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ABSTRACT

Recommender system has been deployed in a large amount of real-world appli-
cations, profoundly influencing people’s daily life and production. Traditional
recommender models mostly collect as comprehensive as possible user behaviors
for accurate preference estimation. However, considering the privacy, preference
shaping and other issues, the users may not want to disclose all their behaviors
for training the model. In this paper, we study a novel recommendation paradigm,
where the users are allowed to indicate their “willingness” on disclosing different
behaviors, and the models are optimized by trading-off the recommendation quality
as well as the violation of the user “willingness”. More specifically, we formulate
the recommendation problem as a multiplayer game, where the action is a selection
vector representing whether the items are involved into the model training. For
efficiently solving this game, we design a tailored algorithm based on influence
function to lower the time cost for recommendation quality exploration, and also
extend it with multiple anchor selection vectors. We conduct extensive experiments
to demonstrate the effectiveness of our model on balancing the recommendation
quality and user disclosing willingness.

1 INTRODUCTION

For a long time, the recommender models are developed based on the key assumption of collaborative
filtering (CF), where similar users in the past may also behave similarly in the future. Usually,
the similarities between different users are inferred from their behaviors based on either explicit
heuristics (Ricci et al., 2015) or latent embeddings (Koren et al., 2009). Thus, more comprehensive
user behaviors are the basis for computing more accurate user similarities and obtaining better
recommendation quality.

However, from the perspective of the users, they may not want to disclose all their behaviors for
training the model due to the privacy, preference shaping and other issues. As exampled in Figure 1, in
the first case, if an item X with privacy information of user A is leveraged to train the model, then the
recommendation list may contain items similar to X, and people who have seen this recommendation
list may easily infer the user’s privacy. In the second case, the users may want to actively shape
their profiles on the platform by editing their historical interactions, such that the learned model
can provide more tailored recommendations. Both of the above examples suggest that while more
comprehensive user behaviors may promise better user similarity estimation, in real-world scenarios,
the users may not want to disclose all of them.

To consider both the recommendation quality and user disclosing willingness, we study a novel
recommendation paradigm, where each user can actively specify a willingness vector to show how
much she would not like her behaviors to be leveraged for training the recommender model. We
formulate our problem as a multiplayer game. Each player corresponds to a user, whose action is a se-
lection vector indicating a subset of the user interacted items1. The recommender model is optimized
based on all the items selected by different players. The reward is designed to improve the recom-
mendation quality and simultaneously follow the users’ willingness. To solve this game, the major
challenge lies in how to efficiently derive the recommendation quality for different selection vectors.

1The interaction with an item can be the user behavior such as click and purchase.
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Figure 1: Motivating examples. In the first case,
the user does not want to disclose her interaction
with the medicine. In the second case, the user
would like to remove the items which cannot reflect
her preference on the digital items.

To overcome this challenge, we firstly set an
anchor selection vector, based on which we
train the recommender model. Then, for dif-
ferent actions, we compute the recommendation
quality based on the influence function (Koh &
Liang, 2017) without retraining the model. We
name our method as influence function based
recommendation quality exploration (called
IFRQE for short). To achieve more accurate
quality approximation, we further extend the
above method with multiple anchor selection
vectors. We provide theoretical analysis on the
designed model in terms of the convergence rate
and the benefit of increasing the number of an-
chor selection vectors. Extensive experiments
based on both synthetic and real-world datasets
are conducted to demonstrate the effectiveness
of our model.

Notably, there are a few previous works on fed-
erated recommendation (Yang et al., 2020), rec-
ommendation unlearning (Chen et al., 2022a)

and controllable recommendation. While these studies share some similarities with our work, they
neither allow user active disclosing behaviors nor involve user willingness into the optimization target,
which makes them fundamentally differ from our idea. Chen et al. (2022b) is a recently proposed
model for trading-off the user privacy and recommendation quality. Comparing with this work, we
improve it by allowing more flexible user willingness, and use influence function to enhance the
optimization efficiency. In a summary, the main contributions of this paper can be concluded as
follows: (1) We propose a novel recommendation paradigm, where the users can explicitly indicate
their disclosing willingness, and the model needs to trade off the recommendation quality and user
willingness. (2) To solve the above problem, we formulate the recommendation task as a multiplayer
game, and design two influence function based algorithms to solve the game efficiently. (3) Extensive
experiments are conducted to verify the superiorities of our model based on both synthetic and
real-world datasets.

2 PROBLEM FORMULATION

Suppose we have a user set U and an item set V . Let Ou be the set of items interacted by user
u, and we separate it into a training set Su, a validation set T u and a testing set Du. In our
problem, each user u can specify a disclosing willingness vector βu = {βu

1 , β
u
2 , ..., β

u
|Su|}, where

βu
k ∈ [0, 1], ∀k ∈ [1, |Su|]. Suppose Su = {su1 , su2 , ..., su|Su|}, then the larger βu

k is, the more the user
do not want suk to join into the model training. Our task is to select a subset from S = {Su|u ∈ U}
to train the recommender model, such that the learned model can not only provide acceptable
recommendation quality, but also can follow the user willingness. Intuitively, if we select more
items to train the model, then the user can be better understood, and receive higher recommendation
quality. However, the user willingness is more likely to be violated, since the items with larger βu

k
may be selected. Conversely, if we let a small amount of items to train the model, although the user
willingness can be better satisfied, the recommendation quality can be lowered. The key of our task is
to learn an optimal strategy, which can well balance the recommendation quality and user willingness.

To solve this task, we regard each user as a player, and formulate the recommendation problem as a
multiplayer game. For each user u, the action is a binary selection vector ou = {ou1 , ou2 , ..., ou|Su|},
where ouk = 1 means suk is selected to train the model, otherwise ouk = 0. The reward for user u is
designed as follows:

zu(o
u,o−u) = − Lf (T u, θ̂(ou,o−u))− λ

|Su|∑
k=1

ou
kβ

u
k (1)

where o−u = {o1, ...,ou−1,ou+1, ...,oN} is the joint selection vectors of all the user except u. f is
a recommender model. θ̂(ou,o−u) are the parameters of f learned based on the training samples
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selected by {ou,o−u}. −Lf (T u, θ̂(ou,o−u)) is negative validation loss based on θ̂(ou,o−u),
which is leveraged to measure the recommendation quality. The second term evaluates the violation
of the user willingness. If the items that the user does not want to disclose (e.g., βu

k is large)
are selected to train the model, then oukβ

u
k is large, which lowers the reward. λ is a pre-defined

balancing parameter. Let the strategy of each player be αu = [αu
ou ] ∈ △(2|S

u|), which is a
discrete distribution, and αu

ou is the probability of leveraging the items indicated by ou to train the
model. For example, suppose the training set is Su = {0, 1, 2}, then αu is a distribution defined on
{{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {1, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}}, and αu

{0,1,1} is the
probability of using items {1, 2} to train the model.

We aim to learn the optimal joint strategy α∗ = {α1∗,α2∗, ...,αN∗}, such that the corresponding
expected reward of each user u is the largest when the other user strategies are fixed, that is:

zu(α
u∗,α−u∗) ≥ zu(α

u,α−u∗), ∀u ∈ [1, 2, ..., N ], ∀αu ∈ △(2|S
u|) (2)

where α−u = {α1, ...,αu−1,αu+1, ...,αN} is the joint strategy of all the users except u.
zu(α

u,α−u) is the expected reward for user u under {αu,α−u}, that is, zu(α
u,α−u) =

Eou∼αu, o−u∼α−u [zu(o
u,o−u)]. After obtaining the optimal strategy α∗, we firstly sample the

selection vectors o = {ou,o−u} from α∗. Then, the training samples are generated by filtering S
with o, which are leveraged to optimize the final recommender model.
Remark. (i) The above formulation is from two aspects: on the one hand, βu

k can be defined based on
the privacy concerns, the purpose of reducing the storage/computation burden or any other reasons
that the users do not want their behaviors to be disclosed. On the other hand, we do not impose
constraints on f and L, thus they can be any recommender model and loss function, which are
compatible with most of the previous work. (ii) In our formulation, we do not assume that the
system is adverse. The recommender model is developed to better serve the users by following their
disclosing willingness and achieving acceptable recommendation quality. (iii) While the action space
looks extremely large, which may lower the training efficiency, there are many strategies to alleviate
this problem. For example, one can assign the same ouk for the items in the same category, or only
allow the users to indicate their willingness on the most important parts of their interactions. In
addition, we can also initialize α with an informative prior, and search the optimal solution around
this prior to speed up the training process.

3 THE IFRQE MODEL

3.1 THE BASIC MODEL

To solve the game defined based on (1) and (2), one has to derive the validation loss Lf (T u, θ̂(o))
for different o’s. A straightforward method is firstly training f for each o to obtain the corresponding
parameter θ̂(o), and then the loss is computed based on the validation set T u and θ̂(o). However,
such method is infeasible, since repeatedly training the recommender model is quite time-consuming.

Fortunately, the previous studies on influence function (Koh & Liang, 2017) may shed some lights on
approximating the validation loss without retraining the model. In specific, we first define an anchor
selection vector õ = {õ1, ..., õN}, and then train the recommender model f based on õ to obtain
the parameters θ̃. At last, for a candidate selection vector o, we approximate Lf (T u, θ̂(o)) via the
following theory2.
Theorem 1. Given the model parameters θ, we define the validation loss by Lf (T u,θ) =∑

y∈T u lf (y,θ), where lf (y,θ) is the loss of sample y based on θ. Suppose | ▽2 lf (s
v
k, θ̃)| ≤ B

and
∑

v

∑|Sv|
k=1(õ

v
k − ovk)B is a small value, then the validation loss for o is:

Lf (T u, θ̂(o)) ≈ Lf (T u, θ̃)− 1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovk ▽ lf (y, θ̃)H
−1

θ̃
▽ lf (s

v
k, θ̃) (3)

where θ̃ = argminθ
1
Z

∑
v∈U

∑|Sv|
k=1 õ

v
klf (s

v
k,θ) are the parameters learned based on the anchor

selection vector. Z is the total number of training samples. ▽lf (·) is the gradient of a sample loss.
Hθ̃ = 1

Z

∑
v

∑|Sv|
k=1 õ

v
k ▽2 lf (s

v
k, θ̃) is the Hessian matrix of the training loss.

2We present the proofs of all the theories throughout this paper in the Appendix.
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Algorithm 1: Learning algorithm for αu
m

1 Indicate the learning rate γ.
2 Let α−u = α−u

m−1 and αu
1 = αu

m−1.
3 for l in [1, L] do
4 Sample ou,o−u according to αu

l ,α
−u.

5 Compute the gradient ĝou based on (9).
6 Let [ĝ]s = 1(s = ou)ĝou .
7 Update αu

l+1 = Π△[αu
l + γĝ], where Π△ means projecting a vector into a simplex.

8 end
9 Return αu = 1

L

∑L
l=1 α

u
l .

Based on this theory, we can compute Lf (T u, θ̂(o)) without retraining the model via θ̂(o) =

argminθ
1
Z

∑
v

∑|Sv|
k=1 o

t,v
k lf (s

v
k,θ). By bringing (3) into (1), zu(ou,o−u) can be written as:

zu(o
u,o−u) = −Lf (T u, θ̃) +

1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovk ▽ lf (y, θ̃)H
−1

θ̃
▽ lf (s

v
k, θ̃)− λ

|Su|∑
k=1

oukβ
u
k .

(4)
Accordingly, the expected reward zu(α

u,α−u) is computed via the follow theory.

Theorem 2. Let gv
y = [g(sv1, y), g(s

v
2, y), ..., g(s

v
|Sv|, y)], where g(svk, y) = ▽θlf (y, θ̃)

TH−1

θ̃
▽θ

lf (s
v
k, θ̃), then: zu(α

u,α−u) = Eo[zu(o
u,o−u)] =

∑
ou αu

ou [(
∑

y∈T u

gu
y

Z − λβu)Tou] + C,

where C=−L(T u, θ̃) +
∑

v ̸=u Eo[(o
v)T

∑
y∈T u

gv
y

Z ] is irrelevant with αu.

To solve objective (2), we need to find an optimal αu for the following optimization problem:

max
αu

∑
ou

αu
ouA(ou) s.t.

∑
ou

αu
ou = 1, αu

ou ≥ 0 (5)

where we denote (
∑

y∈T u

gu
y

N − λβu)Tou by A(ou). We present the complete training process of
this model in the appendix.

3.2 THE IMPROVED MODEL WITH MULTIPLE ANCHOR SELECTION VECTORS

The key of the above method lies in the accurate approximation of Lf (T u, θ̂(o)). However, if
the current selection vector o is too much different from the anchor vector õ, then the assumption
“
∑

v

∑|Sv|
k=1(õ

v
k − ovk)B is a small value in theory 1 may not hold, which can lead to larger approxima-

tion errors. To alleviate this problem, we propose to set multiple anchor vectors {õ1, õ2, ...õT }, where
õt = {õt,1, ..., õt,N} is the tth anchor vector and õt,vk is the kth element of õt,v. For approximating
Lf (T u, θ̂(o)), we select the anchor vector nearest to o, where we have the following theory.

Theorem 3. For a candidate selection vector o, suppose t = argmini∈[1,T ]

∑N
v=1 D(õi,v,ov),

where D is the hamming distance counting the number of different bits between two vectors, and
θ̃t = argminθ

1
Z

∑
v

∑|Sv|
k=1 õ

t,v
k lf (s

v
k,θ), then

Lf (T u, θ̂(o)) ≈ Lf (T u, θ̃t)− 1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovk ▽ lf (y, θ̃
t)H−1

θ̃t
▽ lf (s

v
k, θ̃

t) (6)

where Hθ̃t =
1
Z

∑
v

∑|Sv|
k=1 õ

t,v
k ▽2 lf (s

v
k, θ̃

t).

Based on (6), the expected reward can be derived based on the following theory.

Theorem 4. Let At = {o|
∑N

v=1 D(õt,v,ov) ≤
∑N

v=1 D(õt′,v,ov), ∀t′ ̸= t}. g(svk, y, t) =

▽lf (y, θ̃
t)H−1

θ̃t
▽ lf (s

v
k, θ̃

t). gt,v
y = [g(sv1, y, t), g(s

v
2, y, t), ...g(s

v
|Sv|, y, t)] and gt,v =∑

y∈T u gt,v
y . Suppose we define zu(o

u,o−u, t) = −Lf (T u, θ̃t) + 1
Z

∑
y∈T u

∑
v∈U

∑|Sv|
k=1 o

v
k ▽

lf (y, θ̃
t)H−1

θ̃t
▽ lf (s

v
k, θ̃

t)− λ
∑|Su|

k=1 o
u
kβ

u
k , Then
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Algorithm 2: Learning Algorithm with Multiple θt

1 Initialize {α1,α2, ...,αN} and let αu
0 = αu (u ∈ [1, N ]).

2 Indicate the max iteration number M and threshold κ.
3 Indicate the anchor vectors {õ1, õ2, ...õT }.
4 Obtain the model parameters θ̃t for each õt.
5 for m in [1, M] do
6 for u in [1, N] do
7 Let α−u

m−1 = {α1
m−1, ...,α

u−1
m−1,α

u+1
m−1, ...,α

N
m−1}.

8 Obtain αu
m by inputting α−u

m−1 and αu
m−1 into Algorithm 1.

9 end
10 if |αu

m −αu
m−1| < κ ,∀u ∈ [1, N ] then

11 Break.
12 end
13 end
14 Output αu∗ = αu

m (u ∈ [1, N ]).

zu(α
u,α−u) = Eo[zu(o

u,o−u)] = Eo[

T∑
t=1

1(o ∈ At)zu(o
u,o−u, t)]

=

T∑
t=1

∑
o

1(o ∈ At)α
u
ouα−u

o−u{−L(T u, θ̃t) +
1

Z

∑
v ̸=u

(ov)Tgt,v +
1

Z
(ou)Tgt,u − λ(ou)Tβu}

(7)
where 1(c) = 1 if the condition c is true, otherwise 1(c) = 0. α−u

o−u = α1
o1 ...α

(u−1)
ou−1 α

(u+1)
ou+1 ...αN

oN .

Then we derive αu by solving the following optimization problem:

max
αu

T∑
t=1

∑
o

1(o ∈ At)α
u
ouα−u

o−uB(ou,o−u, t) s.t.
∑
ou

αu(ou) = 1, αu(ou) > 0 (8)

where B(ou,o−u, t) = −L(T u, θ̃t) + 1
Z

∑
v ̸=u(o

v)Tgt,v + 1
Z (ou)Tgt,u − λ(ou)Tβu.

Since it is hard to efficiently obtain a closed-form solution for αu, we learn it based on the projected
gradient descent method (Calamai & Moré, 1987). More specifically, the gradient of zu(αu,α−u)
w.r.t αu

ou is:

∂zu(α
u,α−u)

∂αu
ou

def
= gou = Eo−u [

T∑
t=1

B(ou,o−u, t)1(o−u ∈ St(o
u))]. (9)

where St(o
u) = {o−u|[ou,o−u] ∈ At}. Let g = [gou ]ou be the gradient of zu(αu,α−u) w.r.t αu,

which is a 2|S
u| dimensional vector. ĝou is the stochastic gradient by sampling o−u from α−u. Then

the complete training process can be seen in Algorithm 2.

3.3 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis on the convergence of our algorithm and also present
the advantage of multiple anchor selection vectors comparing with the single one in terms of the
validation loss approximation. For the convergence analysis, we have the following theory:
Theorem 5. Based on the definition of g, we have zu(α

u,α−u) = (αu)Tg. Suppose ĝ
is an unbiased estimation of g, and ||ĝ(αu)||22 ≤ G, then the solution obtained from Algo-
rithm 1 is larger than the optimal solution minus a bounded value, that is: E[zu(α̂

u,α−u)] ≥
maxαu E[zu(α

u,α−u)]− ( 1
Lγ + γ2G2), where α̂u is obtained based on Algorithm 1.

This theory provides foundations for Algorithm 1, which ensures that the learned strategies are nearly
optimal. For the advantage of using multiple anchor selection vectors, we have the following theory:
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Theorem 6. For two sets of anchor selection vectors P = {õ1
P , õ

2
P , ...õ

TP

P } and Q =

{õ1
Q, õ

2
Q, ...õ

TQ

Q }, suppose AP
t = {o|

∑N
v=1 D(õt,v,ov) ≤

∑N
v=1 D(õt′,v,ov),∀õt′ ∈ P } and

AQ
t = {o|

∑N
v=1 D(õt,v,ov) ≤

∑N
v=1 D(õt′,v,ov),∀õt′ ∈ Q}. Based on theory 1, we consider

the following upper bounds of the approximation error for the validation loss:

err(P ) =

TP∑
t=1

∑
o∈AP

t

[
∑
v

D(õt,v,ov)]B and err(Q) =

TQ∑
t=1

∑
o∈AQ

t

[
∑
v

D(õt,v,ov)]B, (10)

We have if P ⊆Q, then err(P )≥ err(Q).

This theory suggests if the multiple anchor vectors in section 3.2 are selected to include the single
one in section 3.1, then the approximation error upper bound of the validation loss can be reduced.
However, we should note that introducing more anchor vectors means more times for retraining the
recommender model, which lowers the efficiency. Actually, the improved model provides us with an
opportunity to balance the approximation accuracy and model efficiency.

4 RELATED WORK

Recommender system is a rapidly developing research field, with a large amount of models developed
each year (Ricci et al., 2015). Early recommender models are mostly based on the matrix factoriza-
tion (Koren et al., 2009). And then, with the prospering of the deep learning technique, a large amount
of deep recommender models (Zhang et al., 2019) have been proposed, such as the sequential (Kang
& McAuley, 2018; Tang & Wang, 2018; Sun et al., 2019) or graph (Wang et al., 2019; He et al.,
2020; Fan et al., 2019) based algorithms. These models mostly leverage all the user behaviors to
train the model, no matter whether the users would like to disclose them. To protect the user privacy,
many federated recommender models (Lin et al., 2020; Wu et al., 2021; Yang et al., 2020; Chen
et al., 2020) have been proposed. These studies aim to move the training of the model from the
server to the clients, so that the system cannot access the raw user behaviors, and the user privacy is
protected. While our model can also be used to protect the privacy, we do not assume that the server
is adverse, but aim to ensure that the privacy information does not leak from the recommendation
results. Another topic related to our work is the recommendation unlearning (Chen et al., 2022a; Li
et al., 2022), which aims to remove the influences of many user-item interactions from the trained
recommender model. However, these models do not capture the user active disclosing behaviors,
and the user willingness is also not incorporated into the optimization targets. Many recent studies
propose to design controllable recommendation (Wang et al., 2022; Parra & Brusilovsky, 2015),
but they mainly aim to break the filter bubbles instead of following the indicated user willingness.
Game theory based recommender models (Ben-Porat & Tennenholtz, 2018; Xu et al., 2018; Halkidi
& Koutsopoulos, 2011) have also been investigated before. For example, Ben-Porat & Tennenholtz
(2018) formulates the recommendation problem via a multiplayer game from the content provider
perspective. Xu et al. (2018); Halkidi & Koutsopoulos (2011) study the incentive mechanisms to
encourage user rating behaviors and save the user cost simultaneously. While these models share
some similarities with our work, we build the game from the user side and do not limit our framework
to the rating behaviors. In addition, we leverage the influence function to improve the efficiency of
recommendation quality estimation, which has not been explored before.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets. We base our experiments on both synthetic and real-world datasets. For the synthetic
dataset, we generated it based on a well known recommendation simulator called RecSim3. In specific,
we generate 1000 users and 1000 items, where four features are simulated to profile each user or item.
For a user-item pair, suppose the user and item features are eu ∈ R4 and ev ∈ R4, respectively, then
the interaction is generated according to 1(σ(eTuev) ≥ η), where 1(·) is the indicator function and η
is a threshold for setting the hardness of generating the interaction. For the disclosing willingness of

3https://github.com/google-research/recsim
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user u on item v, we simulate it by βu
v = σ(sug(eu, ev) + bu), where su is sampled from a uniform

distribution in the range of [a1, a2], controlling the sensitivity of the user disclosing willingness.
Smaller su means the user has similar willingness on disclosing different behaviors, while larger su
means the user have more diverse willingness. bu is sampled from a Gaussian distribution N (0, a3),
indicating the average level of the user disclosing willingness. g is a one-layer fully connected neural
network with randomly assigned parameters. For the real-world experiments, we evaluate different
models based three public available datasets from different domains, including Diginetica4, Steam5

and Amazon Video6. More detailed statistics of these datasets are presented in the Appendix.

Baselines. To demonstrate the generality of our idea, we implement the base model f with the
following recommender algorithms7: MF Koren et al. (2009) is the traditional matrix factorization
method, which has been used as a baseline in a large amount of previous work. NeuMF He
et al. (2017) is a well known neural collaborative filtering model, which aims to capture the non-
linear correlations between the users and items. LightGCN He et al. (2020) is a graph-based
recommender model, which highlights the importance of the structure information in collaborative
filtering. DIN Zhou et al. (2018) is a sequential recommender model, and CDAE Wu et al. (2016)
is an auto-encoder based recommender model. For each base model, we compare our framework
with the following methods, for the first one, the user behaviors are randomly disclosed (i.e., the
selection vector o is randomly sampled). We call this method as Random. For the second one, we
directly set oku = 0, if βk

u is larger than 0.5. We call this method as Threshold. We also compare our
model with Proactive Chen et al. (2022b), which is a model considering both of the recommendation
accuracy and user privacy, and the objective is the same as our frameworks’. The model proposed in
section 3.1 is named as IFRQE, and the improved version in section 3.2 is called IFRQE++.

Implementation Details. For each user, we leverage 20% and 10% of all her interactions as the
testing and validation sets, and the others are left for model training. For all the models, we use
binary cross entropy as the loss function. To evaluate the recommendation quality, we use F1 (Chicco
& Jurman, 2020) as the metric, and five items are recommended to compare with the ground truth.
To evaluate whether the model can follow the user willingness, we compute the overall willingness
violation by wv = 1

|U|
∑

u∈U
∑|Su|

k=1 o
u
kβ

u
k , and a model is more satisfied if its wv is smaller. To

evaluate the capability of balancing the recommendation quality and user willingness, we compare
different models based on the reward of all the users according to equation (1). It should be noted
that our framework and the baselines are optimized with the same reward, and we experiment with
different λ’s to demonstrate the superiority of our framework. The anchor selection vectors in IFRQE
and IFRQE++ are both randomly selected8. The model hyper parameters are determined by grid
search. For the real world datasets, we specify the disclosing willingness vector of each user in a
random manner. To reduce the randomness, we repeat each experiment for ten times, and report the
average performance as well as the standard error. More settings can be found in the Appendix.

5.2 OVERALL COMPARISON

The overall comparison results can be seen in Table 1, where we can see: from the perspective of
following user willingness, our model can usually perform better than the base model and heuristic
methods, which is not surprising since the base model leverages all the items for training, and the
heuristic methods consider the user willingness in too coarse manners. From the recommendation
quality perspective, our models do not sacrifice the performance too much. On average, the per-
formance is dropped by about 8.02% from the base model. Interestingly, in some cases, like on
the Diginetica and Amazon Video datasets with MF as the base model, the performances are even
improved. We argue that such observation is because many items with higher βu

k are exactly not
important for the prediction of the items in the testing set. Thus removing them can not only lead
to higher reward via following more user willingness, but also can enhance the performance by
focusing on more informative training samples. From the reward perspective, our model can achieve
the best performances on most datasets and base models, which demonstrate the effectiveness and
generality of our idea on balancing the recommendation quality and user willingness. On average,

4https://darel13712.github.io/rs_datasets/Datasets/diginetica/
5https://steam.internet.byu.edu/
6https://jmcauley.ucsd.edu/data/amazon/
7Experiments with more other base models can be found in the appendix.
8We ensure that the anchor selection vectors of IFRQE++ include the one of IFRQE
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Table 1: Overall comparison between different models. We use bold fonts to label the best perfor-
mance for each dataset, evaluation metric and base model. “()” indicates the standard error. The
results of F1 are percentage values with “%” omitted. For the metrics, ↑ means the larger the better,
while ↓ means the lower the better. The performance improvements of our model against the baselines
are significant under paired t-test.

Dataset Simulation Diginetica Steam Amazon Video

Metric F1 ↑ wv↓ reward↑ F1 ↑ wv↓ reward↑ F1 ↑ wv↓ reward↑ F1 ↑ wv↓ reward↑
MF 1.75(.022) 2.12(.007) -2.25(.032) 4.72(.044) 2.01(.053) -2.65(.072) 10.4(.043) 2.62(.014) -2.99(.093) 1.70(.012) 2.36(.021) -2.43(.022)

w/ Random 1.73(.031) 2.01(.006) -2.13(.014) 4.18(.014) 1.96(.013) -2.04(.006) 9.40(.009) 2.61(.017) -2.82(.015) 1.53(.011) 2.24(.022) -2.30(.023)
w/ Threshold 1.70(.036) 2.01(.032) -2.20(.021) 4.70(.012) 1.97(.011) -2.06(.040) 9.25(.048) 2.35(.023) -2.57(.017) 1.50(.026) 2.12(.027) -2.20(.021)
w/ Proactive 1.23(.025) 1.56(.013) -2.25(.007) 2.21(.018) 1.30(.024) -1.99(.016) 9.93(.019) 2.08(.022) -2.43(.025) 1.55(.035) 1.94(.026) -2.07(.005)
w/ IFRQE 1.50(.015) 1.97(.003) -2.09(.017) 5.23(.008) 2.01(.014) -2.18(.006) 10.4(.012) 2.14(.012) -2.43(.015) 1.57(.015) 1.70(.016) -2.10(.005)
w/ IFRQE++ 1.63(.007) 1.82(.003) -1.92(.012) 4.02(.011) 1.79(.019) -1.92(.022) 9.83(.017) 2.13(.032) -2.42(.014) 1.72(.012) 1.87(.032) -1.98(.056)

NeuMF 0.87(.017) 2.13(.013) -2.32(.011) 4.22(.013) 2.01(.015) -2.11(.003) 10.2(.007) 2.62(.012) -2.76(.007) 1.65(.014) 2.36(.013) -2.47(.010)
w/ Random 0.89(.009) 2.02(.005) -2.19(.011) 2.38(.018) 1.91(.011) -2.11(.016) 7.73(.005) 2.47(.019) -2.59(.011) 1.80(.014) 2.31(.006) -2.41(.010)
w/ Threshold 1.50(.032) 2.01(.048) -2.18(.031) 4.01(.012) 1.97(.044) -2.13(.006) 7.50(.019) 2.35(.020) -2.86(.010) 1.55(.002) 2.12(.018) -2.21(.017)
w/ Proactive 1.83(.005) 2.01(.023) -2.18(.017) 1.30(.008) 1.69(.011) -2.14(.012) 9.55(.025) 2.22(.032) -2.42(.005) 1.43(.015) 1.96(.006) -2.41(.015)
w/ IFRQE 1.40(.014) 1.91(.013) -2.48(.013) 2.92(.137) 2.01(.017) -2.17(.019) 8.17(.033) 2.16(.019) -2.45(.027) 1.83(.015) 1.99(.014) -2.24(.012)
w/ IFRQE++ 0.70(.015) 1.80(.003) -2.11(.011) 3.00(.017) 1.91(.013) -2.08(.023) 8.87(.021) 2.21(.014) -2.37(.027) 1.22(.031) 2.00(.014) -2.17(.011)

LightGCN 0.90(.005) 2.13(.008) -2.82(.012) 7.50(.009) 2.01(.012) -2.71(.009) 10.1(.010) 2.62(.009) -3.13(.014) 2.15(.021) 2.36(.008) -3.05(.007)
w/ Random 0.82(.013) 2.02(.013) -2.71(.022) 7.48(.011) 1.95(.005) -2.64(.007) 10.0(.027) 2.49(.026) -3.07(.019) 1.75(.003) 2.24(.009) -2.93(.015)
w/ Threshold 0.96(.038) 2.01(.008) -2.70(.003) 7.13(.017) 1.97(.040) -2.60(.011) 9.40(.048) 2.35(.027) -2.82(.046) 1.53(.033) 2.12(.022) -2.30(.048)
w/ Proactive 1.01(.013) 1.78(.011) -2.48(.017) 5.51(.038) 1.42(.007) -2.11(.018) 10.3(.021) 2.12(.022) -2.81(.015) 1.28(.013) 1.95(.016) -2.64(.018)
w/ IFRQE 0.97(.008) 2.12(.010) -2.82(.014) 4.88(.019) 1.47(.011) -2.16(.013) 9.02(.016) 2.49(.025) -2.82(.008) 1.90(.007) 1.75(.018) -2.13(.013)
w/ IFRQE++ 0.75(.022) 1.75(.008) -2.44(.016) 5.26(.012) 1.32(.014) -2.01(.009) 8.90(.018) 2.48(.018) -2.80(.005) 1.62(.013) 1.75(.009) -2.03(.023)

DIN 1.43(.047) 2.13(.001) -2.56(.044) 4.13(.023) 2.01(.005) -2.22(.031) 11.6(.019) 2.62(.048) -2.91(.005) 5.05(.038) 2.36(.012) -2.48(.026)
w/ Random 1.23(.024) 2.02(.037) -2.42(.037) 4.33(.016) 1.90(.042) -2.10(.024) 10.8(.030) 2.48(.042) -2.78(.014) 4.48(.008) 2.24(.023) -2.39(.015)
w/ Threshold 1.37(.004) 2.01(.022) -2.13(.029) 4.32(.010) 1.63(.032) -1.70(.036) 10.0(.036) 2.35(.045) -2.86(.029) 4.25(.009) 2.12(.006) -2.24(.022)
w/ Proactive 1.21(.015) 1.67(.012) -2.06(.007) 2.73(.008) 1.63(.024) -2.19(.006) 12.6(.012) 2.12(.016) -2.43(.015) 5.33(.015) 1.84(.016) -1.97(.005)
w/ IFRQE 1.36(.030) 1.10(.007) -1.36(.016) 3.92(.019) 1.46(.047) -1.62(.012) 13.2(.021) 2.57(.030) -2.89(.041) 5.26(.007) 1.61(.019) -1.75(.043)
w/ IFRQE++ 1.03(.016) 1.09(.020) -1.33(.045) 3.50(.014) 1.24(.042) -1.38(.031) 9.53(.030) 2.02(.016) -2.17(.045) 5.18(.021) 1.57(.047) -1.70(.038)

CDAE 1.23(.010) 2.13(.015) -2.30(.031) 1.48(.009) 2.01(.036) -2.08(.012) 11.5(.008) 2.62(.029) -2.68(.014) 1.11(.011) 2.36(.027) -2.44(.045)
w/ Random 1.22(.013) 1.90(.013) -2.71(.022) 1.38(.044) 1.99(.022) -2.06(.031) 11.6(.021) 2.49(.003) -2.55(.041) 1.21(.001) 2.24(.015) -2.31(.031)
w/ Threshold 0.60(.021) 2.01(.003) -2.08(.041) 1.38(.030) 1.81(.026) -1.88(.016) 9.01(.045) 2.35(.044) -2.54(.010) 1.22(.016) 2.12(.040) -2.19(.035)
w/ Proactive 1.06(.015) 1.97(.017) -2.06(.027) 1.18(.008) 1.64(.011) -1.76(.016) 16.3(.012) 1.79(.022) -1.85(.025) 1.63(.015) 1.79(.016) -1.85(.005)
w/ IFRQE 0.92(.011) 1.65(.015) -2.07(.027) 1.48(.011) 1.61(.032) -1.68(.013) 11.3(.008) 2.23(.025) -2.30(.023) 1.80(.027) 1.64(.029) -1.73(.046)
w/ IFRQE++ 0.86(.037) 1.45(.005) -1.88(.012) 1.43(.007) 1.45(.019) -1.52(.042) 11.4(.018) 1.64(.046) -1.70(.032) 1.83(.049) 1.52(.009) -1.61(.020)

Figure 2: (a) Approximation error on the validation loss. (b) Influence of T .

IFRQE++ can improve the base model by about 12.4%, 11.1%, 14.6% and 21.3% on the datasets of
simulation, Diginetica, Steam and Amazon Video, respectively. The improved performance of our
models against the random method manifests that the studied problem is non-trivial, where blindly
sampling the selection vectors does not work. Comparing with Proactive, our model do not improve
the performance too much. However, training our framework is, on average, about 13.5 times faster,
since Proactive needs to retrain the recommender model frequently. Between the proposed two
methods, the improved version (i.e., IFRQE++) is better in more cases. We speculate that the multiple
anchor vectors may lead to more accurate approximation of the validation loss, which may propagate
better signals to learn the optimal strategies, and thus result in better rewards.
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Figure 3: Model comparisons on the datasets with differently characterized user willingness.

5.3 APPROXIMATION OF THE VALIDATION LOSS

The key of our model lies in the accurate approximation of the validation loss. We investigate the
approximation error of our models. We focus on the datasets of Diginetica and Amazon Video, and
MF is selected as the base model. We randomly sample ten selection vectors and train the base
model to obtain the parameters and real validation loss. Then, we approximate the validation loss by
equation (3) and (6), where we use two anchor vectors in IFRQE++. At last, the (approximated) vali-
dation losses are reported by averaging over all the selection vectors, and we label the approximation
error by |real validation loss−approximated validation loss|

real validation loss . The results are presented in Figure 2(a), and we can
see the approximation accuracy of different models is satisfied. Especially, on Amazon Video, the
approximation error of IFRQE++ is only 1.2%. By leveraging more anchor vectors, IFRQE++ is
more accurate than IFRQE on both datasets. In specific, the approximation error is reduced from
19.2% to 15.2% and 9.4% to 1.2% on the datasets of Diginetica and Amazon Video, respectively.

5.4 INFLUENCE OF THE NUMBER OF ANCHOR VECTORS

In this section, we study the influence of the number of anchor vectors in IFRQE++. More specifically,
we tune T in the range of [1, 10], where T = 1 is exactly the method proposed in section 3.1. We base
the experiments on the same datasets and base model as in the above experiment. We report the reward
as well as the time cost for each T in Figure 2(b). We can see: on both datasets, the performances are
not satisfied when T = 1, and more anchor vectors can indeed improve the performance. With the
increasing of T , the reward continues to rise up, and tends to be stable at last, where we speculate
that, at this time, the performance is dominated by some key anchor vectors, and introducing the
other ones do not make much help. From the efficiency perspective, as T becomes larger, our model
costs more time, which is as expected, since larger T means more times to retrain the base model. In
practice, one can properly set T to achieve better trade-offs between the effectiveness and efficiency.

5.5 INFLUENCE OF DIFFERENT CHARACTERS OF THE USER WILLINGNESS

Here we study whether our model is always effective on differently characterized user willingness.
We base the experiments on the simulation datasets, where the disclosing willingness of a user
is controlled by the sensitive parameter su and average disclosing level bu. Considering that the
distributions of su and bu are determined by a1, a2 and a3, we build four datasets by specifying
(a1, a2, a3) with A = (0.6, 2, 1.2), B = (0.4, 2, 0.8) and C = (0.6, 1, 1.5) and D = (0.5, 1, 1) to
simulate different user willingness characters. We present the comparisons of different models on
these datasets in Figure 3, where we can see: the random method is less competitive, and sometimes,
it is even worse than the base model (e.g., Datasets A and B with LightGCN as the base model). For
different datasets and base models, IFRQE and IFRQE++ can usually obtain the second best and best
performances. This result agrees with the observations in section 5.2 and manifests that our methods
are generally effective for different user willingness characters.

6 CONCLUSION AND FUTURE WORK

This paper improves traditional system-centered recommendation paradigm by allowing the users to
participate into the model optimization process via specifying their disclosing willingness. However,
there are some limitations can be studied in the future. We do not consider the dynamic nature of
the recommender system, therefore, an interesting direction is to study the temporal user disclosing
willingness, for example, under on-line settings. In addition, we currently assume that the user overall
utility is a linear combination between the recommendation quality and user willingness. One can
extend it to the non-linear case, where more efforts are needed to solve the multiplayer game.
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REPRODUCIBILITY STATEMENT

For the experimental results presented in the paper, we include the code and simulation dataset
in the supplemental material, and specify all the training details in Appendix. For the datasets
used in the paper, we also give a clear explanation in Section 5.1. More details are available at
https://ifrqe.github.io/IFRQE/.
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A APPENDIX

A.1 PROOF OF THEORY 1

Proof. For a candidate selection vector o, we have θ̂(o) = argminθ
1
Z

∑
v

∑|Sv|
k=1 o

v
klf (s

v
k,θ),

where if ovk = 0, then svk is not leveraged to train the model. Suppose we define:

θ̂(o, ϵ) = argmin
θ

[
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Z

∑
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õvklf (s
v
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(õvk − ovk)lf (s
v
k,θ)]. (11)

Then we have θ̂(o) = θ̂(o,− 1
Z ) and θ̃ = θ̂(o, 0).

Since θ̂(o, ϵ) is the optimal solution of (11), then
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õvk ▽ lf (s
v
k, θ̂(o

u, ϵ)) + ϵ
∑
v

|Sv|∑
k=1

(õvk − ovk)▽ lf (s
u
k , θ̂(o

u, ϵ))].

(12)

11



Under review as a conference paper at ICLR 2023

We regard 1
Z

∑
v

∑|Sv|
k=1 õ

v
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k−ovk)▽ lf (s

u
k , θ̂(o, ϵ))] as a function

of θ̂(o, ϵ). If ϵ → 0, then θ̂(o, ϵ) → θ̃. According to the Taylor expansion, we have:
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Let △ϵ = θ̂(o, ϵ)− θ̃, then
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õvk ▽2 lf (s
v
k, θ̃) + ϵ

∑
v

|Sv|∑
k=1
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õvk ▽2 lf (s
v
k, θ̃) + ϵ

∑
v

|Sv|∑
k=1
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If Z is a large value, then dθ̂(o,ϵ)
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≈ dLf (T u, θ̂(o, ϵ))

dϵ
|ϵ→0

=
∑
y∈T u

▽lf (y, θ̃)×
dθ̂(o, ϵ)

dϵ
|ϵ→0

≈
∑
y∈T u

▽lf (y, θ̃)H
−1

θ̃
[
∑
v

|Sv|∑
k=1

ovk ▽ lf (s
v
k, θ̃)]

(17)
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where Hθ̃ = 1
Z

∑
v

∑|Sv|
k=1 õ

v
k ▽2 lf (s

v
k, θ̃), then we have:

Lf (T u, θ̂(o))− Lf (T u, θ̃) ≈ − 1

Z

∑
y∈T u

▽lf (y, θ̃)H
−1

θ̃
[
∑
v

|Sv|∑
k=1

ovk ▽ lf (s
v
k, θ̃)]

Lf (T u, θ̂(o)) ≈ Lf (T u, θ̃)− 1

Z

∑
y∈T u

∑
v

|Sv|∑
k=1

ovk ▽ lf (y, θ̃)H
−1

θ̃
▽ lf (s

v
k, θ̃)

(18)

A.2 PROOF OF THEORY 2

Proof. By bringing the result of theory 1 into zu(o
u,o−u), we have

zu(o
u,o−u) = −Lf (T u, θ̃) +

1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovk ▽ lf (y, θ̃)H
−1

θ̃
▽ lf (s

v
k, θ̃)− λ

|Su|∑
k=1

oukβ
u
k .

(19)
Recall that gv

y = [g(sv1, y), g(s
v
2, y), ..., g(s

v
|Sv|, y)], where g(svk, y) = ▽θlf (y, θ̃)

TH−1

θ̃
▽θ

lf (s
v
k, θ̃), then

zu(α
u,α−u) = Eo[zu(o

u,o−u)]

=− Lf (T u, θ̃) + Eo[
1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovkg(s
u′

k , y)− λ

|Su|∑
k=1

oukβ
u
k ]

=− Lf (T u, θ̃) + Eo[
1

Z

∑
y∈T u

∑
v∈U

(ov)Tgv
y − λ(ou)Tβu]

=− Lf (T u, θ̃) + Eo[
∑
v∈U

(ov)T
∑
y∈T u

gv
y

Z
− λ(ou)Tβu]

=− Lf (T u, θ̃) +
∑
v ̸=u

Eo[(o
v)T

∑
y∈T u

gv
y

Z
] + Eo[(o

u)T
∑
y∈T u

gu
y

Z
]− λEo[(o

u)Tβu]

=− Lf (T u, θ̃) +
∑
v ̸=u

Eo[(o
v)T

∑
y∈T u

gv
y

Z
] + Eou [(ou)T (

∑
y∈T u

gu
y

Z
− λβu)]

(20)

A.3 PROOF OF THEORY 3

Proof. The proof of this theory is similar to that of theory 1. We define:

θ̂(o, ϵ) = argmin
θ

[
1

Z

∑
v

|Sv|∑
k=1

õt,v
k lf (s

v
k,θ) + ϵ

∑
v

|Sv|∑
k=1

(õt,v
k − ovk)lf (s

v
k,θ)]. (21)

Then,

0 ≈ ▽[
1

Z

∑
v

|Sv|∑
k=1

õt,vk lf (s
v
k, θ̂(o, ϵ)) + ϵ

∑
v

|Sv|∑
k=1

(õt,vk − ovk)lf (s
v
k, θ̂(o, ϵ))]

=
1

Z

∑
u

|Su|∑
k=1

õt,vk ▽ lf (s
v
k, θ̂(o, ϵ)) + ϵ

∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽ lf (s
u
k , θ̂(o, ϵ))].

(22)
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According to Taylor expansion at point θ̃t, we have:

0 ≈ 1

Z

∑
u

|Su|∑
k=1

õt,vk ▽ lf (s
u
k , θ̃

t) + ϵ
∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽ lf (s
v
k, θ̃

t)

+[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽2 lf (s
v
k, θ̃

t) + ϵ
∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽2 lf (s
v
k, θ̃

t)](θ̂(o, ϵ)− θ̃t)

(23)

Let △ϵ = θ̂(o, ϵ)− θ̃t, then:

0 ≈ 1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽ lf (s
v
k, θ̃

t) + ϵ
∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽ lf (s
v
k, θ̃

t)

+[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽2 lf (s
v
k, θ̃

t) + ϵ
∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽2 lf (s
v
k, θ̃

t)]△ϵ

△ϵ ≈ −[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽2 lf (s
v
k, θ̃

t) + ϵ
∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽2 lf (s
v
k, θ̃

t)]−1

[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽ lf (s
v
k, θ̃

t) + ϵ
∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽ lf (s
v
k, θ̃

t)]

(24)

By ignoring ϵ
∑

v

∑|Sv|
k=1(õ

t,v
k − ovk)▽2 lf (s

v
k, θ̃), we have:

△ϵ ≈ −[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽2 lf (s
v
k, θ̃

t)]−1[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽ lf (s
v
k, θ̃

t) + ϵ
∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽ lf (s
v
k, θ̃

t)]

(25)
Then

△− 1
Z
≈ −[

1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽2 lf (s
v
k, θ̃

t)]−1[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽ lf (s
v
k, θ̃

t)− 1

Z

∑
v

|Sv|∑
k=1

(õt,vk − ovk)▽ lf (s
v
k, θ̃

t)]

= −[
1

Z

∑
v

|Sv|∑
k=1

õt,vk ▽2 lf (s
v
k, θ̃

t)]−1[
1

Z

∑
v

|Sv|∑
k=1

ovk ▽ lf (s
v
k, θ̃

t)]

(26)

Thus, dθ̂(o,ϵ)
dϵ |ϵ→0 ≈

△− 1
Z

− 1
Z

= [ 1Z
∑

v

∑|Sv|
k=1 õ

t,v
k ▽2 lf (s

v
k, θ̃

t)]−1[
∑

v

∑|Sv|
k=1 o

v
k ▽ lf (s

v
k, θ̃

t)], and
we have

Lf (T u, θ̂(o))− Lf (T u, θ̃t)

− 1
Z

=
Lf (T u, θ̂(o,− 1

Z ))− Lf (T u, θ̃t)

− 1
Z

≈ dLf (T u, θ̂(o, ϵ))

dϵ
|ϵ→0

=
∑
y∈T u

▽lf (y, θ̃
t)× dθ̂(o, ϵ)

dϵ
|ϵ→0

≈
∑
y∈T u

▽lf (y, θ̃
t)H−1

θ̃t
[
∑
v

|Sv|∑
k=1

ovk ▽ lf (s
v
k, θ̃

t)]

(27)
where Hθ̃t =

1
Z

∑
v

∑|Sv|
k=1 õ

t,v
k ▽2 lf (s

v
k, θ̃

t). At last,

Lf (T u, θ̂(o))− Lf (T u, θ̃t) ≈ − 1

Z

∑
y∈T u

▽lf (y, θ̃
t)H−1

θ̃t
[
∑
v

|Sv|∑
k=1

ovk ▽ lf (s
v
k, θ̃

t)]

Lf (T u, θ̂(o)) ≈ Lf (T u, θ̃t)− 1

Z

∑
y∈T u

∑
v

|Sv|∑
k=1

ovk ▽ lf (y, θ̃
t)H−1

θ̃t
▽ lf (s

v
k, θ̃

t)

(28)
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A.4 PROOF OF THEORY 4

Proof.

zu(α
u,α−u) = Eo[zu(o

u,o−u)] = Eo[

T∑
t=1

1(o ∈ At)zu(o
u,o−u, t)]

=

T∑
t=1

∑
o

1(o ∈ At)α
u(ou)α−u(o−u){−Lf (T u, θ̃t) +

1

Z

∑
y∈T u

∑
v∈U

|Sv|∑
k=1

ovkg(s
v
k, y, t)− λ

|Su|∑
k=1

oukβ
u
k }

=

T∑
t=1

∑
o

1(o ∈ At)α
u(ou)α−u(o−u){−Lf (T u, θ̃t) +

1

Z

∑
y∈T u

∑
v∈U

(ov)Tgt,v
y − λ(ou)Tβu}

=

T∑
t=1

∑
o

1(o ∈ At)α
u(ou)α−u(o−u){−Lf (T u, θ̃t) +

1

Z

∑
v∈U

(ov)Tgt,v − λ(ou)Tβu}

=

T∑
t=1

∑
o

1(o ∈ At)α
u(ou)α−u(o−u){−Lf (T u, θ̃t) +

1

Z

∑
v ̸=u

(ov)Tgt,v +
1

Z
(ou)Tgt,u − λ(ou)Tβu}

(29)

A.5 PROOF OF THEORY 5

We rewrite the objective as follows:

max
αu∈△

∑
ou

αu
ou [

∑
o−u

α−u
o−u

T∑
t=1

1(o ∈ At)B(ou,o−u, t)] (30)

Suppose the optimal solution for (30) is αu, and the output of the lth iteration is αu
l . Recall that

g =
∑

o−u α−u
o−u

∑T
t=1 1(o ∈ At)B(ou,o−u, t), then we have:

E[αug −αu
l g] = E[(αu −αu

l )ĝ]

= E[
1

2γ
(||αu −αu

l ||22 + γ2||ĝ||22 − ||αu − (αu
l + γĝ||22)]

≤ E[
1

2γ
(||αu −αu

l ||22 + γ2||ĝ||22 − ||αu −αu
l+1||22)]

≤ E[
1

2γ
(||αu −αu

l ||22 − ||αu −αu
l+1||22 + γ2G2)]

(31)

where the third line hold because αu
l+1 = Π△[αu

l + γĝ(αu)].

In the next,

L∑
l=1

E[αuy −αu
l y] ≤ E[

1

2γ
(||αu −αu

1 ||22 − ||αu −αu
L+1||22 + Lγ2G2)]

≤ E[
1

2γ
(||αu −αu

1 ||22 + Lγ2G2)]

≤ 1

γ
+ Lγ2G2

(32)

where the third line hold because αu and αu
1 are both simplex.
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Table 2: Statistics of the datasets
Dataset # User # Item # Interaction Sparsity

Simulation 1000 1000 6148 99.39%
Diginetica 2852 10739 17073 99.94%

Steam 11942 6955 86595 99.89%
Amazon Video 2790 12435 18703 99.95%

Table 3: Statistics of the simulation datasets with different η’s, where the number of users and items
are both 1000.

η 0.1 0.2 0.3 0.4 0.5
#Interaction 11296 10068 8828 7507 6184

Sparsity 98.87% 99.00% 99.12% 99.25% 99.39%

At last,

1

L

L∑
l=1

E[αug −αu
l g] ≤

1

Lγ
+ γ2G2

E[αug]− 1

L

L∑
l=1

E[αu
l g] ≤

1

Lγ
+ γ2G2

1

L

L∑
l=1

E[αu
l g] ≥ E[αug]− (

1

Lγ
+ γ2G2)

1

L

L∑
l=1

E[αu
l g] ≥ max

αu
E[αug]− (

1

Lγ
+ γ2G2)

E[zu(α̂
u,α−u)] = E[α̂ug] ≥ max

αu
E[αug]− (

1

Lγ
+ γ2G2)

= max
αu

E[zu(α
u,α−u)]− (

1

Lγ
+ γ2G2)

(33)

A.6 PROOF OF THEORY 6

In equation (14), the approximation error comes from ignoring the term
∑

v

∑|Sv|
k=1(õ

v
k − ovk) ▽2

lf (s
v
k, θ̃), where õv = {õv1, ...õv|Sv|} is the anchor selection vector of user v. Let D be the hamming

distance counting the number of different bits between two vectors, then we consider the value∑
v

∑|Sv|
k=1 |õvk − ovk|B =

∑
v D(õv,ov)B, which upper bounds the approximation error, and are

interrested in whether the multi-anchor proposal can reduce this value.

In specific, for a given selection vector o, suppose õt1 is the nearest anchor vector to o in P . Since
P ⊆ Q, we have õt1 ∈ Q. Suppose õt2 is the nearest anchor vector to o in Q, then according
the definition of Q, we have

∑N
v=1 D(õt2,v,ov) ≤

∑N
v=1 D(õt1,v,ov). Since B > 0, we have∑N

v=1 D(õt2,v,ov)B ≤
∑N

v=1 D(õt1,v,ov)B. By summing all the candidate selection vectors, and
grouping them according to AP

t and AQ
t , respectively, we have:

TP∑
t=1

∑
o∈AP

t

[
∑
v

D(õt,v,ov)]B ≥
TQ∑
t=1

∑
o∈AQ

t

[
∑
v

D(õt,v,ov)]B, (34)

A.7 LEARNING ALGORITHM FOR THE BASIC MODEL

Here, we present the learning algorithms for the basic model in algorithm 3.
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Figure 4: Performance comparison on the dataset with different sparsities.

Algorithm 3: Training process of the based model

1 Initialize {α1,α2, ...,αN} and let αu
0 = αu (u ∈ [1, N ]).

2 Indicate the max iteration number M and threshold κ.
3 for m in [1, M] do
4 for u in [1, N] do
5 Let α−u

m−1 = {α1
m−1, ...,α

u−1
m−1,α

u+1
m−1, ...,α

N
m−1}.

6 Learning αu
m based on (5) by fixing α−u

m−1.
7 end
8 if |αu

m −αu
m−1| < κ ,∀u ∈ [1, N ] then

9 Break.
10 end
11 end
12 Output αu∗ = αu

m (u ∈ [1, N ]).

A.8 MORE IMPLEMENTATION DETAILS

For the simulation dataset, the threshold η and (a1, a2, a3) are initially set as 0.5 and (0.5, 1, 1),
respectively. And then, we tune them in the experiments to study the influence of different dataset
sparsities and user willingness characters. For the real world datasets, Diginetica and Amazon Video
are e-commerce datasets, where we are provided with the user-item purchasing records. Steam is a
game dataset, which includes the interactions (e.g., reviewing behaviors) between the users and games.
Since we do not know the real user disclosing willingness, we simulate it by randomly assigning
the willingness vector for each user, and repeat the experiments for ten times to make sure that the
experiment results are not from the randomness. The statistics of the above datasets are concluded in
Table 2.

In IFRQE++, considering that the space of α can be extremely large, it is less efficient to initialize α
completely at random, and blindly learn it in the optimization process. To solve this problem, we
initialize α with a prior, assuming that most of the items should be leveraged to train the model for
achieving acceptable recommendation performance. In specific, for each αu ∈ α, we initialize it
with a Binomial distribution p(k, n) = Ck

ns
k(1− s)n−k, where k is the number of disclosed items,

and n is the total number of items in the training set (i.e., |Su|). Notably, we do not discriminate the
item differences in the initialization process of αu. For example, suppose there are three items, then
αu

{1,1,0} = αu
{1,0,1} = αu

{0,1,1}. In the experiment, we set s = 0.9, which means, in the beginning,
about 0.9 ∗ |Su| items will be involved into the model training process.

In order to efficiently compute the inverse of the Hessian matrix, we use the stochastic estimation
method discussed in Koh & Liang (2017). In specific, according to the Taylor expansion, we can
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Table 4: Parameter settings in the experiments.
Parameter Tuning range Simulation Diginetica Steam Amazon Video

Learning rate [0.001, 0.01, 0.05] 0.01 0.01 0.01 0.01

Batch size [1024, 2048, 4096] 2048 2048 2048 2048

Embedding size [64, 128, 256] 64 64 64 64

Drop ratio [0.01, 0.1, 0.2] 0.1 0.1 0.1 0.1

λ [0.1, 0.5, 1] 1 1 1 1

Iteration number M [1, 3, 5, 10] 10 10 10 10

Training epochs [50, 100, 150] 50 50 150 100

L [500, 1000, 2000] 1000 1000 500 1000

T [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 2 8 4 6

NJ for computing H−1 [10, 20, 30] 30 10 20 20

express H−1 by
∑∞

i=0(I−H)i. Let H−1
j =

∑j
i=0(I−H)i, then we have H−1

j = I+(I−H)H−1
j−1.

To compute H−1

θ̃
▽ lf (s

v
k, θ̃), we uniformly sample a training data s, and approximate H by

▽2lf (s, θ̃). Then we have the following recursive equation:

H−1
j ▽ lf (s

v
k, θ̃) = ▽lf (s

v
k, θ̃) + (I −▽2lf (s, θ̃))H

−1
j−1 ▽ lf (s

v
k, θ̃) (35)

Obviously, when j → ∞, we have H−1
j ▽ lf (s

v
k, θ̃) → H−1

θ̃
▽ lf (s

v
k, θ̃). In the experiment, we

resample s for each iteration, and the total number of iterations NJ is tuned to better effectiveness-
efficiency trade-off.

For the model parameters, we determine them by grid search. For example, the number of anchor
selection vectors is searched in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The learning rate and batch size are
determined in the ranges of [0.001, 0.01, 0.05] and [1024, 2048, 4096], respectively. The anchor
selection vectors are sampled from the Binomial distribution, where, similar to αu, we set the mean
as 0.9. The final parameters used in our experiments are concluded in Table 4. Our project has been
released at https://ifrqe.github.io/IFRQE/.

A.9 MORE EXPERIMENTS

In this section, we present more experiments to evaluate and analyze our proposed frameworks.

A.9.1 COMPARISON BETWEEN OUR FRAMEWORK AND THE METHOD OF “TRAINING FROM
SCRATCH”

In this section, we compare our framework with the method of “training from scratch” (we call
it as SCR), where we drop the influence function, and for each action exploration, we retrain the
recommender model. We remain the other model components of this method the same as our
framework. The comparison results are presented in Table 5. We can see, the performances of our
framework do not surpass SCR in most cases. This is understandable, since SCR uses the true loss,
and our framework only leverages the approximated values. However, we find that the reward gap is
not large, which may suggest that our designed influence function can well approximate the true loss,
and help to achieve satisfied reward. An important superiority of our framework is the efficiency. As
can be seen in the last column of Table 5, we can improve the training efficiency by about 20.3 times.
This superiority is very important for the recommender system, which is an on-line service, and has
to make quick responses the user feedback.

A.9.2 INFLUENCE OF THE DATA SPARSITY

In real-world scenarios, recommender systems can be applied in different applications, where the
dataset sparsity may vary a lot. In this section, we would like to study whether our methods are
consistently competitive for the datasets with different sparsities. In order to flexibly control the
sparsity, we conduct this experiment based on the simulation dataset. Since the threshold η controls
the hardness of generating the user-item interactions, we tune η in the range of {0.1, 0.2, 0.3, 0.4, 0.5}
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Table 5: Comparison between between our framework and the method of training from scratch (SCR).
Results based on base models MF, NeuMF, LightGCN, DIN and CDAE. “()” indicates the standard
error. The metrics for evaluating the recommendation performance are percentage values with “%”
omitted. For the metrics, ↑ means the larger the better, while ↓ means the lower the better.

Dataset Diginetica

Metric precision↑ NDCG↑ MRR↑ F1 ↑ wv↓ rewarde↑ time↓
w/ SCR 3.26(.014) 13.5(.017) 12.6(.023) 5.43(.021) 2.00(.013) -2.08(.031) 69126(.023)

w/ IFRQE++ 3.14(.018) 12.5(.010) 11.5(.012) 5.23(.028) 2.01(.036) -2.08(.032) 739(.026)

w/ SCR 2.09(.013) 7.38(.012) 6.37(.013) 3.48(.011) 2.00(.023) -2.10(.011) 21342(.033)

w/ IFRQE++ 1.82(.028) 6.04(.018) 5.04(.022) 3.03(.009) 2.00(.016) -2.09(.032) 1443(.026)

w/ SCR 1.19(.004) 3.77(.027) 3.05(.013) 1.98(.012) 1.99(.023) -2.21(.011) 21555(.023)

w/ IFRQE++ 0.84(.014) 2.60(.012) 2.07(.032) 1.40(.021) 2.01(.032) -2.37(.032) 1331(.025)

w/ SCR 1.56(.014) 4.70(.029) 3.68(.013) 2.60(.019) 1.97(.017) -2.22(.037) 137494(.033)

w/ IFRQE++ 1.11(.016) 3.28(.015) 2.54(.013) 1.85(.008) 2.00(.026) -2.23(.013) 2328(.023)

w/ SCR 0.86(.013) 2.51(.019) 1.94(.025) 1.43(.021) 2.00(.017) -2.06(.010) 7320(.032)
w/ IFRQE++ 0.85(.018) 2.54(.020) 1.99(.022) 1.41(.023) 2.01(.016) -2.07(.032) 879(.033)

Dataset Amazon Video Games

Metric precision↑ NDCG↑ MRR↑ F1 ↑ wv↓ rewarde↑ time↓
w/ SCR 1.25(.022) 4.50(.027) 3.92(.009) 2.08(.011) 2.32(.023) -2.40(.031) 9415(.023)

w/ IFRQE++ 1.09(.018) 3.79(.010) 3.24(.021) 1.82(.023) 2.35(.016) -2.42(.012) 1021(.036)

w/ SCR 1.09(.007) 3.34(.017) 2.65(.013) 1.81(.021) 2.32(.023) -2.52(.011) 14943(.033)

w/ IFRQE++ 0.86(.028) 2.64(.011) 2.09(.012) 1.43(.038) 2.35(.016) -2.50(.023) 3192(.026)

w/ SCR 1.23(.0245 4.43(.027) 3.87(.015) 2.04(.022) 2.31(.023) -2.68(.031) 18492(.023)

w/ IFRQE++ 1.19(.019) 4.29(.014) 3.74(.019) 1.98(.018) 2.34(.031) -2.63(.019) 2148(.026)

w/ SCR 1.57(.029) 5.71(.017) 5.31(.015) 3.07(.022) 2.00(.023) -2.07(.031) 161501(.033)

w/ IFRQE++ 1.59(.019) 5.94(.011) 5.59(.022) 3.11(.021) 2.01(.016) -2.06(.023) 2743(.013)

w/ SCR 0.97(.025) 2.97(.019) 2.35(.029) 1.61(.009) 2.31(.013) -2.52(.021) 1045387(.023)
w/ IFRQE++ 1.13(.010) 3.64(.017) 2.99(.011) 1.88(.021) 2.34(.016) -2.44(.027) 579(.013)

to build the datasets with different densities, where larger η can lead more sparse dataset. The statistics
of the generated datasets are presented in Table 3. In Figure 4, we report the performance of different
models based on the reward, where we can see: the performance of the base model is not satisfied in
most cases. IFRQE usually outperforms the random method, although there are a few exceptions.
IFRQE++ can always achieves the best performance, which is consistent on all the base models and
datasets with different sparsities. These results demonstrate the robustness of our model, and suggests
that it can be potentially applied to a wide range of real-world applications.

A.9.3 INFLUENCE OF THE BALANCING PARAMETER λ

In the reward function, λ balances the importances of the recommendation quality and user disclosing
willingness. To study whether our model can adaptively trade-off the above two aspects, we specify λ
with different values, and observe whether our model can always achieve better performance than the
baselines. In specific, we set λ as 0.1, 0.5, 1.0 and 2.0 respectively, and the results of comparing our
models with the baselines are presented in Table 6. We can see: on different datasets, because the base
model completely ignores the user disclosing willingness, the overall reward is the worst comparing
with the other methods. Blindly integrating the user disclosing willingness is also sub-optimal, which
is evidenced by the lower performance of the random method. By designing a principled model
to optimize the overall reward, IFRQE can achieve better performance than the base and random
models in most cases. As expected, by leveraging more anchor selection vectors to simulate the
validation loss, the final model IFRQE++ achieves the best performance. The above observations
are consistent for different λ’s, which manifests that our model is robust to the predefined relative
importance between the recommendation quality and user disclosing willingness.

A.9.4 COMPLETE RESULTS FOR SECTION 5.3 AND 5.4 IN THE MAIN PAPER

To begin with, we present the complete results of the experiments in section 5.3 of the main paper.
From the results shown in Figure 5, we can see: similar to the results in the main paper, the
validation loss can be in general well approximated in most cases. IFRQE++ can achieve better
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Table 6: Comparison between different models with different λ’s. We use bold fonts to label the best
performance for each dataset, evaluation metric and base model. “()” indicates the standard error.

Dataset Simulation Diginetica Steam Amazon Video
λ = 0.1

MF -0.34(.002) -0.29(.009) -0.49(.005) -0.32(.007)
w/ Random -0.46(.005) -0.28(.017) -0.48(.019) -0.31(.011)

w/ Threshold -0.48(.015) -0.48(.022) -0.50(.017) -0.30(.018)
w/ Proactive -0.33(.034) -0.28(.025) -0.31(.007) -0.36(.019)
w/ IFRQE -0.34(.007) -0.23(.011) -0.49(.013) -0.30(.008)

w/ IFRQE++ -0.32(.006) -0.22(.005) -0.47(.006) -0.28(.002)
NeuMF -0.40(.001) -0.30(.002) -0.37(.009) -0.33(.007)

w/ Random -0.39(.012) -0.31(.010) -0.36(.015) -0.34(.006)
w/ Threshold -0.38(.019) -0.38(.012) -0.35(.007) -0.41(.014)
w/ Proactive -0.49(.027) -0.35(.012) -0.37(.007) -0.35(.019)
w/ IFRQE -0.37(.005) -0.34(.002) -0.25(.014) -0.37(.012)

w/ IFRQE++ -0.34(.007) -0.28(.003) -0.24(.005) -0.32(.002)
LightGCN -0.32(.011) -0.28(.016) -0.36(.013) -0.49(.011)
w/ Random -0.30(.013) -0.27(.022) -0.39(.019) -0.47(.016)

w/ Threshold -0.36(.021) -0.33(.030) -0.35(.026) -0.34(.011)
w/ Proactive -0.29(.034) -0.51(.025) -0.34(.007) -0.25(.019)
w/ IFRQE -0.26(.005) -0.27(.014) -0.34(.011) -0.25(.003)

w/ IFRQE++ -0.25(.006) -0.25(.016) -0.33(.008) -0.24(.004)
λ = 0.5

MF -1.19(.006) -1.10(.012) -1.54(.011) -1.27(.016)
w/ Random -1.28(.016) -1.08(.007) -1.52(.019) -1.21(.018)

w/ Threshold -1.32(.021) -1.44(.030) -1.37(.026) -1.21(.011)
w/ Proactive -1.18(.028) -1.08(.025) -1.44(.007) -0.36(.019)
w/ IFRQE -0.97(.003) -0.85(.007) -0.77(.006) -1.04(.008)

w/ IFRQE++ -0.95(.001) -0.81(.006) -0.76(.001) -1.03(.004)
NeuMF -1.11(.009) -1.11(.002) -1.42(.006) -1.27(.009)

w/ Random -1.22(.006) -1.10(.010) -1.40(.013) -1.22(.017)
w/ Threshold -1.32(.021) -1.44(.030) -1.37(.026) -1.23(.011)
w/ Proactive -1.21(.017) -1.29(.025) -1.30(.007) -0.36(.019)
w/ IFRQE -0.93(.011) -1.01(.002) -1.30(.005) -1.26(.004)

w/ IFRQE++ -0.91(.006) -0.98(.003) -1.28(.011) -1.20(.007)
LightGCN -1.17(.011) -1.09(.016) -1.41(.009) -1.48(.006)
w/ Random -1.11(.016) -1.06(.022) -1.43(.012) -1.38(.019)

w/ Threshold -1.32(.021) -1.44(.030) -1.74(.026) -1.75(.011)
w/ Proactive -1.20(.034) -1.54(.033) -1.19(.007) -1.70(.019)
w/ IFRQE -1.04(.007) -0.97(.014) -1.41(.003) -1.33(.006)

w/ IFRQE++ -1.02(.001) -0.96(.016) -1.40(.008) -1.29(.005)
λ = 1.0

MF -2.25(.032) -2.65(.072) -2.99(.093) -2.43(.022)
w/ Random -2.13(.014) -2.04(.006) -2.82(.015) -2.30(.023)

w/ Threshold -2.20(.011) -2.06(.013) -2.57(.023) -2.20(.015)
w/ Proactive -2.25(.034) -2.14(.012) -2.43(.007) -2.08(.019)
w/ IFRQE -2.09(.017) -2.18(.006) -2.43(.015) -2.10(.005)

w/ IFRQE++ -1.92(.012) -1.92(.022) -2.42(.014) -1.98(.056)
NeuMF -2.32(.011) -2.11(.003) -2.76(.007) -2.47(.010)

w/ Random -2.19(.011) -2.11(.016) -2.59(.011) -2.41(.010)
w/ Threshold -2.18(.012) -2.08(.013) -2.86(.011) -2.21(.025)
w/ Proactive -2.18(.034) -2.14(.015) -2.42(.022) -2.41(.019)
w/ IFRQE -2.48(.013) -2.17(.019) -2.45(.027) -2.24(.012)

w/ IFRQE++ -2.11(.011) -2.08(.023) -2.37(.027) -2.17(.011)
LightGCN -2.82(.012) -2.71(.009) -3.13(.014) -3.05(.007)
w/ Random -2.71(.022) -2.64(.007) -3.07(.019) -2.93(.015)

w/ Threshold -2.70(.008) -2.60(.031) -2.82(.022) -2.30(.021)
w/ Proactive -2.47(.034) -2.11(.013) -2.81(.027) -2.64(.039)
w/ IFRQE -2.82(.014) -2.65(.013) -2.82(.008) -2.13(.013)

w/ IFRQE++ -2.44(.016) -2.55(.009) -2.80(.005) -2.03(.023)
λ = 2.0

MF -4.53(.011) -4.23(.052) -5.46(.013) -4.56(.012)
w/ Random -4.30(.024) -4.01(.016) -5.18(.025) -4.64(.023)

w/ Threshold -4.34(.009) -3.72(.027) -4.92(.023) -4.32(.025)
w/ Proactive -4.37(.014) -4.10(.021) -4.55(.027) -4.09(.029)
w/ IFRQE -4.12(.017) -3.24(.026) -4.05(.015) -3.71(.043)

w/ IFRQE++ -4.06(.010) -3.16(.032) -4.02(.014) -3.37(.056)
NeuMF -4.44(.012) -4.12(.043) -5.34(.027) -4.81(.019)

w/ Random -4.21(.012) -4.05(.035) -5.07(.021) -4.58(.031)
w/ Threshold -4.38(.012) -3.74(.013) -4.81(.011) -4.33(.035)
w/ Proactive -4.65(.024) -3.77(.025) -4.62(.007) -4.18(.009)
w/ IFRQE -4.56(.013) -4.00(.019) -3.90(.028) -3.06(.022)

w/ IFRQE++ -4.00(.012) -3.67(.021) -3.40(.019) -2.74(.012)
LightGCN -4.94(.021) -4.10(.009) -5.75(.024) -5.20(.057)
w/ Random -4.70(.032) -3.90(.007) -5.07(.029) -4.73(.033)

w/ Threshold -4.36(.017) -4.32(.031) -5.21(.022) -4.93(.041)
w/ Proactive -3.63(.035) -4.72(.039) -4.54(.007) -4.71(.011)
w/ IFRQE -3.89(.013) -2.54(.013) -3.90(.018) -3.71(.023)

w/ IFRQE++ -3.55(.026) -2.52(.009) -3.40(.025) -3.69(.033)

approximation accuracy than IFRQE, which demonstrate the effectiveness of using more anchor
vectors for computing the validation loss. In Figure 6, we show the complete results of the experiments
in section 5.4. We can see: the reward changing patterns seem to be quite diverse as more anchor
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Figure 5: Approximation error on the validation loss for all the datasets and base models.

Figure 6: Influence of T for all the datasets and base models.

selection vectors are leveraged in our model. For example, in the case of MF + Diginetica, the reward
has a performance jump from T = 3 to T = 4. Similar performance jumping patterns can also be
observed in the settings of NeuMF + Diginetica, LightGCN + Diginetica, LightGCN + Amazon
Video and the simulation dataset. However, in the case of NeuMF + Amazon Video, the reward
changes irregularly as T becomes larger. While different combinations between the base model and
dataset may lead to various performance change patterns, a common phenomenon is that, in most
cases, the performance tends to be better as more anchor selection vectors. Simultaneously, the time
cost is increased almost linearly as more anchor vectors are deployed to achieve better performance.
These observations are aligned with the conclusions in the main paper.

A.9.5 OVERALL COMPARISON WITH MORE PERFORMANCE EVALUATION

To begin with, we augment Table 1 in the main paper by reporting the recommendation performance
based on Precision, NDCG and MRR. From the results shown in Table 7, we can draw similar
conclusions as Table 1, that is, there are many cases that, although we have removed some items due
to the user willingness, the recommendation performances are not lowered.

21



Under review as a conference paper at ICLR 2023

Table 7: Additional metrics for evaluating the recommendation performance. We use “P” to represent
the precision. All the results are percentage values with “%” omitted.

Dataset Simulation Diginetica Steam Amazon Video

Metric P↑ NDCG↑ MRR↑ P↑ NDCG↑ MRR↑ P↑ NDCG↑ MRR↑ P↑ NDCG↑ MRR↑
MF 0.39(.022) 1.02(.017) 0.72(.023) 2.83(.012) 11.3(.017) 10.3(.023) 6.21(.043) 19.5(.014) 15.8(.093) 1.03(.012) 3.52(.021) 2.99(.022)

w/ Random 0.41(.031) 1.11(.056) 0.80(.024) 2.51(.031) 9.88(.006) 9.00(.014) 5.64(.019) 17.7(.017) 14.3(.015) 0.92(.011) 3.10(.022) 2.61(.023)

w/ Threshold 0.34(.036) 1.07(.022) 1.01(.011) 2.80(.022) 11.0(.013) 9.98(.042) 5.55(.028) 17.7(.033) 14.4(.027) 0.90(.026) 2.86(.037) 2.33(.041)

w/ Proactive 0.37(.015) 1.01(.021) 0.93(.013) 1.33(.005) 4.73(.023) 4.10(.042) 5.96(.011) 19.4(.013) 16.0(.009) 0.93(.015) 3.15(.017) 2.66(.031)

w/ IFRQE 0.37(.025) 1.11(.033) 0.87(.017) 3.14(.025) 12.5(.033) 11.5(.017) 6.23(.012) 19.8(.012) 16.1(.015) 0.34(.015) 1.28(.016) 1.14(.005)

w/ IFRQE++ 0.33(.027) 1.02(.013) 0.82(.012) 2.41(.007) 9.46(.013) 8.21(.012) 5.90(.017) 18.9(.032) 15.4(.014) 1.03(.012) 3.37(.032) 2.78(.056)

NeuMF 0.52(.037) 1.40(.003) 1.02(.011) 2.53(.037) 10.5(.003) 9.83(.011) 6.12(.007) 19.5(.012) 15.9(.007) 0.99(.014) 3.38(.013) 2.87(.010)

w/ Random 0.54(.019) 1.71(.015) 1.39(.012) 1.43(.019) 5.04(.015) 4.34(.012) 4.64(.005) 14.6(.019) 11.5(.011) 1.08(.014) 3.63(.006) 3.04(.010)

w/ Threshold 0.90(.022) 4.02(.028) 3.86(.011) 2.43(.011) 9.74(.044) 8.94(.016) 4.50(.029) 14.2(.022) 11.5(.021) 0.93(.012) 3.03(.028) 2.49(.017)

w/ Proactive 1.10(.033) 4.47(.022) 4.13(.012) 0.78(.017) 2.31(.043) 1.79(.011) 5.73(.028) 17.8(.032) 14.3(.012) 0.86(.006) 2.82(.021) 2.33(.039)

w/ IFRQE 0.84(.014) 2.73(.023) 2.26(.033) 1.75(.004) 7.27(.023) 2.99(.033) 4.90(.023) 14.6(.019) 11.4(.027) 1.10(.015) 3.77(.014) 3.39(.012)

w/ IFRQE++ 1.80(.015) 6.34(.003) 3.77(.021) 1.80(.015) 6.34(.003) 3.77(.021) 5.32(.021) 16.7(.014) 13.4(.027) 0.72(.031) 2.65(.014) 2.48(.011)

LightGCN 0.54(.025) 1.41(.008) 1.01(.042) 4.51(.019) 20.2(.010) 19.5 (.009) 6.04(.010) 18.8(.009) 15.1(.014) 1.29(.021) 4.90(.008) 4.40(.007)

w/ Random 0.49(.013) 1.27(.013) 0.89(.022) 4.50(.013) 20.0(.013) 19.2(.022) 6.03(.027) 18.8(.026) 15.1(.019) 1.05(.003) 3.84(.009) 3.37(.015)

w/ Threshold 0.58(.038) 2.25(.018) 2.04(.018) 2.43(.027) 9.74(.041) 8.94(.021) 5.79(.049) 18.1(.027) 14.6(.036) 0.97(.013) 3.28(.023) 2.78(.048)

w/ Proactive 0.61(.011) 2.42(.023) 2.22(.013) 3.31(.026) 14.1(.014) 13.3(.011) 6.21(.019) 20.6(.017) 17.2(.028) 0.77(.015) 2.48(.021) 2.04(.038)

w/ IFRQE 0.58(.008) 1.60(.010) 1.18(.014) 2.93(.008) 10.9(.010) 9.74(.014) 6.21(.016) 19.8(.025) 16.1(.008) 1.14(.007) 3.98(.018) 3.42(.013)

w/ IFRQE++ 0.45(.022) 1.21(.008) 0.87(.016) 3.16(.022) 12.1(.008) 10.9(.016) 6.15(.018) 19.7(.018) 16.0(.005) 0.97(.013) 3.44(.009) 2.98(.023)

DIN 0.86(.022) 2.76(.017) 2.25(.023) 2.48(.023) 8.30(.005) 6.95(.031) 7.01(.019) 23.5(.048) 19.7(.005) 1.38(.038) 5.38(.012) 4.39(.026)

w/ Random 0.74(.031) 2.30(.016) 1.84(.024) 2.60(.016) 8.65(.042) 7.22(.024) 6.54(.030) 21.4(.042) 17.7(.014) 1.27(.018) 3.78(.023) 2.95(.015)

w/ Threshold 0.82(.004) 2.30(.022) 1.73(.029) 2.24(.010) 7.45(.032) 6.22(.036) 5.79(.036) 24.9(.045) 20.8(.029) 1.26(.009) 3.84(.036) 3.03(.022)

w/ Proactive 0.73(.012) 2.14(.024) 1.65(.018) 1.64(.015) 5.05(.017) 4.03(.019) 7.60(.029) 25.2(.035) 21.1(.025) 0.98(.020) 3.03(.021) 2.43(.027)

w/ IFRQE 0.72(.027) 2.48(.013) 2.11(.012) 2.35(.017) 8.04(.047) 6.82(.022) 7.93(.021) 26.6(.030) 22.3(.041) 0.74(.034) 2.47(.019) 2.04(.043)

w/ IFRQE++ 0.62(.027) 1.73(.013) 1.27(.012) 2.10(.014) 6.78(.042) 5.56(.030) 5.72(.030) 17.5(.016) 13.9(.045) 1.09(.021) 3.47(.047) 2.83(.038)

CDAE 0.74(.010) 2.73(.015) 2.41(.031) 0.89(.009) 2.65(.016) 2.06(.042) 6.91(.008) 21.8(.029) 17.6(.014) 0.67(.011) 2.01(.027) 1.58(.045)

w/ Random 0.74(.013) 2.87(.013) 2.60(.022) 0.83(.014) 2.63(.042) 2.13(.030) 6.96(.021) 22.0(.003) 17.8(.041) 0.73(.011) 2.27(.015) 1.82(.031)

w/ Threshold 0.36(.021) 1.05(.003) 0.81(.041) 0.83(.030) 2.61(.026) 2.11(.006) 5.34(.045) 16.9(.044) 13.8(.010) 0.73(.016) 2.27(.040) 1.82(.015)

w/ Proactive 0.98(.014) 3.03(.024) 2.43(.028) 0.71(.017) 2.11(.039) 1.64(.007) 6.76(.026) 21.2(.033) 17.1(.014) 0.98(.012) 3.03(.031) 2.43(.022)

w/ IFRQE 0.56(.011) 0.87(.015) 0.69(.027) 0.89(.011) 2.68(.032) 2.11(.013) 6.77(.008) 21.2(.025) 17.1(.023) 1.08(.027) 3.62(.029) 3.03(.046)

w/ IFRQE++ 0.52(.037) 0.91(.005) 0.79(.012) 0.86(.007) 2.58(.019) 2.03(.042) 6.85(.018) 21.4(.046) 17.2(.032) 1.10(.027) 3.63(.029) 3.00(.046)
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