
Under review as a conference paper at ICLR 2024

AUTOMATIC NEURAL SPATIAL INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spatial integration is essential for a number of scientific computing applications,1

such as solving Partial Differential Equations. Numerically computing a spatial2

integration is usually done via Monte Carlo methods, which produce accurate and3

unbiased results. However, they can be slow since it require evaluating the inte-4

gration many times to achieve accurate low-variance results. Recently, researchers5

have proposed to use neural networks to approximate integration results. While6

networks are very fast to infer in test-time, they can only approximate the inte-7

gration results and thus produce biased estimations. In this paper, we propose to8

combine these two complementary classes of methods to create a fast and unbi-9

ased estimator. The key idea is instead of relying on the neural network’s approx-10

imate output directly, we use the network as a control variate for the Monte Carlo11

estimator. We propose a principal way to construct such estimators and derive a12

training object that can minimize its variance. We also provide preliminary results13

showing our proposed estimator can both reduce the variance of Monte Carlo PDE14

solvers and produce unbiased results in solving Laplace and Poisson equations.15

1 INTRODUCTION16

In this paper, we are interested in numerically estimating a family of spatial integrations:

F (z) =

∫
Ω(z)

f(p, z)dp, (1)

where Ω ⊂ Rd denotes a domain to integrate over, f : Rd × Rh → R is the integrands, and z is17

a vector parameterizing of the family of integral. We assume the domain Ω(z) to be structured and18

parameterizable (e.g. 3D spheres with different centers). The goal is to numerically estimate F (z)19

accurately and efficiently via samples of (p, f(p))’s, for all z of interests.20

Computing such spatial integration is important for many applications in scientific computing and21

computer graphics. For example, producing physics-based rendering from 3D shapes requires inte-22

grating light sources from different incoming directions (Veach, 1998). Solving partial differential23

equations using integral equations also needs to integrate over various spherical domains (Sawhney24

& Crane, 2020). In these applications, every query can result in thousands of spatial integrations over25

different domains, and users usually need thousands of queries to obtain meaningful information.26

As a result, being able to estimate spatial integrals efficiently is very important.27

A common approach to estimate these integrals is via Monte Carlo methods (Veach, 1998; Spanier
& Gelbard, 2008; Sawhney & Crane, 2020). Monte Carlo methods first rewrites the integral into an
expectation, which can then be estimated via sampling. Specifically, for a given z, we have:∫

Ω(z)

f(p, z)dp = Ep∼PΩ(z)

[
f(p, z)

PΩ(p)

]
≈ 1

N

N∑
i=1

f(pi, z)

PΩ(z)(pi)
, (2)

where PΩ is the sampling distribution defined on the domain Ω(z) and pi ∼ PΩ(z) are independent28

samples from the distribution. While Monte Carlo methods are unbiased, the variance of the29

estimator decays at the rate of O(1
N). As a result, obtaining accurate outcomes from Monte Carlo30

requires a lot of independent samples of f and PΩ. This makes the method slow when evaluating f31

or sampling from PΩ is expensive.32

An emerging alternative is using deep neural networks to approximate the output of these integrals33

(Lindell et al., 2021; Maı̂tre & Santos-Mateos, 2023). These methods optimize a neural network Gθ34

1

Under review as a conference paper at ICLR 2024

to approximate a family of integrals by matching Gθ’s derivative with the integrands. For example,35

AutoInt (Lindell et al., 2021) considers all possible line integrals in the following form: F (a, b) =36 ∫ b

a
f(x)dx for L ≤ a < b ≤ U , where L and U defines the domain of interests. AutoInt defines a37

network Gθ and use Gθ(a)−Gθ(b) to approximate F (a, b). The optimal θ is obtained by minimizes38

the loss Ex∈[L,U]

[
∥G′

θ(x)− f(x)∥2
]
. Once trained, AutoInt can approximate a family of integrals39

very efficiently with only a few network forward passes. However, finding the optimal parameters40

that make G′
θ(x) = f(x) for all possible x is nearly impossible due to limitations in computation41

or network capacity. Thus, once the network is trained, it can produce potentially biased solutions.42

It remains unclear whether such bias can be rectified as more computational resources and data43

become available.44

Given the complementary properties of Monte Carlo and neural methods, the following question
arises: Can we develop a method that is both quick in inference and also assures unbiased results,
given that sufficient computing resources are available? In this paper, we hypothesize that this
can be achieved by applying automatic neural integration for control variates. The key idea is that,
instead of using the network’s output as the final result, we also account for its error. As long as
we can construct two computational graphs Gθ and ∂Gθ such that Gθ(Ω) =

∫
Ω
∂Gθ(p)dp, the

following identity holds:∫
Ω

f(p)dp = Gθ(Ω) +

∫
Ω

f(p)− ∂Gθ(p)dp = Gθ(Ω) + EPΩ

[
f(p)− ∂Gθ(p)

PΩ(p)

]
, (3)

where PΩ is a probability distribution on domain Ω, from which we can sample and compute density.45

The latter part of the integration can be estimated using the Monte Carlo method. The key insight46

is that we can derive a training objective for θ to minimize the variance of this new Monte Carlo47

estimator. The resulting estimator will require fewer samples to achieve the same accuracy while48

remaining unbiased, as the equality holds as long as Gθ(Ω) =
∫
Ω
∂Gθ(p)dp.49

In this paper, we provide a proof of concept that this idea can indeed create an unbiased and lower50

variance estimator for spatial integrals. We first derive a principal way to extend the neural in-51

tegration methods to spatial integration. We then use control variates techniques to construct an52

unbiased estimator using these neural networks. We also derive the training objective that can min-53

imize the variance of this estimator. We test the effectiveness of our methods in Monte Carlo PDE54

solvers (Sawhney & Crane, 2020; Sawhney et al., 2022). Preliminary results prove that our proposed55

method is unbiased by construction and experiences fewer variances in these applications.56

2 RELATED WORK57

Our paper mainly draws inspiration from two lines of work: Monte Carlo and neural network inte-58

gration methods. We will focus on reviewing the most relevant papers in those two lines of work59

and refer readers to Solomon (2015) for other numerical integration methods.60

Monte Carlo integration. Monte Carlo integration is very general and it has been applied to a61

large number of applications including physics-based rendering (Veach, 1998), solving partial dif-62

ferential equations (Sawhney et al., 2022; Sawhney & Crane, 2020), and various physics simula-63

tions such neutron transports (Spanier & Gelbard, 2008; Lewis & Miller, 1984) and fluid simula-64

tion (Rioux-Lavoie et al., 2022). Despite its versatility and unbiased nature, a significant drawback65

of Monte Carlo estimators is their high variance. To address this, numerous efforts aim to reduce66

variance through methods such as caching (Miller et al., 2023; Müller et al., 2021), importance sam-67

pling (Müller et al., 2019; Veach & Guibas, 1995), and control variates . Among these methods,68

control variates are particularly relevant to our work, achieving lower variance by computing the69

difference between the original random variable and another random variable with known integral70

values. Prior works have applied control variates in many applications including option pricing (Ech-71

Chafiq et al., 2021), variational inference (Geffner & Domke, 2018; Wan et al., 2019), and Poisson72

image reconstruction (Rousselle et al., 2016). To establish a control variate, we need to find a func-73

tion that both has a known analytical integration and approximates the integrand function well. Most74

prior works usually construct the control variate heuristically (Lafortune & Willems, 1994; Clarberg75

& Akenine-Möller, 2008; Kutz et al., 2017). Such an approach can be difficult to generalize to com-76

plex integrands. One way to circumvent such an issue is to make the control variates learnable and77

2

Under review as a conference paper at ICLR 2024

optimize the control variate function using samples from the integrand (Vévoda et al., 2018). For78

example, Salaün et al. (2022) proposed to use a polynomial-based estimator as control variate as the79

integration of the polynomial basis is easy to obtain. Recently, Müller et al. (2020) proposed to use80

normalizing flow as the control variate function since normalizing flows are guaranteed to integrate81

into one. Our method extends these works by expanding the choice of estimator family to a broader82

class of neural network architecture. In addition, we focus on applying this technique to solving83

PDEs using Walk-on-sphere methods Sawhney & Crane (2020); Sawhney et al. (2022; 2023).84

Neural Network Integration Methods. Deep learning has emerged as a dominant optimization85

tool for many applications, particularly for numerical integration estimation. A prevalent strategy86

involves crafting specialized neural network architectures with analytical integration capabilities,87

similar in spirit to the Risch or Risch-Norman algorithm (Risch, 1969; Norman & Moore, 1977). For88

example, normalizing flows (Tabak & Turner, 2013; Dinh et al., 2016; Chen et al., 2018; Dinh et al.,89

2014) is a family of network architectures that models an invertible mapping, which allows them90

to model probability distribution by integrating into one. Other examples include Petrosyan et al.91

(2020) and Subr (2021), which designed network architectures that can be integrated analytically.92

These approaches usually result in a limited choice of network architectures, which might limit93

the expressivity of the approximator. An alternative approach is to create computational graphs that94

can be integrated into a known network by taking derivatives. For example, Nsampi et al. (2023)95

leverages repeated differentiation to compute convolutions of a signal represented by a network. In96

this work, we follow the paradigm proposed by AutoInt (Lindell et al., 2021), where we construct the97

integrand by taking derivatives of the network approximating the integration result. This approach98

can allow a more flexible choice of network architectures, and it has been successfully applied to99

other applications such as learning continuous time point processes Zhou & Yu (2023). Unlike100

the Monte Carlo method, a potential drawback to the AutoInt method is that it can create biased101

estimations. In this work, we propose to combine the AutoInt method with neural control variate to102

create an unbiased estimator.103

3 BACKGROUND104

Problem set-up. In this paper, the spatial integration we are interested in takes the following form:

F (z) =

∫
Ω(z)

f(p, z)dp, (4)

where z ∈ Rh is a latent vector parameterizing a family of integration domains, Ω(z) ⊂ Rd defines a105

region where we would like to integrate and f : Rd×Rh → R is a function that can be queried within106

the domain Ω(z), and dp is the differential element. We assume there exists a parameterization of107

the region Ω, which is a differentiable and invertible function that maps a region of Rd to points108

inside the domain Ω: ∀z,Φ(z) : [l1, u1] × · · · × [ld, ud] ↔ Ω. Intuitively, the mapping Φ(z)109

describes how to map the shape of a rectangular space into the integration domain of interest. This110

allows us to transform the integration into a more regular domain.111

Different applications call for different form of domain Ω’s. In physics-based rendering, one usually112

needs to integrate over all solid angles on a hemisphere (Veach, 1998) In this case, Ω(z) can be113

defined as spheres centered at a surface intersection point z ∈ R3: {x|x ∈ R3, ∥x− z∥ = 1}.114

The mapping Φ can be defined as: Φ([θ, ϕ]T) = [cos(θ) sin(ϕ), sin(θ) cos(ϕ), cos(ϕ)]T , with the115

determinant of its Jacobian being sin(ϕ). Another example is solving 2D Poisson equation using116

Walk-on-sphere algorithm (Sawhney & Crane, 2020). In this case, we need to integrate over different117

largest 2D inscribed circles. In this case, we can define Ω(z) as {x ∈ R2| ∥x− z∥ ≤ dist(z)},118

where z is the center of the circle and dis returns the distance to the cloest point on the boundary.119

We can define the transformation Φ as Φ([r, θ]T ; z) = [dist(z)r sin(θ),dist(z)r cos(θ)]T , with120

r ∈ [0, 1] and the determinant of Jacobian being r dist(z).121

For simplicity of notation, we will first discuss this problem by dropping the dependency of z.
We will then discuss how to incorporate z into the picture in Section 4.4. For a given domain Ω
parameterized by Φ, we can rewrite the integration into the following form by applying the change
of variable formula:

F (Ω) =

∫
Ω

f(p)dp =

∫ u1

l1

· · ·
∫ ud

ld

f(Φ(x))|JΦ(x)|dx, (5)

3

Under review as a conference paper at ICLR 2024

where JΦ denotes the Jacobian of function Φ, which is a parameterization of the integration domain.122

123

Monte Carlo Integration A common way to compute such integration numerically is via Monte
Carlo methods (Veach, 1998). The main idea of Monte Carlo integration is to rewrite the integration
into an expectation, which can be estimated via sampling. For example, to estimate Equation 5 with
the Monte Carlo method, we first write it into an expectation over the domain Ω and estimate the
expectation via sampling:

F (Ω) =

∫
x∈Ω

f(p)dp = Ep∼PΩ

[
f(p)

PΩ(p)

]
≈ 1

N

N∑
i=1

f(pi)

PΩ(pi)
, pi ∼ PΩ(p), (6)

where PΩ is a distribution over domain Ω from which we can both sample points and evaluate124

likelihood. While Monte Carlo estimation is unbiased, it usually suffers from high variance, which125

requires a lot of samples and function evaluation of f and PΩ to reduce.126

Control Variates. Control variates is a technique to reduce variance for Monte Carlo estimators.
The key idea is to construct a new integrand with lower variance and apply Monte Carlo estimation
for the low variance integrand only. Suppose we know G =

∫
Ω
g(p)dp for some G and g, then we

can create the following unbiased Monte Carlo estimator for the original integral of f :

F (Ω) =

∫
Ω

f(p)dp = c ·G+

∫
Ω

f(p)− c · g(p)dp ≈ c ·G+
1

N

N∑
i=1

f(pi)− c · g(pi)

PΩ(pi)
, (7)

where pi are samples from distribution PΩ and c is any constant in R. As long as G is the analytical127

integration result of g, the new estimator created after applying control variate is unbiased. Note128

that the control variate estimator is running Monte Carlo integration on the new integrand f(p) −129

c · g(p), instead of the original integrand f(p). The key to a successful control variate is finding130

corresponding functions G and g that make f(p)− c · g(p) to contain less variance compared to the131

original integrand under the distribution PΩ. In this paper, we will demonstrate how to create a class132

of G and g using neural integration techniques to achieve this goal.133

Neural Integration. An alternative approach is to use a neural network to approximate the output
of the integration, as introduced by AutoInt (Lindell et al., 2021). AutoInt trains a neural network
Gθ(T) to approximate line integration of the form

∫ T

a
f(x)dx for some fixed a ∈ R. To achieve

this, AutoInt leveraged the first fundamental theorem of calculus to derive the loss required to find
the optimal θ∗:

θ∗ = argmin
θ

Ex∈U [L,U]

[
∥f(x)−G′

θ(x)∥
2
]
, (8)

where the derivative G′
θ(x) is obtained via the automatic differentiation framework and L,U ∈ R134

are two real-numbers defining the integration domain of interest. Once the network is trained,135

we can use optimized parameters θ∗ to approximate the integration results of
∫ u

l
f(x)dx since136 ∫ u

l
f(x)dx ≈ Gθ∗(u) − Gθ∗(l) for all L ≤ l ≤ u ≤ U . This idea can be extended to multi-137

variables integration (Maı̂tre & Santos-Mateos, 2023) by taking multiple derivatives, which we will138

leverage in the following section to construct integration of a parameterized spatial domain.139

Compared to Monte Carlo integration, neural integration can approximate a family of integral (i.e.140

for all pairs of (l, u) such that L ≤ l ≤ u ≤ U) efficiently where each integration result can be141

obtained with two neural network forward passes. However, it’s difficult to provide guarantees142

that the network Gθ can approximate the integration of interest accurately. It’s generally hard to143

ensure the loss reaches zero. In this paper, we propose to alleviate these issues by using the neural144

technique as the Monte Carlo control variate, achieving unbiased and low-variance estimation.145

4 METHOD146

In this section, we will demonstrate how to combine Monte Carlo control variates technique with147

neural integration techniques to estimate a family of spatial integrations. We will first demonstrate148

4

Under review as a conference paper at ICLR 2024

Gradient

Integral

low
variance

Output:Loss:

Training Inference

Figure 1: Illustration of method. We first create two computational graph Gθ and gθ with shared pa-
rameter and property that Gθ =

∫
Ω
gθ(p)dp (Sec 4.1, middle figure). During training, we optimize

the parameter θ to minimize the variance of f − gθ (Sec 4.3). During inference, we apply Monte
Carlo estimation on f − gθ, which can have lower variance than the original integrand f (Sec 4.2).

how to construct networks with known analytical spatial integrals (Sec 4.1) and how to create an149

unbiased estimator using these networks as control variates (Section 4.2). We will derive a loss150

function to minimize the variance of the neural estimator (Sec 4.3). Finally, we discuss how to151

extend this formulation to multiple domains (Sec 4.4) and how to choose architectures (Sec 4.5).152

4.1 NEURAL AUTOMATIC SPATIAL INTEGRATION153

In this section, we will show how to generalize the idea of neural automatic integration to multi-
variable spatial integration on a domain Ω parameterized by function Φ. Let ui and li represents the
upper and lower bound of the integration for the ith dimension for all i = 1, . . . , d. Let Gθ : Rd → R
be a neural network that approximates the anti-derivative of the integrand f . Now define the integral
network Iθ : Rd × Rd → R as the following:

Iθ(u, l) =
∑

(s1,x1)∈{(−1,l1),(1,u1)}

· · ·
∑

(sd,xd)∈{(−1,ld),(1,ud)}

Gθ(x)

d∏
i=1

si, (9)

where x = [x1, . . . , xd]. By the first fundamental theorem of Calculus, we have the following:

Iθ(u, l) =

∫ u1

l1

· · ·
∫ ud

ld

∂dGθ(x)

∂x1 . . . ∂xd
dxd . . . dx1, (10)

where ∂dGθ(x)
∂x1...∂xd

is the dth order derivatives of Gθ computed using automatic differentiation for each154

dimension of x. With slight abused of notation, we denote ∂dGθ

∂x1...∂xd
as ∂Gθ

∂x . Note that we can obtain155

both the computation graph for the integrand ∂dGθ

∂x and the approximation to the integral integral,156

Iθ, using existing deep learning frameworks such as PyTorch (Paszke et al., 2019), Jax (Bradbury157

et al., 2018), and Tensorflow (Abadi et al., 2015). This allows us to leverage the AutoInt loss to158

learn parameters θ to approximate this integral using Iθ.159

This idea of automatic integration can be extended to handle integration over the domain Ω param-
eterized by a function Φ : Rd → Ω. To achieve this, we need to apply a change of variable to the
previous equation using Φ, mapping from the [l1,u1]× · · · × [ld,ud] space to Ω:

Iθ(u, l) =

∫ u1

l1

· · ·
∫ ud

ld

|JΦ(x)|
∂dGθ(x)/∂x

|JΦ(x)|
dx =

∫
Ω

∂dGθ(Φ
−1(p))

∂x
|JΦ(Φ−1(p))|−1dp.

(11)

Note that ∂dGθ(Φ(p))
∂x |JΦ(Φ−1(p))|−1 is also a computational graph we can obtain through auto-

matic differentiation from Gθ. At this point, we are able to apply the idea of AutoInt to obtain θ
that can make Iθ approximate integral

∫
Ω
f(p)dp by optimizing this following loss:

Lautoint(θ) = Ep∼PΩ

[∥∥∥∥∂dGθ(Φ
−1(p))

∂x
|JΦ(Φ−1(p))|−1 − f(p)

∥∥∥∥2
]
, (12)

5

Under review as a conference paper at ICLR 2024

where PΩ is a distribution over Ω that we can sample from. Once we obtained θ∗ by running SGD160

on Lautoint, we can use Iθ∗ to approximate the spatial integral.161

4.2 UNBIASED ESTIMATION VIA CONTROL VARIATE162

Though we are now able to extend the AutoInt idea to spatial integration, the resulting network Iθ∗

can still be biased. One way to achieve unbiased estimation is to use the neural network estimate as
a control variate. Specifically, the integration can be written in the following form:∫

Ω

f(p)dp = Iθ(u, l) +

∫
Ω

f(p)− ∂dGθ(Φ(p))

∂x
|JΦ(Φ(p))|−1dp. (13)

Now we can create a Monte Carlo estimator EN,θ to approximate the spatial integration:

EN,θ = Iθ(u, l) +
1

N

N∑
i=1

(
f(pi)−

∂dGθ(xi)

∂x
|JΦ(xi)|−1

)
PΩ(pi)

−1, (14)

where pi ∼ PΩ are independent samples from a distribution on the domain Ω, PΩ(pi) is the prob-163

ability density of point pi according to distribution PΩ, N is the number of samples used for the164

Monte Carlo estimator, and xi = Φ−1(pi).165

While the estimator EN,θ is unbiased, it can show higher variance than directly applying Monte166

Carlo estimation to the original integrand f if θ is not chosen intelligently. We will show in the next167

section how to minimize the variance of such an estimator using deep learning tools.168

4.3 MINIMIZING VARIANCE169

The variance of a single sample Monte Carlo estimator EN,θ in Equation 14 can be computed as:

V[EN,θ] =
1

N

(Iθ(u, l)− ∫
Ω

f(p)dp

)2

+

∫
Ω

(
f(p)− ∂dGθ(x)

∂x |JΦ(x)|−1
)2

PΩ(p)
dp

 , (15)

where x = Φ−1(p). Directly using this variance as a loss function is infeasible since we do not have
analytical solutions for the term

∫
Ω
f(p)dp. Instead, it’s feasible to obtain samples of (pi, f(pi))

where pi ∼ PΩ. The idea is to use these samples to construct a good estimate for the network
gradient ∇θV[EN,θ]. To achieve this, we first rewrite ∇θV[EN,θ] as following:

∇θ

∫
Ω

PΩ(p)
(Iθ(u, l)− f(p)|Ω|)2

|Ω|PΩ(p)
dp+∇θ

∫
Ω

PΩ(p)

(
f(p)− ∂dGθ(x)

∂x |JΦ(x)|−1

PΩ(p)

)2

dp,

where |Ω| denotes the area or volume of the domain:|Ω| =
∫
Ω
1 · dp. Given this expression, we can

create a Monte Carlo estimator for the network gradient by optimizing the following loss function:

L(θ,Ω) = EPΩ

[
(Iθ(u, l)− f(p)|Ω|)2

|Ω|PΩ(p)

]
︸ ︷︷ ︸

Integral loss=Lint(θ,Ω)

+EPΩ

(f(p)− ∂dFθ(x)
∂x |Jg(x)|−1

PΩ(p)

)2

︸ ︷︷ ︸
Derivative loss=Ldiff(θ,Ω)

, (16)

where the expectation is taken by sampling a minibatch of p’s from PΩ, and x = Φ−1(p). We set170

PΩ to be the same distribution used in the existing Monte Carlo estimator. This allows us to use the171

existing Monte Carlo estimator to generate training data. Specifically, for each Monte Carlo sample172

step, we will record the tuple (p, PΩ(p), f(p), |Ω|) to be used for the training.173

4.4 MODELING A FAMILY OF INTEGRALS174

So far we’ve focused our discussion on modeling different outcomes of a single integration175 ∫
Ω
f(p)dp over a single domain Ω. In many applications, we usually need to perform multiple176

spatial integrals, each of which will be using a slightly different domain Ω. Specifically, we are177

6

Under review as a conference paper at ICLR 2024

interested in a family of domains Ω(z) ⊂ Rd, where z ∈ Rh is a latent variable that parameterizes178

these domains. We further assume there exists a family of parameterization functions for this family179

of domains Φ : R×Rh → Ω, where each function Φ(·, z) is differentiable and invertible conditional180

on z. We are interested in approximating the results for a class of integrals with integrand f(p, z):181

F (z) =
∫
Ω(z)

f(p, z)dp, for ∀z ∈ Rh. To handle this, we will extend our network Gθ to take not182

only the integration variable x but also the conditioning latent vector z. We will extend the loss183

function to optimize through different latent z: Lmulti(θ) =
1
N

∑N
i=1 L(θ,Ω(zi)).184

4.5 ARCHITECTURE185

Most network architectures are designed to be expressive when using forward computational graphs.
Our method, however, requires a network architecture to be expressive in not only its forward com-
putational graph but also when fitting its gradient to certain functions. This is because our loss
function is composed of both the integral loss and the derivative loss (Equation 16). Our integral
loss is trying to optimize a computational graph (i.e., Iθ) containing a network forward pass toward
an objective. The derivative loss is trying to shape a computational graph containing the derivative
of Gθ (i.e. ∂d

∂xF (x))) to match an objective. This calls for an architecture with both an expres-
sive forward computational graph and an expressive derivative computational graph. The latter
requirement is usually overlooked in mainstream machine learning research. In this work, we found
SIREN (Sitzmann et al., 2020) works best in practice for our applications. Specifically, for most of
our experiment, we use concatenated SIREN in the following form:

Gθ(x, z) = Wn(ϕn−1 ◦ . . . ϕ0)([x, z]) + bn, xi 7→ ϕi(xi) = sin(Wixi + bi), (17)
where θ contains all Wi’s, bi’s and [·, ·] concatenate two vectors.186

5 RESULTS187

In this section, we will provide a proof of concept for our method in scientific computing problems188

where spatial integration is needed. Specifically, we will apply our method to solve elliptic Partial189

Differential Equations. This has many applications in computer graphics, including image editing,190

surface reconstruction, and physics simulation. In this section, we’ll demonstrate the result of our191

method in solving Laplace (Sec 5.2) and Poisson equations (Sec 5.1). We hope to show that our192

method is able to produce less variance than the naive Monte Carlo methods and achieve unbiased193

results, which is not achievable with existing neural network methods.194

The baseline we’re comparing with are Walk-on-Spheres solver and the AutoInt result from the195

trained network. In the context of solving PDEs, the Walk-on-sphere baselines can be thought of as196

directly applying Monte Carlo estimation to integrating f(p). As for the AutoInt baseline, we will197

apply the same transformation as mentioned in Section 4.1 to obtain the integration network. Instead198

of using this integration network and its corresponding gradient network in the control variates way,199

the AutoInt baseline will directly output the result obtained by the integral network.200

5.1 SOLVING 2D POISSON EQUATION201

We apply our techniques to reduce variance on a Poisson equation over the domain Ω:
∆u = f on Ω, u = g on ∂Ω, (18)

where the Ω denotes the 2D shape representing the domain we are solving the PDE over, g is
the boundary function, and f is the forcing function. This equation can be solved by the integral
form Sawhney & Crane (2020):

u(x) =
1

|∂Bd(x)(x)|

∫
∂Bd(x)(x)

u(y)dy +

∫
Bd(x)(x)

f(y)G(x, y)dy, (19)

where d(x) = miny∈∂Ω ∥x− y∥ denotes the distance to the boundary and Br(c) = {y||y− c| ≤ r}202

is the ball centered at c with radius r.203

With this, Sawhney & Crane (2020) derives a Monte Carlo estimator for the Poisson equation:

û(xk) =

{
g(x̄k) if d(x) < ϵ

û(xk+1)− |Bxk
(xk)|f(yk)G(xk, yk) otherwise

(20)

7

Under review as a conference paper at ICLR 2024

AutoInt WoS Ours Reference Convergence

M
SE

Err: 0.174 Err: 0.019 Err: 0.009 Err: 0 Steps

Figure 2: 2D Poisson solution on a Ring shape domain. Note that our method still produces lower
variance than WoS even when the control variate integral network has bias.

AutoInt Ours (n=100) Ours (n=1000) Reference Slice Geometry

Figure 3: Result for 3D Laplace experiment. Both the AutoInt baseline and our method used the
same network architecture and parameters. While the AutoInt baseline shows bias that is difficult to
rectify with additional computes, our methods can create accurate solution when more compute is
available to obtain samples, as suggested by the n = 1000 example being similar to the reference.

where xk+1 ∼ U(∂Bd(xk)(xk)) and yk ∼ U(Bd(xk)(xk)) are samples from the surface of the sphere204

and the inside of the sphere. These are two spatial integrals that our method can be applied to. For205

brevity, we are focusing on the sourcing part of the Poisson equation. However, our method can206

also be applied to the recursive part of estimating uy , which will be investigated in detail in our next207

experiment that solves the 3D Laplace Equation208

Applying our framework, we will train a SIREN network Gθ(s, x) with 128 hidden dimensions
and 2 hidden layers, where s ∈ R2 is the polar coordinate and x ∈ R2 is the conditioning which
modulates the integration domain: ∂Bd(x)(x) = {p ∈ R2||p − x| = d(x)}, and d is the distance
function to the nearest boundary point. We’ll train the network for 104 iterations. At each step,
we sample a one-step Monte Carlo estimator of the value |Bxk

(xk)|f(yk)G(xk, yk) as our training
label. We optimize it using our gradient network loss using the automatic differentiation framework
Jax. Here’s the estimator we used during the evaluation of the solver.

û(xk) =

{
g(x̄k) if d(xk) < ϵ

û(xk+1) + |Bd(xk)(xk)|
(
f(yk)G(xk, yk)− ∂Gθ∗ (xk+1)

|J(xk+1)|

)
+ Iθ∗(u⃗, l⃗;xk) otherwise

We present the qualitative result in an equal sample setting using a 2D ring geometry. As demon-209

strated by the qualitative images, our resulting image shows less noise than WoS solution and is more210

similar to the reference compared to the AutoInt solver. In addition, we also provide a convergence211

plot for this setting. Our method remains a log(1/N) convergence rate and preserves lower error212

than the WoS method when the AutoInt curve plateaus toward a biased value. This result verifies213

that our method can produce less biased results than the AutoInt baseline and also achieves lower214

variance than the WoS baseline.215

5.2 SOLVING 3D LAPLACE EQUATION216

In this section, we show that our proposed method can be used to reduce the variance of Walk-on-
sphere (Sawhney & Crane, 2020; Muller, 1956) for solving Laplace equations:

∆u = 0 on Ω, u = g on ∂Ω, (21)

where Ω is the domain where we would like to solve the Equation equation. Sawhney & Crane
(2020) shows that the solution of the Laplace equation can be expressed as the following integral
equation: u(x) = 1

|∂Bd(x)(x)|
∫
∂Bd(x)(x)

u(y)dy. Applying our framework, we will train a neural

8

Under review as a conference paper at ICLR 2024

network Gθ(s, x), where s ∈ R2 is the spherical coordinate and x ∈ R3 is the conditioning which
modulates the integration domain: ∂Bd(x)(x) = {p ∈ R3||p − x| = d(x)}, and d is the distance
function to the nearest boundary point. Note that, different from the previous experiment, we’re
solving a recursive integration formula, so it’s nontrivial to evaluate the integrand as it will spin up
a series of random walks. At the same time, this is a series of spatial integrations, where we could
apply our control variates on. We derive the following estimator:

û(xk) =

{
g(x̄k) if d(x) < ϵ

Gθ∗(u⃗, l⃗;xk)− 4πd(x)2 ∂Gθ∗ (xk+1)
|J(xk+1)| + û(xk+1) otherwise

(22)

where xk+1 is sampled uniformly from the sphere centered at xk with radius d(xk), and x̄k is217

the closest point of xk to the boundary. We will obtain θ∗ by running Adam optimizer on loss in218

Equation 16. To obtain the data, we gather length-k random walk sequence x0, . . . , xk that finally219

reaches the boundary with value g(x̄k) using WoS solver. We use g(x̄k) as a noisy (but unbiased)220

estimate for the training loss.221

The result is presented in Figure 3. In this experiment, we use the same network parameter for our222

result and the AutoInt baseline. The left side of the figure shows that the result for the AutoInt223

baseline can be biased. Using the same network as AutoInt result, our method is able to create224

unbiased results when adding more computers to the inference time.225

5.3 ABLATION226

In this section, we conduct a series of ablation experiments within the context of solving a 2D227

Poisson Equation within a square domain. We mainly explore the (1) impact of different network228

architectures, specifically a concatenated version of SIREN and Random Fourier Features(RFF). (2)229

different sets of loss functions. In particular, we’ll be looking at the loss that minimizes variance230

(Equation 16) and the AutoInt loss (Equation 12). Results of the ablations are shown in (Figure 4).231

Model Architecture Loss Type

Figure 4: L: Ablation on model architecture using
the same type of loss. R: Ablation on loss type
using the same SIREN network architecture.

232

We observe that all of these trained control vari-233

ates methods produce log(1/N) unbiased esti-234

mate. However, when using the same type of235

training loss, the SIREN network architecture236

shows a clear advantage over RFF, which was237

suggested by the Lindell et al. (2021) in the238

AutoInt but does not work well for our appli-239

cations. In the meantime, the results show that240

minimizing variance as a training loss produces241

more accurate results.242

6 CONCLUSION243

In this paper, we propose a method to approximate a family of spatial integration by combining244

neural integration techniques and Monte Carlo techniques. Our proposed method can potentially245

combine the merits of both methods - being unbiased as the Monte Carlo method while remaining246

low variance as the neural integration method. This is achieved by using the network produced by247

using the neural integration techniques as the control variate for a Monte Carlo sampler. To produce248

a low-variance estimator, we derive a loss function that can directly minimize the variance of the249

proposed estimator. We empirically test this idea on Monte Carlo PDE solvers and provide the proof250

of concept results showing that our proposed estimator is unbiased and can have lower variance251

compared to naive WoS estimators. Our method imposes very little restriction on architectural252

design. This can potentially open up an additional doorway that connects deep learning methods253

with Monte Carlo methods, inspiring innovation of new methods and applications.254

Table 1: Time (in minutes) required to reach MSE
to be less or equal to 3e− 4.

AutoInt WoS Ours

10.037 2.042 5.675

Limitations. While the control variate Monte255

Carlo estimator is unbiased and potentially has256

low variance, such an estimator requires strictly257

more computation for each sampling step. This258

9

Under review as a conference paper at ICLR 2024

is because for every step, instead of evaluating f , we need to evaluate in additional G and g in order259

to produce the control variate estimator G+ (
∑N

i=1 f(xi)− g(xi))/N . This suggests that the same260

improvement for the control variates obtained for the same amount of Monte Carlo samples might261

not translate to the performance improvement in actual compute, wall time, or energy, especially in262

simple settings (Table 1 provides some time profiling data). But we believe that in a more challeng-263

ing integration setting, where the integrands f is slow to evaluate or the probability distribution P264

is difficult to sample, our proposed approach will be able to provide more advantages in wall time.265

Such mismatch in equal sample comparison is more severe when the compute taken to evaluate g266

and G is larger than the compute taken to evaluate f . This can limit the size of the network we267

can choose to express G. While applying automatic differentiation can construct analytical integra-268

tion easily for various domains, it also requires taking multiple partial differentiations to create the269

network for training and inference. Taking the derivative of a network usually creates a larger com-270

putational graph, which adds to the issue of needing additional computing per sample. Computing271

the integration requires evaluating the network approximating the anti-derivative 2d times, with d272

being the dimension of the space we are integrating in. This limits our method’s ability to scale to273

higher dimensions without additional care, such as Sun et al. (2023); Si et al. (2021) . Finally, while274

our loss provides a very good estimate of the gradient for minimizing the variance of the control275

variate estimator, the loss contains multiple division terms, such as division by the Jacobian. These276

can create numerical instability for training and inference.277

Future works. Despite challenges, there are many opportunities in combining neural networks278

with Monte Carlo methods. One interesting direction is to leverage the flexibility to design new ar-279

chitectures curated to different applications and toward fixing different issues. For example, one can280

create a network architecture that is aware of the parameterization of the integration domain, which281

can leverage structures of the domain such as symmetry or other types of equivariances. Another in-282

teresting direction is to explore connections with other variance reduction techniques. For example,283

Müller et al. (2019) suggests leveraging importance sampling can propose training samples to allow284

efficient sampling. Other interesting directions include using these neural techniques as carriers to285

perform inverse graphics. Finally, it’s interesting to extend this technique to other applications that286

require integration, such as image processing and rendering.287

10

Under review as a conference paper at ICLR 2024

REFERENCES288

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-289

rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-290

offrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh291

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,292

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay293

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,294

and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL295

https://www.tensorflow.org/. Software available from tensorflow.org.296

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George297

Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable trans-298

formations of Python+NumPy programs, 2018. URL http://github.com/google/jax.299

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential300

equations. Advances in neural information processing systems, 31, 2018.301

Petrik Clarberg and Tomas Akenine-Möller. Exploiting visibility correlation in direct illumination. In Computer302

Graphics Forum, volume 27, pp. 1125–1136. Wiley Online Library, 2008.303

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation.304

arXiv preprint arXiv:1410.8516, 2014.305

Laurent Dinh, Jascha Narain Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. ArXiv,306

abs/1605.08803, 2016. URL https://api.semanticscholar.org/CorpusID:8768364.307

Zineb El Filali Ech-Chafiq, Jérôme Lelong, and Adil Reghai. Automatic control variates for option pricing308

using neural networks. Monte Carlo Methods and Applications, 27:91 – 104, 2021. URL https://api.309

semanticscholar.org/CorpusID:234204906.310

Tomas Geffner and Justin Domke. Using large ensembles of control variates for variational inference. ArXiv,311

abs/1810.12482, 2018. URL https://api.semanticscholar.org/CorpusID:53114131.312

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. Spectral and decomposition tracking for rendering313

heterogeneous volumes. ACM Transactions on Graphics (TOG), 36(4):1–16, 2017.314

Eric P Lafortune and Yves D Willems. Using the modified phong reflectance model for physically based315

rendering. Katholieke Universiteit Leuven. Departement Computerwetenschappen, 1994.316

Elmer Eugene Lewis and Warren F Miller. Computational methods of neutron transport. 1984.317

David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for fast neural vol-318

ume rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,319

pp. 14556–14565, 2021.320

Daniel Maı̂tre and Roi Santos-Mateos. Multi-variable integration with a neural network. Journal of High321

Energy Physics, 2023(3):1–16, 2023.322

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. Boundary value caching for walk on323

spheres. February 2023.324

Mervin E Muller. Some continuous monte carlo methods for the dirichlet problem. The Annals of Mathematical325

Statistics, pp. 569–589, 1956.326

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural importance327

sampling. ACM Transactions on Graphics (ToG), 38(5):1–19, 2019.328

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. Neural control variates. ACM Transac-329

tions on Graphics (TOG), 39(6):1–19, 2020.330

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. Real-time neural radiance caching for331

path tracing. ACM Trans. Graph., 40(4), August 2021.332

Arthur C Norman and PMA Moore. Implementing the new risch integration algorithm. In Proceedings of the333

4th International Colloquium on Advanced Computing Methods in Theoretical Physics, pp. 99–110, 1977.334

Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and Thomas Leimkühler. Neural335

field convolutions by repeated differentiation. arXiv preprint arXiv:2304.01834, 2023.336

11

https://www.tensorflow.org/
http://github.com/google/jax
https://api.semanticscholar.org/CorpusID:8768364
https://api.semanticscholar.org/CorpusID:234204906
https://api.semanticscholar.org/CorpusID:234204906
https://api.semanticscholar.org/CorpusID:234204906
https://api.semanticscholar.org/CorpusID:53114131

Under review as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,337

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep338

learning library. Advances in neural information processing systems, 32, 2019.339

Armenak Petrosyan, Anton Dereventsov, and Clayton G Webster. Neural network integral representations with340

the relu activation function. In Mathematical and Scientific Machine Learning, pp. 128–143. PMLR, 2020.341

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H Shimada, Christopher Batty, Derek342

Nowrouzezahrai, and Toshiya Hachisuka. A monte carlo method for fluid simulation. ACM Trans. Graph.,343

41(6):1–16, November 2022.344

Robert H. Risch. The problem of integration in finite terms. Transactions of the American Mathematical Soci-345

ety, 139:167–189, 1969. URL https://api.semanticscholar.org/CorpusID:122648356.346

Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. Image-space control variates for rendering. ACM Trans-347

actions on Graphics (TOG), 35(6):1–12, 2016.348

Corentin Salaün, Adrien Gruson, Binh-Son Hua, Toshiya Hachisuka, and Gurprit Singh. Regression-based349

monte carlo integration. ACM Transactions on Graphics (TOG), 41(4):1–14, 2022.350

Rohan Sawhney and Keenan Crane. Monte carlo geometry processing. ACM Trans. Graph., 39(4), August351

2020.352

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. Grid-Free monte carlo for PDEs with353

spatially varying coefficients. January 2022.354

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. Walk on stars: A Grid-Free monte355

carlo method for PDEs with neumann boundary conditions. February 2023.356

Shijing Si, Chris. J. Oates, Andrew B. Duncan, Lawrence Carin, and François-Xavier Briol. Scalable control357

variates for monte carlo methods via stochastic optimization, 2021.358

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural359

representations with periodic activation functions. Advances in neural information processing systems, 33:360

7462–7473, 2020.361

Justin Solomon. Numerical algorithms: methods for computer vision, machine learning, and graphics. CRC362

press, 2015.363

Jerome Spanier and Ely M Gelbard. Monte Carlo principles and neutron transport problems. Courier Corpo-364

ration, 2008.365

Kartic Subr. Q-net: A network for low-dimensional integrals of neural proxies. In Computer Graphics Forum,366

volume 40, pp. 61–71. Wiley Online Library, 2021.367

Zhuo Sun, Chris J. Oates, and François-Xavier Briol. Meta-learning control variates: Variance reduction with368

limited data, 2023.369

Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algorithms. Communi-370

cations on Pure and Applied Mathematics, 66(2):145–164, 2013.371

Eric Veach. Robust Monte Carlo methods for light transport simulation. Stanford University, 1998.372

Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte carlo rendering. In373

Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH374

’95, pp. 419–428, New York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917014.375

doi: 10.1145/218380.218498. URL https://doi.org/10.1145/218380.218498.376

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. Bayesian online regression for adaptive direct illumi-377

nation sampling. ACM Transactions on Graphics (TOG), 37(4):1–12, 2018.378

Ruosi Wan, Mingjun Zhong, Haoyi Xiong, and Zhanxing Zhu. Neural control variates for monte carlo vari-379

ance reduction. In ECML/PKDD, 2019. URL https://api.semanticscholar.org/CorpusID:380

218489915.381

Zihao Zhou and Rose Yu. Automatic integration for fast and interpretable neural point processes. In Learning382

for Dynamics and Control Conference, pp. 573–585. PMLR, 2023.383

12

https://api.semanticscholar.org/CorpusID:122648356
https://doi.org/10.1145/218380.218498
https://api.semanticscholar.org/CorpusID:218489915
https://api.semanticscholar.org/CorpusID:218489915
https://api.semanticscholar.org/CorpusID:218489915

	Introduction
	Related Work
	Background
	Method
	Neural Automatic Spatial Integration
	Unbiased Estimation via Control Variate
	Minimizing Variance
	Modeling a Family of Integrals
	Architecture

	Results
	Solving 2D Poisson Equation
	Solving 3D Laplace Equation
	Ablation

	Conclusion

