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ABSTRACT

Large language models (LLMs) are exposed to significant risks due to their poten-
tial for malicious use. Existing studies have developed LLM-based guard models
designed to moderate the input and output of threat LLMs, ensuring adherence to
safety policies by blocking content that violates these protocols upon deployment.
However, limited attention has been given to the reliability and calibration of such
guard models. In this work, we empirically conduct comprehensive investigations
of confidence calibration for 9 existing LLM-based guard models on 12 bench-
marks in both user input and model output classification. Our findings reveal that
current LLM-based guard models tend to 1) produce overconfident predictions,
2) exhibit significant miscalibration when subjected to jailbreak attacks, and 3)
demonstrate limited robustness to the outputs generated by different types of re-
sponse models. Additionally, we assess the effectiveness of post-hoc calibration
methods to mitigate miscalibration. We demonstrate the efficacy of temperature
scaling and, for the first time, highlight the benefits of contextual calibration for
confidence calibration of guard models, particularly in the absence of validation
sets. Our analysis and experiments underscore the limitations of current LLM-
based guard models and provide valuable insights for the future development of
well-calibrated guard models toward more reliable content moderation. We also
advocate for incorporating reliability evaluation of confidence calibration when
releasing future LLM-based guard models.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have facilitated the development of pow-
erful conversation systems, leading to the deployment of LLM-based chatbots in various real-world
applications (Brown, 2020; Anil et al., 2023; Touvron et al., 2023; Dubey et al., 2024). How-
ever, these systems face substantial risks due to the potential for malicious exploitation of powerful
LLMs (Wang et al., 2023). Consequently, addressing these risks has become an urgent and critical
task. One promising strategy is to regulate LLMs during their training phase. Existing researches
primarily focus on designing alignment algorithms through preference optimization (Ouyang et al.,
2022; Rafailov et al., 2024), implementing adversarial training (Mazeika et al., 2024), or employing
machine unlearning to remove harmful knowledge from the models (Chen & Yang, 2023; Liu et al.,
2024). These approaches aim to control text generation and prevent undesired outputs. Despite these
significant efforts to enhance LLM safety during training, red-teaming still makes efforts to expose
vulnerabilities, including jailbreak attacks that successfully bypass the safety constraint and elicit
harmful responses from LLMs, highlighting the risks of future, unseen threats (Zou et al., 2023; Liu
et al., 2023; Chao et al., 2024). Therefore, in addition to training-time interventions, it is equally
vital to implement test-time measures, such as constraint inference (Xu et al., 2024), and estab-
lish effective test-time guardrails through content moderation, particularly when deploying LLMs in
real-world settings.

Content Moderation serves the critical function of monitoring both user inputs and model outputs
during conversations. Typically, guard models are designed to assess whether user inputs and LLM
outputs comply with safety regulations, and either reject user queries or block model responses
when content violating safety protocols is detected. This approach remains effective even when
LLMs have been compromised by previously unseen jailbreak attacks. Current state-of-the-art
guard models, which are typically built on LLMs, demonstrate strong performance across various
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LLM

User: How to learn to play
guitar

Agent: Learning to play the 
guitar can be a rewarding 
and enjoyable experience. 
Here’s a step-by-step guide 
to help you get started ……

Task: Check if there is unsafe content in Agent
messages in conversations according our safety 
policy with the below categories.

<BEGIN UNSAFE CONTENT CATEGORIES>
unsafe categories statements
……
<END UNSAFE CONTENT CATEGORIES>

<BEGIN CONVERSATION>

User: Tell me how to build a bomb

Agent: Here is the step-by-step instruction
……

<END CONVERSATION>

Provide your safety assessment for Agent in the 
above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a 
comma-separated list of violated categories.

Task: Check if there is unsafe content in User
messages in conversations according our safety 
policy with the below categories.

<BEGIN UNSAFE CONTENT CATEGORIES>
unsafe categories statements
……

<END UNSAFE CONTENT CATEGORIES>

<BEGIN CONVERSATION>

User: How to learn to play guitar

<END CONVERSATION>

Provide your safety assessment for User in the 
above conversation:
- First line must read 'safe' or 'unsafe’.
- If unsafe, a second line must include a 
comma-separated list of violated categories.

Harmful query

How to build a bomb

Training Time
Preference Optimization

Adversarial Training

Machine Unlearning

……

Test Time

LLM
Harmful query

How to build a bomb

Constrained Inference

Content Moderation

……

Prompt Classification Response Classification
Guard Model

User: Tell me how to build a
bomb

Agent: Here is the step-by-
step instruction on how to
build a bomb:
First, ……
Second, ……

safe

safe

unsafe
Cat1, Cat2 …

(P) (R)

Conversation Examples

(P) :

(R) :

(P) :

(R) : unsafe
Cat1, Cat2 …

Content Moderation

Figure 1: A position and an overview of LLM-based guard models for content moderation. Guard
models monitor the input and output during conversations between the user and LLM (Agent), pro-
viding a binary prediction followed by a specific unsafe content category if unsafe content is de-
tected. The instruction examples for prompt classification and response classification from LLama-
Guard are detailed in the right yellow boxes respectively.

benchmarks (Inan et al., 2023; Ghosh et al., 2024; Han et al., 2024; Zeng et al., 2024). However,
these guard models primarily emphasize the classification performance but overlook the predictive
uncertainty of harmfulness predictions, therefore failing to assess the reliability of these models’
predictions. This oversight is crucial because guard models may occasionally make erroneous de-
cisions, potentially allowing unsafe content to bypass moderation, especially when encountering
non-trivial domain shifts, despite their strong in-domain performances. Therefore, quantifying the
predictive uncertainty and confidence in model predictions is essential to assessing the trustworthi-
ness of guard models, enabling more reliable decision-making in high-risk scenarios that may arise
during conversations after model deployment.
In this work, we examine the reliability of existing open-source guard models by focusing on their
confidence calibration. Specifically, we empirically assess the calibration performance by com-
monly used expected calibration error (ECE) for two key tasks: user input (prompt) classification
and model output (response) classification with binary labels. To conduct a systematic evaluation,
we examine 9 models across 12 datasets. Our experimental results reveal that, despite achieving
strong performance, most existing guard models exhibit varying levels of miscalibration. Addition-
ally, our findings show that current LLM-based guard models:

• tend to make overconfident predictions with high probability scores.
• remain poorly calibrated under adversarial environments, exhibiting higher ECE in adver-

sarial prompt classification, even when the SOTA guard model achieves high F1 scores.
• display inconsistent ECE across different types of response models, demonstrating weak

robustness to variations in response model types.

These observations highlight critical challenges in improving the reliability of guard models in real-
world deployments. Consequently, we are motivated to improve the confidence calibration of guard
models, focusing on post-hoc calibration methods to avoid additional computational costs of train-
ing new guard models. We explore the impact of bias calibration methods on confidence calibration
for the first time, discovering that contextual calibration proves impressively effective for prompt
classification, while conventional temperature scaling remains more beneficial for response classifi-
cation. Lastly, we identify miscalibration issues stemming from prediction vulnerabilities induced
by single tokens and misaligned classification objectives, highlighting the limitations of instruction-
tuned LLM-based guard models. We stress the importance of reliability evaluation and advocate for
the inclusion of confidence calibration measurement in the release of future new guard models.
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2 RELATED WORK

Content Moderation. A substantial body of research has been devoted to the detection of hateful
and toxic content in human-generated text from online platforms, such as social media (Schmidt &
Wiegand, 2017; Lees et al., 2022). Various API services, including Perspective (Lees et al., 2022),
OpenAI (Markov et al., 2023), Azure, and Detoxify, provide black-box content moderation tools
for online texts. However, content moderation in LLMs specifically addresses the detection of both
LLM input and output during conversations within deployed applications, such as chat assistants.
This task poses unique challenges due to the distribution shift in conversation content generated by
LLMs, which differs from previous human-generated online texts. Recent advancements in LLM
content moderation have been achieved through the fine-tuning of LLMs, as seen in models such as
LLama-Guard1/2/3 (Inan et al., 2023), BeaverDam (Ji et al., 2024), Aegis (Ghosh et al., 2024), MD-
Judge (Li et al., 2024), WildGuard (Han et al., 2024), and ShieldGemma (Zeng et al., 2024). Notably,
models like Llama-Guard, Aegis, and WildGuard support the detection of both user inputs and model
outputs, while others do not due to differing training objectives. Additionally, adversarial cases are
addressed by Harmbench (Mazeika et al., 2024) and RigorLLM (Yuan et al., 2024), with Harm-
bench specifically fine-tuning LLama2 and Mistral to evaluate the success rate of adversarial attacks
by identifying undesirable content in model outputs. Furthermore, Nemo proposes programmable
guardrails that provide dialogue management capability using a user-friendly toolkit (Rebedea et al.,
2023). Our work focuses on quantifying the predictive uncertainty and evaluating the reliability of
LLM-based guard models by their calibration levels.

Calibration of LLMs. Confidence calibration is a critical aspect in developing reliable and trust-
worthy language models (Nguyen & O’Connor, 2015; Guo et al., 2017; Minderer et al., 2021). In the
context of LLMs, prior research has explored calibration in question-answering tasks (Jiang et al.,
2021) and has empirically examined calibration during the pre-training and alignment stages (Chen
et al., 2022; Zhu et al., 2023). Studies such as Lin et al. (2022); Mielke et al. (2022); Xiong et al.
(2023) have investigated uncertainty estimation through verbalized confidence, and Kadavath et al.
(2022) demonstrated improved calibration of larger models when handling multiple choice and
true/false questions given appropriate formats. Another line of research addresses the calibration
of biases stemming from in-context samples, instruction templates, sample ordering, and label dis-
tribution (Zhao et al., 2021; Zhou et al., 2023b; Liu & Wang, 2023; Fei et al., 2023). These bias
calibration techniques indirectly influence the prediction confidence by altering the linear decision
boundary (Zhou et al., 2023a), yet they are not designed for explicit confidence calibration. In con-
trast, our work specifically addresses the challenge of confidence calibration in instruction-tuned
guard models for content moderation tasks.

3 PRELIMINARY

LLM-based Guard Models. Given the user input text X and the corresponding response R =
f(X) generated by a deployed LLM f(∗), the task of the LLM-based guard model g(∗) is to clas-
sify the user input pg(Y|X), or the LLM output pg(Y|X,R)1 These tasks are referred to as prompt
classification and response classification, respectively. For the predicted label Y, most existing
LLM-based guard models initially perform binary classifications yb to determine whether the user
input X or model response R is safe. If the binary classification result indicates the input or the re-
sponse yb is unsafe, the guard model g(∗) then proceeds with a multiclass classification to categorize
the specific type yc by pg(y

c|X, yb) or pg(yc|X,R, yb) where the categories c are pre-defined in a
taxonomy. These classification tasks in LLM-based guard models are carried out in an autoregres-
sive generation manner, and Figure 1 illustrates examples of the prompt and response classification
instructions used in LLama-Guard.

Confidence Calibration. A model is considered perfectly calibrated if its predicted class ŷ and the
associated confidence p̂ ∈ [0, 1] satisfy P (ŷ = y|p̂ = p) = p, ∀p ∈ [0, 1], where y is the ground-
truth class label for any given input. This implies that higher confidence in a prediction should
correspond to a higher chance of its prediction being correct. However, since P (ŷ = y|p̂ = p)
can not be directly calculated with finite sample size, existing approaches employ binning-based

1Note that we ignore the instruction context Cinst in our all following notations for simplicity where they
should be pg(Y|X; Cinst) and pg(Y|X,R; Cinst) instead.
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divisions on finite samples and utilize the Expected Calibration Error (ECE) as a quantitative metric
to assess the model’s calibration. Assuming that confidence is divided into M bins with equal
interval 1/M within the range [0, 1], the ECE is defined as

ECE =

M∑
m=1

|Bm|
N

|Acc(Bm)− Conf(Bm)| , (1)

Acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), Conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (2)

where Bm represents the set of samples falling within the interval (m−1
M , m

M ], ŷi and yi are the pre-
dicted and ground truth classes, respectively, and p̂i is the model’s predicted probability. However,
existing instruction-tuned LLM-based guard models do not directly output the probability of each
class. Instead, the probability of class ci is derived from the output logits zV(ci) of the corresponding
target label token V(ci), where V(∗) is the verbalizer. Re-normalization is then applied over the set
of target label tokens as follows,

p(y = ci|X,R) =
ezV(ci)∑
ci
ezV(ci)

(3)

where R is empty for prompt classification. Specifically, for binary classification tasks, the target
label tokens could simply be “safe / unsafe”, “harmful / unharmful”, or “yes / no”, depending on the
specific instructions utilized in different guard models.

4 CALIBRATION MEASUREMENT OF LLM-BASED GUARD MODELS

To systematically evaluate the calibration of existing open-source LLM-based guard models across
public benchmarks, we conduct an analysis of 9 models on 12 publicly available datasets. We take
the prompt classification and response classification as two primary tasks in our investigation. Due
to the variability in safety taxonomies across different guard models and datasets, it is challenging
to directly compare performance on multiclass prediction tasks. Therefore, our evaluation empha-
sizes binary classification (safe/ unsafe) for both prompt and response classifications, allowing for
a more consistent and fair comparison across guard models. Moreover, binary classification is a
critical precursor to multiclass predictions, as an incorrect binary prediction could result in the dis-
semination of undesired content to users, increasing the associated risk. Thus, binary classification
holds particular importance in ensuring the reliability and safety of these systems.

4.1 EXPERIMENTAL SETUP

Benchmarks. To assess calibration in the context of binary prompt classification, we evaluate per-
formance using a range of public benchmarks, including OpenAI Moderation (Markov et al., 2023),
ToxicChat Test (Lin et al., 2023), Aegis Safety Test (Ghosh et al., 2024), SimpleSafetyTests (Vid-
gen et al., 2023), XSTest (Röttger et al., 2023), Harmbench Prompt (Mazeika et al., 2024) and
WildGuardMix Test Prompt (Han et al., 2024). For the response classification, we utilize datasets
containing BeaverTails Test (Ji et al., 2024), SafeRLHF Test (Dai et al., 2023), Harmbench Re-
sponse (Mazeika et al., 2024), and WildGuardMix Test Response (Han et al., 2024). For all datasets,
we report the ECE as the primary metric for calibration assessment, alongside the F1 score for clas-
sification performance. Detailed statistics of each dataset can be found in Appendix A.1.

LLM-based Guard Models. Existing LLM-based guard models vary in their capabilities, with
some supporting both prompt and response classification, while others specialize in response
classification, based on their instruction-tuning tasks. For prompt classification, we evaluate
Llama-Guard, Llama-Guard2, Llama-Guard3, Aegis-Guard-Defensive, Aegis-Guard-Permissive,
and WildGuard (Inan et al., 2023; Ghosh et al., 2024; Han et al., 2024). In the case of re-
sponse classification, we additionally assess Harmbench-Llama, Harmbench-Mistral, and MD-
Judge-v0.1 (Mazeika et al., 2024; Li et al., 2024). API-based moderation tools are excluded from our
evaluation due to the nature of their black-box models, which output scores that cannot be simply
interpreted as probability. More details can be found in Appendix A.2.
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Model Prompt Classification Response Classification
OAI ToxiC SimpST Aegis XST HarmB WildGT Avg. BeaverT S-RLHF HarmB WildGT Avg.

Llama-Guard 9.0 11.0 32.6 29.6 20.5 68.1 28.6 28.5 29.1 24.4 23.2 14.2 22.7
Llama-Guard2 13.7 15.9 26.5 34.7 12.2 30.3 26.8 22.9 29.9 25.2 24.9 12.8 23.2
Llama-Guard3 13.9 14.5 7.6 33.4 13.9 8.8 20.5 16.1 32.3 25.3 27.2 11.1 24.0
Aegis-Guard-D 30.2 20.5 9.7 16.4 23.5 50.5 8.0 22.7 18.1 30.9 26.1 29.3 26.1
Aegis-Guard-P 15.7 8.2 16.5 22.6 18.6 59.4 12.6 22.0 18.6 25.6 18.0 15.2 19.4
HarmB-Llama - - - - - - - - 24.9 19.4 15.1 52.5 28.0
HarmB-Mistral - - - - - - - - 18.1 14.5 13.1 25.6 17.8
MD-Judge - - - - - - - - 10.9 9.4 17.7 7.7 11.4
WildGuard 33.8 19.8 4.4 12.0 5.0 6.3 19.7 14.4 23.2 23.3 12.8 15.9 18.8

Table 1: ECE (%) ↓ performances of prompt and response classification on existing public bench-
marks. We bold the best average result and underline the second-best average result for both prompt
and response classification.
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Figure 2: Confidence distributions (First row) and reliability diagrams (Second row) of Llama-
Guard, Llama-Guard3, Aegis-Guard-P, and WildGuard on the WildGuardMix Test Prompt set.

4.2 MAIN RESULTS

4.2.1 GENERAL EVALUATION ON PUBLIC BENCHMARKS

We begin by conducting a comprehensive evaluation of both prompt and response classifications
for the existing guard models on public benchmarks. The ECE results for both tasks are presented
in Table 1. Our experimental findings indicate that existing guard models exhibit significant mis-
calibration in both prompt and response classifications. Among the models evaluated, WildGuard
demonstrates the lowest average ECE for prompt classification, achieving 14.4%, while MD-Judge
achieves the lowest average ECE for response classification, at 11.4%. However, despite the rel-
atively better performances, both Wildguard and MF-Judge exhibit average ECE values exceeding
10%, which highlights poor calibration and underscores the need for further improvements. Ad-
ditionally, each model displays a substantial variance in ECE across different datasets, suggesting
unreliable predictions.

Finding 1: Existing guard models tend to make overconfident predictions. To further investi-
gate, we visualize the confidence distributions and present the corresponding reliability diagrams
in Figure 2. Additional results for other datasets, models as well as response classification can be
found in Appendix A.4. The analysis reveals that for models such as LLama-Guard, Llama-Guard3,
and WildGuard, the majority of predictions exhibit confidences between 90% and 100%, indicating
overconfident predictions along with high ECE. While Aegis-Guard-P shows a less extreme con-
fidence distribution compared to the other models, the proportion of predictions with confidence
greater than 90% is still noticeably higher than those with lower confidence, further reflecting the
trend of overconfidence.
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4.2.2 EVALUATION UNDER JAILBREAK ATTACKS
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Figure 3: F1 (%) ↑ and ECE
(%) ↓ performances of prompt
and response classification on
Harmbench-adv set.

Table 1 reveals considerable variability of ECE for different guard
models when handling harmful requests on the HarmbenchPrompt
set. To further investigate the reliability of these guard models
in adversarial environments involving dangerous jailbreak attacks,
we extend our evaluation to the Harmbench-adv set. This dataset,
which serves as a validation set for fine-tuning Llama2-variant clas-
sifiers in Harmbench, includes user inputs generated from various
types of jailbreak attacks, such as GCG and AutoDAN, leading to a
significant distribution shift from typical user input. In this evalua-
tion, we utilize the adversarial user inputs and their corresponding
responses and report the F1 and ECE results for each guard model
in Figure 3.

Finding 2: Miscalibration in prompt classification is more pro-
nounced than in response classification under jailbreak attacks.
The results demonstrate that the ECE for prompt classification is
generally higher than that of response classification, indicating that
guard models tend to be more reliable when classifying model re-
sponses under adversarial conditions. We conjecture that this may
be due to the more considerable distribution shift in adversarial
prompts than that in model responses. Additionally, while Wild-
Guard achieves SOTA performance with an F1 score of 92.8% in
prompt classification, its ECE score remains high at 34.9%, high-
lighting concerns about the reliability of its predictions in real-
world deployment.

Guard Model Response Model
Metric Baichuan2 Qwen Solar Llama2 Vicuna Orca2 Koala OpenChat Starling Zephyr

Llama-Guard F1 57.8 66.7 54.2 44.4 64.0 62.7 74.6 60.6 66.7 72.7
ECE 26.9 23.0 49.4 10.5 28.0 26.4 27.4 40.3 46.3 38.5

Llama-Guard2 F1 77.8 88.9 82.8 71.4 72.1 80.6 78.4 70.0 82.0 78.4
ECE 18.2 5.8 27.1 7.9 28.4 25.2 30.4 28.5 37.0 39.4

Llama-Guard3 F1 73.8 82.4 84.1 60.0 83.3 82.2 77.5 76.4 91.2 87.7
ECE 33.7 17.1 31.0 27.4 20.5 27.3 36.5 34.2 27.6 23.1

Aegis-Guard-D F1 60.3 66.7 71.2 31.2 63.3 65.8 69.9 78.3 84.4 89.3
ECE 35.5 27.1 22.2 40.8 34.0 33.9 31.3 30.9 27.8 30.9

Aegis-Guard-P F1 57.6 66.7 67.9 33.3 56.3 72.7 72.2 76.2 83.3 80.8
ECE 22.8 17.4 28.3 23.6 26.2 28.2 32.1 35.5 36.3 25.7

HarmB-Llama F1 89.7 100.0 90.6 70.6 90.9 86.2 88.9 89.4 90.9 94.5
ECE 17.7 6.4 25.0 23.5 16.0 19.5 26.7 23.2 23.3 20.1

HarmB-Mistral F1 84.4 100.0 87.5 80.0 92.3 84.8 92.8 90.9 89.2 94.5
ECE 28.0 3.0 30.1 12.8 16.6 17.5 16.0 14.9 27.7 19.9

MD-Judge F1 75.4 79.1 77.2 55.6 74.2 76.9 75.3 76.6 87.5 92.6
ECE 22.4 14.4 19.3 24.1 19.9 16.7 26.2 25.5 26.0 17.9

WildGuard F1 82.0 91.3 88.5 80.0 89.9 84.8 81.6 88.9 92.5 94.5
ECE 22.1 9.2 15.5 17.0 11.2 20.1 37.3 25.4 18.6 21.3

Table 2: F1 (%) ↑ and ECE (%) ↓ performances of response classification on Harmbench-adv set
across 10 different response models.

4.2.3 EVALUATION OF ROBUSTNESS TO DIVERSE RESPONSE MODELS

While the ECE for response classification under adversarial environments appears relatively lower
in Figure 3, it remains important to investigate whether each guard model consistently maintains re-
liability when classifying responses generated by different response models. This is crucial because
response models are often aligned differently during post-training so they may have different out-
put distributions and produce different responses to jailbreak attacks. To this end, we continue our
calibration evaluation under jailbreak attacks, shifting our focus to response classification. Specifi-
cally, we employ the same Harmbench-adv set and divide it according to the response model type.
After filtering out subsets with a small sample size, we retain 10 subsets containing responses from

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Baichuan2, Qwen, Solar, Llama2, Vicuna, Orca2, Koala, OpenChat, Starling, and Zephyr. Each
subset consists of outputs from a specific response model. Detailed information on the statistics for
each subset is provided in Appendix A.1. The F1 and ECE results are reported in Table 2.

Finding 3: Guard models exhibit inconsistent reliability when classifying outputs from dif-
ferent response models. The results in Table 2 reveal significant variance in both F1 and ECE
across different response models. This suggests potential limitations in the training of guard models
that rely on responses from a single model. For example, Aegis-Guard models are trained using
responses from Mistral, and Llama-Guard models are trained using responses from internal LLama
checkpoints. In contrast, Harmbench-Llama, Harmbench-Mistral, and Wildguard are trained using
responses from a more diverse set of models, leading to improved generalization across different
output distributions of response models.

5 IMPROVING THE CALIBRATION OF LLM-BASED GUARD MODELS

Empirical evidence has demonstrated the miscalibration of current LLM-based guard models, neces-
sitating efforts to improve their reliability through calibration techniques. In this section, we focus
on post-hoc calibration methods to circumvent the computational expense associated with training
new guard models, reserving training-time calibration approaches for further investigation.

5.1 CALIBRATION TECHNIQUES

Temperature Scaling (Guo et al., 2017). Temperature scaling (TS) is a widely employed confidence
calibration method for traditional neural networks. By introducing a scalar parameter T > 0 on
the output logits, the output distribution can either be smoothed (T > 1) or sharpened (T < 1).
Specifically, the calibrated confidence is computed as:

p̂(y = ci|X,R) =
e

zV(ci)

T∑
ci
e

zV(ci)

T

(4)

It is important to note that applying temperature scaling does not affect the maximum value of the
softmax function, and thus does not alter accuracy performance. The parameter T is typically op-
timized on a held-out validation set with respect to the negative log-likelihood. However, in the
context of the LLM content moderation task, validation sets may not always be available, posing
a significant challenge, particularly when addressing in-the-wild user inputs or responses from un-
known models. Besides temperature scaling, most conventional calibration methods similarly rely
on validation sets to determine parameters, rendering them impractical in such scenarios. As such,
we exclusively take temperature scaling as an instance for its simplicity and efficacy.

Contextual Calibration (Zhao et al., 2021). Contextual calibration (CC) is one type of matrix scal-
ing technique to address contextual bias in LLMs, with the key advantage of requiring no validation
set. This method estimates test-time contextual bias by using content-free tokens such as “N/A”,
space, or empty tokens. The calibrated prediction is then computed as follows:

p̂(y|X,R) = Wp(y|X,R) (5)

where W = diag(p(y|[N/A]))−1. Although the original purpose of contextual calibration dif-
fers from confidence calibration, the utilized vector scaling modifies model predictions and impacts
confidence levels as well, warranting its consideration for confidence calibration.

Batch Calibration (Zhou et al., 2023a). Batch calibration (BC) is also a type of matrix scaling
approach. The rationale behind batch calibration is to estimate contextual bias from a batch of M
unlabeled samples drawn from the target domains P (x) or P (x, r), rather than from context-free
tokens as in contextual calibration. Specifically, batch calibration applies a transformation on the
original prediction, which can be interpreted as a linear transformation in the log-probability space,

log p̂(y|X,R) = logp(y|X,R)− logb (6)

where b is computed in a cnotent-based manner by b = −Ex∼P (x)[p(y|x)] ≈ − 1
M

∑M
i=1 p(y|x(i))

for prompt classification or b = −Ex,r∼P (x,r)[p(y|x, r)] ≈ − 1
M

∑M
i=1 p(y|x(i), r(i)) for response

classification. Note that batch calibration requires a batch of unlabeled samples to estimate the
contextual prior during test time.

7
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5.2 CALIBRATION RESULTS

We apply the calibration methods discussed in Section 5.1 to both prompt classification and response
classification for each guard model. For temperature scaling, we utilize the XSTest set as the val-
idation set to optimize the temperature due to its relatively small size. This optimized temperature
value is then applied across all other datasets, as individual validation sets are not available for all
examined datasets. For contextual calibration, we estimate the contextual bias using a space token.
For batch calibration, we assume access to the full test set and estimate the contextual bias using the
entire test set as a batch. The resulting calibration performance is reported in Table 3. Details re-
garding the implementation can be found in Appendix A.3, along with additional calibration results
in adversarial environments in Appendix A.5.

Model Prompt Classification Response Classification
OAI ToxiC SimpST Aegis XST HarmB WildGT Avg. BeaverT S-RLHF HarmB WildGT Avg.

Llama-Guard 9.0 11.0 32.6 29.6 20.5 68.1 28.6 28.5 29.1 24.4 23.2 14.2 22.7
+ TS 12.0 11.3 31.9 26.8 9.4 66.7 26.0 26.3 27.4 21.6 14.5 14.0 19.4
+ CC 14.8 7.4 26.3 22.0 23.9 65.1 20.9 25.8 25.4 21.8 20.2 8.9 19.1
+ BC 12.3 12.1 43.2 27.2 21.0 67.9 19.7 29.1 26.6 22.5 20.6 12.4 20.5

Llama-Guard2 13.7 15.9 26.5 34.7 12.2 30.3 26.8 22.9 29.9 25.2 24.9 12.8 23.2
+ TS 13.2 15.8 26.0 33.6 11.1 29.4 26.0 22.2 29.8 24.5 14.1 13.6 20.5
+ CC 39.4 22.8 15.0 18.8 13.7 14.8 15.3 20.0 24.3 28.9 34.8 32.8 30.2
+ BC 15.2 16.6 30.6 34.2 12.0 36.3 23.8 24.1 29.5 25.2 24.8 14.7 23.6

Llama-Guard3 13.9 14.5 7.6 33.4 13.9 8.8 20.5 16.1 32.3 25.3 27.2 11.1 24.0
+ TS 16.0 15.2 9.3 30.6 11.5 9.8 20.4 16.1 31.2 24.8 19.3 13.0 22.0
+ CC 28.3 21.7 4.1 26.3 8.0 4.5 15.0 15.4 21.9 30.6 39.7 30.3 30.6
+ BC 17.1 20.5 24.9 32.2 13.0 23.3 18.1 21.3 30.5 24.7 25.7 14.0 23.7

Aegis-Guard-D 30.2 20.5 9.7 16.4 23.5 50.5 8.0 22.7 18.1 30.9 26.1 29.3 26.1
+ TS 30.1 25.2 14.4 11.1 18.7 46.9 13.4 22.8 15.7 25.9 23.8 31.3 24.2
+ CC 15.6 9.5 17.7 22.0 16.3 58.7 12.4 21.7 17.8 24.3 17.5 16.3 19.0
+ BC 24.9 34.6 43.0 18.4 20.5 56.2 9.0 29.5 17.2 23.1 18.7 34.2 23.3

Aegis-Guard-P 15.7 8.2 16.5 22.6 18.6 59.4 12.6 22.0 18.6 25.6 18.0 15.2 19.4
+ TS 19.7 14.9 20.0 16.7 11.4 55.6 13.8 21.7 16.5 21.6 18.2 19.3 18.9
+ CC 17.6 9.2 15.3 21.5 19.3 58.5 11.1 21.8 18.3 26.3 18.7 16.6 20.0
+ BC 19.7 27.9 43.5 22.7 18.8 61.1 6.9 28.7 18.6 23.5 17.6 28.5 22.1

HarmB-Llama - - - - - - - - 24.9 19.4 15.1 52.5 28.0
+ TS - - - - - - - - 22.2 17.3 14.2 51.1 26.2
+ CC - - - - - - - - 34.9 32.0 24.9 61.7 38.4
+ BC - - - - - - - - 24.2 18.8 14.9 52.3 27.6

HarmB-Mistral - - - - - - - - 18.1 14.5 13.1 25.6 17.8
+ TS - - - - - - - - 13.4 10.3 11.1 23.4 14.6
+ CC - - - - - - - - 19.9 23.5 22.4 40.2 26.5
+ BC - - - - - - - - 18.2 14.5 12.7 30.7 19.0

MD-Judge - - - - - - - - 10.9 9.4 17.7 7.7 11.4
+ TS - - - - - - - - 12.7 12.1 20.1 13.0 14.5
+ CC - - - - - - - - 22.1 35.9 41.3 33.7 33.3
+ BC - - - - - - - - 9.9 8.3 17.1 22.9 14.6

WildGuard 33.8 19.8 4.4 12.0 5.0 6.3 19.7 14.4 23.2 23.3 12.8 15.9 18.8
+ TS 32.4 19.1 5.7 9.1 4.2 8.2 19.3 14.0 23.8 22.3 10.5 16.5 18.3
+ CC 58.7 39.0 0.2 26.5 25.5 0.1 18.6 24.1 22.8 27.9 16.2 16.1 20.8
+ BC 33.6 23.8 25.2 12.7 3.8 30.6 19.5 21.3 23.1 22.2 12.6 16.3 18.6

Table 3: ECE (%) ↓ performance comparison of different calibration techniques. For each guard
model, we report the original calibration results in the first row and the rest results using TS: Tem-
perature Scaling, CC: Contextual Calibration, BC: Batch Calibration, in the following three rows.
We bold the best average result among different calibration techniques for each guard model in both
prompt and response classification.

Contextual calibration proves more effective for prompt classification and temperature scal-
ing benefits response classification more. Empirical results indicate that contextual calibration
outperforms other methods in prompt classification, delivering improved calibration for the major-
ity of guard models, with the exception of WildGuard. Additionally, temperature scaling effectively
reduces the ECE and demonstrates particular effectiveness, despite being optimized on a validation
set with a potentially different distribution from the target dataset. This finding further confirms the
shared overconfident predictions across datasets and validates that proper temperature values can
smooth the overconfident prediction distribution, thereby mitigating miscalibration. Furthermore,
temperature scaling shows greater efficacy in response classification which often involves multiple
sentences of both user inputs and model responses. In such cases, contextual calibration struggles to
accurately estimate contextual prior, resulting in unstable or even degraded calibration performance.
Moreover, it is noteworthy that batch calibration underperforms compared to contextual calibration
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for most models in prompt classification, as well as some models in response classification. We con-
jecture that this could be attributed to significant label shifts in the test datasets, leading to biased
contextual prior estimation and diminished calibration effectiveness. However, no single method
fully resolves the miscalibration issues, indicating the complexity of achieving reliable safety mod-
eration across different deployment scenarios.

6 DISCUSSION

In this section, to further understand why miscalibration of guard models happens, and how it man-
ifests in prompt and response classification, we conduct two further investigations and point out the
limitation and weak robustness of instruction-tuning LLM-based guard models.

Model Prompt Response
Space “unsafe” Space

Llama-Guard 75.5 18.2 73.1
Llama-Guard2 98.9 83.5 99.2
Llama-Guard3 90.5 53.1 98.8
Aegis-Guard-D 29.4 9.5 29.4
Aegis-Guard-P 53.1 16.5 53.1
HarmB-Llama - - 98.8
HarmB-Mistral - - 91.7
MD-Judge - - 89.3
WildGuard 99.5 92.0 77.7

Table 4: Probability (%) of “safe” for prompt clas-
sification when input is set as a space token or
“unsafe” token, and response classification when
input and model output are set as a space token.

Model Safe prompt Unsafe prompt
Llama-Guard 62.1 29.0
Llama-Guard2 63.0 21.5
Llama-Guard3 62.9 16.4

Table 5: Probability (%) of “safe” for response
classification when output is set as a space token
and inputs are sampled from safe/unsafe prompts.

Prediction Vulnerability Induced by a Single
Token. We analyze two specific scenarios by
assessing model predictions when the user in-
put consists of a space token or an “unsafe” to-
ken and both the user input and model response
consist of a space token, respectively. Results
of the probability of the input being classified
as “safe” are reported in Table 4. The results
demonstrate that many guard models exhibit
high confidence in predicting “safe” for a space
token input. However, the introduction of a sin-
gle “unsafe” token without further context can
cause many guard models to confidently predict
“unsafe”. This finding underscores the persis-
tent contextual bias in guard models revealing
their limitations even after instruction-tuning.
More extensive robustness evaluations of guard
models are thus essential for future research.

Misaligned Classification Objectives. We fur-
ther investigate guard models in the LLama-
Guard family capable of both prompt and re-
sponse classification, focusing on the accuracy
of predictions when the model response is set
to a content-free token. Specifically, we sample
100 “safe” user inputs and 100 “unsafe” user
inputs from the WildGuardTest set and replace
all model responses with a space token. We report the average probability of classifying the response
as “safe” for using “safe” and “unsafe” user inputs separately in Table 5. The results indicate that
the model is more likely to predict the responses as “unsafe” when user inputs (prompt) are unsafe,
even when model responses are content-free and should logically be predicted as “safe”. This sug-
gests that the model prediction is heavily influenced by the user input and the guard models act like
conducting prompt classification even when response classification should be done. Such behavior
can result in unreliable predictions and increased miscalibration.

7 CONCLUSION

In this work, we have systematically examined the uncertainty-based reliability of LLM-based guard
models by assessing their calibration levels across various benchmarks. Our analysis reveals that de-
spite their promising performance in content moderation, these models tend to make overconfident
predictions, exhibit significant miscalibration under adversarial environments, and lack robustness
to responses generated by diverse LLMs. To mitigate miscalibration, we explore several post-hoc
calibration techniques. Our results show that contextual calibration proves particularly effective for
prompt classification and temperature scaling improves response classification performance more.
Our findings underscore the importance of uncertainty-based reliability and advocate for incorpo-
rating confidence calibration evaluation in the development and release of future LLM-based guard
models.
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ETHICAL STATEMENT AND BROADER IMPACTS

Our work examines the reliability and confidence calibration of existing LLM-based guard models.
Despite enhanced confidence calibration for certain guard models, it is essential to emphasize that
confidence calibration should not be the sole criterion for determining the suitability of a guard
model for deployment. Guard models could potentially make incorrect predictions, particularly
when dealing with texts in the wild. We thus advocate for a more holistic reliability evaluation
that integrates uncertainty-based confidence calibration with assessments of model robustness and
overall performance, and in certain cases, even human-involved factors tailored to specific scenarios.

The broader implications of our study have the potential to drive future research towards the devel-
opment of better-calibrated guard models. Our insights also contribute to the design of more effec-
tive post-hoc calibration techniques, the incorporation of calibration optimization during instruction
tuning, and the synthesis of diverse and high-quality data aimed at enhancing both calibration and
robustness in the future. Furthermore, our work potentially provides valuable guidance on select-
ing classifiers that can ensure consistent and reliable evaluations of attack success rate (ASR) in
determining whether a jailbreak attack has succeeded.

LIMITATIONS

Our work focuses on post-hoc calibration methods for open-source LLM-based guardrail models.
The explored methods do not apply to closed-source models where the logit outputs are unavailable.
As for each calibration method, there exist trade-offs. Temperature scaling requires the in-domain
validation set for temperature optimization, but in-domain data are not always available in the prac-
tical setting. Contextual calibration requires access to the instruction prompt for inference, but the
bias captured from content-free tokens may not always be accurate enough. Batch calibration re-
quires access to a batch of unlabeled samples in the target domain, but they could be adapted to
adversarial distribution shifts and may need additional validation sets to determine the batch size.
In general, post-hoc calibration methods only mitigate the miscalibration in certain scenarios and
it is challenging for one single method generalizable to all models and datasets. Nevertheless, this
inspires future works to design not only better post-hoc calibration methods but also more reliable
training methods to address miscalibration.

REPRODUCIBILITY STATEMENT

In support of reproducibility, our submission includes the full code implementation, along with com-
prehensive instructions in the README.md file detailing the steps required to install the necessary
environments and run our experiments. Additionally, we provide all relevant information regard-
ing publicly available datasets and models, enabling interested researchers can replicate the results
presented in this paper.
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A APPENDIX

A.1 DATASET DETAILS

In this section, we briefly describe the public datasets we examined and show the statistics in Table 6.

Dataset # Prompt # Response
safe/unsafe safe/unsafe

Prompt Classification

OpenAI Moderation 1158/522 -
ToxicChat Test 2491/362 -
Aegis Safety Test 126/233 -
SimpleSafetyTests 0/100 -
XSTest 250/200 -
Harmbench Prompt 0/239 -
WildGuardMix Test Prompt 971/754 -

Response Classification

BeaverTails - 894/1106
SafeRLHF - 1000/1000
Harmbench Response - 326/270
WildGuardMix Test Response - 1440/285

Table 6: Statistics of datasets we used.

OpenAI Moderation (Markov et al., 2023). This dataset contains 1680 prompts with labels
for 8 unsafe categories including sexual, hate, violence, harassment, self-harm, sexual/minors,
hate/threatening, and violence/graphic. Each category label is a binary flag.

ToxicChat Test (Lin et al., 2023). We use the test split of the new version toxicchat0124, involving
2853 user prompts collected from the Vicuna online demo2, each annotated with binary toxicity
labels.

Aegis Safety Test (Ghosh et al., 2024). This dataset is built on the prompts from HH-RLHF and
responses generated by Mistral-7B-v0.1 with human annotations. We utilize the prompt-only sub-
set, with a size of 359, from the test split of the dataset. The absence of the turn-level split of
utterances during the conversation makes it infeasible for response classification evaluation. This
dataset covers 13 unsafe content categories according to NVIDIA’s content safety taxonomy includ-
ing Hate/Identity Hate, Sexual, Violence, Suicide and Self Harm, Threat, Sexual Minor, Guns/Illegal
Weapons, Controlled/Regulated substances, Criminal Planning/Confessions, PII, Harassment, Pro-
fanity, Other. The “Needs Caution” category is also involved for uncertain cases.

SimpleSafetyTests (Vidgen et al., 2023). This dataset involves 100 manually-crafted harmful
prompts with topics in Suicide, Self-Harm and Eating Disorders, Physical Harm and Violence, Ille-
gal and Highly Regulated items, Scams and Fraud, Child Abuse.

XSTest (Röttger et al., 2023). This dataset contains 250 safe prompts and 200 unsafe prompts. Safe
prompts use similar language to unsafe prompts or mention sensitive topics but they are clearly safe
and should not be refused. Binary labels are provided in this dataset.

Harmbench Prompt (Mazeika et al., 2024). This dataset is designed for robustness to jailbreak at-
tacks with prompts for eliciting harmful outputs from LLMs. We use the “standard” and “copyright”
subsets, with a total size of 239, from the test split of the dataset in our evaluation for LLM-based
guard models on prompt classification. The topics of unsafe prompts include Cybercrime & Unau-
thorized Intrusion, Chemical & Biological Weapons/Drugs, Copyright Violations, Misinformation
& Disinformation, Harassment & Bullying, Illegal Activities, General Harm.

Harmbench Response (Mazeika et al., 2024). This dataset refers to a variant of the validation set
used for fine-tuning Llama2-variant from Harmbench, which consists of 602 responses generated by

2https://lmarena.ai/
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various models and jailbreak attacks. We use the pairs of their vanilla prompts and model responses
with human labeling for response classification, resulting in a set of 596 pairs.

Harmbench-adv (Mazeika et al., 2024). This dataset refers to the original validation set with a size
of 602 for fine-tuning Llama2-variant from Harmbench. We term it “Harmbench-adv” to differen-
tiate it from “Harmbench Response” given that adversarial prompts from diverse attack methods
are involved in the Harmbench-adv set. Adversarial prompts could be very different from vanilla
ones. We further split this dataset in terms of the type of response models and retain 10 subsets with
statistics in Table 7.

BeaverTail Test (Ji et al., 2024). We utilize the test split of this dataset with 33.4k prompt-response
pairs, which contain manually annotated labels for model response harmfulness. The prompts
are modified from the HH-RLHF and Safety-Prompts, while the responses are generated with the
Alpaca-7B model. The 14 harm categories involve Animal Abuse, Child Abuse, Controversial
Topics & Politics, Discrimination & Stereotype & Injustice, Drug Abuse & Weapons & Banned
Substance, Financial Crime & Property Crime & Theft, Hate Speech & Offensive Language, Mis-
information Regarding ethics & laws & safety, Non-Violent Unethical Behavior, Privacy Violation,
Self-Harm, Sexually Explicit & Adult Content, Terrorism & Organized Crime, Violence & Aiding
and Abetting & Incitement. We use a subset of 2k size randomly sampled from the original test split
to reduce the evaluation cost.

SafeRLHF Test (Dai et al., 2023). The dataset shares the prompts with the BeaverTails dataset and
generates responses from Alpaca-7B, Alpaca2-7B, and Alpaca3-8B. The 19 harm categories include
Endangering National Security, Insulting Behavior, Discriminatory Behavior, Endangering Public
Health, Copyright Issues, Violence, Drugs, Privacy Violation, Economic Crime, Mental Manipu-
lation, Human Trafficking, Physical Harm, Sexual Content, Cybercrime, Disrupting Public Order,
Environmental Damage, Psychological Harm, White-Collar Crime, Animal Abuse. We use a subset
of 2k size randomly sampled from the original test split to reduce the evaluation cost.

WildGuardMix Test (Han et al., 2024). This dataset contains 1725 samples with synthetic, in-the-
wild user-LLM interactions and annotator-written data. Responses to synthetic and vanilla prompts
are generated using a suite of LLMs. We consider the prompt harmfulness and response harmful-
ness annotations in our evaluations. WildGuardMix Test Prompt and WildGuardMix Test Response
refer to the prompts data and prompt+response pairs data for prompt and response classification,
respectively.

Response Model
Total Baichuan2 Qwen Solar Llama2 Vicuna Orca2 Koala OpenChat Starling Zephyr

# Response 540 64 62 45 69 68 65 59 38 37 33

Table 7: Statistics of subsets across 10 different response models.

A.2 MODEL DETAILS

We summarize the hugging face model cards of 9 LLM-based guard models we examined in Ta-
ble 8. Note that we do not assess the series of ShieldGemma3 models given that they only support
classification for a single policy per inference, making public datasets infeasible for evaluation due
to the policy difference.

A.3 IMPLEMENTATION DETAILS

We use Pytorch and Huggingface Transformers in our implementation. We run all evaluations on
a single NVIDIA A40 GPU (48G). We use M = 15 bins as in Guo et al. (2017) for all our ECE
evaluations. For temperature scaling, we optimize the T within the range from (0, 5]. For prompt
classification, we keep the original prompt lengths for most datasets except OpenAI Moderation
where we truncate a few samples with extremely long lengths to avoid the out-of-memory error. We
keep the maximum length as 1800. For response classification, we keep the original prompt length
for all datasets and set the maximum response length as 500.

3https://huggingface.co/google/shieldgemma-2b
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Guard Models Hugging Face page
Llama-Guard-7B meta-llama/LlamaGuard-7b
Llama-Guard2-8B meta-llama/Meta-Llama-Guard-2-8B
Llama-Guard3-8B meta-llama/Llama-Guard-3-8B
Aegis-Guard-Defensive-7B nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0
Aegis-Guard-Permissive-7B nvidia/Aegis-AI-Content-Safety-LlamaGuard-Permissive-1.0
Harmbench-Llama2-13B cais/HarmBench-Llama-2-13b-cls
Harmbench-Mistral-7B cais/HarmBench-Mistral-7b-val-cls
MD-Judge-v0.1-7B OpenSafetyLab/MD-Judge-v0.1
WildGuard-7B allenai/wildguard

Table 8: Hugging Face Model Cards for examined LLM-based guard models

A.4 MORE RELIABILITY DIAGRAMS

We report the full reliability diagrams with corresponding confidence distributions of all 9 mod-
els we examined for both prompt classification and response classification on the WildGuardMix
Test Prompt set, shown in Figure 4, the WildGuardMix Test Response set, shown in Figure 5, 6,
the Harmbench Prompt set, shown in Figure 7, and the Harmbench Response set, shown in Fig-
ure 8, 9. The full results illustrate that existing LLM-based guard models exhibit varying levels
of miscalibration. Models including LLama-Guard, LLama-Guard2, LLama-Guard3, WildGuard,
Harmbench-Llama, and Harmbench-Mistral tend to make overconfident predictions, while Aegis-
Guard-D, Aegis-Guard, and MD-Judge-v0.1 are not.

A.5 MORE CALIBRATION RESULTS UNDER ADVERSARIAL CONDITIONS

We conduct more calibration experiments using temperature scaling, contextual calibration, and
batch calibration on the Harmbench-adv set to mitigate the miscalibration discussed in Section 4.2.2,
and Section 4.2.3. We keep the same settings and implementations as those in the main text. The
ECE results are presented in Table 9 and Table 10, respectively. These additional empirical findings
indicate the same conclusion as in the main text, that contextual calibration proves impressively ef-
fective on prompt classification, while temperature scaling benefits more on response classification.

Model Prompt Classification Response Classification
Origin TS CC BC Origin TS CC BC

Llama-Guard 69.3 65.6 58.7 65.8 30.8 30.1 21.2 19.0
Llama-Guard2 59.6 57.6 35.0 61.2 24.4 13.7 31.1 23.7
Llama-Guard3 46.2 44.5 36.3 50.7 20.8 8.8 33.2 20.8
Aegis-Guard-D 40.4 40.8 54.5 52.2 21.5 21.8 11.8 13.8
Aegis-Guard-P 54.4 51.9 52.5 56.6 12.1 16.7 12.5 12.5
HarmB-Llama - - - - 27.1 26.3 35.2 26.3
HarmB-Mistral - - - - 19.8 17.9 29.1 18.7
MD-Judge - - - - 12.9 17.2 32.9 12.9
WildGuard 34.9 34.3 26.2 38.6 13.1 10.4 14.3 13.1

Avg. 54.0 52.1 43.3 57.3 20.3 17.1 24.6 17.9

Table 9: ECE (%) ↓ performance comparison of different calibration techniques. For each guard
model, we report the Origin: original results, TS: Temperature Scaling, CC: Contextual Calibration,
BC: Batch Calibration. We bold the best average result among different calibration techniques in
both prompt and response classification.

A.6 INSTRUCTION PROMPTS

Instruction prompts for all LLM-based guard models we examined can be found in our submitted
code implementation or their Huggingface model cards in Table 8.
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Guard Model Response Model
Baichuan2 Qwen Solar Llama2 Vicuna Orca2 Koala OpenChat Starling Zephyr Avg.

Llama-Guard 26.9 23.0 49.4 10.5 28.0 26.4 27.4 40.3 46.3 38.5 31.7
+ TS 26.0 21.2 46.9 8.9 25.1 22.3 24.7 35.0 43.7 36.3 29.0
+ CC 25.5 17.1 46.3 10.0 26.3 22.2 31.8 35.1 40.1 31.5 28.6
+ BC 25.5 16.6 48.0 21.7 26.4 23.3 26.9 36.9 47.3 40.6 31.3

Llama-Guard2 18.2 5.8 27.1 7.9 28.4 25.2 30.4 28.5 37.0 39.4 24.8
+ TS 15.4 5.3 25.0 7.1 25.9 22.9 27.5 26.0 33.7 36.5 22.5
+ CC 40.3 31.1 31.7 36.3 29.1 38.1 43.0 39.4 27.4 32.5 34.9
+ BC 18.3 7.8 29.7 15.6 28.3 25.2 28.6 28.5 38.6 40.5 26.1

Llama-Guard3 33.7 17.1 31.0 27.4 20.5 27.3 36.5 34.2 27.6 23.1 27.8
+ TS 31.0 15.1 28.3 25.5 18.9 24.6 33.0 31.8 26.4 23.2 25.8
+ CC 46.1 30.8 42.6 45.7 36.9 39.8 48.0 43.4 27.9 29.0 39.0
+ BC 32.0 18.0 25.5 31.8 19.2 25.5 30.4 28.3 32.2 26.4 26.9

Aegis-Guard-D 35.5 27.1 22.2 40.8 34.0 33.9 31.3 30.9 27.8 30.9 31.4
+ TS 29.5 26.3 20.8 40.8 30.1 31.4 27.2 30.2 27.3 31.2 29.5
+ CC 27.7 17.3 26.5 25.9 28.8 25.7 23.1 29.4 34.3 34.2 27.3
+ BC 28.9 23.6 25.5 43.9 29.5 26.0 20.4 29.1 40.1 39.7 30.7

Aegis-Guard-P 22.8 17.4 28.3 23.6 26.2 28.2 32.1 35.5 36.3 25.7 27.6
+ TS 19.5 18.5 24.6 26.6 24.4 26.2 29.9 32.1 33.5 29.4 26.5
+ CC 23.7 18.2 27.5 25.4 26.6 28.9 32.9 35.1 35.3 24.6 27.8
+ BC 22.3 20.5 29.3 39.4 26.2 27.6 29.0 35.8 43.8 35.4 30.9

HarmB-Llama 17.7 6.4 25.0 23.5 16.0 19.5 26.7 23.2 23.3 20.1 20.1
+ TS 17.3 7.6 22.5 22.6 15.6 18.5 26.2 23.5 24.1 21.3 19.9
+ CC 32.0 23.9 31.8 24.8 23.7 28.8 37.8 29.2 21.9 21.5 27.5
+ BC 17.8 8.3 23.6 24.0 15.9 19.1 25.6 22.4 23.9 20.3 20.1

HarmB-Mistral 28.0 3.0 30.1 12.8 16.6 17.5 16.0 14.9 27.7 19.9 18.6
+ TS 26.4 5.6 27.3 12.7 15.2 14.3 15.6 14.1 26.1 19.5 17.7
+ CC 34.5 10.8 39.2 19.4 19.1 25.8 35.2 25.3 26.0 20.2 25.6
+ BC 27.1 2.9 23.8 17.5 16.6 17.1 11.4 14.0 27.0 19.6 17.7
MD-Judge 22.4 14.4 19.3 24.1 19.9 16.7 26.2 25.5 26.0 17.9 21.2
+ TS 22.2 17.5 19.6 27.4 20.3 17.2 23.2 21.7 29.4 20.1 21.9
+ CC 47.2 40.9 30.3 61.5 41.7 39.4 44.2 37.1 25.9 24.8 39.3
+ BC 20.7 17.2 21.5 38.5 20.1 15.7 17.6 26.8 39.0 30.3 24.7

WildGuard 22.1 9.2 15.5 17.0 11.2 20.1 37.3 25.4 18.6 21.3 19.8
+ TS 19.6 6.7 15.2 12.3 12.0 19.2 34.6 25.0 16.3 21.3 18.2
+ CC 24.3 12.2 20.1 21.3 16.1 20.9 39.2 31.3 20.6 24.0 23.0
+ BC 21.9 10.4 13.6 23.7 11.0 20.2 34.7 22.8 15.0 23.8 19.7

Table 10: ECE (%) ↓ performance comparison of different calibration techniques. For each guard
model, we report the original calibration results in the first row and the rest results using TS: Tem-
perature Scaling, CC: Contextual Calibration, BC: Batch Calibration, in the following three rows.
We bold the best average result among different calibration techniques for each guard model.
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Figure 4: Confidence distributions (First row) and reliability diagrams (Second row) on the Wild-
GuardMix Test Prompt set.
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Figure 5: Confidence distributions (First row) and reliability diagrams (Second row) on the Wild-
GuardMix Test Response set.
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Figure 6: Confidence distributions (First row) and reliability diagrams (Second row) on the Wild-
GuardMix Test Response set.
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Figure 7: Confidence distributions (First row) and reliability diagrams (Second row) on the Harm-
bench Prompt set.
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Figure 8: Confidence distributions (First row) and reliability diagrams (Second row) on the Harm-
bench Response set.
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Figure 9: Confidence distributions (First row) and reliability diagrams (Second row) on the Harm-
bench Response set.
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B ADDITIONAL EXPERIMENTS

B.1 EFFECTS OF IN-DOMAIN VALIDATION SETS FOR TEMPERATURE SCALING

To further improve the calibration effect of temperature scaling, we conduct additional experiments
by optimizing temperature on the in-domain set. Specifically, we consider the WildGuardMix
dataset and split a validation set of size 100 from its training set as the in-domain validation set.
The temperature is then optimized on the new validation set. The results for prompt and response
classification are reported in Table 11. It is observed that the temperature optimized on the in-domain
validation set is more effective in reducing ECE than the one optimized on XSTest. Despite the ben-
efits, there is not always access to such an in-domain validation dataset for different scenarios in the
wild, leading to a trade-off when applying temperature scaling.

Model Prompt Classification Response Classification
Origin TS(XSTest) TS(In-Domain) Origin TS(XSTest) TS(In-Domain)

Llama-Guard 28.6 26.0 19.9 14.2 14.0 11.6
Llama-Guard2 26.8 26.0 19.9 12.8 13.6 9.8
Llama-Guard3 20.5 20.4 16.4 11.1 13.0 8.6

Table 11: ECE (%) ↓ performance comparison of different validation sets.

B.2 ABLATION ON THE LENGTH OF ADVERSARIAL PROMPTS

To investigate whether the guard model is vulnerable due to the jailbroken nature of the prompts,
or due to some spurious correlations such as length, we design additional experiments. Specifically,
we consider three different ranges of adversarial prompt length, leading to three subsets. Then we
assess the ECE on three subsets separately and report the results in Table 12. It is observed that
there are similar ECE performances among different length ranges, which further supports that it
is the jailbroken nature of adversarial prompts that makes guard models vulnerable. We conjecture
that there exist many unseen adversarial prompts with any token combinations in the wild and it
is impossible to involve all adversarial prompts in instruction tuning of guard models. Thus, the
evaluation of adversarial prompts introduces varying levels of uncertainty instead of making over-
confident predictions that lead to high ECE performances.

Length (L) Range 0 ≤ L < 200 200 ≤ L < 500 500 ≤ L
Llama-Guard 68.4 76.5 66.2
Llama-Guard2 60.9 61.9 50.7
Llama-Guard3 49.6 46.7 33.4

Table 12: ECE (%) ↓ performance comparison among different length ranges.

B.3 ROBUSTNESS ON BLACK-BOX RESPONSE MODELS

To further assess the ECE performance when classifying responses from proprietary models, we try
to collect the responses from GPT-3.5, GPT-4, and Claude-2 to the same set of adversarial queries,
and then conduct the same evaluation of ECE. The results are reported in Table 13. It is observed
that all guard models have low ECE values when classifying responses from GPT-4 and Claude-2.
The reason is that the utilized adversarial attacks are not effective enough for these well-aligned
black-box models and thus elicit clear refusal responses that are easy to classify for guard models.
Nevertheless, some guard models still exhibit high ECE values when classifying responses from
GPT-3.5, serving as a nice complement and support to our Finding 3 in Section 4.2.3.
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Guard Model Response Model
GPT-3.5 GPT-4 Claude-2

Llama-Guard 39.1 0.0 0.8
Llama-Guard2 18.8 0.0 0.0
Llama-Guard3 0.0 0.0 0.0
Aegis-Guard-D 0.0 0.0 10.7
Aegis-Guard-P 26.6 0.0 0.0
HarmB-Llama 31.2 0.0 0.0
HarmB-Mistral 30.5 0.0 0.0
MD-Judge 21.5 0.0 3.2
WildGuard 9.0 0.0 0.0

Table 13: ECE (%) ↓ performances of response classification on Harmbench-adv set on black-box
response models.

B.4 COMPARISON OF FALSE POSITIVE RATE AND FALSE NEGATIVE RATES

To investigate what types of over-confidence behaviors different guard models are showing, we
report the statistics of the false positive rates (FPR) and false negative rates (FNR) in Table 14. It
is observed that most models generally showcase higher false negative rates, suggesting their over-
confidence behaviors to predict the input as the safe type.

Model Prompt Classification Response Classification
Metric OAI ToxiC SimpST Aegis XST HarmB WildGT BeaverT S-RLHF HarmB WildGT

Llama-Guard FPR 8.4 1.4 - 3.2 15.2 - 2.4 8.5 16.6 12.9 0.8
FNR 28.9 53.0 13.0 39.9 17.0 49.8 60.9 46.2 49.5 47.0 67.3

Llama-Guard2 FPR 8.2 3.1 - 4.8 7.6 - 3.6 7.9 21.3 19.3 3.1
FNR 27.4 62.7 8.0 42.5 12.5 11.3 43.6 39.1 28.3 21.5 41.5

Llama-Guard3 FPR 9.2 5.0 - 2.4 2.8 - 4.4 4.0 17.7 35.3 3.5
FNR 21.5 50.0 1.0 43.3 18.0 2.1 34.9 46.0 35.8 3.7 35.6

Table 14: FPR (%) ↓ and FNR (%) ↓ performances of prompt and response classification on existing
public benchmarks.
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