
SoilMoistureMapper: a GNSS-R approach for soil moisture retrieval on UAV

Volkan Senyurek1*, Mehedi Farhad2, Ali C. Gurbuz2, Mehmet Kurum2, Robert Moorhead1

Geosystems Research Institute, Mississippi State University1

Dept. of Electrical and Computer Eng. Mississippi State University 2

Starkville, MS, USA
volkan@gri.msstate.edu

Abstract

Measuring of distribution of the soil moisture (SM) content
is an essential requirement in precision agriculture. This pa-
per demonstrates practical and low-cost soil moisture map-
ping techniques based on Global Navigation Satellite Sys-
tem (GNSS) Reflectometry (GNSS-R) observations via a
small-size unmanned-aerial vehicle (UAV). An SM estima-
tion model is developed using a random forest (RF) machine-
learning (ML) algorithm combining GNSS-R signals with an-
cillary vegetation indices from a multispectral camera. The
ML model is trained and tested using in-situ data from eight
SM probes located in a 2.48ha farm. The study results showed
that SM maps of the field can be obtained with about 13 mins
flight with 5m × 5m spatial resolution. The developed ML
model reached RMSE of 0.032m3m−3 and R-value of 0.93
in 10-fold cross-validation.

The traditional way of measuring SM content is to use in-
situ SM probes. Although this technique is accurate and reli-
able, it can be costly and inefficient for precision agriculture.
Over the last decades, with the progress of remote sensing
techniques, microwave-based satellite missions have been
launched for regional and global SM measurements. Soil
Moisture Active Passive (SMAP) (Entekhabi et al. 2010)
and The European Space Agency’s (ESA) Soil Moisture
and Ocean Salinity (SMOS) (Kerr et al. 2016) are two well
known dedicated spaceborne missions that use L-band ra-
diometer to measure surface SM. Both missions provide 36-
km spatial and 1-3 days temporal resolution on a global
scale. Sentinel-1 is another spaceborne mission that uses C-
band synthetic aperture radar and provides 1-km spatial and
6-12 days temporal resolution (Paloscia et al. 2013). Global
navigation satellite system reflectometry (GNSS-R) is a
signal-of-opportunity (SoOP) application based on bistatic
radar configuration. In GNSS-R, all navigation satellites
work as transmitters, and passive receivers collect reflected
signals from the earth’s surface. NASA’s Cyclone GNSS-R
(CYGNSS) mission contains eight low orbit satellites that
collected reflected GNSS signals from on the ground. Al-
though this mission was designed to improve hurricane fore-
casting, many studies showed that its land observation could
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be used in SM estimation (Chew and Small 2018; Al-Khaldi
et al. 2019; Eroglu et al. 2019; Senyurek et al. 2020; Yan
et al. 2020). With the help of the low apogee altitude(536
Km) of the CYGNSS constellation, it provides higher spa-
tial (7 Km × 0.5 Km for coherent scattering) and temporal
resolution (0.5 and 0.1 visits/day for 9-km × 9-km aggre-
gated grids) than other spaceborne SM missions. With the
help of the low apogee altitude(536 Km) of the CYGNSS
constellation, it provides higher spatial (7 Km × 0.5 Km
for coherent scattering) and temporal resolution (0.5 - 0.1
visits/day for 9-km × 9-km aggregated grids) than other
spaceborne SM missions. However, still, its spatiotempo-
ral resolution is not enough for site-specific PA applications.
This study demonstrated that GNSS-R-based SM estimation
could be achieved using a small drone and a low-cost GNSS
receiver in a high resolution. We developed an ML SM re-
trieval model that uses surface reflected signals and vegeta-
tion indexes as input. The model was trained and validated
with in-situ measurements.

SoilMoistureMapper structure
Fig. 1 shows the concept and the steps of the UAV-based
SM retrieval structure. A UAV equipped with a GNSS re-
ceiver follows a predefined flight plan for each experiment.
During the flight, the GNSS receiver collects all available re-
flected signals from the field surface simultaneously. A mul-
tispectral camera provides spectral images (blue, green, red,
red edge, and near-IR bands) to calculate related vegetation
indices used as ancillary data in the developed SM model.
Eight SM probes are placed at different locations in the field
as ground truth SM data sources for ML model training and
validation.

Hardware and study field
A U-blox GNSS receiver with its onboard mini-computer
and A multispectral camera (redEdge-MX) is attached un-
derneath of UAV (550m carbon fiber frame with PixHawk
flight controlled) Fig. 2.

Forty flight experiments were performed between June
2020 and October 2020 on a 2.48ha farm at The R. R. Foil
Plant Science Research Center, Mississippi State University,
Starkville, MS, the USA. The flight parameters are set as
15-meter flight altitude, 5m/s flight speed, and 13 min flight



Figure 1: Simplified structure of UAV based SM retrieval.

time for all experiments. Fig. 3 shows the study field and
predefined flight path.

Figure 2: The UAV equipped with u-blox GPS receiver and
multispectral camera

Data preparation and ML model development
Specular reflection points are calculated using NASA’s GPS
orbit data product and the current location of UAV for each
reflected GPS signal. Then for each specular point, carrier-
to-noise density (C/N0), elevation, and azimuth angles are
extracted from recorded National Marine Electronics Asso-
ciation (NMEA) messages.

The previous studies showed that L-band microwaves are
not only sensitive to SM also vegetation occupancy. Vegeta-
tion cover attenuates and reflects the incident signals (Guo

Figure 3: Study filed and the flight path.



et al. 2013). An ML model for SM retrieval should consider
vegetation effects in the model development process. In this
study, we calculate Normalized difference vegetation index
(NDVI) and vegetation water content (VWC) indexes from
red and near-IR spectral bands images using equations in
(Chan et al. 2013).

The spatial resolution of the study is 5m × 5m because of
the 5m/s flight speed and 1 Hz GPS sampling rate. So all five
input features (C/N0, elevation angle, azimuth angle, NDVI
and VWC) are gridded into 5m × 5m grids.

An RF regression algorithm with ten trees and a maxi-
mum split size of 6 for each tree is utilized as an ML algo-
rithm. The RF model is trained using a least-squares boost-
ing ensemble strategy with a learning rate of 0.75. The RF
model is trained and validated with input features (C/N0, el-
evation, azimuth, NDVI, and VWC) and soil moisture mea-
surements from SM in-situ probes in 10-fold and leave-out-
one-probe cross-validation fashion. The performance of the
developed SM model is evaluated by calculating RMSE, un-
biased RMSE (ubRMSE), and R-value metrics.

Figure 4: Distribution of calculated specular point in the
study filed on 10 July 2020.

Results and Discussions
A total of 50 flights were performed between 7 January 2020
and 15 October 2020. The GNSS receiver recorded signals
from an average of 10.14 (±1.35) GPS satellites during the
flights. During the whole experiment, a total of 209757 ob-
servations were recorded. The observations that correspond
to elevation angles lower than 15 degrees and C/N0 smaller
than 15 dB were removed from the dataset. After the data
filtering process, the average number of usable GPS satel-
lites and the average number of specular points decreased to
7.56 (±0.8) and 4736 (±878) per flight.We calculated the
average coverage rate of the field as 88% in a single flight.
We also observed that the area rate with multiple specular
point observation is 82%. The coverage rates and multiple
sampled rates were calculated based on 5m × 5m grid cells.
Table 1 summarizes all the statistics about experiments, and

Fig. 4 shows the distribution of specular points on 10 July
2020. The figure shows there are pretty much multiple ob-
servations for many grids. If a grid has multiple observa-
tions, multiple SM estimations are averaged and assigned as
the SM estimations of the grid.

Fig. 5(a-d) shows the images of C/N0, elevation angle,
NDVI, and estimated soil moisture maps on 10 July 2020.
Although the proposed UAV-based method provides estima-
tions for most of the study area, there are still some gaps
without SM estimation since fewer GPS satellites or the
quality of observations. The results show that a 13 min flight
covers most of the parts of a 2.48ha field. Fig. 5 shows there
are pretty much multiple observations for many grids. If a
grid has multiple observations, multiple SM estimations are
averaged and assigned as the SM estimations of the grid.
Fig. 5(d) shows SM differences between the upper (corn)
and lower (cotton) parts of the field. In addition, the rela-
tively dry SM of the alley between the crops field can be
seen from the map.

Figure 5: Measured inputs and estimated SM on 10 July
2020. (a-b) reflection power and elevation angle from GNSS
receiver, (c) NDVI, (d) SM.

The performance validation of the proposed UAV-based
SM model was performed against eight in-situ SM probes
measurements. The performance metrics, RMSE, ubRMSE,
and R-value, were calculated in 10-fold and leave-one-
probe-out cross-validation fashions. Table 2 summarizes the
overall performance of the proposed model. The ML model
reached the overall RMSE of 0.032 m3m−3 and overall R-
value of 0.93 in 10-fold cross-validation. These scores were
obtained as 0.068 m3m−3 and 0.40 in leave-one-probe-
out cross-validation. Fig. 6 provides a temporal compari-
son of UAS-based SM estimates against SM probe mea-
surements for four SM probes. The figure shows that UAS-



# of flights Avg. seen GPSs Avg. usable GPSs Avg. sampled specular points Avg. coverage rate Avg. multiple SP rate
40 10.64 (±1.48) 7.65 (±0.8) 5378 (±629) 0.86 (±0.07) 0.82 (±0.1)

Table 1: Flights and data statistics.

based GNSS-R SM estimates follow the in-situ measure-
ments closely. However, slightly lower leave-one-probe-out
cross-validation performance indicates that to obtain a bet-
ter site-independent model, more in-situ measurements from
different field locations should be added.

Cross-validation RMSE (m3m−3) R-value
10-fold 0.032 0.93
leave-one-probe-out 0.068 0.40

Table 2: Overall performance metrics for different cross-
validation methods

Figure 6: (a-e) time series of measured and estimated SMC
in 10-fold cross-validation for selected SM probes, (f) loca-
tion of SM probes.

Conclusion
This study demonstrated that a simple GNSS receiver could
collect reflected GNSS signals from the agricultural field.
In combination with vegetation indices via a multispectral
camera, reflected GNSS signals can estimate SM value with
a high resolution. The obtained performance score of the
model using different cross-validation techniques shows the
capability of the application. Compared to the traditional soil

moisture estimations based on a few soil moisture samples
averaged across the farm, The proposed method enables ac-
curate prediction in the agricultural application to identify
dry/wet spots and water-stressed crops. As a future study,
different flight plans (flight altitude, flight speed, and flight
duration) will be tested for more accurate and better spa-
tial resolution. Instead of a multispectral camera, a 3D Lidar
may provide more detailed vegetation information that can
help improve ML model performance.
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