. In Algorithm 1, we present our CLdnEncToSp-
kOnLmtModel that implements a quantized SSM (i.e., LDN) on LMT cores. Our implementation
also serves as an addition to the limited documentation on programming LMT cores.

We next explain our code in Algorithm 1 (Alg-1, note: only 32-bit ops are supported on LMT) by
first recalling that the CLoihiProcessModel: CLdnEncToSpkOnLmtModel has a corresponding
Process: LdnEncToSpk that provides the interface to communicate with other Processes. Note
that the C file (in our case: ldn enc to spk on lmt.c) containing the code in Alg-1 must have a
corresponding header file bearing the same file name (in our case: ldn enc to spk on lmt.h), see
line 1 in Alg-1. The header file should contain the function prototypes of all LoihiProtocol phases
used in the C file. One should also include another header file with name predefs X.h, where X is
the name of CLoihiProcessModel of the Process to be executed on LMT; in our case X is CLd-
nEncToSpkOnLmtModel (see line 2). Note that the file predefs CLdnEncToSpkOnLmtModel.h is
auto-generated containing the variables of the corresponding Process (in our case: LdnEncToSpk ).

As can be seen in Alg-1 (lines 8,12,27,&32), one can implement each phase of the LoihiProtocol
(on LMT) with an argument runState *rs passed to it. The current time-step of the execution
can be accessed via the time-step attribute of *rs, which can be used to implement time-step
dependent ops (lines 13, 34). One can also define global variables (lines 5, 6) and custom functions

11



(line 19) in the C file, as well as, access the variables defined in the corresponding Lava Process
by their same name (lines 13, 20, i.e., ps ts & ORDER) – this is because of the inclusion of auto-
generated header file predefs CLdnEncToSpkOnLmtModel.h. Note that all the functions can ac-
cess all global variables and Process variables. An important thing to consider is that the Process
running on LMT cores communicates with Processes running on CPUs and Neuro-Cores. In our
case, the LMT Process receives a quantized input (i.e., the input signal u[t]) from an input Process
on CPU; for the same, the recv vec dense() function (line 40) can be used that accepts the *rs
and two other variables: sig inp & input. Note that sig inp is an input port (defined in Ld-
nEncToSpk Process) that receives a signal from the CPU Process, and input is a local variable
that stores the received signal for local processing. Subsequently, when the input (for the current
time-step) is processed and spikes are generated, they can be sent from the LMT Process to the
Neuro-Core Process via the send vec dense() function (line 83) that accepts *rs and two other
variables: spk out & spike data. Note that spk out is an output port (defined in LdnEncToSpk
Process) that sends the spikes stored in local variable spike data to the Neuro-Core Process.

Algorithm 1: C code of our CLdnEncToSpkOnLmtModel to implement LDN (and ENC) on LMT

1 #include "ldn_enc_to_spk_on_lmt.h"
2 #include "predefs_CLdnEncToSpkOnLmtModel.h"
3

4 // Define the global LDN state vector with maximum ORDER = 128.
5 int32_t g_ldn_state[128] = {0};
6 int32_t g_volt[256] = {0}; // Set twice the ORDER number of spiking neurons.
7

8 int spk_guard(runState *rs) {
9 return 1; // keep running the `run_spk()` every time-step.

10 }
11

12 int post_guard(runState *rs) {
13 if (rs->time_step % ps_ts[0] == 1) // Presentation time of one sample is over.
14 return 1;
15

16 return 0;
17 }
18

19 void zero_out_global_arrays() {
20 for(uint32_t i=0; i<ORDER[0]; i++)
21 g_ldn_state[i] = 0;
22

23 for(uint32_t i=0; i<2*ORDER[0]; i++)
24 g_volt[i] = 0;
25 }
26

27 void run_post_mgmt(runState *rs) {
28 zero_out_global_arrays();
29 }
30

31 // Following function is called every time-step.
32 void run_spk(runState *rs) {
33

34 if (rs->time_step % ps_ts[0] == 1) // Presentation time of one sample is over.
35 zero_out_global_arrays();
36

37 int32_t input[sig_inp.size];
38 uint32_t spike_data[spk_out.size];
39

40 recv_vec_dense(rs, &sig_inp, input); // Get u[t].
41

42

12



43 // Note that the matrices Ap, Bp, encoders E, and ORDER are already defined
44 // in Process. The variable ORDER can be accessed as *ORDER or ORDER[0].
45

46 // Compute Ap * x[t] and Bp * u[t].
47 int32_t Apx[*ORDER], Bpu[*ORDER];
48 for(uint32_t i=0; i< *ORDER; i++) {
49 int32_t sum = 0;
50 for(uint32_t j=0; j< *ORDER; j++) {
51 sum += (Ap[i][j] * g_ldn_state[j]);
52 }
53 Apx[i] = sum;
54 Bpu[i] = Bp[i][0] * input[0];
55 }
56

57

58 // Compute Apx[t] + Bpu[t].
59 for (uint32_t i=0; i< *ORDER; i++) {
60 int32_t state = Apx[i] + Bpu[i];
61 g_ldn_state[i] = (
62 //Ceil Integer Division
63 (state > 0) ? (1 + (state-1)/ *scale_factor) : (state/ *scale_factor)
64 );
65 }
66

67 // Rate Encode the current time-step's ldn_state to the spikes. Note that the
68 // g_gain, g_bias, and g_v_thr are already defined in the the Process.
69 for(uint32_t i=0; i< 2* *ORDER; i++) {
70 int32_t J = *g_gain * E[i] * g_ldn_state[i/2] + *g_bias; // g_bias = 0 here.
71 g_volt[i] = g_volt[i] + J; // Update the global voltage state of IF neurons.
72 if(g_volt[i] > *g_v_thr) {
73 spike_data[i] = 1;
74 g_volt[i] = 0;
75 }
76 else {
77 spike_data[i] = 0;
78 if(g_volt[i] < 0)
79 g_volt[i] = 0; // Rectifiy the voltage.
80 }
81 }
82

83 send_vec_dense(rs, &spk_out, spike_data);
84 }

13



G Datasets

We have conducted our experiments on 15 univariate TSC datasets – publicly available at https:
//www.timeseriesclassification.com/dataset.php. Note that our chosen datasets fall into
five categories of applications: ECG, Sensor, Spectrograph, Motion, & Device. On average, these
datasets have close to zero mean and unit variance [33]. Table 3 provides their brief description:

Table 3: All 15 datasets’ tabular summary

Acronym Dataset Signal
Duration

Number
of Classes

Train
Size

Test
Size Category

E5000 ECG5000 140 2 500 4500 ECG
FordA FordA 500 2 3601 1320 Sensor
FordB FordB 500 2 3636 810 Sensor
Wafer Wafer 152 2 1000 6164 Sensor
Eqaks Earthquakes 512 2 322 139 Sensor
Cofe Coffee 286 2 28 28 Spectrograph
ToSe1 ToeSegmentation1 277 2 40 228 Motion
ToSe2 ToeSegmentation2 343 2 36 130 Motion
Light2 Lightning2 637 2 60 61 Sensor
Wrms Worms 900 5 181 77 Motion
WrTC WormsTwoClass 900 2 181 77 Motion
OlOil OliveOil 570 4 30 30 Spectrograph
Meat Meat 448 3 60 60 Spectrograph
Comp Computers 720 2 250 250 Device
RDev RefrigerationDevices 720 3 375 375 Device
Note: ECG5000 has 5 classes originally, one corresponding to healthy heartbeats and rest 4 falling into
unhealthy heartbeats – we grouped these 4 into one unhealthy class, thus binarizing ECG5000 [36, 21].

H Intrusive experiments with LSNN

We conducted two intrusive experiments over LSNN: (a) with neuron’s decays: τcur & τvol too set to
trainable (along with the weights), and (b) using continuous valued LDN in LSNN (while training
and evaluation on GPU); results for both are presented below in Tabs 4 & 5 (respectively). After
comparing these results with those in Tab 1 above, we observed that training neuron decays (along
with the weights) in LSNN is not decisively superior than training only weights, and training LSNN
with continuous-valued LDN too, does not conclusively establish its superiority over training with
quantized LDN (more experiments needed). Although, for some datasets, added trainable decays do
appear to offer better l2sim best accuracies; notably, for ToSe2, Wrms, WrTC, and Meat datasets,
Tab 4 reports 95.39, 81.82, 88.31, 98.33 (%) compared to 93.85, 79.22, 85.71, 96.67 (%) in Tab 1.
Therefore, we inferred on physical Loihi-2 with ToSe2 dataset’s l2sim best model, and found that it
achieves 93.08% (exactly as LSTM-FCN); this hints better l2hw best results for other datasets too.

Table 4: Our results with LSNN on GPU and on Loihi-2 simulation with trainable decays & weights
Method/

Accuracy
Datasets

E5000 FordA FordB Wafer Eqaks Cofe ToSe1 ToSe2 Light2 Wrms WrTC OlOil Meat Comp RDev
slyr best 95.69 91.14 80.37 98.04 79.14 100.0 95.18 94.62 78.69 81.82 89.61 63.33 100.0 72.00 54.67

slyr mean 95.08 90.82 78.37 97.65 76.12 96.43 91.40 88.31 70.82 75.84 84.68 46.68 96.00 67.84 49.39
l2sim best 95.60 90.91 78.89 98.35 78.42 100.0 93.86 95.39 77.05 81.82 88.31 63.33 98.33 70.40 52.53

l2sim mean 95.01 90.70 77.51 97.79 75.40 92.86 90.97 88.92 68.53 75.58 84.16 44.00 88.00 67.76 49.92

Table 5: Our results with LSNN on GPU where the LSNN comprises original continuous-valued
LDN, and LSNN on Loihi-2 simulation where the LSNN comprises quantized LDN

Method/
Accuracy

Datasets
E5000 FordA FordB Wafer Eqaks

slyr best 95.71 91.36 79.63 98.07 79.14
slyr mean 94.90 90.97 78.84 97.76 75.54
l2sim best 95.80 91.06 77.90 98.20 77.70

l2sim mean 95.03 90.61 77.51 97.95 75.25

14



I Procedure and distribution plots of LSNN’s profiling on physical Loihi-2

Here, we explain our procedure to energy- and latency-profile the LSNN on physical Loihi-2 chip, as
well as, present the frequency distribution plots of the profiled metrics. With respect to LavaLSNN ’s
(and LDN’s) variations to profile, we fixed τcur=τvol=0 & θ=130, and varied the order d∈{8, 16, 24} -
as d determines the size of LavaLSNN (& LDN). ∀ d, we consider all the combinations of Sj∈{256,
512, 1024, 2048} & Bk∈{2, 3, 4}; and ∀ (Sj ,Bk), we run the considered LavaLSNN ’s components
for 2000 duplicates of the hard-coded signal (of duration 140 time-steps (t.s.)) i.e., 28e4 t.s. in total,
and record the total energy consumed and execution time on Loihi-2 – each run is repeated 15 times
(in real-time, each run executed for 30s-120s). To obtain the per-sample energy & latency metrics
of processing a 140 t.s. long signal on Loihi-2, we divide the total energy & execution time (of each
run) by the number of duplicates i.e., 2000. Finally, ∀ d, we report the (mean, std) of per-sample
energy & latency metrics over all the 15 repeats of all 12 combinations (Sj ,Bk) in Tab 2.

We next present the frequency distribution plots of the LSNN’s different components’ energy & la-
tency profiling - on different backends of physical Loihi-2, namely (1) LMT & Neuro-Core (com-
bined), (2) only LMT, and (3) only Neuro-Core. Note that, the LDN & ENC layers, both execute on
LMT, where the LDN has O(d2) operations (matrix multiplied to a vector – lines 46-55 in Algorithm
1), and the ENC has O(d) operations (lines 67-81 in Algorithm 1). Therefore, the LDN accounts for
(or contributes to) much of the energy & latency metrics values. The O(d2) also explains why the
metric values in Tab 2 (for (1)&(2)) for d = 8 & 16 are similar, and clearly different for d=24. On
a side note, we conducted profiling experiments with Bk = 1 time-step binning too, however, the
results were either not consistent or the simulation threw runtime errors for lower buffer size Sj .

I.1 Energy distribution plots for (1), (2), & (3) in Tab 2

I.1.1 For (1) LMT & Neuro-Core: By LdnEncToSpk→NetxSNN

(a) Per-sample energy for d=8 (b) Per-sample energy for d=16 (c) Per-sample energy for d=24

Figure 5: Frequency distribution of per-sample energy consumed on LMT & Neuro-Core

I.1.2 For (2) only LMT: By LdnEncToSpk

(a) Per-sample energy for d=8 (b) Per-sample energy for d=16 (c) Per-sample energy for d=24

Figure 6: Frequency distribution of per-sample energy consumed on only LMT

15



I.1.3 For (3) only Neuro-Core: By NetxSNN

(a) Per-sample energy for d=8 (b) Per-sample energy for d=16 (c) Per-sample energy for d=24

Figure 7: Frequency distribution of per-sample energy consumed on only Neuro-Core

I.2 Latency distribution plots for (1), (2), & (3) in Tab 2

I.2.1 For (1) LMT & Neuro-Core: By LdnEncToSpk→NetxSNN

(a) Per-sample latency for d=8 (b) Per-sample latency for d=16 (c) Per-sample latency for d=24

Figure 8: Frequency distribution of per-sample processing latency on LMT & Neuro-Core

I.2.2 For (2) only LMT: By LdnEncToSpk

(a) Per-sample latency for d=8 (b) Per-sample latency for d=16 (c) Per-sample latency for d=24

Figure 9: Frequency distribution of per-sample processing latency on only LMT

I.2.3 For (3) only Neuro-Core: By NetxSNN

(a) Per-sample latency for d=8 (b) Per-sample latency for d=16 (c) Per-sample latency for d=24

Figure 10: Frequency distribution of per-sample processing latency on only Neuro-Core

16



J Profiling of a recurrent spiking network – representative of LDN
Here, we present and profile a recurrent spiking network – architecturally-representative of LDN, on
Loihi-2 Neuro-Cores. That is, the spiking network in Fig 11 below is not an actual implementation of
LDN, rather, a representation of how the architecture of spiking LDN could look like if implemented
via NEF – picked up from [36]. The rectangle and circle in Fig 11 are Ensembles of “Leaky Integrate
& Fire” (LIF) neurons that represent the univariate signal u[t] and the d-dimensional state vector
x[t] respectively, – via their spiking activity (NEF Principle 1). The outputs from the Ensembles are
linearly transformed (NEF Principle 2) by the representative random matrices Ar & Br (of A & B
respectively in Eq (5)). In our simulation, the number of neurons in the Ensembles for u[t] and x[t]
depend on d, i.e., 2×d and 25×d respectively. Upon profiling such a recurrent spiking network on
Loihi-2 Neuro-Cores, we found that its energy (& latency) metrics (see Tab 6) were similar to that of
(3) in Tab 2. This suggests that if such a recurrent spiking network implements the LDN in LSNN,
then the overall energy-efficiency of the entire LSNN on Loihi-2’s Neuro-Cores would significantly
be improved. The per-sample energy metric distribution of the recurrent network is in Sec J.1.

Table 6: Per-sample Energy metrics of the recurrent spiking network in Fig 11
only Neuro-Core

Order d→ 8 16 24
Energy (mJ) 0.30, 0.08 0.33, 0.09 0.32, 0.09

u[t]

x[t]

x[t+ 1]
Br

Ar

Figure 11: NEF-based representational spiking-architecture of LDN

J.1 Frequency distribution of energy metric of network in Fig 11 - on physical Loihi-2

(a) Per-sample energy for d=8 (b) Per-sample energy for d=16 (c) Per-sample energy for d=24

Figure 12: Frequency distribution of per-sample energy consumed on only Neuro-Core

17



References
[1] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of

the ACM, 63(12):54–63, 2020.

[2] Roberto Verdecchia, June Sallou, and Luı́s Cruz. A systematic review of green ai. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, page e1507, 2023.

[3] Tim Yarally, Luıs Cruz, Daniel Feitosa, June Sallou, and Arie Van Deursen. Uncovering
energy-efficient practices in deep learning training: Preliminary steps towards green ai. In
2023 IEEE/ACM 2nd International Conference on AI Engineering–Software Engineering for
AI (CAIN), pages 25–36. IEEE, 2023.

[4] Ioannis Mavromatis, Kostas Katsaros, and Aftab Khan. Computing within limits: An empirical
study of energy consumption in ml training and inference. arXiv preprint arXiv:2406.14328,
2024.

[5] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
Benchmarking the energy costs of large language model inference. In 2023 IEEE High Per-
formance Extreme Computing Conference (HPEC), pages 1–9. IEEE, 2023.

[6] Negar Alizadeh and Fernando Castor. Green ai: A preliminary empirical study on energy
consumption in dl models across different runtime infrastructures. In Proceedings of the
IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI,
pages 134–139, 2024.

[7] Bodo Rueckauer, Connor Bybee, Ralf Goettsche, Yashwardhan Singh, Joyesh Mishra, and
Andreas Wild. Nxtf: An api and compiler for deep spiking neural networks on intel loihi.
ACM Journal on Emerging Technologies in Computing Systems (JETC), 18(3):1–22, 2022.

[8] Mike Davies. Lessons from loihi: Progress in neuromorphic computing. In 2021 Symposium
on VLSI Circuits, pages 1–2. IEEE, 2021.

[9] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A Fonseca
Guerra, Prasad Joshi, Philipp Plank, and Sumedh R Risbud. Advancing neuromorphic com-
puting with loihi: A survey of results and outlook. Proceedings of the IEEE, 109(5):911–934,
2021.

[10] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks
for energy-efficient object recognition. International Journal of Computer Vision, 113:54–66,
2015.

[11] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeif-
fer. Fast-classifying, high-accuracy spiking deep networks through weight and threshold bal-
ancing. In 2015 International joint conference on neural networks (IJCNN), pages 1–8. ieee,
2015.

[12] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in neuroscience, 11:682, 2017.

[13] Yunzhe Hao, Xuhui Huang, Meng Dong, and Bo Xu. A biologically plausible supervised
learning method for spiking neural networks using the symmetric stdp rule. Neural Networks,
121:387–395, 2020.

[14] Alex Vigneron and Jean Martinet. A critical survey of stdp in spiking neural networks for
pattern recognition. In 2020 international joint conference on neural networks (ijcnn), pages
1–9. IEEE, 2020.

[15] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking
neural networks. Neural computation, 30(6):1514–1541, 2018.

18



[16] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Ad-
vances in neural information processing systems, 31, 2018.

[17] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer science review, 3(3):127–149, 2009.

[18] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa,
Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent advances in physical
reservoir computing: A review. Neural Networks, 115:100–123, 2019.

[19] Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German national research center for information
technology gmd technical report, 148(34):13, 2001.

[20] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations. Neural com-
putation, 14(11):2531–2560, 2002.

[21] Ramashish Gaurav, Terrence C Stewart, and Yang Yi. Reservoir based spiking models for
univariate time series classification. Frontiers in Computational Neuroscience, 17:1148284,
2023.

[22] Steven Abreu, Jens E Pedersen, Kade M Heckel, and Alessandro Pierro. Q-s5: Towards quan-
tized state space models. arXiv preprint arXiv:2406.09477, 2024.

[23] Zhiqi Shao, Michael GH Bell, Ze Wang, D Glenn Geers, Haoning Xi, and Junbin Gao. St-
ssms: Spatial-temporal selective state of space model for traffic forecasting. arXiv preprint
arXiv:2404.13257, 2024.

[24] Aaron R Voelker and Chris Eliasmith. Improving spiking dynamical networks: Accurate de-
lays, higher-order synapses, and time cells. Neural computation, 30(3):569–609, 2018.

[25] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time
representation in recurrent neural networks. Advances in neural information processing sys-
tems, 32, 2019.

[26] Samip Karki, Diego Chavez Arana, Andrew Sornborger, and Francesco Caravelli. Neuromor-
phic on-chip reservoir computing with spiking neural network architectures. arXiv preprint
arXiv:2407.20547, 2024.

[27] Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam
Shrestha, Friedrich T Sommer, and Mike Davies. Efficient neuromorphic signal processing
with loihi 2. In 2021 IEEE Workshop on Signal Processing Systems (SiPS), pages 254–259.
IEEE, 2021.

[28] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Har-
sha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuro-
morphic manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[29] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules. Frontiers in neural circuits, 9:85, 2016.

[30] Walter Gallego Gomez, Andrea Pignata, Riccardo Pignari, Vittorio Fra, Enrico Macii, and
Gianvito Urgese. First steps towards micro-benchmarking the lava-loihi neuromorphic ecosys-
tem. In 2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-
on-Chip (MCSoC), pages 462–469. IEEE, 2023.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[32] https://github.com/R-Gaurav/lsnn-on-loihi2.

[33] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. Lstm fully convolu-
tional networks for time series classification. IEEE access, 6:1662–1669, 2017.

19



[34] Anjali Gautam and Vrijendra Singh. Clr-based deep convolutional spiking neural network with
validation based stopping for time series classification. Applied Intelligence, 50(3):830–848,
2020.

[35] Tasbiha Ibad, Said Jadid Abdulkadir, Norshakirah Aziz, Mohammed Gamal Ragab, and Qasem
Al-Tashi. Hyperparameter optimization of evolving spiking neural network for time-series
classification. New Generation Computing, 40(1):377–397, 2022.

[36] Ramashish Gaurav, Terrence C Stewart, and Yang Cindy Yi. Spiking reservoir computing for
temporal edge intelligence on loihi. In 2022 IEEE/ACM 7th Symposium on Edge Computing
(SEC), pages 526–530. IEEE, 2022.

[37] Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representation,
and dynamics in neurobiological systems. MIT press, 2003.

[38] Eero Satuvuori, Mario Mulansky, Nebojsa Bozanic, Irene Malvestio, Fleur Zeldenrust, Kerstin
Lenk, and Thomas Kreuz. Measures of spike train synchrony for data with multiple time scales.
Journal of neuroscience methods, 287:25–38, 2017.

[39] Jonathan D Victor and Keith P Purpura. Nature and precision of temporal coding in visual
cortex: a metric-space analysis. Journal of neurophysiology, 76(2):1310–1326, 1996.

[40] Thomas Kreuz, Julie S Haas, Alice Morelli, Henry DI Abarbanel, and Antonio Politi. Measur-
ing spike train synchrony. Journal of neuroscience methods, 165(1):151–161, 2007.

[41] Thomas Kreuz, Mario Mulansky, and Nebojsa Bozanic. Spiky: a graphical user interface for
monitoring spike train synchrony. Journal of neurophysiology, 113(9):3432–3445, 2015.

[42] Mario Mulansky and Thomas Kreuz. Pyspike—a python library for analyzing spike train
synchrony. SoftwareX, 5:183–189, 2016.

[43] M. Denker, A. Yegenoglu, and S. Grün. Collaborative HPC-enabled workflows on the HBP
Collaboratory using the Elephant framework. In Neuroinformatics 2018, page P19, 2018.

20


