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ABSTRACT

Collaborative machine learning is challenged by training-time adversarial behaviors.
Existing approaches to tolerate such behaviors either rely on a central server
or induce high communication costs. We propose Robust Pull-based Epidemic
Learning (RPEL), a novel, scalable collaborative approach to ensure robust learning
despite adversaries. RPEL does not rely on any central server and, unlike traditional
methods, where communication costs grow in O(n2) with the number of nodes
n, RPEL employs a pull-based epidemic communication strategy that scales in
O(n logn). By pulling model parameters from small random subsets of nodes,
RPEL significantly lowers the number of required messages without compromising
convergence guarantees, which hold with high probability. Empirical results
demonstrate that RPEL maintains robustness in adversarial settings, competes with
all-to-all communication accuracy, and scales efficiently across large networks.

1 INTRODUCTION

Collaborative machine learning has recently gained traction as a solution for data-intensive, privacy-
sensitive tasks where data resides across multiple nodes (Kairouz et al., 2021; McMahan et al., 2017;
Lian et al., 2017; Koloskova et al., 2020). This approach, however, faces significant challenges in
the presence of malfunctioning or malicious nodes that can disrupt the learning process by sending
corrupted or misleading updates Lamport et al. (2019); Blanchard et al. (2017). Robustness against so-
called Byzantine attacks is critical, especially as machine learning applications expand into sensitive
domains such as healthcare, autonomous systems, and finance, where incorrect model updates could
lead to catastrophic outcomes. Prior approaches that cope with adversarial nodes have relied on some
form of robust aggregation to mitigate their impact; however, those approaches generally relied on a
trusted centralized server (Blanchard et al., 2017; Yin et al., 2018; Chen et al., 2017; Allen-Zhu et al.,
2020; Karimireddy et al., 2020; Allouah et al., 2023).

The decentralized, peer-to-peer communication setting offers a promising framework for collaborative
machine learning, eliminating the need for a central coordinator, thereby enhancing scalability (Lian
et al., 2017; Koloskova et al., 2019; Vogels et al., 2023; Lian et al., 2018; Lu and Wu, 2020). However,
the absence of a trusted server exacerbates the challenge of ensuring robustness. Existing robust
peer-to-peer learning algorithms generally depend on fully-connected (or at least dense) networks,
with communication complexity that scales quadratically with the number of nodes (Farhadkhani
et al., 2023; Gorbunov et al., 2022; El-Mhamdi et al., 2021). While ensuring robustness, these
approaches induce high overhead and network congestion, creating bottlenecks in decentralized
environments. The question of whether it is possible to devise a scalable, communication-efficient
scheme that can uphold robustness across heterogeneous nodes in decentralized peer-to-peer networks
remained open.

We contribute to answering this question in the affirmative by presenting Robust Pull-based Epidemic
Learning (RPEL), a novel collaborative learning approach that uses a randomized, epidemic-based
communication scheme in which each node periodically pulls model updates from a small, random
subset of peers. This approach significantly decreases the communication burden (compared to
traditional peer-to-peer solutions) while preserving robustness against adversarial nodes. RPEL
leverages the convergence properties of epidemic-based protocols, ensuring that information about
the model parameters spreads rapidly across nodes with minimal communication overhead.
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A key technical difficulty in robust peer-to-peer settings lies in determining the number of attackers
each honest node could be exposed to. This information is crucial for designing effective robust
aggregation rules, e.g. (Blanchard et al., 2017; Yin et al., 2018). The possibility of the attackers’
positions on the communication graph to be chosen in an adversarial manner adds an extra layer
of complexity. Consequently, most current works typically make strong assumptions about the
graph connectivity and induce a high communication cost (Gaucher et al., 2025; He et al., 2022;
Gaucher et al., 2024). We show that such a high connectivity and communication cost is not needed.
Essentially, while previous approaches require each node to communicate with Θ(n) neighbors, our
framework overcomes this limitation by communicating only with O(log(n)) nodes.

Contributions. Our contributions can be summarized as follows:

• Efficient robust learning protocol. We introduce RPEL, a randomized, epidemic-style
distributed learning algorithm, designed to tolerate adversaries while minimizing the need
for extensive node-to-node interactions. Additionally, we propose a protocol for selecting
the number of sampled neighbors that achieves efficient scalability while ensuring robustness
with minimal communication overhead.

• Theoretical guarantees. We establish rigorous convergence guarantees of our RPEL pro-
tocol considering a general non-convex setting, in the presence of data heterogeneity and
under mild assumptions widely adopted in the Byzantine-robust optimization community.
Our analysis ensures robustness against any omniscient attack, with the capability of ex-
changing distinct updates with different honest nodes even during the same iteration. We
demonstrate that the robustness properties of RPEL hold with high probability, providing
strong guarantees in practical deployments. We do so by introducing the key concept of
Effective adversarial fraction, a high-probability upper bound on the number of selected
attackers. This concept provides a nuanced understanding of the system’s ability to tolerate
adversaries compared to robust, fixed-graph decentralized learning approaches.

• Experiments. We demonstrate that RPEL works well in practice, providing good results on
MNIST and CIFAR-10 datasets with up to 20% adversarial nodes within a decentralized
system. Notably, RPEL proves to be highly competitive with state-of-the-art all-to-all robust
methods, achieving comparable accuracy with a much cheaper communication budget.
Additionally, for the same communication cost, RPEL shows better robustness than the
baseline fixed-graph methods. Furthermore, we highlight the scalability advantages of
RPEL’s randomized communication strategy through a suite of simulations capturing the
impact of the number of selected nodes on the Effective adversarial fraction.

2 RELATED WORK

Byzantine distributed learning. Learning in a distributed setting becomes significantly challenging
in the presence of Byzantine adversaries namely nodes that may deliberately send malicious or
corrupted updates. In the context of Federated Learning, i.e., when a trusted server is available to
orchestrate the learning procedure, the use of robust aggregation rules can effectively mitigate the
influence of an adversary (Allouah et al., 2023; Yin et al., 2018; Blanchard et al., 2017).

Robust Decentralized Learning. Unlike centralized approaches, Decentralized Learning (DL) al-
lows clients to communicate directly with each other to share updated model versions and converge to
a common optimization objective. The most popular DL approach is gossip averaging, in which each
client iteratively updates their current model using a weighted combination of their neighbors’ models
(Boyd et al., 2005; Koloskova et al., 2019; Berthier et al., 2020). Since the gossip operation relies on
non-robust averaging, this approach fails in the presence of attacks Blanchard et al. (2017). Some DL
approaches were, however, recently proposed to ensure robustness to such attacks. Nearest Neighbor
Averaging (NNA) Farhadkhani et al. (2023) was shown to be effective in the all-to-all communications
setting. For sparse graphs, client-level clipping, He et al. (2022) ensures that the model update remains
within a controllable distance from the current state, thereby limiting the impact of adversaries: each

honest node fixes the clipping threshold to τ ti =

√
1

δ(i)

∑
j∈H WijE

∥∥∥xt+1/2
i − x

t+1/2
j

∥∥∥2, where

δ(i) =
∑

j∈B Wij and W is the gossip matrix. However, computing this threshold is impossible
without knowing the attackers’ identity. Although they do propose another threshold choice that
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can be implemented in practice, it is not covered by their theoretical analysis. A more practical
way to fix the clipping threshold, for sparse communication graphs, was proposed in Gaucher et al.
(2025). Inspired by NNA, the proposed algorithm clips the 2b largest updates received by each honest
node, where b is the maximum total adversarial neighbors’ weight an honest node can have. The
theoretical guarantees, however, involve the honest subgraph and, therefore, largely depend on the
location of adversarial nodes on the graph. Remove-Then-Clip (RTC) Yang and Ghaderi (2024), a
similar approach to Gaucher et al. (2025), removes neighbors with the furthest model updates, before
clipping the rest of the neighbors, using a clipping threshold that is possible to implement (as opposed
to He et al. (2022)). Nevertheless, just like Gaucher et al. (2025), the theoretical guarantees of RTC
also depend on the properties of the honest subgraph. Another limitation of these robust, sparse
decentralized methods is their reliance on a highly connected communication graph to ensure the
connectivity of the subgraph of honest nodes. Specifically, for a graph of n nodes among which b are
adversarial, the communication graph must be at least 2b-connected, which is a significant limitation
for large-scale networks.

Epidemic Learning. The advantages of randomization in peer-to-peer learning were highlighted
by De Vos et al. (2024), which introduced Epidemic Learning as a powerful to address the high com-
munication costs that often hinder the practical deployments of Decentralized Learning (Koloskova
et al., 2019). In thus paper, we introduce a Pull variant of Epidemic Learning that differs from the
one originally studied by De Vos et al. (2024). We demonstrate that pulling preserves the advantages
of Epidemic Learning while ensuring robustness in adversarial settings.

3 PROBLEM STATEMENT

3.1 SETTING

We consider a decentralized, serverless system comprising n nodes N = {1, 2, . . . ,n}. Each node i
has access to a local dataset sampled from a distribution Di, which may differ across nodes, reflecting
non-IID data conditions. The nodes collectively aim to minimize a global objective function:

min
x∈Rd

F (x) =
1

n

n∑
i=1

fi(x),

where fi(x) = Eξ∼Di [ℓ(x, ξ)] is the local loss function for node i, and x ∈ Rd represents the model
parameters.

3.2 THREAT MODEL

In this setting, up to b < ⌊n/2⌋ nodes may exhibit Byzantine behavior, arbitrarily deviating from
the prescribed protocol. Controlled by an omniscient adversary, these nodes can send different,
potentially malicious updates to the other nodes. The omniscient nature of these attacks implies the
adversaries have full knowledge of the honest nodes’ updates, the selected nodes at each iteration, and
how they execute aggregation. Honest nodes are those which comply with the prescribed protocol.

We denote by H ⊂ N the set of honest nodes in the system. As truthful information about the
adversaries’ datasets cannot be guaranteed, a more reasonable objective for the honest clients is to
minimize:

min
x∈Rd

FH(x) =
1

|H|
∑
i∈H

fi(x). (1)

To formalize the robustness of our algorithm, we use the following notion of Byzantine resilience
Definition 3.1 (Byzantine Resilience). A decentralized algorithm is said to be (b, ε)-resilient if,
despite the presence of b Byzantine clients, each honest client i ∈ H computes x̂i such that:

E
[
∥∇FH(x̂i)∥2

]
≤ ε,

where the expectation is taken over the randomness of the algorithm.

3
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3.3 COMMUNICATION MODEL

Nodes communicate via a peer-to-peer network, using an epidemic-style communication strategy:

• Synchronous setting: All the participating nodes possess a global clock indicating the
current iteration. This entails that the peer selection process at each iteration is uniform
among the whole set of participants.

• Randomized Communication: In each communication round, all honest nodes pull model
updates from a randomly chosen subset of s peers. This pull-based approach to Epidemic
Learning was not explored in the work of De Vos et al. (2024), which focused on the
non-robust push-based Epidemic Learning where nodes select recipients for their model
updates. The pull-based approach is especially important in Byzantine settings because it
prevents attackers from injecting malicious updates to all the honest nodes at each iteration.

4 ROBUST EPIDEMIC LEARNING

In this section, we first present the RPEL algorithm, designed to guarantee Byzantine robustness
in the randomized peer-to-peer communication setting presented in the previous section. We then
introduce the concept of Effective adversarial fraction, a key quantity in RPEL that allows a principled
approach to the choice of the algorithm’s hyperparameters.

4.1 ALGORITHM

Algorithm 1 outlines the general procedure executed by each node. This follows a pull-based
Epidemic Learning approach, where each node randomly samples s other nodes and updates its
model using the s+ 1 local models, including its own.

The goal of the aggregation step is to guarantee robustness to the selected adversaries, the number of
which is upper bounded by b̂ with a high probability. Depending on the number of nodes in the graph,
the number of sampled neighbors, and the total number of iterations, this upper bound is intuitively
smaller than b, the true number of adversarial nodes in the whole graph. We discuss this upper bound
in more detail in Section 4.2 and Section 6.1.

To guarantee such robustness, we analyze the use of robust aggregation rules, satisfying (s, b̂,κ)-
robustness, which we introduce in Section 5 (Definition 5.1).

Algorithm 1 RPEL algorithm
Require: number of iterations T , number of neighbors s, momentum coefficient β, communication

step size ρ, effective number of adversaries b̂, Aggregation Rule R
1: for t = 1 . . . T do
2: for i ∈ H in parallel do
3: Randomly sample a data point ξti from Di

4: Compute a local stochastic gradient gti = ∇fi(x
t
i, ξ

t
i)

5: Update local momentum mt
i = βmt−1

i + (1− β)gti
6: Optimization step: xt+1/2

i = xt
i − ηmt

i
7: Randomly sample a set St

i of s nodes
8: Receive x

t+1/2
j from each j ∈ St

i ▷ Selected attackers send corrupted updates

9: Aggregation step: xt+1
i = R

(
x
t+1/2
i ;

{
x
t+1/2
j , j ∈ St

i

})
10: end for
11: end for
12: for i ∈ H do
13: Output x̂i ∼ U{x1

i , . . . ,x
T
i }

14: end for

4
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4.2 EFFECTIVE ADVERSARIAL FRACTION

Randomized communication makes it possible to reason about the adversarial fraction similarly to
federated learning. Although the adversaries in the peer-to-peer context can have a much stronger
impact, since they can send different updates to different clients, having guarantees on the total
adversarial fraction is necessary from a practical point of view.

Through randomization, at each iteration t, each honest node i gets a random number bti of attackers.
This number is drawn from a hypergeometric distribution bti ∼ HG(n− 1, b, s).

For b̂ such that b/n < b̂/s+1 < 1/2, define the following event

Γ =
{
∀t ≤ T , ∀i ∈ H, bti ≤ b̂

}
. (2)

The following lemma shows that logarithmic sampling is enough for our algorithm at scale.
Lemma 4.1. If the number of samples s satisfies :

s ≥
⌈
max

{
1

(1/2− b/n)2
,

3

b/n

}
ln

(
4T |H|
1− p

)⌉
+ 2, (3)

then there exits b̂ such that Γ holds with probability at least p and b̂
s+1 ∈ O

(
b
n

)
Lemma 4.1 emphasizes that logarithmic scaling of the number of selected nodes s is sufficient to
ensure that the event Γ occurs with high probability. Indeed, assuming the number of Byzantine
clients grows linearly in n (which is equivalent to fixing the total Byzantine fraction b/n), one only
needs to increase s logarithmically in n. This illustrates the efficiency of the RPEL framework,
demonstrating that robustness can be achieved with a communication complexity of O(n logn). In
the rest of the paper, b̂ is set such that with probability at least p, each honest node has at most b̂
adversaries throughout the whole learning. This is allowed by virtue of Lemma A.4 in the Appendix,
which gives a sufficient condition (Equation (7)) on the choice of s and b̂ for the event Γ to hold with
at least probability p.

We note ĥ = s + 1 − b̂, which is a lower bound on the number of honest nodes guaranteed to be
selected by each node at each iteration (with probability at least p). We call the Effective adversarial
fraction the ratio b̂

s+1 .

5 THEORETICAL ANALYSIS

We now present our main theoretical results demonstrating the finite-time convergence of Algorithm 1.

5.1 SINGLE ITERATION REDUCTION

To formalize and quantify the robustness of a given aggregation rule, we use the following notion of
(s, b̂,κ)-robustness. This provides an upper bound on the error between the aggregation output and
the honest average with the variance of the input of honest nodes.

Definition 5.1 ((s, b̂,κ)-robustness (Allouah et al., 2023)). Let b̂ ≤ s/2 and κ ≥ 0. An aggregation
rule R is said to be (s, b̂,κ)-robust if for any vectors v1, . . . , vs+1 ∈ Rd, and any set U ⊆ [s+ 1] of
size s+ 1− b̂,

∥R(v1, . . . , vs+1)− vU∥2 ≤ κ

|U|
∑
i∈U

∥vi − vU∥2 ,

with vU := 1
|U|
∑

i∈U vi.

The next lemma demonstrates that each step of Algorithm 1, when using a robust aggregation rule,
effectively reduces the variance among the honest nodes and quantifies the amount of bias introduced.

5
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Lemma 5.2. Assuming R satisfies Definition 5.1, and assuming Equation (7) is satisfied, then the
iterates of Algorithm 1 with R satisfy the following reduction at any iteration t:

Et

[∥∥∥xt+1
H − x

t+1/2
H

∥∥∥2] ≤ (κ+
|H| − ĥ

(|H| − 1)|H|ĥ

)
1

|H|
∑
i∈H

∥∥∥xt+1/2
i − x

t+1/2
H

∥∥∥2 ,
Et

[
1

|H|
∑
i∈H

∥∥∥xt+1
i − xt+1

H

∥∥∥2] ≤

(
6κ+ 6

|H| − ĥ

(|H| − 1)ĥ

)
1

|H|
∑
i∈H

∥∥∥xt+1/2
i − x

t+1/2
H

∥∥∥2 .
where the expectation is taken on the random sampling at iteration t.

As a consequence of this lemma and a classic result described in Section A.3, a way to ensure
convergence of RPEL is to provide a robust aggregation rule satisfying Definition 5.1 with κ+1/ĥ < 1

6 .

5.2 CONVERGENCE RATES

To prove the convergence, we use the following assumptions on the objective functions of the honest
clients. The first two are standard in first-order stochastic optimization (Bottou et al., 2018), and the
third one is standard in robust optimization (Allouah et al., 2024b; Data and Diggavi, 2021).
Assumption 5.3. (L-Smoothness). ∀i ∈ H, ∀x,y ∈ Rd, we have

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
Assumption 5.4. (Bounded stochastic noise). ∀i ∈ H, ∀x ∈ Rd, we have

Eξ∼Di

[
∥∇ℓ(x, ξ)−∇fi(x)∥2

]
≤ σ2.

Assumption 5.5. (Bounded heterogeneity). ∀i ∈ H, ∀x ∈ Rd, we have
1

|H|
∑
i∈H

∥∇fi(x)−∇FH(x)∥2 ≤ G2. (4)

We now present the main theoretical result of our paper, showcasing the convergence of both previous
aggregations in the non-convex setting.
Theorem 5.6 (Convergence of Algorithm 1). Under the assumptions 5.3, 5.4 and 5.5, assuming that
s and b̂ satisfy condition 7 and R satisfies Definition 5.1, for a choice of η satisfying Equation (13),
for all i ∈ H, after T iterations, with probability at least p on the sampling procedure

1

T

T∑
t=0

E
[
∥∇FH

(
xt
i

)
∥2
]
≤ 2

√√√√(c2Lσ2 + 432L
T

(
σ2

n−b

))
c0

T
+ 2

3

√
9c20c1nL

2(σ2 +G2)

T 2

+ 12
Lc0
T

+ c3G
3,

with c0 = 12(FH(θ0)− F ∗
H), c1 =

18α(1 + α)

(1− α)2
, c2 = 72L

(
3

n− b
+ 2c1 +

9λ

2
(2c1 + 3)

)
,

c3 = 6

(
6c1 +

9λ

2
(4c1 + 9)

)
, where α = 6κ+ 6

|H| − ĥ

(|H| − 1)ĥ
and λ = κ+

|H| − ĥ

(|H| − 1)|H|ĥ
.

Ignoring the constants and the higher-order terms, we deduce the following corollary.
Corollary 5.7. Under the conditions of Theorem 5.6, when R satisfies Definition 5.1 with κ =

O
(

b̂
s+1

)
, with probability at least p, Algorithm 1 satisfies (b, ε)-resilience (Definition 3.1) with:

ε ∈ O

√ b̂+ 1

(s+ 1)T
σ2 +

b̂+ 1

s+ 1
G2

 .

Remark. Allouah et al. (2023) show that using NNM pre-aggregation followed by standard
aggregation rules such as Krum (Blanchard et al., 2017), Geometric Median Chen et al. (2017) or
coordinate-wise Median (Yin et al., 2018), it is possible to get κ = O (b/n) when aggregating n
vectors, among which b are adversarial. In our setting, these robust aggregation rules would satisfy
κ = O

(
b̂/s+1

)
.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.3 DISCUSSION

The first term in Corollary 5.7 shows an expected convergence rate. Indeed, in the absence of attackers,
when taking s = n− 1, corresponding to all-to-all communication, we recover the classical SGD
rates, i.e. O

(√
σ2
/nT
)

(Ghadimi and Lan, 2013). In the scenario when s = n− 1 and b̂ = b, we get

the same vanishing term O
(√

(b+1)σ2
/nT
)

as Farhadkhani et al. (2023), which is the best-known
rate even with a trusted server Karimireddy et al. (2020).

Unlike the theoretical guarantees of Allouah et al. (2024a), our non-vanishing term O
(

b̂+1
s+1G

2
)

does

not depend on the stochastic noise σ2. Additionally, since by Lemma 4.1 b̂
s+1 ∈ O

(
b
n

)
, this matches

the robust federated learning lower bound of O
(
b
nG

2
)

established by Allouah et al. (2023). This
improvement is enabled by our use of variance reduction through local momentum (Polyak, 1964) in
Algorithm 1, which was not feasible in the federated learning setup of Allouah et al. (2024a).

6 EXPERIMENTS
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Figure 1: Test accuracies obtained on MNIST. (Left) n = 100, b = 10, s = 15 , (right) n = 30, b =
6, s = 15.
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Figure 2: Test accuracies obtained on CIFAR-10 with n = 20, b = 3 (Left) s = 6, (Right) s = 19.

Figure 3: Effective adversarial fraction simulation. For equal adversarial fraction, increasing the
number of participants does not require increasing the number of selected neighbors by much.

We empirically evaluate RPEL, assessing its performance across various settings and benchmarking
it against state-of-the-art methods. We first describe the experimental setup, and then show some of
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results on both MNIST LeCun et al. (2010) and CIFAR-10 Krizhevsky et al. (2014) datasets. All
implementation details and the full suite of experiments, including the FEMNIST dataset (Caldas
et al., 2019), and the comparison to baselines are included in Section C. For reproducibility, our code
is available at https://anonymous.4open.science/r/RPEL-BF2D/readme.

6.1 EXPERIMENTAL SETUP

Setting up s and b̂

As stated before, Equation (7) in the Appendix, gives a sufficient condition for b̂ to be the maximum
number of adversaries selected by each node throughout the whole training. However, this condition
can be quite constraining in practice, requiring s to be very large.

As the number of adversarial neighbors of any node i at iteration t follows a Hypergeometric
distribution bti ∼ HG(n− 1, b, s), it is possible to know the distribution of b̂ = maxi∈H,t∈[1,...,T ] (b

t
i)

for any choice of sampling parameter s. Hence it is possible to search for the parameters s and b̂ such
that P

(
b̂/s+1 ≤ q

)
is very high, whenever that is possible, q being the Effective adversarial fraction

the algorithm can support, 1/2 for instance.

In general, for fixed n and b, the larger is s the smaller is the Effective adversarial fraction b̂/s+1

(where b̂ depends on s). A principled way to choose s and b̂ is to choose a grid of s values, compute b̂s
for each s by using the confidence interval of a hypergeometric distribution, and then pick the smallest
value of s for which b̂s

s+1 is less than q. We include a pseudo-code of this method in Section B.

Attack model and defense

To make the attacks as strong as possible, we allow the attackers to send distinct malicious updates
to the honest clients, even in a single iteration. We also assume the attackers to be omniscient;
every time a number bti of adversarial nodes are selected by client i, they first look at the honest
updates that client i has received at iteration t, and depending on the aggregation rule that is used
they compute their parameters using one of the state-of-the-art attacks, namely sign flipping (SF) (Li
et al., 2020), Fall of Empires (FOE) (Xie et al., 2020) and A Little is Enough (ALIE) (Baruch et al.,
2019) and Dissensus (He et al., 2022) for fixed graphs. To defend against these attacks, we use an
NNM pre-aggregation rule followed by a coordinate-wise trimmed mean (CWTM) (Yin et al., 2018).

Heterogeneity

We use Dirichlet Heterogeneity Hsu et al. (2019) to model the discrepancy between the clients’
datasets. A parameter α controls the level of heterogeneity: larger values of α result in more
homogeneous datasets among the clients, while smaller values lead to highly diverse data distributions.
This model is well suited for capturing the non-IID effects in robust machine learning (Karimireddy
et al., 2020; Allouah et al., 2023).

6.2 EMPIRICAL RESULTS

Robustness to high Effective adversarial fraction

Figure 1 shows the results on MNIST for two settings, in both of which we fix s = 15 neighbors to
cap the communication cost and set the number of iterations to T = 200. First (left in Figure 1), we
consider n = 100 clients, among which 10 are Byzantine (10%). Using the methodology described
in Section 6.1, the Effective Byzantine fraction, in this case, is 0.44 corresponding to b̂ = 7. It is
worth noting that beyond 10 adversarial clients, in this case, the Effective adversarial fraction exceeds
1/2, and robust aggregation methods fail. Second (right in Figure 1), we consider n = 30 clients
among which b = 6 are adversarial (20%). The Effective adversarial fraction, in this case, is 0.375.
For both of these settings, RPEL achieves very high accuracy against the three attacks.

Figure 2 (Left) presents the results of RPEL on CIFAR-10 dataset, with n = 20 clients among which
3 are adversarial (15%) for T = 2000 iterations. We limit the number of selected neighbors to s = 6.
As n is small in this case, there is a very high probability that at least one of the honest clients will
get all three attackers in one of the training rounds. It follows that b̂ = 3, and the Effective adversarial
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fraction is 0.43. The results show that RPEL allows the clients to achieve close to 75% accuracy on
the CIFAR-10 dataset, against the three attacks, despite the Effective adversarial fraction being large.

Competitive Performance with all-to-all robust algorithms

To compare RPEL with all-to-all robust Decentralized Learning methods, we conducted additional
experiments on the CIFAR-10 dataset. We kept the same setting as before and set s = 19 (Figure 2,
Right) to allow each honest node to communicate with all the participating nodes at each iteration.
Interestingly, the results show that reducing the selection to only s = 6 allows us to reach just as
good accuracy for a much reduced communication cost. A similar conclusion can be drawn from the
MNIST dataset Figure 1, since selecting s = 15 out of the 100 participating nodes is sufficient to
maximize the test accuracy. These experimental findings show the practical benefits of randomization,
which alleviates the requirement for all-to-all communication to achieve good accuracy.

Competitive performance with fixed-graph robust algorithms

For a fair comparison with other robust peer-to-peer methods with fixed graphs, we generate random
connected graphs with the same number of communication edges as in our method. We give more
details in Section C. We evaluate both the average and worst-case performance. The results, presented
in Figure 4 and Figure 5 in Section C show that for the same communication budget, RPEL is much
more robust, especially when the communication graph is sparse (low values of s). Thanks to the
uniform sampling procedure of RPEL, the performance for the worst client is consistently better than
the baselines. This suggests that our method also grants better fairness as a byproduct. It is essential
to note, however, that fixed-graph methods are particularly suited for inherently sparse settings, where
direct connections between all nodes are not feasible. In such cases, the graph topology is given as an
input. In contrast, our setting assumes all-to-all communications are available with a uniform cost.

6.3 SCALABILITY

Figure 3 presents an empirical simulation of the Effective adversarial fraction for different scenarios of
n, b, and s. For each scenario, we use the method described in Section 6.1 to generate 5 independent
simulations and construct confidence intervals.

The simulations in Figure 3 highlight the critical role of randomization in large-scale scenarios
involving adversaries. As the number of nodes n grows, it is remarkable that the number of sampled
neighbors s does not need to increase proportionally to maintain robustness against a fixed proportion
of attackers. This scalability is illustrated in the rightmost plot in Figure 3, where even in a network of
n = 100,000 nodes with an adversarial fraction of 10% (10,000 corrupted nodes), sampling only 30
random neighbors per node is sufficient to maintain an honest majority throughout the entire training
process (T = 200) for all the 80,000 honest clients. This is far more efficient than having to ensure
the neighborhood of each honest node contains at least 20,001 nodes.

This underscores the power of randomization in mitigating adversarial threats while preserving com-
munication efficiency in decentralized learning. However, conducting machine learning experiments
at this scale with tens of thousands of nodes remains computationally prohibitive and is therefore
beyond the scope of this paper. Nonetheless, our simulations and theoretical insights provide a strong
foundation for future research into scalable and secure decentralized learning in adversarial settings.

7 CONCLUSION

This paper presents Robust Pull-based Epidemic Learning (RPEL), an efficient solution to the long-
standing problem of learning despite an adversary controlling several nodes in a serverless setting.
We establish rigorous convergence guarantees of RPEL, considering a general non-convex setting, in
the presence of data heterogeneity and under standard assumptions. Our analysis proves robustness
against powerful, omniscient attacks. A key concept underlying our approach is the notion of Effective
adversarial fraction, a high-probability upper bound on the selected attackers, providing a nuanced
understanding of the system’s ability to tolerate adversaries. We empirically evaluate RPEL on
MNIST and CIFAR-10 datasets with up to 20% adversarial nodes, and we show that RPEL achieves
comparable accuracy with all-to-all robust methods for a much cheaper communication budget.
Possible future directions include devising more sophisticated sampling techniques and deploying
and testing RPEL on large-scale concrete applications.
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A PROOFS

A.1 NOTATIONS

This subsection presents the different notations we will use throughout the proofs, some of which
have already been introduced in the main text.

Recall that in our algorithm, at each iteration t, each honest node i samples a set St
i among the n

nodes present in the graph. For the sake of simplicity of the proof, we consider |St
i | = s+ 1, and we

don’t enforce that each node selects itself.

Among all the participating nodes, b are supposed to be adversarial. As stated in the paper, we assume
with high probability that at most b̂ among the selected nodes are adversarial. We note ĥ = s+ 1− b̂.
ĥ is a lower bound on the number of honest clients guaranteed to be sampled at each iteration.

In the case of FL-style robust aggregation, the aggregation rule is noted A and it satisfies (s, b̂,κ)-
robustness Definition 5.1.

The set of honest clients is denoted H. At each iteration t, for each i ∈ H, Ĥt
i is used to denote a

random sample of ĥ honest clients among the sampled clients St
i .

We note fi(x) = Eξ∼Di [ℓ(x, ξ)] and FH(x) = 1
|H|
∑

i∈H fi(x).

At each iteration t, each node i computes one stochastic gradient gti = ∇ℓ(xt
i, ξ

t
i)

x
t+1/2
i = xt

i − ηgti . (5)

Additionally, for i, j ∈ H, we use the notation I(j ∈ Ĥt
i) for the indicator variable of the event

{j ∈ Ĥt
i}.

Finally, we use the notation Et to denote the conditional expectation on all the past events up till
iteration t, including the random stochastic gradients computed at iteration t. In other words, Et is
the expectation with respect to the random sampling at iteration t.

A.2 USEFUL PROOFS

Lemma A.1. For any honest node i, any variables y1, . . . , y|H| and any iteration t

E

 1

ĥ

∑
j∈Ĥt

i

yj

 =
1

|H|
∑
j∈H

yj ,

where the expectation is taken over the randomness of the sampling procedure of St
i and Ĥt

i .

Proof. Taking a random sample St
i uniformly out of all the participating nodes, and then taking a

random number of ĥ honest nodes uniformly among the selected nodes St
i is equivalent to choosing a

random subset of size ĥ uniformly out of all the honest participating nodes.

As a consequence of this, we can write:

E
[
I(j ∈ Ĥt

i)
]
=

ĥ

|H|
.

Therefore,

E

 1

ĥ

∑
j∈Ĥt

i

yj

 = E

 1

ĥ

∑
j∈H

I(j ∈ Ĥt
i)yj


=

1

|H|
∑
j∈H

yj .
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Lemma A.2. For i, j, k ∈ H, such that j ̸= k we can compute

Var(I(j ∈ Ĥt
i)) =

ĥ

|H|

(
1− ĥ

|H|

)
,

and

Cov
(
I(j ∈ Ĥt

i), I(k ∈ Ĥt
i)
)
=

ĥ(ĥ− 1)

|H|(|H| − 1)
− ĥ2

|H|2
.

Proof. For any i, j ∈ H, I(j ∈ Ĥt
i) is a Bernoulli variable with the parameter ĥ

|H| . This proves the
first equality.

If j ̸= k,

Cov
(
I(j ∈ Ĥt

i), I(k ∈ Ĥt
i)
)
= E

[
I(j ∈ Ĥt

i)I(k ∈ Ĥt
i)
]
− E

[
I(j ∈ Ĥt

i)
]
E
[
I(k ∈ Ĥt

i)
]

=
ĥ(ĥ− 1)

|H|(|H| − 1)
− ĥ2

|H|2
,

which concludes the lemma.

A.3 (α,λ)-REDUCTION

We now present the so-called (α,λ)-reduction, introduced in Farhadkhani et al. (2023), which is a
sufficient condition for convergence in the Byzantine peer-to-peer setting. For clarity, we restate it
here.
Definition A.3 ((α,λ)-reduction). An algorithm F is said to satisfy (α,λ)-reduction if for the inputs
(x1, . . . ,x|H|), the outputs (y1, . . . , y|H|) = F(x1, . . . ,x|H|) satisfy:

1

|H|

|H|∑
i=1

∥yi − yH∥2 ≤ α
1

|H|

|H|∑
i=1

∥xi − xH∥2,

∥yH − xH∥2 ≤ λ
1

|H|

|H|∑
i=1

∥xi − xH∥2,

where xH = 1
|H|
∑

i∈H xi and yH = 1
|H|
∑

i∈H yi.

As proven in Farhadkhani et al. (2023), when this condition is satisfied by the iterates of any
decentralized algorithm, it is sufficient to have α < 1 and λ < +∞ for the algorithm to satisfy
(b, ε)-Byzantine resilience, for some value of ε.

A.4 THEORETICAL SAMPLING THRESHOLD

Lemma A.4. Recall the event

Γ =
{
∀t ≤ T , ∀i ∈ H, bti ≤ b̂

}
. (6)

Let p < 1 and assume s and b̂ are such that b/n < b̂/s+1 < 1/2 and

s ≥ min

n− 1,D

(
b̂

s
,

b

n− 1

)−1

ln

(
T |H|
1− p

) , (7)

with D(α,β) = α ln(α/β) + (1− α) ln(1−α/1−β).

Then the event Γ holds with probability at least p.
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A.5 PROOF OF LEMMA 5.2

Lemma 5.2. Assuming R satisfies Definition 5.1, and assuming Equation (7) is satisfied, then the
iterates of Algorithm 1 with R satisfy the following reduction at any iteration t:

Et

[∥∥∥xt+1
H − x

t+1/2
H

∥∥∥2] ≤ (κ+
|H| − ĥ

(|H| − 1)|H|ĥ

)
1

|H|
∑
i∈H

∥∥∥xt+1/2
i − x

t+1/2
H

∥∥∥2 ,

Et

[
1

|H|
∑
i∈H

∥∥∥xt+1
i − xt+1

H

∥∥∥2] ≤

(
6κ+ 6

|H| − ĥ

(|H| − 1)ĥ

)
1

|H|
∑
i∈H

∥∥∥xt+1/2
i − x

t+1/2
H

∥∥∥2 .
where the expectation is taken on the random sampling at iteration t.

Proof. • First inequality

For ease of notation, we omit the exponent t+ 1/2, denoting x
t+1/2
i by simply xi.

Using the definition of the variance, we write the first inequality as follows.

Et

[∥∥∥xt+1
H − xH

∥∥∥2] ≤ (κ+
|H| − ĥ

(|H| − 1)|H|ĥ

)
1

2|H|2
∑
i,j∈H

∥xi − xj∥2. (8)

Using the aggregation formula of Algorithm 1, we have

xt+1
H − xH =

1

|H|
∑
i∈H

A
(
xj , j ∈ St

i

)
− 1

ĥ

∑
j∈Ĥt

i

xj


︸ ︷︷ ︸

T1

+
1

|H|ĥ

∑
i∈H

∑
j∈Ĥt

i

xj −
1

|H|
∑
i∈H

xj

︸ ︷︷ ︸
T2

.

For T1, by the AM-QM inequality, we have

Et[∥T1∥2] ≤
1

|H|
∑
i∈H

Et

∥∥∥∥∥∥A (xj , j ∈ St
i

)
− 1

ĥ

∑
j∈Ĥt

i

xj

∥∥∥∥∥∥
2

. (9)

Since A satisfies (s, b̂,κ)-robustness, we have for each i ∈ H

∥∥∥∥∥∥A (xj , j ∈ St
i

)
− 1

ĥ

∑
j∈Ĥt

i

xj

∥∥∥∥∥∥
2

≤ κ

ĥ

∑
j∈Ĥt

i

∥∥∥xj − xĤt
i

∥∥∥2
=

κ

2ĥ2

∑
j,k∈Ĥt

i

∥xj − xk∥2 .

Taking the expectation on the random sampling of each honest node, and using Lemma A.1, we
have:

Et


∥∥∥∥∥∥A (xj , j ∈ St

i

)
− 1

ĥ

∑
j∈Ĥt

i

xj

∥∥∥∥∥∥
2
 ≤ κ

2|H|2
∑

j,k∈H

∥xj − xk∥2 . (10)

Plugging Equation (10) in Equation (9), we get
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Et[∥T1∥2] ≤
κ

2|H|2
∑
i,j∈H

∥xi − xj∥2.

For T2, noticing that Et[T2] = 0, thanks to Lemma A.1, and using the independence of Ĥt
i’s, which

is a key feature of pull-based Epidemic Learning, we can write :

Et[∥T2∥2] = Vart

 1

|H|ĥ

∑
i∈H

∑
j∈Ĥt

i

xj


=

1

|H|
Vart

 1

ĥ

∑
j∈Ĥt

i

xj


=

1

|H|ĥ2
Vart

∑
j∈H

I(j ∈ Ĥt
i)xj


=

1

|H|ĥ2

∑
j∈H

Vart(I(j ∈ Ĥt
i))∥xj∥2 +

∑
j ̸=k

Covt

(
I(j ∈ Ĥt

i), I(k ∈ Ĥt
i)
)
xT
j xk

 .

Now using Lemma A.2, it follows that:

Et[∥T2∥2] =
1

|H|ĥ2

 ĥ

|H|

(
1− ĥ

|H|

)∑
j∈H

∥xj∥2 +

(
ĥ(ĥ− 1)

|H|(|H| − 1)
− ĥ2

|H|2

)∑
j ̸=k

xT
j xk


=

|H| − ĥ

|H|2ĥ

 1

|H|
∑
j

∥xj∥2 +

(
ĥ− 1

|H| − 1
− ĥ

|H|

)∑
j ̸=k

xT
j xk


=

|H| − ĥ

(|H| − 1)|H|ĥ

 1

|H|
∑
j

∥xj∥2 −

∥∥∥∥∥∥ 1

|H|
∑
j

xj

∥∥∥∥∥∥
2


=
|H| − ĥ

(|H| − 1)|H|ĥ

 1

2|H|2
∑
i,j∈H

∥xi − xj∥2
 ,

(11)

which completes the first part of the proof.

• Second inequality.

We write the second inequality as follows:

1

2|H|2
∑
i,j∈H

Et

[∥∥xt+1
i − xt+1

j

∥∥2] ≤ (6κ+ 6
|H| − ĥ

(|H| − 1)ĥ

) 1

2|H|2
∑
i,j∈H

∥xi − xj∥2
 .

(12)

For i, j ∈ H, we have

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

xt+1
i − xt+1

j =

A
(
xk, k ∈ St

i

)
− 1

ĥ

∑
k∈St

i

xk

−

A
(
xl, l ∈ St

j

)
− 1

ĥ

∑
l∈St

j

xl


+

1

ĥ

∑
k∈St

i

xk − 1

ĥ

∑
l∈St

j

xl.

Taking the norm and using the inequality ∥a+ b+ c∥2 ≤ 3∥a∥2 + 3∥b∥2 + 3∥c∥2 (which is also
an AM-QM inequality), we have

∥xt+1
i − xt+1

j ∥2 ≤ 3

∥∥∥∥∥∥A (xk, k ∈ St
i

)
− 1

ĥ

∑
k∈St

i

xk

∥∥∥∥∥∥
2

+ 3

∥∥∥∥∥∥A (xl, l ∈ St
j

)
− 1

ĥ

∑
l∈St

j

xl

∥∥∥∥∥∥
2

+ 3

∥∥∥∥∥∥ 1ĥ
∑
k∈St

i

xk − 1

ĥ

∑
l∈St

j

xl

∥∥∥∥∥∥
2

.

Taking the expectation, summing over all the pairs of honest nodes, and using (s, b̂,κ)-robustness
along with Lemma A.1, we get

1

2|H|2
∑
i,j∈H

Et

[∥∥xt+1
i − xt+1

j

∥∥2] ≤ 6κ
1

2|H|2
∑
i,j∈H

∥xi − xj∥2

+
3

2|H|2
∑
i,j∈H

Et


∥∥∥∥∥∥∥
1

ĥ

∑
k∈Ŝt

i

xk − 1

ĥ

∑
l∈Ŝt

j

xl

∥∥∥∥∥∥∥
2 .

Using the fact that St
i and St

j are independent, and using Equation (11) which shows

Var

 1

ĥ

∑
j∈Ĥt

i

xj

 =
|H| − ĥ

(|H| − 1)ĥ

 1

2|H|2
∑
i,j∈H

∥xi − xj∥2
 ,

we get

1

2|H|2
∑
i,j∈H

Et

[∥∥xt+1
i − xt+1

j

∥∥2] ≤ 6κ
1

2|H|2
∑
i,j∈H

∥xi − xj∥2

+ 6
|H| − ĥ

(|H| − 1)ĥ

 1

2|H|2
∑
i,j∈H

∥xi − xj∥2


≤

(
6κ+ 6

|H| − ĥ

(|H| − 1)ĥ

) 1

2|H|2
∑
i,j∈H

∥xi − xj∥2
 .

This concludes the proof of Lemma 5.2.
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A.6 PROOF OF THEOREM 5.6

Theorem 5.6 (Convergence of Algorithm 1). Under the assumptions 5.3, 5.4 and 5.5, assuming that
s and b̂ satisfy condition 7 and R satisfies Definition 5.1, for a choice of η satisfying Equation (13),
for all i ∈ H, after T iterations, with probability at least p on the sampling procedure

1

T

T∑
t=0

E
[
∥∇FH

(
xt
i

)
∥2
]
≤ 2

√√√√(c2Lσ2 + 432L
T

(
σ2

n−b

))
c0

T
+ 2

3

√
9c20c1nL

2(σ2 +G2)

T 2

+ 12
Lc0
T

+ c3G
3,

with c0 = 12(FH(θ0)− F ∗
H), c1 =

18α(1 + α)

(1− α)2
, c2 = 72L

(
3

n− b
+ 2c1 +

9λ

2
(2c1 + 3)

)
,

c3 = 6

(
6c1 +

9λ

2
(4c1 + 9)

)
, where α = 6κ+ 6

|H| − ĥ

(|H| − 1)ĥ
and λ = κ+

|H| − ĥ

(|H| − 1)|H|ĥ
.

Proof. Based on the proof of Theorem 1 from Farhadkhani et al. (2023), we have after T iterations
satisfying α,λ reduction, if η ≤ 1

12L :

1

T

T∑
t=0

E
[
∥∇FH

(
xt
i

)
∥2
]
≤ c0

ηT
+ c2ηLσ

2 +
432ηL

T

(
σ2

n− b

)
+ c3G

2 + 9c1nη
2L2(σ2 +G2),

with c0 = 12(FH(θ0) − F ∗
H), c1 = 18α(1+α)

(1−α)2 , c2 = 72L
(

3
n−b + 2c1 ++ 9λ

2 (2c1 + 3)
)

, c3 =

6
(
6c1 +

9λ
2 (4c1 + 9)

)
.

Taking

η ≤ min

 1

12L
, 3

√
c0

9Tc1nL2(σ2 +G2)
,

√
c0

T
(
c2Lσ2 + 432L

T

(
σ2

n−b

))
 , (13)

we get

1

T

T∑
t=0

E
[
∥∇FH

(
xt
i

)
∥2
]
≤ 2

3

√
9c20c1nL

2(σ2 +G2)

T 2
+ 2

√√√√(c2Lσ2 + 432L
T

(
σ2

n−b

))
c0

T

+ 12
Lc0
T

+ c3G
3

A.7 PROOF OF COROLLARY 5.7

Corollary 5.7. Under the conditions of Theorem 5.6, when R satisfies Definition 5.1 with κ =

O
(

b̂
s+1

)
, with probability at least p, Algorithm 1 satisfies (b, ε)-resilience (Definition 3.1) with:

ε ∈ O

√ b̂+ 1

(s+ 1)T
σ2 +

b̂+ 1

s+ 1
G2

 .

Proof. In a similar fashion to the proof of Corollary 1 in Farhadkhani et al. (2023), we have:
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c1 =
18α(1 + α)

(1− α)2
∈ O(α),

c2 = 72L

(
3

n− b
+ 2c1 +

9λ

2
(2c1 + 3)

)
= O(

1

n
+ α+ λ),

c3 = 6

(
6c1 +

9λ

2
(4c1 + 9)

)
= O(α+ λ).

Since α = 6κ+ 6 |H|−ĥ

(|H|−1)ĥ
and λ = κ+ |H|−ĥ

(|H|−1)|H|ĥ
. Following Allouah et al. (2023), using NNM

pre-aggregation followed by trimmed mean allows to have κ ∈ O( b̂
s+1 ).

It follows that in both cases, we have:

α ∈ O

(
b̂+ 1

s

)
,λ ∈ O

(
b̂+ 1

s+ 1

)
.

From this, we can conclude that Algorithm 1 satisfies (b, ε)-resilience (Definition 3.1) with:

ε ∈ O

√ 1

nT
+

b̂+ 1

sT
+

b̂+ 1

s+ 1
G2.



A.8 PROOF OF LEMMA A.4

Lemma A.4. Recall the event

Γ =
{
∀t ≤ T , ∀i ∈ H, bti ≤ b̂

}
. (6)

Let p < 1 and assume s and b̂ are such that b/n < b̂/s+1 < 1/2 and

s ≥ min

n− 1,D

(
b̂

s
,

b

n− 1

)−1

ln

(
T |H|
1− p

) , (7)

with D(α,β) = α ln(α/β) + (1− α) ln(1−α/1−β).

Then the event Γ holds with probability at least p.

Proof. The proof is similar to the proof of Lemma 1 in Allouah et al. (2024a).

In our case, bti ∼ HG(n− 1, b, s). Hence, by Lemma 13 in Allouah et al. (2024a), we have:

P(bti ≥ b̂) ≤ exp

(
−sD

(
b̂

s
,

b

n− 1

))
. (14)

Assuming s satisfies Equation (7), we have:

P(bti ≥ b̂) ≤ 1− p

|H|T
. (15)

We can conclude by taking the union over all the events {bti ≥ b̂} for i ∈ H and t ≤ T .
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A.9 PROOF OF LEMMA 4.1

Lemma 4.1. If the number of samples s satisfies :

s ≥
⌈
max

{
1

(1/2− b/n)2
,

3

b/n

}
ln

(
4T |H|
1− p

)⌉
+ 2, (3)

then there exits b̂ such that Γ holds with probability at least p and b̂
s+1 ∈ O

(
b
n

)
Proof. The proof follows from the proofs of Lemma 2 and Lemma 4 in Allouah et al. (2024a), in
which T is replaced by T |H|.

B SIMULATING THE EFFECTIVE ADVERSARIAL FRACTION

Algorithm 2 shows the pseudo-code of the procedure we use to choose s and b̂.

Algorithm 2 Hyperparameters selection
Require: total number of nodes n, total number of attackers b, number of iterations T , grid of s

values Gs, number of simulations m, desired fraction threshold b
n ≤ q < 1

2 , a hypergeometric
law simulator HG.

1: h = n− b
2: for s ∈ Gs do
3: for j = 1, . . . ,m do
4: Draw h× T samples bti from HG(n− 1, b, s)

5: Compute b̂
(j)
s = maxi∈H,t∈[1,...,T ](b

t
i)

6: end for
7: Compute b̂s = maxj=1,...,m b̂

(j)
s

8: Compute κs =
b̂s
s+1

9: end for
10: return (s, b̂s) such that s is the smallest satisfying κs ≤ q

Remark 1. This algorithm always returns a tuple (s, b̂), provided the grid Gs is large enough. For
instance, if n− 1 ∈ Gs, we know that b̂n−1 = b and κn−1 = b

n ≤ q.

Remark 2. Notice that this algorithm does not take as input the probability parameter p. For large
enough values of m, the algorithm returns a high probability upper bound b̂ on the maximal number of
encountered adversaries, without estimating this high probability. In practice, small values of m = 5
or m = 10 are enough for the upper bound to hold, especially for large values of n. This can be seen in
Figure 3, where the confidence intervals are quite concentrated. An alternative, more precise method
would be to compute the CDF of b̂s for each value of s and return the desired quantile corresponding
to p. However, due to the absence of an easy closed-form of the CDF of a hypergeometric variable,
this method also requires constructing an empirical CDF through simulations.

C EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

To run our experiments, we used a server with the following specifications:

• HPe DL380 Gen10

• 2 x Intel(R) Xeon(R) Platinum 8358P CPU @ 2.60GHz

• 128 GB of RAM

• 740 GB ssd disk
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• 2 Nvidia A10 GPU cards

For the model architectures, we use the compact notation that can be found in El Mhamdi et al.
(2021); Allouah et al. (2023):

L(#outputs) represents a fully-connected linear layer, R stands for ReLU activation, S stands for log-
softmax, M stands for 2D-maxpool (kernel size 2), B stands for batch-normalization, and D represents
dropout (with fixed probability 0.25). C(#channels) represents a fully-connected 2D-convolutional
layer with (kernel size 3, padding 1, stride 1) for CIFAR-10 and (kernel size 5, padding 0, stride 1)
for MNIST and FEMNIST.

Dataset MNIST CIFAR-10
Total number of nodes 100, 30 20
Number of attackers 10, 6 3

Heterogeneity α = 1 α = 10
Model Type CNN CNN

Model Architecture C(20)-R-M-C(20)-R-M-
L(500)-R-L(10)-S

C(64)-R-B-C(64)-R-B-M-D-
C(128)-R-B-C(128)-R-B-M-

D-L(128)-R-D-L(10)-S
Weight L2 regularization 10−4 10−2

Learning Rate 0.5

0.5 for 0 ≤ t ≤ 500
0.1 for 500 ≤ t ≤ 1000,
0.02 for 1000 ≤ t ≤ 1500,
0.004 for 1500 ≤ t ≤ 2000

Batch size 25 50
Momentum 0.9 0.99

Number of iterations 200 2000
Number of seeds 2 3

Table 1: Experimental Details for MNIST and CIFAR-10

Dataset FEMNIST
Total number of nodes 30
Number of attackers 3

Heterogeneity α = 10
Model Type CNN

Model Architecture C(64)-R-M-C(128)-R-M-
L(1024)-R-L(62)-S

Weight L2 regularization 10−4

Learning Rate 0.1
Batch size 50

Momentum 0.99
Number of iterations 500

Number of seeds 2

Table 2: Experimental Details for FEMNIST

For Figure 3, we fix T = 200, and we run 5 simulations to build the confidence intervals for each
point.

C.2 COMPARISON TO BASELINES

We compare our method with the following baselines:

• CS+ algorithm from Gaucher et al. (2025).
• The adaptive clipping version of ClippedGossip from He et al. (2022).
• GTS, the adaptation of NNA algorithm from Farhadkhani et al. (2023) to sparse graphs, as

implemented by Gaucher et al. (2025).
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We use ALIE attack, previously presented in the paper, and the Dissensus attack by He et al. (2022).
The latter is more adapted to fixed graphs, as it leverages the structure of the gossip update to be
made by the honest nodes.

For fixed n,s and b, since our method uses K = n×s
2 model exchanges, we generate a random

connected graph with K edges. To generate such a graph, we first generate a random spanning tree,
using the Networkx implementation. Next, we add random edges to the graph until reaching K edges.
Remark C.1. The graph construction here is more realistic than the one used in previous works (He
et al., 2022; Gaucher et al., 2025), where the honest subgraph is generated first before the Byzantine
connections are added. As a result, the honest subgraph may not satisfy the connectivity assumptions
laid out by He et al. (2022) and Gaucher et al. (2025).
Remark C.2. The previous works on fixed-graph robust learning (He et al., 2022; Gaucher et al.,
2025) assume that each honest node can have at most a certain number of Byzantine neighbors. This
quantity is used as a parameter in the algorithm to choose the clipping threshold. Given that in our
experiments, we generate random communication graphs, we fixed this quantity to be equal to b̂. This
only works if we assume the attackers’ positions are random on the graph (which was the case in these
experiments). In the case where the attackers’ positions are also adversarial, it is necessary to choose
this upper bound to be equal to b, the total number of Byzantine nodes, which tremendously reduces
the performance, since the honest nodes are required to clip many more neighbors. It is important to
note that this limitation is bypassed by our algorithm, which is also robust to the attackers changing
their identities from one iteration to another.

Analysis The performance gain of RPEL with respect to the baselines is most impressive when the
connectivity is low (bottom-left picture in Figure 4 and Figure 5). The worst client performance,
which tracks the accuracy of the honest client who got the worst final accuracy, shows a clear and
consistent advantage of using RPEL.
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Figure 4: Average test accuracy on MNIST - ALIE attack

C.3 OTHER EXPERIMENTS

In this section, we include a few additional experiments.

Local steps We conduct some experiments on CIFAR-10, for the same default setup, but with 3
local steps at each iteration. Figure 15, Figure 16, and Figure 17 show the test accuracies for s = 6,
s = 10 and s = 19 respectively. Unsurprisingly, the performance is better than using a single local
step before communication (Allouah et al., 2024a). The algorithm converges much faster to 75%+
accuracy. However, still in this scenario, using only 6 neighbors results in comparable performance
with all-to-all communication.
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Figure 5: Worst test accuracy on MNIST - ALIE attack
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Figure 6: Average test accuracy on MNIST - Dissensus attack

Higher heterogeneity. We run a few other experiments with higher heterogeneity (lower values for
α) on the CIFAR-10 dataset. RPEL still performs well and remains robust to the different attacks.

FEMNIST Figure 20, Figure 21 show the convergence results for FEMNIST dataset with n = 30 and
b = 3. For comparison, we provide the results in the absence of attackers in Figure 18 and Figure 19.
The same conclusions about the good performance of RPEL can be drawn here. Implementation
details for FEMNIST experiments are included in Table 2.

D DISCUSSION

We previously stated that the Push variant of Epidemic learning fails to Byzantine flooding attacks,
since the honest nodes cannot control who sends them the updates. The Pull variant reduces the attack
surface and gives back control to the honest nodes, which explains the scalability benefits of RPEL.

However, the Pull variant can be vulnerable to Denial of Service attacks, where the Byzantine nodes
may intentionally delay sending their models to slow down the learning. In the synchronous model
presented in the paper, this attack is not possible. In other words, if the honest nodes are guaranteed to
respond promptly to model requests, the Byzantine nodes have no option but to do the same. Solving
the issue for the general asynchronous model, where honest nodes can also be arbitrarily slow, is not
straightforward and can be an interesting future research question.
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Figure 7: Worst test accuracy on MNIST - Dissensus attack
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Figure 8: Test accuracies obtained on CIFAR-10 with n = 20, b = 3 (Left) s = 6, (Right) s = 19.
(First row) α = 0.5, (Second row) α = 1
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Figure 9: Test accuracies obtained on CIFAR-10 with Dissensus attack, α = 1 and 1 local step. (Top
row) Average performance. (Bottom row) Worst performance.
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Figure 10: Test accuracies obtained on CIFAR-10 with Dissensus attack, α = 1 and 3 local step.
(Top row) Average performance. (Bottom row) Worst performance.
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Figure 11: MNIST, n = 100, f = 8, s = 15
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Figure 12: MNIST, n = 30, f = 5, s = 15
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Figure 13: CIFAR-10, n = 20, f = 2, s = 6
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Figure 14: CIFAR-10, n = 20, f = 2, s = 19
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Figure 15: CIFAR-10, n = 20, f = 3, s = 6, 3 local steps

0 500 1000 1500 2000
Step number

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

(attack = ALIE)
(attack = FOE)
(attack = SF)

Figure 16: CIFAR-10, n = 20, f = 3, s = 10, 3 local steps

0 500 1000 1500 2000
Step number

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

(attack = ALIE)
(attack = FOE)
(attack = SF)

Figure 17: CIFAR-10, n = 20, f = 3, s = 19, 3 local steps
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Figure 18: FEMNIST, n = 30, f = 0, s = 6

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Step number

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

(attack = ALIE)
(attack = FOE)
(attack = SF)

Figure 19: FEMNIST, n = 30, f = 0, s = 6, 3 local steps
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Figure 20: FEMNIST, n = 30, f = 3, s = 6
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Figure 21: FEMNIST, n = 30, f = 3, s = 6, 3 local steps
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