VISUAL FEEDBACK FOR SELF-IMPROVING TEXT LAY-OUT WITH MLLM VIA REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in Multimodal Large Language Models (MLLMs) have enabled automated generation of structured layouts from natural language descriptions. Existing methods typically follow a text-only paradigm that generates code to represent layouts, which are then rendered by graphic engines to produce final images. However, during the code generation process, they are blind to the rendered visual outcome, making it difficult to guarantee readability and aesthetics. In this paper, we identify visual feedback as a critical factor in layout generation and propose a self-improving framework that leverages visual feedback for text layout generation. Our method enables the model to iteratively generate layout code, render it into an image, visually evaluate the result, and refine the design through reflection until satisfactory quality is reached. We achieve this through reinforcement learning with a visually grounded reward model that incorporates OCR accuracy and aesthetic measures. Importantly, we demonstrate that simple outcome-based rewards are more effective than complex process-oriented reward functions for iterative generation tasks. Experiments across multiple benchmarks show that our approach significantly outperforms code-only baselines, advanced MLLMs, and existing layout models, establishing Visual Feedback as critical for design-oriented MLLMs.

1 Introduction

The emergence of Large Language Models(LLMs)(Achiam et al., 2023; DeepSeek-AI, 2025; Yang et al., 2025) and Multimodal Large Language Models (MLLMs)(Hurst et al., 2024; OpenAI, 2025; Bai et al., 2025; Team, 2025) has opened new possibilities for automated content generation tasks, particularly for structured visual layouts. These models can translate natural language descriptions directly into complex designs—such as typographic posters, social media graphics, and documents—by generating structured representations (e.g., SVG code or custom JSON)(Feng et al., 2024; Yang et al., 2024; Cheng et al., 2024; Qu et al., 2025) that specify the position, size, and style of each element (Jia et al., 2023; Inoue et al., 2024). Critically, MLLMs enhance this capability by leveraging cross-modal understanding, enabling them to condition the layout generation on not only textual prompts but also visual inputs.

However, existing methods face a fundamental limitation: they operate under a text-only paradigm that generate code to represent layout without visual feedback. For Instance, Jia et al. (2023) and Inoue et al. (2024) leverage LLMs to generate typography JSON files, while Zhang et al. (2025b) produces customized layout output formats, which are then composed into the final images by a graphic renderer. While these models can generate layout structures that conform to specifications, they lack the ability to directly perceive the visual appearance of their outputs. This limitation is critical because effective text layout design depends on intrinsically visual criteria such as aesthetic quality, text readability, and image-text coherence that cannot be fully captured by programmatic rules alone. For instance, a model may generate syntactically correct SVG code that results in overlapping elements, insufficient text-background contrast, or poor visual alignment, yet remain unaware of these visual defects.

Recent advances in Large Language Model(DeepSeek-AI, 2025; Jaech et al., 2024; OpenAI, 2025; Gandhi et al., 2025) research demonstrate that reflection, backtracking, and self-validation mechanisms can substantially improve performance on complex reasoning tasks. Moreover, Reinforce-

ment Learning(RL)(Ouyang et al., 2022a; Schulman et al., 2017; Shao et al., 2024) techniques have proven effective in activating the reflective reasoning capabilities of LLMs. This motivates our core research question: Can such reasoning capabilities be transferred to text layout generation to overcome the visual perception gap in existing approaches? We argue that the solution lies in incorporating **Visual Feedback** into the text layout generation process, leveraging MLLMs' inherent cross-modal understanding capabilities. Our key insight is that models should not only generate layout code but also perceive the rendered results to evaluate quality, diagnose visual issues, and devise optimization strategies through iterative refinement.

In this paper, we propose a novel **Self-Improving framework** for text layout generation that establishes a closed-loop process guided by reinforcement learning. As shown in Figure 1, the framework works as follows: the MLLM first generates initial SVG layout code, which is rendered into a visual image. This rendered image is fed back to the same model for visual inspection and reflection. If issues are identified, the model generates revised code and repeats the process, creating a continuous loop of "generation, rendering, reflection and refinement" until a satisfactory layout is achieved. Our approach employs a two-stage training framework. First, we construct a dataset of multi-stage generation—reflection—refinement trajectories using an advanced MLLM, followed by Supervised Fine-Tuning (SFT) to initialize the model for iterative generation. Second, we employ reinforcement learning to enhance the model's reflective capabilities, using a reward model that evaluates layout quality holistically and incorporates text accuracy through Optical Character Recognition (OCR). Our results demonstrate that MLLMs' visual understanding capabilities can be effectively activated through simple reward signals, enabling robust iterative improvement through visual feedback.

We conduct extensive experiments on the Qwen2.5-VL-7B(Bai et al., 2025) model for the task of layout target text on background images. Both quantitative and qualitative evaluations show that our visual feedback-driven method significantly outperforms code-only baselines and state-of-the-art layout generation approaches, while also surpassing advanced MLLMs and image editing models. This work establishes visual feedback as a critical component in generative text layout and provides a practical framework for developing self-improving MLLM-based design agents. Beyond achieving state-of-the-art performance, our experiments also reveal an important insight into reward design: simple outcome-based rewards are not only sufficient to activate visual self-improvement, but also outperform more complex process-oriented supervision. This finding highlights that stable and effective reflection can emerge without complex process signals, simplifying the application of reinforcement learning to design-oriented tasks.

The contributions of this work can be summarized as follows:

- **Problem identification**: We identify the critical limitation of existing code-based layout methods—the absence of visual feedback prevents effective output evaluation and optimization of vision-related performance.
- **Novel framework**: We propose a **self-improving framework** that equips MLLMs with a generation, rendering, reflection, refinement cycle, enabling iterative layout refinement guided by **visual feedback**. To the best of our knowledge, this is the first work that introduces such a visual feedback loop for layout generation.
- **Training methodology**: We design a two-stage SFT+RL pipeline and demonstrate that iterative reflective generation can be activated using simple reward signals from final outputs, without complex intermediate reward engineering.
- **Empirical validation**: We establish the effectiveness of our approach through comprehensive experiments, providing a practical framework for MLLM-based graphic design applications.

2 Related Work

2.1 Multimodal Large Language Model

Recent progress in Multimodal Large Language Models (MLLMs) is driven by integrating pretrained vision encoders (Radford et al., 2021; Zhai et al., 2023) with LLMs. The two modalities are typically aligned via lightweight projectors or Q-Former (Li et al., 2023) structures, a paradigm that has spurred a suite of powerful models. This includes open-source series like LLaVA (Liu et al.,

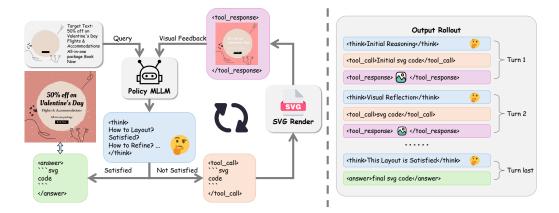


Figure 1: Our Visual Feedback framework: the left subgraph shows the iterative generation, rendering, reflection, and refinement cycle of our model; the right subgraph displays the multi-round data output by our model rollout.

2023; 2024), Qwen-VL (Bai et al., 2023; 2025), and Intern-VL (Chen et al., 2024b; Wang et al., 2025), as well as large-scale proprietary systems such as GPT-40 (Hurst et al., 2024), Gemini (Team et al., 2023), and Claude (Anthropic, 2025), which continue to advance the state of the art through massive scaling and enhanced reasoning techniques (Wei et al., 2022; Zhang et al., 2025c).

2.2 Graphic Layout Generation

Graphic layout generation has rapidly evolved from early generative models (GANs, VAEs) and Transformer-based architectures (Zhou et al., 2022; Lin et al., 2023b) to methods centered on LLMs. Current approaches leverage the reasoning and code-generation capabilities of these models. While some works utilize multimodal cues (Yang et al., 2024) or hierarchical generation structures (Cheng et al., 2024), a dominant trend is to frame layout creation as a code generation task. These methods prompt LLMs to output structured, language-based representations such as SVG, JSON, or other custom formats (Lin et al., 2023a; Seol et al., 2024; Chen et al., 2024a; Jia et al., 2023).

2.3 REINFORCEMENT LEARNING

Reinforcement learning is a cornerstone for aligning LLMs with human preferences, standardized by the RLHF (Ouyang et al., 2022a) pipeline which typically uses Proximal Policy Optimization (PPO) (Schulman et al., 2017). To mitigate the instability and high cost associated with PPO, recent alternatives like Direct Preference Optimization (DPO) (Rafailov et al., 2023) and Group Relative Policy Optimization (GRPO) (Shao et al., 2024) offer more direct and efficient optimization strategies. This alignment paradigm extends naturally to multimodal settings to improve visual grounding and reasoning. Works such as Vision-R1 (Huang et al., 2025), R1VL (Zhang et al., 2025a), and DeepEyes (Ziwei Zheng, 2025) adapt RL to vision-language models by incorporating multimodal rewards, chain-of-thought signals, and specialized replay mechanisms, demonstrating the power of RL in enhancing multimodal alignment and capability.

3 Method

3.1 TASK FORMULATION

This work aims to develop a self-improving agent for text layout generation that optimizes outputs through visual feedback. Our approach employs a two-stage training framework: (1) Cold-Start SFT to equip the model with basic iterative generation and reflection capabilities, and (2) Reinforcement Learning to enhance performance using vision-based reward signals.

As shown in Figure 1, we formulate the task as a multi-round interaction between the model and a rendering environment. Given a background image and target text, the model follows an iterative cycle of *generation*, *rendering*, *reflection*, *refinement*:

1. **Initial Generation:** The model first analyzes the input through reasoning, then generates initial layout code through a structured tool call.

2. **Rendering:** The rendering tool converts the SVG code into a visual layout image and feeds it back to the same MLLM.

3. **Visual Reflection:** The model examines the rendered layout visual image through reasoning to evaluate whether the quality is satisfactory to it.

 Iterative Refinement: If unsatisfied, the model reasons about necessary modifications and generates a revised layout code, repeating until the model determines satisfaction with the layout quality.

This process is formalized in Algorithm 1.

3.2 STAGE 1: COLD-START SUPERVISED FINE-TUNING (SFT)

The cold-start SFT stage enables the model to acquire iterative behavior, self-reflection capabilities, and tool usage specifications through distillation from a powerful teacher model.

 Data Construction for Iterative Reflection Due to the absence of natural multi-round reflection data, we employ Doubao-Seed-1.6(ByteDance, 2025) as a teacher model for data synthesis through a two-step process:

1. **Initial Generation Synthesis:** We prompt Doubao-Seed-1.6 with background images and ground-truth layouts to generate reasoning processes for SVG code generation. We then fine-tune Qwen2.5-VL-7B on these data and collect its inference outputs, which serve as suboptimal initial attempts for subsequent reflection synthesis.

2. **Multi-Round Reflection Synthesis:** We input the initial attempts from Step 1 along with ground-truth layouts to Doubao-Seed-1.6, instructing it to perform iterative reflection and modification to reach the ground-truth solution. This simulates realistic human design refinement processes and generates complete multi-round reflection trajectories.

We combine the synthesized data from Step1 and Step2 and organize them using structured tags: the intermediate rounds use <think> and <tool_call> tags, while the final round uses <think> and <answer> tags containing the completed layout. The right subfigure in Figure 1 shows specific data examples. For specific data distillation prompts, see Appendix G.

Training Objective We fine-tune Qwen2.5-VL-7B using causal language modeling on the synthesized dialogue data. To prevent the model from learning suboptimal outputs, we mask the loss for initial responses in improvement sequences, ensuring the model learns from the correction process rather than initial errors.

3.3 STAGE 2: REINFORCEMENT LEARNING (RL)

3.3.1 RL ALGORITHM

We adopt the Group Relative Policy Optimization (GRPO)(Shao et al., 2024) algorithm for reinforcement learning and make certain improvements to the advantage function. Compared with traditional policy optimization methods, GRPO performs policy gradient optimization within sample groups, enabling the model to learn in the direction of maximizing rewards. The optimization objectives of GRPO are as follows:

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}\left[q \sim P(Q), \{o_{i}\}_{i=1}^{G} \sim \pi_{\theta_{\text{old}}}(O \mid q)\right] \\
\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|o_{i}|} \sum_{t=1}^{|o_{i}|} \left\{ \min\left[\frac{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i, < t})} A_{i,t}, \right. \right. \\
\left. \text{clip}\left(\frac{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i, < t})}, 1 - \varepsilon, 1 + \varepsilon\right) A_{i,t} \right] - \beta \, \mathbb{D}_{KL}\left[\pi_{\theta} \parallel \pi_{\text{ref}}\right] \right\},$$

where ϵ and β are the clipping hyperparameters and the KL divergence penalty coefficient, respectively. Subsequently, we elaborate on our approaches to computing the reward function and the advantage function.

We design a three-component reward function to score the layout effect: (1) $R_{\rm layout}$ (Section 3.3.2), a specialized reward model trained to evaluate overall layout quality; (2) $R_{\rm ocr}$, a text accuracy reward based on OCR recognition. Specifically, we run OCR on the rendered layout and compute the character-level accuracy between the recognized string and the target text; and (3) $R_{\rm svg}$, a code-level accuracy reward calculated by comparing text strings extracted from the SVG file with the target text. The total reward for the layout effect is the weighted sum of the three components:

$$R_{\text{score}} = R_{\text{layout}} + \alpha \cdot (R_{\text{ocr}} + R_{\text{svg}}), \qquad (2)$$

where α balance aesthetic quality against functional accuracy. In addition, we incorporate a format reward (Equation 3) to constrain the output format of the model:

$$R_{\rm format} = \begin{cases} 1.0, & \text{if format is correct,} \\ -1.0, & \text{if format is incorrect.} \end{cases} \tag{3}$$

Due to the multi-round nature of our approach, format rewards are applied separately in each round, leading to inconsistent rewards across rounds. Following Hu et al. (2025), we use the mean value of $R_{\rm score}$ within the group as a baseline to reshape the reward, and then add the format reward:

$$A = R_{\text{score}} - mean_{\text{group}}(R_{\text{score}}) + \gamma \cdot R_{\text{format}}, \tag{4}$$

where γ is a hyperparameter that controls the balance between the layout effect reward and the format reward. Finally, normalize advantages across the global batch, which are used for training:

$$A^{norm} = \frac{A - \text{mean}_{batch}(A)}{\text{std}_{batch}(A)}.$$
 (5)

3.3.2 REWARD MODEL TRAINING

To obtain R_{layout} , we train a specialized reward model that takes triplets (B, T, I) as input, where B denotes the background image, T denotes the target text, and I denotes the rendered layout image. The model then outputs a scalar score that assesses the overall layout quality.

Following the method proposed in Ouyang et al. (2022b), we initialize the reward model using Qwen2.5-VL-3B. To adapt the model for preference learning, we replace the final layer with a linear layer that produces a scalar output. Subsequently, the reward model is then trained using the negative log-likelihood loss function:

$$\mathcal{L}_{\text{RM}}(\theta) = -\mathbb{E}_{(q,o^+,o^-)\sim\mathcal{D}}\left[\log\sigma\left(r_{\theta}\left(q,o^+\right) - r_{\theta}\left(q,o^-\right)\right)\right]. \tag{6}$$

Dataset: A high-quality preference dataset is paramount for training a robust reward model that can guide reinforcement learning without succumbing to reward hacking. However, no existing datasets or methodologies are specifically designed for layout generation reward modeling. To address this gap, we introduce a novel hierarchical data construction methodology that creates fine-grained quality distinctions across multiple layout quality levels.

Our methodology constructs four distinct quality levels to capture fine-grained layout performance:

- Level-I: High-quality ground-truth layouts serving as gold standards for design excellence.
- Level-II: Layouts generated by Qwen2.5-VL-7B after 5 epochs of fine-tuning on 200K samples, exhibiting reasonable quality with minor imperfections.
- Level-III: Layouts produced by early training checkpoints with systematic spatial perturbations applied to layout elements, including random positional offsets that moderately compromise design coherence.
- Level-IV: Severely degraded layouts from the same early checkpoints subjected to aggressive perturbations: extensive positional displacement, random font size variations, selective text element deletion, image reference removal, and arbitrary SVG scaling transformations.

This hierarchical construction enables comprehensive preference learning through systematic pairwise comparisons. For each layout generation prompt, we create layouts at all four quality levels, then form all possible pairwise comparisons between different levels. This yields $\binom{4}{2} = 6$ preference pairs per problem, establishing clear quality orderings that capture nuanced distinctions essential for effective reward model training. This strategy forces the reward model to move beyond simple binary (good/bad) judgments and learn the subtle distinctions that separate excellent layouts from merely acceptable ones. The resulting dataset provides a comprehensive and reliable basis for training a highly discerning layout reward model, r_{θ} . For the evaluation of the reward model, please refer to the Appendix E.3.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Benchmark Test Sets For evaluation, we randomly sample 1K examples from our dataset as the primary test set, ensuring no overlap with training data. We also conduct additional experiments on the Crello(Yamaguchi, 2021) and DESIGNERINTENTION(Jia et al., 2023) benchmarks, preprocessed into background-text pairs. The results for these additional benchmarks are shown in Appendix E.

Evaluation metrics We adopt three groups of evaluation metrics. Text accuracy is measured using character-level precision, recall, and F-measure based on OCR recognition. Layout quality is assessed with R_{ali} , R_{ove} , and R_{com} (Zhou et al., 2022), which capture cross-modal alignment, text-text overlap, and pixel gradient smoothness within text regions. Additionally, we employ GPT-40 as a judge to evaluate four dimensions: Text Accuracy, Text-Background Harmony, Text Presentation Quality, and Meaning Expression Adaptability. For Details, please refer to Appendix.

Baselines We compare against three categories of baselines: (1) **Advanced MLLMs** including GPT-4o, Claude 3.7, Doubao-Seed-1.6, and Qwen2.5-VL-72B; (2) **Image editing models** covering GPT-4o(edit), Qwen-Image-Edit(Wu et al., 2025), and FLUX-Kontext(Labs et al., 2025); (3) **Specialized layout generation** using the open-source domain-specific model OpenCOLE(Inoue et al., 2024).

4.2 Comparison with Existing Methods

Table 1: The Graphic quality metrics and OCR metrics on test set, where **Visual Feedback-step1** and **Visual Feedback-answer** respectively represent the metrics of our results in the first output and the final result output after iterative reflection.

Method	Model	Param Size		OCR			Graphic		
Method	Wodel	T drain Size	Char-P↑	Char-R ↑	Char-F↑	$R_{ali} \downarrow$	$R_{ove} \downarrow$	$R_{com} \downarrow$	RM Score ↑
MLLM	GPT-4o	-	0.9076	0.7575	0.8258	0.0046	0.0033	18.8443	0.3561
	Claude3.7	-	0.9295	0.8127	0.8672	0.0053	0.0383	16.4401	0.5295
	Doubao-Seed-1.6	230B	0.9215	0.7860	0.8484	0.0058	0.0216	18.5823	0.4063
	Qwen2.5-VL	72B	0.7910	0.6571	0.7178	0.0031	0.0358	19.9399	0.1989
	Qwen2.5-VL	7B	0.7618	0.5220	0.6195	0.0029	0.0229	25.7715	0.1166
	GPT-4o	-	0.7731	0.6734	0.7198	-	-	-	0.3371
Image Edit	Qwen-Image-Edit	20B	0.7165	0.7349	0.7256	-	-	-	0.3062
	FLUX Kontext	12B	0.2207	0.0944	0.1322	-	-	-	-0.5853
Layout	OpenCOLE	7B	0.4041	0.1462	0.2147	1.2029	0.0316	25.1150	0.0397
	Visual Feedback-step1	7B	0.9619	0.8593	0.9071	0.0035	0.0059	15.4583	0.5415
Ours	Visual Feedback-answer	7B	0.9675	0.9096	0.9376	0.0039	0.0009	11.8678	0.6018
	Δ (vs step1)	7B	+0.0056	+0.0503	+0.0305	-0.0004	+0.005	+3.5905	+0.0603

As shown in Table 1, Tabel 2 and Figure 2, our Visual Feedback method consistently outperforms all baselines across three distinct categories of metrics by a significant margin. On OCR metrics, the F1 score of our model's initial generation (0.9071) is already substantially higher than the second-best performer, Claude3.7 (0.8672). After optimization via visual feedback, this performance gap is further widened with an improvement of +0.0305. In terms of Graphic metrics, our method achieves competitive performance on the alignment metric ($R_{\rm ali}$) and demonstrates a remarkable advantage in minimizing element overlap ($R_{\rm ove}$) and optimizing text composition ($R_{\rm com}$). The benefit of the visual feedback is particularly pronounced in other areas, contributing to the overall superior performance. This trend is mirrored by the reward model scores, where both our initial and final outputs achieve the highest scores among all methods. On the comprehensive GPT-4o evaluation, our visual feedback mechanism yields improvements across all four dimensions, with both the initial and

Figure 2: In comparison with existing methods, we selected one model from each category of methods as a representative. For a more comprehensive comparison, please refer to the Figure 4.

Table 2: The GPT-40 metrics on test set. The value range of each evaluation dimension is between 0 and 10, in which **Overall** represents the average of the scores across four dimensions.

	*		GPT-4o							
Method	Model	Param Size	Text	Harmony	Quality	Meaning	Overall			
	GPT-4o	-	8.5165	8.0341	7.2826	7.6553	7.8721			
	Claude3.7	_	8.8058	8.4026	7.7691	8.2651	8.3106			
MLLM	Doubao-Seed-1.6	230B	8.5663	8.2304	7.4463	7.8917	8.0337			
	Qwen2.5-VL	72B	7.8633	7.6094	6.5402	6.5582	7.1428			
	Qwen2.5-VL	7B	7.5638	6.4431	5.4827	5.3861	6.5489			
	GPT-4o	-	7.4809	8.9298	8.1672	8.1919	8.1924			
Image Edit	Qwen-Image-Edit	20B	5.4086	7.7783	6.1886	6.0040	6.3449			
	FLUX Kontext	12B	1.6473	6.8098	3.6345	2.2142	3.5765			
Layout	OpenCOLE	7B	2.6596	6.3873	3.7020	2.8896	3.9096			
	Visual Feedback-step1	7B	8.8880	8.3591	7.7255	8.2896	8.3155			
Ours	Visual Feedback-answer	7B	9.0447	8.7492	7.9679	8.5969	8.5897			
	Δ (vs step1)	7B	+0.1567	+0.3901	+0.2424	+0.3073	+0.2742			

final results establishing state-of-the-art performance on overall metrics. In the qualitative comparison shown in Figure 2, our model demonstrates performance that is highly competitive with the state-of-the-art Claude3.7 model. The advantage over the open-source layout model, OpenCOLE, is obvious. Furthermore, representative image editing methods struggle with dense text, especially in Chinese, and often inevitably alter the background image. This introduces undesirable artifacts and fundamentally conflicts with our primary task of text layout.

4.3 ABLATION STUDY

In the ablation study, we conducted comparative experiments using our constructed test set. To demonstrate the advantages of our iterative Visual Feedback method, we compared it against several training approaches: (1) **Cold-Start Model**: The baseline model mainly ensures the format of iterative outputs and the syntactic validity of SVG code, but it does not significantly improve the layout quality; (2) **Single-Round RL**: We trained the cold-start model using RL but restricted generation to only one step, enabling fair comparison between single-round generation and iterative reflection; (3) **RL from Pre-trained Models**: Direct RL training from the pre-trained Qwen2.5-VL-7B model without SFT initialization; (4) **Direct Output SFT+RL**: SFT+RL training for direct SVG code generation using the same source data as our Visual Feedback method; (5) **Direct SFT**: For fair comparison with our 40K-sample SFT+RL approach, we trained a direct SFT model on 40K samples. Please refer to the Appendix D for the training details of all models.

Table 3: Multiple ablation experiments on Graphic quality metrics and OCR metrics on our test set.

1	1	,		-				
Model		OCR			Graphic		RM Score ↑	
Model	Char-P↑	Char-P↑ Char-R↑ C		$R_{ali} \downarrow$	$R_{ove} \downarrow$	$R_{com} \downarrow$	KWI SCOIC	
Visual Feedback-step1	0.9619	0.8593	0.9071	0.0035	0.0059	15.4583	0.5415	
Visual Feedback-answer	0.9675	0.9096	0.9376	0.0039	0.0009	11.8678	0.6018	
cold-start-step1	0.9287	0.6894	0.7913	0.0078	0.0297	19.0560	0.2572	
cold-start-answer	0.9306	0.6985	0.7980	0.0081	0.0298	19.0577	0.2608	
cold-start-rl-only-step1	0.9422	0.8242	0.8792	0.0024	0.0053	18.9428	0.4063	
Qwen2.5-VL-7B	0.7618	0.5220	0.6195	0.0029	0.0229	25.7715	0.1166	
direct RL	0.8865	0.7549	0.8154	0.0003	6.7109	22.0273	0.2971	
direct sft8k+rl	0.9606	0.8895	0.9237	0.0027	0.0021	17.0654	0.4964	
basemodel-direct-40k	0.9150	0.8025	0.8551	0.0040	0.0153	12.9459	0.5332	

The results of our ablation study, presented in Table 3, demonstrate the clear superiority of our Visual Feedback method. Our model (Visual Feedback-answer) achieves the best performance across the majority of metrics, substantially outperforming all reinforcement learning baselines. More notably, the quality of our initial output (Visual-Feedback-step1) is already not inferior to any other competing methods. For instance, its RM Score of 0.5415 surpasses even the strong basemodel-direct 40k (0.5332). Subsequent iterative steps further widened this performance gap, increasing the RM score to 0.6018, and achieving top-notch results in both OCR and image quality. Our success highlights that our visual feedback framework is a more effective solution for layout generation, as it can establish a higher quality benchmark from the very first step and then optimize it to the state-of-the-art level.

5 DISCUSSION

Can simple outcome-based rewards effectively stimulate self-improvement capabilities in MLLMs? Our empirical investigation provides compelling evidence that they can, and even outperform more sophisticated alternatives.

Recent research in agentic RL(Singh et al., 2025; Dong et al., 2025) typically employs complex, fine-grained reward functions to guide specific capabilities. To rigorously evaluate this paradigm, we designed and implemented a sophisticated process-oriented reward function in our Visual Feedback framework (Equation 7–9). This complex reward scheme incorporates three distinct optimization objectives: (1) first-round quality maximization using group-wise mean baselines, (2) iterative improvement encouragement through maximum-quality baselines from previous rounds, and (3) strategic termination control via reward bonuses and length penalties to prevent premature convergence and reward hacking behaviors. Subsequent advantages will be normalized through Equation 5.

$$A_{q,o_{t_i}} = \begin{cases} R_{q,o_{t_1}} - \operatorname{mean}_{\operatorname{group}}(R_{q,o_{t_1}}) & \text{if } i = 1, \\ 2 \cdot \left(R_{q,o_{t_i}} - \operatorname{max}(R_{q,o_{t_{\leq i}}}) \right) & \text{if } i \neq 1 \text{ and } i \neq \text{last}, \\ 2 \cdot \left(R_{\operatorname{answer}} + R_{\operatorname{length}} \right) & \text{if } i = \text{last}. \end{cases}$$
 (7)

where o_t represents a complete generation path, and o_{t_i} represents the response of the *i*-th round in this complete path; i = last, the terminal reward components are defined as:

$$R_{\text{answer}} = \begin{cases} 0.7 & \text{if } R_{q,o_{t_{\text{last}}}} \ge \max(R_{q,o_{t_{\leq \text{last}}}}), \\ R_{q,o_{t_{\text{last}}}} - \max(R_{q,o_{t_{\leq \text{last}}}}) & \text{else,} \end{cases}$$
(8)

$$R_{\text{length}} = -2 \cdot \left(\left(R_{q,o_{t_{\text{last}}}} - \max_{\text{group}} (R_{q,o_{t_{\text{last}}}}) \right) \cdot \max(0, 4 - \text{tool_call_count}) \right), \tag{9}$$

Figure 3: Comparison of training processes: simple outcom rewards vs. complex process rewards.

Figure 3 illustrates the training dynamics of the two reward schemes. Before 250 steps, both algorithms improved stably: their final answer scores (middle subfigure) showed nearly identical trends, and first-round generation performance was comparable, the outcome-only reward algorithm even slightly outperform the Agentic RL one. After 250 steps, the Agentic RL algorithm converged and even suffered performance degradation, whereas the outcome-only reward algorithm continued to improve steadily until training concluded. The right subfigure (difference between final output score and first-round score) reveals that Agentic RL quickly widened this gap but plateaued later—likely due to restricted first-round learning in early training. In contrast, the outcome-only reward algorithm gradually mastered progressive iterative refinement.

Table 4: Comparison of simple outcome rewards and complex process rewards on our test set.

leval	OCR					RM Score ↑	
ievai	Char-P↑	Char-R ↑	Char-F↑	$R_{ali} \downarrow$	$R_{ove} \downarrow$	$R_{com} \downarrow$	KWI SCOIE
Only Outcome RL-step1	0.9619	0.8593	0.9071	0.0035	0.0059	15.4583	0.5415
Only Outcome RL-answer	0.9675	0.9096	0.9376	0.0039	0.0009	11.8678	0.6018
Δ (vs step1)	+0.0056	+0.0503	+0.0305	-0.0004	+0.005	+3.5905	+0.0603
Agentic RL-step1	0.9538	0.8577	0.9032	0.0053	0.0030	16.6528	0.4936
Agentic-RL-answer	0.9693	0.8825	0.9239	0.0052	0.0027	16.4220	0.5241
Δ (vs step1)	+0.0155	+0.0248	+0.0207	+0.0001	+0.0003	+0.2308	+0.0305

Table 4 quantifies these observations through comprehensive evaluation metrics. Despite marginal differences in first-round generation quality, our simple outcome-based reward demonstrates superior effectiveness in stimulating self-improvement capabilities across all evaluation dimensions.

These findings reveal a fundamental insight: under effective visual feedback mechanisms, simple outcome-based rewards can successfully harness the inherent visual understanding capabilities of multimodal models to elicit robust self-improvement behaviors, while complex process-oriented rewards may actually inhibit optimal performance. This counterintuitive result suggests that the powerful internal representations and reasoning capabilities of modern MLLMs, when properly guided by clear outcome objectives and visual feedback, can autonomously develop sophisticated iterative refinement strategies without explicit process supervision.

6 Conclusion

We have introduced a self-improving framework that successfully bridges the gap between code generation and visual perception in text layout design. Our method empowers MLLMs to progressively enhance their own creations through a visual feedback loop of iterative generation, rendering, reflection, and refinement. A key finding is that this self-improvement can be driven by simple, outcome-based rewards, circumventing the need for complex reward engineering. Extensive experiments validate our approach, demonstrating that it not only surpasses specialized layout models but also outperforms state-of-the-art MLLMs and image editing systems. Ultimately, this work establishes visual feedback as a critical component for high-quality automated design and charts a clear course toward more autonomous, self-improving creative agents.

ETHICS STATEMENT

Our research adheres to the ICLR Code of Ethics. We acknowledge that our models, trained on public datasets, may inherit societal biases, and we recognize the dual-use nature of this technology for potential misuse. In the spirit of transparency and reproducibility, we plan to publicly release our datasets, models, and reward model. To mitigate risks and encourage responsible innovation, this release will be accompanied by a detailed model card outlining the system's capabilities and limitations, as well as a license restricting use in malicious, deceptive, or exploitative applications.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To this end, we will release our complete code for data processing and all training stages in the future. This includes the implementation of our hierarchical data construction process for the reward model, as detailed in Section 3.3.2. Key training hyperparameters for supervised fine-tuning, reward model training, and reinforcement learning are described in detail in Appendix E.3 and D. Furthermore, the weights for our final model and the reward model will be made publicly available to facilitate verification and future research. We believe these resources provide a comprehensive basis for the community to reproduce our findings and build upon our work.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- Anthropic. Claude 3.7 sonnet: Hybrid reasoning language model. Technical report, Anthropic, 2 2025. URL https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv* preprint arXiv:2502.13923, 2025.
- ByteDance. doubao-seed-1.6, 2025. URL https://www.volcengine.com/docs/82379/1593702. Accessed: 2025-07-20.
- Jian Chen, Ruiyi Zhang, Yufan Zhou, Jennifer Healey, Jiuxiang Gu, Zhiqiang Xu, and Changyou Chen. TextLap: Customizing language models for text-to-layout planning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 14275–14289, Miami, Florida, USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.833. URL https://aclanthology.org/2024.findings-emnlp.833/.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24185–24198, 2024b.
- Yutao Cheng, Zhao Zhang, Maoke Yang, Nie Hui, Chunyuan Li, Xinglong Wu, and Jie Shao. Graphic design with large multimodal model. *arXiv preprint arXiv:2404.14368*, 2024.
- DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

- Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization. *arXiv preprint arXiv:2507.19849*, 2025.
 - Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and generation with large language models. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv* preprint arXiv:2503.01307, 2025.
 - Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness to both prompt and reward models. *arXiv preprint arXiv:2501.03262*, 2025.
 - Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. arXiv preprint arXiv:2503.06749, 2025.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Naoto Inoue, Kento Masui, Wataru Shimoda, and Kota Yamaguchi. OpenCOLE: Towards Reproducible Automatic Graphic Design Generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2024.
 - Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv* preprint arXiv:2412.16720, 2024.
 - Peidong Jia, Chenxuan Li, Yuhui Yuan, Zeyu Liu, Yichao Shen, Bohan Chen, Xingru Chen, Yinglin Zheng, Dong Chen, Ji Li, et al. Cole: A hierarchical generation framework for multi-layered and editable graphic design. *arXiv preprint arXiv:2311.16974*, 2023.
 - Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext: Flow matching for in-context image generation and editing in latent space. *arXiv* preprint *arXiv*:2506.15742, 2025.
 - Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In *ICML*, 2023.
 - Jiawei Lin, Jiaqi Guo, Shizhao Sun, Zijiang James Yang, Jian-Guang Lou, and Dongmei Zhang. Layoutprompter: Awaken the design ability of large language models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a.
 - Jinpeng Lin, Min Zhou, Ye Ma, Yifan Gao, Chenxi Fei, Yangjian Chen, Zhang Yu, and Tiezheng Ge. Autoposter: A highly automatic and content-aware design system for advertising poster generation. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 1250–1260, 2023b.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.
 - Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https://llava-vl.github.io/blog/2024-01-30-llava-next/.
 - OpenAI. Thinking with images. https://openai.com/index/thinking-with-images/, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/blefde53be364a73914f58805a001731-Paper-Conference.pdf.

- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35: 27730–27744, 2022b.
- Yadong Qu, Shancheng Fang, Yuxin Wang, Xiaorui Wang, Zhineng Chen, Hongtao Xie, and Yong-dong Zhang. Igd: Instructional graphic design with multimodal layer generation. arXiv preprint arXiv:2507.09910, 2025.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in neural information processing systems*, 36:53728–53741, 2023.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- Jaejung Seol, Seojun Kim, and Jaejun Yoo. Posterllama: Bridging design ability of language model to contents-aware layout generation. arXiv preprint arXiv:2404.00995, 2024.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool integration for llms via reinforcement learning. *arXiv preprint arXiv:2505.01441*, 2025.
- ByteDance Seed Team. Seed 1.5-vl technical report. arXiv preprint arXiv:2505.07062, 2025.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang, Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan Cai, and Zenan Liu. Qwen-image technical report, 2025. URL https://arxiv.org/abs/2508.02324.

- Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp. 15903–15935, 2023.
- Kota Yamaguchi. Canvasvae: Learning to generate vector graphic documents. ICCV, 2021.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
- Tao Yang, Yingmin Luo, Zhongang Qi, Yang Wu, Ying Shan, and Chang Wen Chen. Posterllava: Constructing a unified multi-modal layout generator with llm, 2024. URL https://arxiv.org/abs/2406.02884.
- Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11975–11986, 2023.
- Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group relative policy optimization. *arXiv* preprint arXiv:2503.12937, 2025a.
- Peirong Zhang, Jiaxin Zhang, Jiahuan Cao, Hongliang Li, and Lianwen Jin. Smaller But Better: Unifying Layout Generation with Smaller Large Language Models. *International Journal of Computer Vision (IJCV)*, 133:3891–3917, 2025b.
- Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language models: What, how, where, and how well? *arXiv preprint arXiv:2503.24235*, 2025c.
- Min Zhou, Chenchen Xu, Ye Ma, Tiezheng Ge, Yuning Jiang, and Weiwei Xu. Composition-aware graphic layout gan for visual-textual presentation designs. *arXiv preprint arXiv:2205.00303*, 2022.
- Jack Hong Chenxiao Zhao Guohai Xu Le Yang Chao Shen Xing Yu Ziwei Zheng, Michael Yang. Deepeyes: Incentivizing "thinking with images" via reinforcement learning. 2025. URL https://arxiv.org/abs/2505.14362.

APPENDIX

A USAGE OF LARGE LANGUAGE MODELS

The authors acknowledge the use of Large Language Models (LLMs) in the preparation of this manuscript to enhance its clarity. The LLM served solely as a general-purpose writing assistant, with its role strictly limited to improving the language and presentation of our manuscript. Specifically, the LLM was used to rephrase sentences for greater clarity and fluency, as well as to correct grammatical and spelling errors.

It is important to state that all scientific contributions—including the core research ideas, methodology, technical implementation, experimental results, and scientific findings—are the original work of the authors. The LLM had no role in the conception or execution of the research. We take full responsibility for the final content of this paper.

B VISUAL FEEDBACK ALGORITHM

Algorithm 1 Visual Feedback for Layout Self-Improvement

```
Require: Background image I_b, target text T
Ensure: Final layout code S_{\text{final}}
 1: S \leftarrow \text{Model generates initial layout via tool call based on } I_b \text{ and } T
 2: I_{\text{rendered}} \leftarrow \text{Render}(S)
    while Model determines dissatisfaction do
         Reflection \leftarrow Model(reason|I_{\text{rendered}})
 4:
 5:
         if Reflection indicates satisfaction then
              return S as the final result
 6:
 7:
         else
 8:
              S \leftarrow Model(tool call|Reflection)
                                                                                        I_{\text{rendered}} \leftarrow \text{Render}(S)
 9:
         end if
10:
11: end while
```

C DATASETS AND EVALUATION METRICS

We use an OCR engine¹ to recognize text in design images and evaluate the accuracy of rendered text using character-level precision, recall, and f-measure. In the reinforcement learning reward function, $R_{\rm ocr}$ and $R_{\rm svg}$ are evaluated using accuracy. Specifically, a character in the OCR recognition result is defined as a True Positive (TP) if it appears in the annotation; otherwise, it is classified as a False Positive (FP). A False Negative (FN) indicates that a character is only present in the annotation but absent from the OCR recognition result. Accordingly, character-level precision, recall, f-measure and accuracy can be formulated as follows:

$$Char_P = \frac{TP}{TP + FP}, \qquad Char_R = \frac{TP}{TP + FN},$$

$$Char_F = \frac{2 \times Char_P \times Char_R}{Char_P + Char_R}, \qquad Char_Acc = \frac{TP}{TP + FP + FN}.$$
(10)

The detailed prompts for evaluation using GPT-40 are shown blew. It conducts a comprehensive evaluation from four dimensions: **Text Accuracy** evaluates if the text content is perfectly correct and free of any errors. **Text-Background Harmony** assesses how well the text is visually integrated with the background for clarity and composition. **Text Presentation Quality** judges the intrinsic readability and structural organization of the text elements themselves. **Meaning Expression Adaptability** measures how effectively the text's design reinforces its message, tone, and contextual meaning.

https://github.com/PaddlePaddle/PaddleOCR

```
756
         GPT-40 Evaluation Prompt
757
         You are an autonomous AI Assistant specializing in evaluating the

→ typesetting effects of a typesetting model. This model's core

759

→ task is to typeset user-specified text on a background image;

760
          → your goal is to provide objective, targeted, and constructive
761
             scoring and feedback based on text-typesetting-specific
762
          \,\,\hookrightarrow\,\, principles and practical application needs. Your evaluation
763
             covers four independent dimensions: text content accuracy,
764
             text-background visual harmony, text presentation quality, and
             meaning expression adaptability. You will be provided with the
765
             background image, the user's original specified text, and the
766
             typeset result (background image + typeset text). Your task is
767
          \hookrightarrow to score the typesetting effect objectively based on the
768
          \hookrightarrow following 4 criteria and provide concise reasoning for each
769
             score.
770
         Scoring rules:
771
         - For each of the 4 criteria, score objectively and rigorously on an
772
         → independent scale of 1-10. For a single criterion, a score of 10
773

→ means flawless performance (no issues, fully meeting)

         → expectations); a score of 7 indicates minor flaws (no impact on
774

→ core performance); a score of 4 reflects significant

775
             shortcomings (affecting core performance); a score of 1-2
776
             signifies severe issues (rendering the function of this
777
             criterion ineffective).
         - Keep reasoning concise (1-2 sentences per criterion), focusing on
778
         779
             truncated.
780
         - Only respond in JSON format with 4 top-level keys corresponding to
781
         \hookrightarrow the 4 Grading criteria. Each key's value is an object containing
782
             "score" (integer 1-10) and "reason" (string). No other
783
             information.
784
         Grading criteria:
785
786
         1. Text Accuracy (1-10): Evaluate consistency with the user's
787
         → original text (no missing/extra/wrong characters, no
             spelling/grammatical errors in Chinese/English). Score 10: 100%
788
             accurate; Score 1: massive errors or unrecognizable characters.
789
790
         2. Text-Background Harmony (1-10): Evaluate visual coordination: (1)
791
         \hookrightarrow text avoids blocking the background's main subject (key figures,

→ core graphics); (2) text color/transparency ensures clear

792
          → contrast with the background (no blurring). Score 10: no
793
          → blocking, perfect contrast; Score 1: complete blocking or
794
          \hookrightarrow unreadable due to poor contrast.
795
796
         3. Text Presentation Quality (1-10): Evaluate text's own properties:
            (1) structural rationality (clear title/body hierarchy,
797

→ compliance with reading habits, balanced spacing); (2) physical

798
          → readability (appropriate font selection, suitable size, neat
799
          → alignment). Score 10: clear structure, highly readable; Score 1:
800
          \hookrightarrow chaotic structure and physically unreadable.
801
         4. Meaning Expression Adaptability (1-10): Evaluate meaning
802
             transmission: (1) key information is highlighted (via
803
             weight/color/size); (2) layout matches text's emotional tone
804
             (e.g., serious text uses rigorous typography); (3) text position
805
             aligns with the background's semantic context (e.g., "ocean
806
          → protection" text near ocean elements). Score 10: amplifies
807
          \hookrightarrow meaning, matches tone, aligns with background semantics; Score
         \hookrightarrow 1: contradicts meaning/tone or conflicts with background
808
             semantics.
809
```

D IMPLEMENTATION DETAILS

Training Infrastructure: All experiments were conducted on 16 NVIDIA H200 GPUs.

Cold-Start SFT Stage: We utilized approximately 8K multi-round iterative reflection trajectories for training, with the following distribution: 2,359 two-round samples, 1,266 three-round samples, 2,030 three-round samples, and 2,537 four-round samples. Note that the number of rounds equals the number of tool calls plus one, as the final round serves as the confirmation output stage. Two-round data represents cases where the initial generation is already satisfactory, and for these samples, the first-round responses were not masked during cold-start SFT training. Training hyperparameters were set as follows: batch size of 64, learning rate of 1e-5, trained for 2 epochs.

Reinforcement Learning Stage: During RL training, we set the maximum number of tool calls to 4. The weights for $R_{\rm ocr}$ and $R_{\rm svg}$ (denoted as α) were set to 0.25, while the weight for format reward $R_{\rm format}$ was set to 0.1. We prepared up to 32K samples for training, with early stopping based on reward metrics during RL training. We employed a strict on-policy training strategy with the following configuration: batch size of 64, 8 rollouts per sample, sampling temperature of 1.0, KL divergence coefficient of 1e-3, and learning rate of 1e-6. To maintain visual feature stability, we froze the vision tower parameters and fine-tuned only the LLM components.

Ablation Experiments: For the 40K-sample SFT baseline, we used a batch size of 128. All other training configurations for SFT and RL remained consistent with the above settings.

E MORE QUANTITATIVE RESULTS

E.1 COMPARISON WITH EXISTING METHODS

Table 5: Graphic quality metrics and OCR metrics on the crello test set.

Method	Model	Param Size		OCR			Graphic			
Method		Param Size	Char-P↑	Char-R ↑	Char-F↑	$R_{ali} \downarrow$	$R_{ove} \downarrow$	$R_{com} \downarrow$	RM Score ↑	
MLLM	GPT-4o	-	0.9385	0.8834	0.9101	0.0017	0.0036	19.9216	0.4427	
	Claude3.7	-	0.8766	$\overline{0.8459}$	0.8610	0.0058	0.0205	21.0798	0.5880	
	Doubao-Seed-1.6	230B	0.8998	0.8531	0.8758	0.0051	0.0192	21.5918	0.4876	
	Qwen2.5-VL	72B	0.8403	0.7847	0.8115	0.0044	0.0619	24.6138	0.2359	
	Qwen2.5-VL	7B	0.8831	0.6701	0.7620	0.0028	0.0256	30.9031	0.2116	
	GPT-4o	-	0.8766	0.8781	0.8774	-	-	-	0.5849	
Image Edit	Qwen-Image-Edit	20B	0.7965	0.8720	0.8326	-	-	-	0.3671	
_	FLUX Kontext	12B	0.5734	0.5393	0.5558	-	-	-	-0.0834	
Layout	OpenCOLE	7B	0.7778	0.5453	0.6411	1.1902	0.0429	31.5831	0.3345	
	Visual Feedback-step1	7B	0.9407	0.8221	0.8774	0.0046	0.0061	19.5917	0.4392	
Ours	Visual Feedback-answer	7B	0.9468	0.9054	0.9256	0.0025	0.0022	14.8063	0.5548	
	Δ (vs step1)	7B	+0.0061	+0.0833	+0.0482	+0.0021	+0.0039	+4.7854	+0.1156	

Table 6: The GPT-40 metrics on the crello test set.											
Method	Model	Param Size	GPT-4o								
Method	Wodel	raiaiii Size	Text	Harmony	Quality	Meaning	Overall				
	GPT-4o	-	8.9612	7.9949	7.5237	7.9618	8.1104				
	Claude3.7	-	8.9645	8.3805	7.8999	8.4507	8.4239				
MLLM	Doubao-Seed-1.6	230B	8.8927	8.2174	7.6658	8.2569	8.2582				
	Qwen2.5-VL	72B	7.7332	7.4732	6.5589	6.5405	7.0764				
	Qwen2.5-VL	7B	7.6289	6.2840	5.5726	5.5813	6.2667				
	GPT-4o	_	8.8438	9.0127	8.8051	9.0069	8.9171				
Image Edit	Qwen-Image-Edit	20B	5.7509	7.2808	6.0635	5.9903	6.2714				
	FLUX Kontext	12B	3.2447	6.6992	4.5005	4.1499	4.6486				
Layout	OpenCOLE	7B	6.9777	7.3864	6.4068	6.5319	6.8257				
	Visual Feedback-step1	7B	8.2334	7.9055	7.2046	7.6543	7.7494				
Ours	Visual Feedback-answer	7B	8.8260	8.5957	7.7267	8.2964	8.3562				
	Δ (vs step1)	7B	+0.5926	+0.6902	+0.5221	+0.6421	+0.6068				

E.2 ABLATION STUDY

E.3 REWARD MODEL EVALUATION

We trained the reward model on a preference dataset constructed from 200K layout samples. Following the procedure in Section 3.3.2, we generated four quality levels (Level-I, Level-III, Level-III,

Table 7: Graphic quality metrics and OCR metrics on the DESIGNERINTENTION test set.

Method	Model	Param Size		OCR			Graphic		
Method	Wiodei	Farain Size	Char-P↑	Char-R ↑	Char-F↑	$R_{ali} \downarrow$	$R_{ove} \downarrow$	$R_{com} \downarrow$	RM Score ↑
MLLM	GPT-4o	-	0.9683	0.9447	0.9563	0.0015	0.0140	18.7249	0.5072
	Claude3.7	-	0.8680	0.8828	0.8753	0.0070	0.0601	15.0869	0.6465
	Doubao-Seed-1.6	230B	0.9102	0.8739	0.8917	0.0046	0.0222	15.7470	0.5103
	Qwen2.5-VL	72B	0.5421	0.5530	0.5475	0.0069	0.1649	17.8489	0.3104
	Qwen2.5-VL	7B	0.8660	0.5455	0.6694	0.0011	0.0689	19.1119	0.2018
	GPT-4o	-	0.8839	0.8825	0.8832	-	-	-	0.6278
Image Edit	Qwen-Image-Edit	20B	0.8332	0.8713	0.8518	-	-	-	0.5995
	FLUX Kontext	12B	0.5623	0.5217	0.5412	-	-	-	0.4426
Layout	OpenCOLE	7B	0.7924	0.6781	0.7308	0.6848	0.0408	20.2853	0.4684
	Visual Feedback-step1	7B	0.9700	0.9146	0.9415	0.0033	0.0023	14.1230	0.5285
Ours	Visual Feedback-answer	7B	0.9781	0.9547	0.9663	0.0024	0.0008	12.1167	0.5688
	Δ (vs step1)	7B	+0.0081	+0.0401	+0.0248	+0.0009	+0.0015	+2.0063	+0.0403

874875876

876877878

887 888

893894895896

897 898 899

900

905 906 907

908 909

910911912913

Table 8: The GPT-40 metrics on the DESIGNERINTENTION test set. Method Model Param Size Text Harmony Quality Meaning Overall GPT-40 9.5180 8.2725 8.0200 8.4820 8.5731 9.5815 8.5473 8.7892 Claude3.7 $\underline{8.2052}$ 8.8229 230B 8.2960 MLLM 8.2955 Doubao-Seed-1.6 9.1440 8.0020 7.7400 4.4970 5.8310 Qwen2.5-VI. 72B 4.1891 7.7565 6.8813 Qwen2.5-VL 7B 7 3688 6 1285 5 6576 5 4498 6 1512 9.2558 GPT-40 9 5231 8.9287 9.0126 9.1800 20B Qwen-Image-Edit Image Edit 7.1626 7.7435 7.2625 7.1403 7.3272 FLUX Kontext 12B 4.3908 7.2806 5.4208 5.1503 5.5606 Layout OpenCOLE 7B 8.4738 7.3488 6.9516 7.4435 7.5544 Visual Feedback-step1 7B 9.4020 8.1924 7.8640 8.3260 8.4461 Ours Visual Feedback-answer 7B 9.5569 8.4511 7.9301 8.5130 8.6128 7В +0.1549 Δ (vs step1) +0.2587 +0.0661 +0.1870

Table 9: Multiple ablation experiments on Graphic quality metrics and OCR metrics on crello test set.

Model		OCR			Graphic		RM Score ↑
Wiodei	Char-P↑	Char-R ↑	Char-F↑	$R_{ali} \downarrow$	$R_{ove} \downarrow$	$R_{com} \downarrow$	KWI SCOIE
Visual Feedback-step1	0.9407	0.8221	0.8774	0.0046	0.0061	19.5917	0.4392
Visual Feedback-answer	0.9468	0.9054	0.9256	0.0025	0.0022	14.8063	0.5548
cold-start-step1	0.9140	0.6962	0.7904	0.0118	0.0410	24.3143	0.2721
cold-start-answer	0.9121	0.7011	0.7928	0.0121	0.0402	24.0888	0.2774
cold-start-only-step1	0.9321	0.8387	0.8829	0.0010	0.0094	24.4845	0.4007
Qwen2.5-VL-7B	0.8831	0.6701	0.7620	0.0028	0.0256	30.9031	0.2116
direct RL	0.9230	0.8394	0.8792	0.0004	0.0012	30.3397	0.3482
direct sft8k+rl	0.9400	0.8803	0.9092	0.0009	0.0022	19.3983	0.4596
basemodel-direct-40k	0.9348	0.8604	0.8960	0.0032	0.0192	18.3754	0.4680

Table 10: Multiple ablation experiments on Graphic quality metrics and OCR metrics on DE-SIGNERINTENTION set.

Model	OCR				Graphic		RM Score ↑	
Wodel	Char-P↑	Char-R ↑	Char-F↑	$R_{ali} \downarrow$	$R_{ove} \downarrow$	$R_{com} \downarrow$	KWI Score	
Visual Feedback-step1	0.9700	0.9146	0.9415	0.0033	0.0023	14.1230	0.5285	
Visual Feedback-answer	0.9781	0.9547	0.9663	0.0024	0.0008	12.1167	0.5688	
cold-start-step1	0.9546	0.8266	0.8860	0.0130	0.0264	17.5229	0.3784	
cold-start-answer	0.9548	0.8301	0.8881	0.0127	0.0257	16.9280	0.3850	
cold-start-only-step1	0.9666	0.9115	0.9382	0.0006	0.0033	16.7466	0.4768	
Qwen2.5-VL-7B	0.8660	0.5455	0.6694	0.0011	0.0689	19.1119	0.2018	
direct RL	0.9618	0.9250	0.9430	0.0005	0.0001	18.0272	0.4692	
direct sft8k+rl	0.9752	0.9433	0.9590	0.0005	0.0010	14.6338	0.5167	
basemodel-direct-40k	0.9544	0.9327	0.9434	0.0017	0.0082	13.1702	0.5398	

Table 11: The performance of the four quality-level datasets in terms of OCR and Graphic metrics, as well as the scores from our trained reward model: The OCR scores and Graphic metrics indicate that our four-level data have a good hierarchical progressive relationship; the RM score shows that our trained reward model can well distinguish between quality levels.

leval		OCR			Graphic		RM Score ↑				
ievai	Char-P↑	Char-R ↑	Char-F ↑	$R_{ali} \downarrow$	$R_{ove} \downarrow R_{com}$		Kivi Scole				
Level-I	0.9752	0.9211	0.9474	0.0089	0.0038	6.6795	1.0594				
Level-II	0.9644	0.8522	0.9049	0.0112	0.0134	12.2626	0.6343				
Level-III	0.8676	0.4197	0.5657	0.0354	0.0444	21.2628	-0.2345				
Level-IV	0.8478	0.3880	0.5324	0.0536	0.0375	17.5270	-1.3457				

Level-IV) for each query, yielding 1.2M preference pairs. We randomly selected 25K pairs as the test set, using the remainder for training. During training, we use a batch size of 512 and train for 2100 steps.

To stabilize the reinforcement learning process, the raw output of our trained reward model, r_{θ} , is normalized before being used as the final layout reward, R_{layout} . Following the practice in Xu et al. (2023), we first compute the distribution of r_{θ} scores across the test set. The scores are then standardized using the mean and standard deviation of this distribution. This procedure ensures that the reward signal maintains a consistent scale throughout training, which is crucial for effective policy optimization. The final reward is calculated as:

$$R_{\text{layout}} = \frac{r_{\theta} - \text{mean}_{\text{test}}(r_{\theta})}{\text{std}_{\text{test}}(r_{\theta})}$$
(11)

Results: The trained reward model achieves a high pairwise prediction accuracy of 97.4% on the test set, demonstrating its strong ability to discern finer-grained layout preferences.

To further validate our methodology, we conducted two key analyses presented in Table 11. First, we verify the integrity of our four-level data hierarchy using objective metrics. As shown, the external Graphic and OCR metrics exhibit a clear monotonic degradation from Level-I to Level-IV. This result confirms that our data construction process successfully creates a well-defined and reliable quality gradient.

Second, we evaluated whether our trained reward model internalizes this quality structure. The final column of the table reports the average Reward Model (RM) Score, i.e., $R_{\rm layout}$ for test samples at each level. The RM scores align perfectly with the established hierarchy, decreasing consistently from a high for Level-I to a low for Level-IV. This strong discriminative performance across distinct quality levels confirms that our model has learned a nuanced understanding of layout quality, enabling it to provide a reliable and effective supervision signal for reinforcement learning.

F MORE QUALITATIVE RESULTS

The comparison of data generated on all baselines is shown in Figure 4.

G Prompt For Data Construction

```
Role setting:
You are an experienced Layout and SVG engineer.

Task:
Here is a result of using SVG code to typeset specific text on an

→ input background image. I will provide you with the designed SVG

→ code and the rendered image of this code, which has a very

→ beautiful layout effect.

Now, assuming you are the designer of typesetting this SVG, what is

→ your thought process when typesetting this SVG?

Could you please use the voice of a designer to briefly describe

→ your thought process when designing this SVG based on the SVG

→ code and rendering results? How did you design this SVG?
```


Figure 4: In comparison with all existing methods.

```
1026
          Ensure that your design ideas are consistent and closely related to
1027
             the design results of this SVG. Do not fabricate content that is
1028
              not included in the SVG, as the SVG only typesets the given text
1029
              based on the given background image. Therefore, the typesetting
1030
             ideas should focus on the implementation of the text, including
1031

→ text position, font, size, beautification effect, etc. Don't pay

          \hookrightarrow attention to the text already in the background image. Do not
1032
          \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, pay attention to unnecessary other graphic icons and other
1033
             elements, and do not analyze how good the rendered image is from
1034
              the perspective of typesetting, because your thinking is based
1035
              on not seeing the rendered image.
1036
         background-image.png: <image>
1037
          image size : {image_width} * {image_height}
1038
          texts: {target_text}
1039
1040
          svg code:
          ···svg
1041
          {svg_code}
1042
1043
          The image result rendered by this svg: <image>
1044
1045
          Output requirements:
          Please directly output the thinking process of the person in the
1046
          → designer's tone, without any other descriptive content. Answer
1047
          \hookrightarrow in English.
1048
```

Multi-Round Reflection Data Synthesis Prompt

1049 1050 1051

1052

1054

1055

1057

1058

1059

1061

1062

1063

1064

1065

1066 1067

1069

1071

1072

1073

1074

1075

1076

1077

1078

```
1053
         USER:
         You are an experienced typesetter and SVG engineer, skilled at
         \hookrightarrow elegantly typesetting specified text on user provided background
1056
         \hookrightarrow images.
         You know how to apply unique aesthetic principles to design
         \,\hookrightarrow\, professional and attractive layout, using SVG code to create
            beautiful layouts. Please design the final layout plan based on
            the background image and text content provided by the user.
         In SVG code, use the image tag to reference the background image:
         → href=\"background-image.png\", while other elements only need to
         \rightarrow be designed with content related to the text.
         Please design an SVG code layout scheme based on the background
         You first think about it, and then output the final SVG code. The
            format is<think>...</think>\n<answer>...</answer>
         background-image.png: <image>
1068
         image size: {image_width}*{image_height}
         Please arrange the following text on the background image:
         {target_text}
1070
         ASSISTANT:
         {Reasoning Process and SVG generated by Qwen2.5-VL-7B}
         USER:
         Now, I'll show you the effect of this version of SVG layout, and you
         \rightarrow need to improve this SVG layout effect.
         I'll also give you a standard SVG layout result, and you need to
         \hookrightarrow improve your SVG layout according to this standard SVG layout
            result.
```

```
1080
          - In your output, you need to speak in the tone of a designer,
1081
              stating that you've reviewed the SVG result of your initial
1082
             layout, then reflected on it and made corrections. Note that
1083
          \,\hookrightarrow\, you've designed an initial version of the SVG, and now I've
1084
             provided you with the rendered image. Your output should focus
1085

→ on examining the image, ensuring it's a reflection and

          \hookrightarrow correction of your initial SVG layout result. The direction of
1086
          \hookrightarrow correction is the correct effect I gave you, but don't expose in
1087
             the output that you're improving based on the standard effect.
1088
              Pretend you've thought it out on your own.
1089
1090
          - The output should include your thinking process for SVG layout,
          → how to improve your SVG layout result step by step. You need to
1091
          \hookrightarrow point out which parts of your initial layout were good and which
1092
          → were bad and needed modification. For each modification point,
1093
          \hookrightarrow be specific about how to modify the SVG code. Don't just
1094
          \,\hookrightarrow\, qualitatively say which aspects you'll modify. Pay attention to
              the tone, which should be like that of a designer, and the
1095
              content of the output should conform to the designer's way of
1096
              thinking.
1097
1098
          - During the modification process, key considerations should be text
1099
          → position, whether there is any text missing, text overlapping,
              text being blocked, and whether the text exceeds the background
1100
              image range, etc. These considerations need to be included in
1101
              the output.
1102
1103
          - Your output modification process may involve multiple steps. If
1104
          → your initial layout is not very different from the standard one,
          → you can make only one modification; if there is a large gap,
1105
          \hookrightarrow multiple steps of modification are required. You need to
1106
          \hookrightarrow simulate the designer's thinking process and gradually improve
1107
             the SVG layout. Each time you modify, choose the part with the
1108
              worst effect to improve. Explain the specific SVG code
1109
              improvements in the thinking process. After modifying one
              version, only make changes to the SVG part that needs to be
1110
          \hookrightarrow modified in this step, and don't change the other parts for now.
1111
              Output the complete SVG code; then proceed to the next
          \hookrightarrow
          \hookrightarrow modification until you think the SVG layout effect is very good.
1113
          \hookrightarrow Don't make too many modifications. Ensure that each modification
1114
          \hookrightarrow
             is better than the previous one, with a maximum of 3
              modifications. The SVG code after the last modification needs to
1115
          \hookrightarrow
              be output, and its effect should be the same as that of the
1116
             standard code I gave you.
1117
1118
          - You need to answer one modification each time, and then I'll show
1119
          → you the rendered effect of the SVG you modified, and you'll make
          \hookrightarrow the next modification.
1120
1121
          - Based on the rendered image effect I give you after each of your
1122
          \rightarrow modifications, decide whether the next modification is needed.
1123
              Each modification should have a significant improvement, not
1124
              just a minor one. For example, when the order of different text
             tags doesn't affect the SVG rendering effect, there's no need
1125
          \hookrightarrow for additional modification. Since I require you to make as few
1126
          \hookrightarrow steps of modification as possible, each modification should have
1127
              a significant improvement.
1128
1129
```

```
1134
          Your output is the thinking process of a designer improving the SVG
1135
           \hookrightarrow layout after reviewing the first version they designed. I've
           \hookrightarrow given you the standard SVG code, and you should modify the SVG
1137
           \hookrightarrow code in this direction. However, note that your output is based
1138
           \hookrightarrow on not having seen this standard SVG, as if the designer is
1139
           \hookrightarrow reflecting after designing the initial draft and modifying it to
           \hookrightarrow the final standard SVG version through multiple steps.
1140
1141
          After the last modification, you need to output the final
1142
           → inspection, indicating that after checking the image, you think
1143
           \hookrightarrow the current SVG layout effect is very good and can be replied to
1144
           \hookrightarrow the user.
1145
          Your initial SVG layout effect is shown in the figure below:
1146
          <image>
1147
          This is standard and beautiful SVG code. The code and its rendered
1148
           \hookrightarrow effect diagram are as follows.
          ···svg
1149
          {svg_code}
1150
1151
          <image>
1152
1153
          Output requirements:
          Please directly output the thinking process in the tone of a
1154
           \hookrightarrow designer, without any other descriptive content. Be careful not
1155
           \hookrightarrow to reveal that you have seen the standard SVG effect. Transform
1156
           \hookrightarrow it into your own thinking. The output should conform to the
1157
           \hookrightarrow designer's thinking process, that is, how you think about
           \hookrightarrow improving the layout by yourself, not by comparing with the
1158
          \,\hookrightarrow\, standard effect. Do not output the word "standard".
1159
1160
          If improvement is needed, the first sentence in each step of the
1161
           \hookrightarrow thinking process should be: "I will check the SVG rendering
1162
           \hookrightarrow effect of my version...", and the last sentence should be:
              "Next, I will improve my SVG code."
1163
1164
          These two beginning and ending sentences are necessary and cannot be
1165
          \hookrightarrow omitted, but you can modify the language to maintain the same
1166
              meaning and make the output diverse.
1167
          Your output needs to specifically point out which effects in your
1168
           \hookrightarrow first version are good and do not need improvement, which
1169
           → effects are poor and need improvement, and how to specifically
1170
           \hookrightarrow modify the SVG code. If you think the SVG layout effect of your
1171
           \hookrightarrow first version is very close to or even better than the standard
1172
              SVG rendering effect I provided, you can describe your
              satisfaction with this SVG layout and that you think it has
1173
              achieved a very good effect and does not need further
1174
              improvement.
1175
1176
          Answer in English.
1177
          Output requirements:
1178
          - You need to output in the form of multi - round conversations.
1179
           \hookrightarrow According to the number of modifications you decide, the output
1180
          → format for each modification is as follows:
1181
          # Step {current modification number} of modification:
1182
1183
          ## Thinking process: Here, think about how to make the modification.
1184
1185
          ## SVG code: Modify the complete SVG code.
1186
```

```
1188
          - After the final modification, the rendering result of your SVG
1189
          \hookrightarrow code should be exactly the same as that of the reference SVG
1190
          \hookrightarrow code I provided.
1191
1192
          - After the last modification is output, I will provide you with the
          \rightarrow rendered image again. Then you need to output a final
1193
             reflection, indicating that you will check the SVG rendering
1194
              effect of this version and think that the current SVG layout
1195
              effect is very good and does not need to be improved further,
1196
              and it can be output to the user. The output format of the final
1197
             reflection is:
1198
          # Final rethink: ...
1199
1200
1201
          Your current SVG layout effect is shown in the figure below:
1202
          <image>
1203
          ASSISTANT:
1204
1205
1206
1207
```