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ABSTRACT

Treatment effect estimation from observational data faces critical challenges when
covariates are partially observed due to resource constraints or privacy con-
cerns. This study introduces a novel framework leveraging world models (e.g.,
DeepSeek) to address partial observability in treatment effect estimation using
a prompting strategy with few-shot in context learning. Specifically, the world
model iteratively prioritizes covariate acquisition based on simulated information
gain. It dynamically interacts with historical data and domain knowledge to op-
timize covariate selection under budget limitations, ensuring efficient data collec-
tion for unbiased effect estimation. Experiments on a well-known public available
dataset (Twins) show the effectiveness of the proposed framework.

1 INTRODUCTION

Treatment effect estimation lies at the heart of decision-making in fields such as healthcare (Alaa &
Van Der Schaar, 2017), economics (Chernozhukov et al., 2013), and public policy (Athey, 2015).
In healthcare, for instance, estimating the causal effect of a treatment—such as a drug or surgical
procedure—on patient outcomes is critical for clinical guidelines and personalized care. A funda-
mental challenge in this setting is the requirement to measure all covariates that influence both the
treatment assignment and the outcome—to avoid biased estimates. However, in practice, covariates
are often partially observed with priority due to resource limitations and privacy concerns, which
leads to an important concern: How can we accurately estimate treatment effects when some
covariates are missing, thus making reliable decision? In addition, we know nothing when a new
patient comes to the hospital and we need to perform the tests on the patient in a sequential manner,
such as electrocardiogram, blood pressure, etc, which raises another important issue: how do we
prioritize which covariates to collect under constrained budgets?

World models are used to simulate environments, predict outcomes, and plan actions, which are
foundational of intelligent agents. Models like GPT-4 and DeepSeek exhibit remarkable few-shot
reasoning abilities, enabling them to generalize from minimal examples and adapt to new tasks. In
this paper, we propose to use these capabilities to address the challenge of partial observability in
causal inference. Specifically, our framework treats covariate collection as a meta-learning problem:
the world model learns, through interaction with historical data and domain-specific knowledge,
which covariates are most critical for treatment effect estimation. At each step, the model evaluates
the current set of observed covariates, simulates the potential information gain from collecting each
missing covariate, and selects the one that maximizes a utility function balancing informativeness
and cost. This process continues until the budget is exhausted, at which point treatment effects are
estimated using the adaptively collected data.

2 PROBLEM FORMULATION

In our paper, we consider the case that the treatment variable is binary. Suppose we have n data point
in total, for each unit i, we collect p covariates, which is denoted as Xi = (Xi,1, . . . , Xi,p) ∈ Rp

and the binary treatment variable is denoted as Ti ∈ {0, 1}, where Ti = 1 and Ti = 0 means
assigned and not assigned the treatment, respectively. Let Yi ∈ R be the outcome of interest. For
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accurately estimating treatment effect, we adopt the potential outcome framework (Rubin, 1974;
Neyman, 1990). Specifically, let Yi(0) and Yi(1) be the potential outcome of unit i, where Yi(0)
and Yi(1) correspond to the outcome for not assigned and assigned treatment, respectively. Since
each unit can be assigned with one treatment, thus we can only observe one of Yi(0) or Yi(1)
corresponding to the treatment value, but not both, which is the well-known fundamental problem
of causal inference (Holland, 1986; Morgan & Winship, 2015).

For unit i, the individual treatment effect (ITE) is defined as ITEi = Yi(1) − Yi(0), which shows
that whether the treatment is beneficial for unit i. If ITEi > 0, we should assign treatment to this
unit and vice versa. Meanwhile, the conditional average treatment effect (CATE) is defined as

τ(x) = E[Yi(1)− Yi(0)|Xi = x], (1)

which is the expectation of the difference between two potential outcomes given the covariates x.
However, as mentioned in the introduction, covariates are often partially observed with priority, we
can only achieve the following masked CATE estimation:

τ̂(xm) = E[Ŷi(1)− Ŷi(0)|Xi = xm
i ], (2)

where xm denotes the masked covariate vector, i.e., xm
i = xi ⊙M with M ∈ {0, 1}p and there is

exactly m non-zero elements in M , Ŷi(1) and Ŷi(0) are the estimated outcome with treatment value
equals to 1 and 0 using a world model, respectively. In this paper, we formulate the limited budget
scenario by adopting a constraint m < γ, where γ is a pre-specified hyperparameter. Based on the
above analysis, we can formulate the problem as:

min
xm

(τ̂(xm)− τ(x))2, (3)

s.t. m ≤ γ. (4)

That is, maximize the estimation accuracy for τ(x) based on the τ̂(xm) with limited budget. In a
real-world scenario, we always need to make a decision based on the estimated masked CATE (also
known as causal decision making). For example, doctors need to decide if assigning a drug or a
surgical procedure to a patient based on the τ̂(xm). Thus, we need to minimize the regret below:

Regret(t̂) = E[Y (t∗(x))− Y (t̂(xm))], (5)

where t∗(X) is the best optimal treatment assignment based on τ(x) and t̂(xm) corresponds to the
evaluated treatment assignment policy, such as t̂(xm) = 1(τ̂(xm) > 0). Regret is minimized when
t̂(xm) = t∗(X).

3 METHOD

In this section, we will introduce the few-shot in-context learning method based on a world model.
First, note that the decision making problem is usually a Markov decision process, where contains
an action space A, a state S, and a transition P . Specifically, the detailed definitions in our scenario
are shown below:

• State: sm. We define the state sm = (X,T, Y,Xm), where (X,T, Y ) is unknown during the
evaluation process and invariant over time, and mask vector M controls which covariates are visible.

• Action: am+1. We define the action as consisting of the selected index of covariates and the stop-
ping criteria at each time step. Specifically, am+1 ∈ {0, 1, · · · , p} samples from π(X,M), which
is a (p + 1)-dimensional discrete probability distribution. When am ̸= 0 and we still have budget
m < γ, we collect the covariate corresponding to the action, otherwise we stop the acquisition.

• Transition: After choosing am as the action, the state sm−1 = (X,W, Y,Xm−1) transitions to
sm = (X,W, Y,Xm), which contains one more covariate compared to the previous state.

Recall that World models can encapsulate the dynamics of how actions affect environments, thus, in
this scenario, the world model is used to imagine “what will happen if we collect this covariate” and
to decide if we can achieve the final goal (minimizing the regret) based on a sequence of actions.
Specifically, we use in-context learning with a prompting strategy to induce a high-quality action
sequence using the following step:
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• Step 1. Prompt the world model by providing the background, all variables’ name, and some
History case, and prompt the world model to imagine the first variable should be collected for a new
unit based on the simulated information gain, historical data, and domain knowledge. In addition,
explicitly point out that do not use the greedy perspective to imagine.

• Step 2. After obtain an output action of the world model, using the current state (the value and
name of all collected covariates) as input, prompt the world model to imagine the next action (collect
which covariates or stop the acquisition).

• Step 3. When reaching the upper bound of the budget or stopping the acquisition, prompt the
world model to output the final results.

4 EXPERIMENT

4.1 DATASET

For evaluating the performance, we use the Twins1 (Almond et al., 2005) dataset, which is a seminal
resource in causal inference research, collected between 1989 and 1991 through U.S. birth records.
It contains observational data on pairs of monozygotic (identical) twins, with the primary aim of
studying the causal effect of birth weight on infant mortality and long-term health outcomes. This
dataset includes 50 covariates for the twin pair, such as the mother and father’s age and education,
health complications, and so on. The treatment is defined as the birth weights in grams of both twins
in the pair, and the outcome is the mortality outcome for both twins.

4.2 EXPERIMENT DETAILS

To validate whether world models can learn and identify the most critical covariates for decision
making through interaction with historical data and domain knowledge, we designed a Progressive
Querying experiment based on the state-of-the-art model Deepseek-R1 (Liu et al., 2024). Specif-
ically, we compare our progressive querying method with the following two baselines: Random
Selection, Ask All at Once, and Progressive Querying. The core research question is whether the
heavier twin Y (1) has a higher mortality rate than the lighter twin Y (0), i.e., whether Y (1) > Y (0)
holds. First, we use GPT-4 to select the most important 20 coariates for answering the core research
question, and we pre-define the budget limit is that we can collect 10 covariates at most. The detailed
introductions of each strategy are shown below:

• Random Selection: Selecting 10 features randomly from 20 background covariates, with-
out considering their importance or relevance. This method represents a completely un-
structured approach to feature selection, which may lead to inefficient information acquisi-
tion and lower prediction accuracy.

• Ask All at Once: The world model selects 10 features at once and makes a decision based
on these pre-selected features. This approach follows a static strategy, where the model
chooses the 10 features it considers most important based on training data, without acquir-
ing any specific sample information. However, its limitation lies in the lack of adaptability
to individual cases, which may result in the omission of critical features.

• Progressive Querying (Ours): As shown in Figure 2, the core idea of this method is to
maximize information acquisition and improve prediction accuracy. It leverages historical
case analysis and feedback from the current case to iteratively query up to 10 features,
dynamically adjusting the selection at each step to ensure that the chosen variables are
the most valuable for the final decision. Unlike greedy algorithms, this approach adopts a
globally optimal strategy, ensuring that the selected information provides the most compre-
hensive coverage of decision factors, thereby enhancing prediction accuracy.

By comparing these three approaches, our goal is to verify the effectiveness of the Progressive
Querying method in causal decision making tasks, specifically in whether it can improve decision
accuracy within a limited number of queries.

1http://www.nber.org/data/
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Background: 
We study the causal effect of twin birth weight on mortality rates. Each pair of twins’ data includes X (background 
characteristics) and Y (mortality rate).  
(1) X covers parental health status, pregnancy characteristics, medical conditions, and more, with a total of 20 
variables.  
(2)Y represents the mortality outcome of the twins, where Y0 denotes the mortality of the lighter infant (T0) (0 = 
survived, 1 = deceased), and Y1 denotes the mortality of the heavier infant (T1) (0 = survived, 1 = deceased).  
Task: 
Your task is to first analyze the four provided historical cases and observe how background characteristics X 
influence the relationship between Y0 and Y1. Then, for a new case, you need to progressively select 10 out of the 20 
background characteristics for inquiry. The selection strategy should be based on patterns from historical cases to 
maximize information gain. After collecting 10 characteristics, you must use the existing cases and feature patterns to 
determine whether Y1 > Y0, meaning whether the mortality rate of the heavier infant is higher than that of the 
lighter infant.  
Interaction Format: 
The interaction format is as follows: You play the role of a medical staff member and may ask for one background 
characteristic at a time. The inquiry strategy should avoid a greedy algorithm and instead consider global 
optimization. Once 10 characteristics have been collected, you must provide a final judgment: whether the mortality 
rate of the heavier infant is higher (Y1 > Y0). The background characteristics X include the following 20 variables: 
mager8 (maternal age), meduc6 (maternal education level), mrace (maternal race), mpre5 (prenatal care initiation 
time), nprevistq (number of prenatal visits), dfageq (paternal age), feduc6 (paternal education level), frace (paternal 
race); pregnancy and delivery-related variables: pldel (delivery place), birattnd (attending personnel), adequacy (care 
adequacy), gestat10 (gestational age, categorized into 10 levels), anemia (anemia), diabetes (diabetes), chyper 
(chronic hypertension), phyper (pregnancy-related hypertension), eclamp (eclampsia), preterm (history of preterm 

birth), tobacco (tobacco use), alcohol (alcohol consumption).  
History Case: 
Below are the complete data for four historical cases:  
Case 1: { “pldel”: 1, “birattnd”: 1, “mager8”: 4, “mrace”: 1, “meduc6”: 3, “mpre5”: 1, “adequat”: 2, “frace”: 1, 
“gestat10”: 5, “anemia”: 0, “diabetes”: 0, “chyper”: 0, “phyper”: 0, “eclamp”: 0, “preterm”: 0, “tobacco”: 1, “alcohol”: 
0, “nprevist”: 3, “dfageq”: 2, “feduc6”: 3, “Y0”: 0, “Y1”: 1 }.  
Case 2: { “pldel”: 1, “birattnd”: 1, “mager8”: 3, “mrace”: 2, “meduc6”: 3, “mpre5”: 1, “adequat”: 1, “frace”: 2, 
“gestat10”: 4, “anemia”: 0, “diabetes”: 0, “chyper”: 0, “phyper”: 0, “eclamp”: 0, “preterm”: 0, “tobacco”: 0, “alcohol”: 
0, “nprevist”: 2, “dfageq”: 4, “feduc6”: 3, “Y0”: 1, “Y1”: 0 }.  
Case 3: { “pldel”: 1, “birattnd”: 1, “mager8”: 4, “mrace”: 1, “meduc6”: 3, “mpre5”: 1, “adequat”: 1, “frace”: 1, 
“gestat10”: 3, “anemia”: 0, “diabetes”: 0, “chyper”: 0, “phyper”: 0, “eclamp”: 0, “preterm”: 0, “tobacco”: 0, “alcohol”: 
0, “nprevist”: 1, “dfageq”: 4, “feduc6”: 3, “Y0”: 1, “Y1”: 0 }.  
Case 4: { “pldel”: 1, “birattnd”: 1, “mager8”: 6, “mrace”: 1, “meduc6”: 5, “mpre5”: 1, “adequat”: 1, “frace”: 1, 
“gestat10”: 3, “anemia”: 0, “diabetes”: 0, “chyper”: 0, “phyper”: 0, “eclamp”: 0, “preterm”: 0, “tobacco”: 0, “alcohol”: 
0, “nprevist”: 0, “dfageq”: 6, “feduc6”: 4, “Y0”: 1, “Y1”: 0 }.  
 

Please start by progressively asking for 10 characteristics based on the patterns from historical cases, then provide 
the final judgment on whether Y1 is greater than Y0. Now, you may ask your first question in the format: “Please 
provide the value of [a specific characteristic].” 

 

Figure 1: The prompt of progressive querying to make causal decision.

4.3 EXPERIMENT RESULTS

As shown in Figure 2, the experimental results highlight the effectiveness of the Progressive Query-
ing strategy for causal inference in comparison to other feature selection methods. The Random
Selection strategy performed poorly, by selecting features arbitrarily, it failed to identify the most
relevant covariates for decision-making, leading to inaccurate conclusions. Meanwhile, the Ask All
at Once strategy, though able to extract some meaningful features, still produced suboptimal re-
sults. While it considered a broader set of variables, it lacked the adaptability to refine selections
dynamically based on case-specific information. Without the ability to update its knowledge base
iteratively, this approach was unable to leverage historical data effectively, ultimately leading to an
incorrect decision. The Progressive Querying strategy, on the other hand, performed well and cor-
rectly estimated the causal effect. This success is because our method allows the world model to
learn and identify the most critical covariates for decision-making through interaction with histori-
cal data and domain knowledge. By progressively refining the selection of features based on earlier
queries, we ensured that only the most relevant and impactful covariates were considered, resulting
in a more accurate and reliable decision.
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Progressive QueryingAsk All at OnceRandom Selection
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Selected
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Figure 2: A case study on world model for different feature selection strategies.

In conclusion, the experiment shows that Progressive Querying significantly outperforms both the
random selection and all-at-once strategies by dynamically adapting to the data and prioritizing the
most important features, thus leading to a more accurate causal estimation.

5 CONCLUSION

This work addresses the challenges of treatment effect estimation under partial covariate observ-
ability and budget-constrained data collection. By integrating world models with causal decision
making, we propose a dynamic framework that mimics human-like prioritization of covariate ac-
quisition, which uses the model’s ability to simulate counterfactual information gain for adaptively
selecting covariates. Specifically, we formulate covariate collection as a sequential optimization
task guided by domain-specific knowledge and leverage few-shot in context learning method with
prompting strategy to achieve more accurate treatment effect estimation. This approach not only
enhances the reliability of causal estimates in resource-constrained settings but also aligns with
real-world clinical workflows where diagnostic tests are ordered incrementally. Future work should
validate the framework on large-scale medical datasets and extend it to settings with heterogeneous
costs or temporal dependencies.
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