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Abstract
The massive developments of generative model
frameworks require principled methods for the
evaluation of a model’s novelty compared to a
reference dataset. While the literature has exten-
sively studied the evaluation of the quality, diver-
sity, and generalizability of generative models, the
assessment of a model’s novelty compared to a ref-
erence model has not been adequately explored in
the machine learning community. In this work, we
focus on the novelty assessment for multi-modal
distributions and attempt to address the following
differential clustering task: Given samples of a
generative model PG and a reference model Pref ,
how can we discover the sample types expressed
by PG more frequently than in Pref? We intro-
duce a spectral approach to the differential clus-
tering task and propose the Kernel-based Entropic
Novelty (KEN) score to quantify the mode-based
novelty of PG with respect to Pref . We analyze
the KEN score for mixture distributions with well-
separable components and develop a kernel-based
method to compute the KEN score from empirical
data. We support the KEN framework by present-
ing numerical results on synthetic and real image
datasets, indicating the framework’s effectiveness
in detecting novel modes and comparing gener-
ative models. The paper’s code is available at:
github.com/buyeah1109/KEN.

1. Introduction
Deep generative models including variational autoencoders
(VAEs) (Kingma & Welling, 2013), generative adversarial
networks (GANs) (Goodfellow et al., 2014), and denoising
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diffusion models (Ho et al., 2020) have attained remarkable
results in many machine learning problems. The success
of these models is primarily due to the great capacity of
deep neural networks to express the complex distributions
of image, audio, and text data. The impressive qualitative
results of deep generative models have inspired several the-
oretical and empirical studies on their evaluation to reveal
the advantages and disadvantages of existing architectures
for training generative models.

To compare different generative modeling schemes, sev-
eral evaluation metrics have been proposed in the literature.
The existing evaluation scores can be classified into two
categories: 1) distance-based metrics such as Fréchet In-
ception Distance (FID) (Heusel et al., 2017) and Kernel
Inception Distance (KID) (Bińkowski et al., 2018) measur-
ing the closeness of the distribution of data and generative
model, 2) quality, diversity, and generalizability scores such
as Inception score (Salimans et al., 2016), Precision/Recall
(Sajjadi et al., 2018; Kynkäänniemi et al., 2019), and Den-
sity/Coverage (Naeem et al., 2020) assessing the sharpness
and variety of the generated data. The mentioned metrics
tend to assign higher scores to models closer to the underly-
ing data distribution. While such a property is desired in the
evaluation of a learning framework, it may not result in an
assessment of a generative model’s novelty compared to a
baseline generative model or another reference distribution.

However, the massive developments of generative models
highlight the need to assess a model’s novelty compared to
other models, because an interpretable comparison between
generative models requires the identification of sample types
generated by one model more frequently than by the other
models. Moreover, prompt-based generative models are
often utilized to follow the user’s input text prompts to create
novel contents, e.g. images of a novel scene or object. If
the goal is to maximize the uncommonness of the generated
data compared to a reference dataset, a relevant evaluation
factor is the model’s expressed novelty in comparison to the
reference distribution.

In this work, we focus on the novelty evaluation task in the
context of multi-modal distributions which are often present
in large-scale image and text datasets due to the different
background features of the collected data. In our theoretical
analysis, we suppose the test and reference models consist
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of multiple modes and aim to solve a differential clustering
task for identifying the novel modes produced by the test
model more frequently than by the reference distribution.
We propose a spectral approach to the differential clustering
problem by analyzing the kernel covariance matrix of the
test and reference distributions, yielding eigenvalues mea-
suring the frequency of differently-expressed modes and
eigenvectors revealing the detected modes’ sample clusters.

In the proposed spectral framework, we attempt to compute
the eigenspace of the kernel covariance matrices of the test
and reference distributions. Assuming the Gaussian ker-
nel with a properly chosen bandwidth, we prove that the
eigenvalues and eigenvectors of the kernel covariance ma-
trix will approximate the frequency and mean of the modes
in a mixture distribution with well-separable components.
Based on this result, we analyze the eigenspectrum of ma-
trix ΛX|ηY = CX − ηCY, i.e. the difference between the
kernel covariance matrices of test X and reference Y data
multiplied by coefficient η ≥ 1. We demonstrate the appli-
cation of ΛX|ηY’s eigendecomposition to identify the novel
modes of test data X with an η-times higher frequency than
in the reference data Y. As a result, to quantify the mode-
based novelty, we propose computing the entropy of the
positive eigenvalues of ΛX|ηY, which we define to be the
Kernel-based Entropic Novelty (KEN) score.

To compute the KEN score under high-dimensional ker-
nel feature maps, e.g. the Gaussian kernel with an infinite-
dimensional feature map, we develop a kernel-based method
to compute the matrix’s eigenvalues and eigenvectors. The
proposed algorithm only requires the knowledge of pairwise
kernel similarity scores between the observed X and Y
samples and circumvents the computation challenges under
high-dimensional kernel feature maps. Specifically, for a
kernel function k, we show the η-differential kernel covari-
ance matrix ΛX|ηY shares the same eigenspectrum with the
following matrix KX|ηY which we call the η-differential
kernel matrix:

KX|ηY =

 KXX
√
η KXY

−√η K⊤

XY −η KYY

 ,

where KXX, KYY, and KXY denote the kernel matrices
for x samples, y samples, and the cross kernel matrix be-
tween x and y samples, respectively. Also, while this
matrix-based approach leads to the eigenvalue computation
for the non-Hermitian matrix KX|ηY, we show the applica-
tion of Cholesky decomposition to reduce the problem to
the eigendecomposition of a symmetric matrix, which can
be handled more efficiently using standard linear algebra
programming packages.

Finally, we present the numerical application of our pro-
posed spectral method to several synthetic and real image

datasets. For the synthetic experiments, we apply the nov-
elty quantification and detection method to Gaussian mix-
ture models and show the method can successfully count
and identify the additional modes in the test distribution
compared to the reference mixture model. In our experi-
ments on real datasets, we apply the proposed method to
identify the differently expressed sample clusters between
standard image datasets. The numerical results suggest the
methods’ success in detecting the novel concepts present
in the datasets. Furthermore, we apply the spectral method
to detect the modes expressed with different frequencies
by state-of-the-art generative modeling frameworks. The
following is a summary of this work’s main contributions:

• Proposing a kernel-based spectral method to analyze and
quantify mode-based novelty across multi-modal distribu-
tions,

• Providing theoretical support for the novelty quantifica-
tion method on mixture distributions with well-separable
components,

• Developing a kernel method for computing the proxy
mode centers and frequencies under high-dimensional
kernel feature maps,

• Applying the spectral method to detect differently ex-
pressed modes between standard generative models.

2. Related Work
Fidelity and diversity evaluation of generative models.
The evaluation of generative models has been studied in a
large body of related works as surveyed in (Borji, 2022).
The literature has proposed several metrics for the evaluation
of the model’s distance to the data distribution (Heusel et al.,
2017; Bińkowski et al., 2018), quality, and diversity (Sajjadi
et al., 2018; Kynkäänniemi et al., 2019; Naeem et al., 2020;
Jalali et al., 2023; Dan Friedman & Dieng, 2023). Except the
reference (Jalali et al., 2023), these works do not focus on
mixture distributions. Also, our analysis concerns novelty
evaluation between two distributions, different from the
diversity assessment task addressed by Jalali et al. (2023).

Also, (Stein et al., 2023; Kynkäänniemi et al., 2023) have
demonstrated that standard score-based evaluation meth-
ods may lead to a biased evaluation due to the choice of
Inception-V3 embedding commonly used for image-based
generative models. Stein et al. (2023) empirically show the
less biased evaluation results using DINOv2 embedding.
We note the similar importance of the selection of embed-
ding in the results of the spectral KEN approach. We also
highlight that the spectral method for evaluating KEN score
results in an interpretable evaluation by identifying novel
sample clusters between the test and reference distributions,
whose relevance can be investigated by the evaluator.
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Generalization evaluation of generative models. Sev-
eral related works aim to measure the generalizability of
generative models from training to test data. Alaa et al.
(2022) use the percentage of authenticity to measure the
likelihood of generated data copying the training data. Mee-
han et al. (2020) analyze training data-copying tendency by
comparing the average distance to the closest training and
test samples. Jiralerspong et al. (2023) examine overfitting
by comparing the likelihoods based on training and test
set. We note that the novelty evaluation task considered in
our work is different from the generalizability assessment
performed in these works, because our definition of mode-
based novelty puts more emphasis on out-of-distribution
modes not existing in the reference dataset. Also, we note
that the reference dataset in out analysis may not be the
training set of generative models, resulting in a different
task from a training-to-test generalization evaluation.
Sample rarity and likelihood divergence. Han et al. (2023)
empirically show that rare samples are far from the reference
data in the feature space. They propose the rarity score as the
nearest-neighbor distance to measure the uncommonness
of image samples. Also, Jiralerspong et al. (2023) measure
the difference in likelihood of generated distribution to the
training and another reference dataset. They propose mea-
suring the likelihood divergence and interpret novelty as low
memorization of training samples. We note that both these
evaluations lead to sample-based scores aiming to measure
the uncommonness of a single data point. On the other hand,
our proposed novelty evaluation is a distribution-based eval-
uation where we aim to measure the overall mode-based
novelty of a model compared to a reference distribution.

3. Preliminaries
3.1. Novelty Evaluation of Generative Models

Consider a generator function G : Rr → Rd mapping an
r-dimensional latent vector Z to G(Z) which is aimed to
be a real-like sample mimicking the data distribution Pdata.
Here Z is drawn according to a known distribution, e.g.
an isotropic Gaussian N (0, σ2I). However, the probabil-
ity distribution of random vector G(Z) could be challeng-
ing to compute for a neural network G. The goal in the
evaluation of generative model PG(Z) is to quantify and
estimate a desired property of its generated samples, e.g.
quality and diversity, from n independently generated sam-
ples G(z1), . . . , G(zn).

In this work, we focus on the evaluation of novelty in the
generated data compared to a reference distribution Q for a
random d-dimensional vector Y. We assume we have access
to m samples in {y1, . . . ,ym} drawn independently from
Q. Also, for brevity, we denote the generative model G’s
generated data by xi = G(zi) for every 1 ≤ i ≤ n. There-
fore, our aim is to quantify the novelty of generated dataset

{x1, . . . ,xn} compared to reference dataset {y1, . . . ,ym}.

In our theoretical analysis, we assume the generated samples
follow a multi-modal distribution. We use P =

∑k
i=1 ωiPi

to represent a k-modal mixture distribution where every
component Pi has frequency ωi. Note that [ω1, . . . , ωk]
represent a probability model on the k modes in P satisfying
ωi ≥ 0 for every i and

∑k
i=1 ωi = 1. We assume each

component Pi has σ2
i -bounded total variance, defined as the

trace of Pi’s covariance matrix, meaning that given its mean
vector µi, we have EX∼Pi

[∥∥X− µi

∥∥2
2

]
≤ σ2

i .

3.2. Kernel Function and Kernel Covariance Matrix

Consider a kernel function k : Rd × Rd → R mapping
every two vectors x,y ∈ Rd to a similarity score k(x,y)
satisfying the positive semi-definite (PSD) property, i.e. the
kernel matrix K =

[
k(xi,xj)

]
n×n

is a symmteric PSD
matrix for every selection of input vectors x1, . . . ,xn. In
this paper, we commonly suppose a normalized Gaussian
kernel kG(σ) with bandwidth parameter σ defined as

kG(σ)

(
x,y

)
:= exp

(−∥x− y∥22
2σ2

)
.

We remark that the PSD property of a kernel function k is
equivalent to the existence of a feature map ϕ : Rd → Rs

such that for every input vectors x,y we have k
(
x,y

)
=〈

ϕ(x), ϕ(y)
〉
, where ⟨·, ·⟩ denotes the inner product in Rs.

Also, we call a kernel function k normalized if for every
x ∈ Rd k(x,x) = 1, e.g. in the defined Gaussian kernel.

Given a distribution P with probability density function
p(x) on X ∈ Rd, we define the kernel covariance matrix
according to kernel k with feature map ϕ as

CX :=EX∼P

[
ϕ(X)ϕ(X)⊤

]
=

∫
p(x)ϕ(x)ϕ(x)⊤dx.

Using the empirical distribution P̂n of n samples x1, . . . ,xn

the kernel covariance matrix will be

ĈX =
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤,

which can be written as ĈX = 1
nΦXΦ⊤

X that ΦX is an n×s
matrix with every i-th row being ϕ(xi).

Proposition 1. Using the above definitions, ĈX shares the
same eigenvalues with the n× n normalized kernel matrix
1
n

[
k(xi,xj)

]
n×n

with every (i, j)th entry being 1
nk(xi,xj).

Therefore, assuming a normalized kernel function, the eigen-
values of ĈX are non-negative and sum up to 1.

4. A Spectral Approach to Novelty Evaluation
for Mixture Models

In this section, we propose a spectral approach to the nov-
elty evaluation of a generated X with mixture distribution
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P =
∑k

i=1 ωiPi in comparison to a reference Y distributed
according to mixture model Q =

∑t
i=1 γiQi. In what fol-

lows, we first define and intuitively explain the proposed
novelty evaluation score, and later in this section, we will
provide a theoretical analysis of the framework in a set-
ting where the mixture models consist of well-separable
components.

To define the proposed novelty score, we focus on the ker-
nel covariance matrices of X and Y, denoted by CX and
CY, respectively. We will show in this section that under a
Gaussian kernel with proper bandwidth, CX and CY will
contain the information of the modes in their eigendecompo-
sition where the eigenvalues can be interpreted as the mode
frequencies. Here, given a parameter η ≥ 1, we define the
η-differential kernel covariance matrix ΛX|ηY as follows:

ΛX|ηY := CX − ηCY. (1)

Note that if the components P1, . . . , Pr are shared between
P and Q, they will get canceled in the calculation of ΛX|ηY
and thus will not result in a positive eigenvalue in the eigen-
decomposition of ΛX|ηY unless their frequency in P is
greater than η-times their frequency in Q. This shows how
we can, loosely speaking, “subtract Q from P ” by subtract-
ing their kernel covariance matrices in the above definition.
Here, the hyperparameter η ≥ 1 controls how much more
frequent a mode in P must be compared to the correspond-
ing mode in Q in order to be taken into account.

Therefore, we use the positive eigenvalues of ΛX|ηY to
approximate the relative frequencies of the modes of P that
are expressed at least η-times more frequently than in Q.
This allows us to define the following entropic score to
quantify the novelty of X with respect to Y.

Definition 1. Consider the positive eigenvalues
λ1, . . . , λk′ > 0 of ΛX|ηY = CX − ηCY and let

S =
∑k′

i=1 λi. The Kernel Entropic Novelty (KEN) score is

KENη(X|Y) :=

k′∑
i=1

λi log
S

λi
. (2)

Intuitively, λi/S is the relative frequency of the i-th novel
mode in P , and the entropy of the novel mode distribution
is
∑

i(λi/S) log(S/λi). The entropy is multiplied by S in
the definition of KENη(X|Y) for two reasons. First, the
amount of novelty should not only increase with the entropy
(or diversity) of the novel modes, but also increase with the
total frequency S of those modes. Second, this allows us
to interpret KENη(X|Y) as the conditional entropy of the
information of the mode of X given the dataset of Y. Later
in this section, we will present theoretical results that justify
the above informal discussions, and the interpretation of
KENη(X|Y) as a conditional entropy.

4.1. Theoretical Analysis of the Proposed Spectral
Novelty Evaluation

To theoretically analyze the proposed spectral method, we
first focus on a single distribution P with well-separable
modes and show a relationship between the modes of P and
the eigendecomposition of its kernel covariance matrix. We
defer the proof of the theoretical results to the Appendix.

Theorem 1. Suppose that every component Pi of a mix-
ture distribution P =

∑k
i=1 ωiPi has mean vector µi and

bounded total variance EX∼Pi

[
∥X−µi∥22

]
≤ σ2

i . Assume
that ω1 ≥ ω2 ≥ · · · ≥ ωk are sorted in a descending order.
Then, the top k eigenvalues λ1 ≥ · · · ≥ λk of the kernel
covariance matrix CX according to a Gaussian kernel with
bandwidth σ will satisfy:

k∑
i=1

(
λi − ωi

)2 ≤ 4

k∑
i=1

ωi
σ2
i

σ2

+ 16

k∑
i=2

i−1∑
j=1

ωi exp
(−∥µi − µj∥22

σ2

)
.

The above theorem shows that if the modes of the
mixture distribution are well-separable, meaning that
min1≤i̸=j≤k

∥µi−µj∥2

σ ≫ 1 while the total variance of the
components satisfies σi

σ ≪ 1, then the eigendecomposition
of the Gaussian kernel covariance matrix can reveal the
mode frequencies via the principal eigenvalues.

Given the interpretation provided by Theorem 1, the posi-
tive eigenvalues of ΛX|ηY = CX − ηCY will correspond
to the modes of X that have a frequency at least η times
higher than the frequency of that mode in Y. Therefore,
the positive eigenvalues of ΛX|ηY can be used to quantify
the novelty of X compared to Y. The following theorem
formalizes this intuition and shows how ΛX|ηY’s positive
eigenvalues explain the novelty of X’s modes.

Theorem 2. Consider multi-modal random vectors X ∼∑k
i=1 ωiPi and Y ∼

∑k
i=1 γiQi, where ω1− ηγ1 ≥ · · · ≥

ωk−ηγk. Suppose the corresponding mode to every Pi with
mean µi is Qi with mean µ′

i = µi+δi. Then, assuming that
for every i, both Qi and Pi have total variance bounded by
σ2
i , the positive eigenvalues λ1 ≥ . . . ≥ λk′ > 0 of ΛX|ηY

satisfy (letting λi = 0 if i > k′)

k∑
i=1

(
λi −max

{
ωi − ηγi, 0

})2

≤ 8

k∑
i=1

[
ωi
∥δi∥22
σ2

+
(
ωi + η2γi

)σ2
i

σ2

]
+ 16(1 + η)

k∑
i=2

i−1∑
j=1

(ωi + ηγi) exp
(−∥µ′

i − µ′
j∥22

σ2

)
.
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Based on the above theorem, the principal positive eigenval-
ues of the defined matrix ΛX|ηY show the extra frequencies
of the modes with a more dominant presence in X. As we
increase the value of η, we require a stronger presence of
X’s modes to count them as a novel mode. In the limit case
where η → +∞, we require a complete absence of an X’s
mode in Y to call it novel.

Finally, note that KENη(X|Y) can be interpreted as the
conditional entropy of the information of the mode of X
given the dataset of Y. More precisely, if η = 1 this score is
the conditional entropy H(Xmode|Yadv), where Xmode ∈
{1, . . . , k} is the mode cluster variable of X (the index of
the mode X belongs to), and Yadv represents the knowledge
of an adversary who knows the dataset of Y and wants to
predict Xmode. If the random sample X is also found in
the dataset of Y, then the adversary will know the mode
of X and predicts Yadv = Xmode accurately; otherwise the
adversary knows nothing about Xmode, and outputs Yadv =
e as an erasure symbol denoting the lack of information.

Under the setting in Theorem 2 for η = 1, λi = max{ωi −
γi, 0}, take P(Yadv = i|Xmode = i) = min{γi/ωi, 1}
(otherwise Yadv = e) since among the samples of X
with mode i, at most a portion γi/ωi are also samples
of Y (if sizes of the two datasets are equal). We have
P(Yadv = e) =

∑t
i=1 ωi max{1 − γi/ωi, 0} = S. Since

H(Xmode|Yadv = i) = 0, we have

H(Xmode|Yadv) = P(Yadv = e)H(Xmode|Yadv = e)

= S

t∑
i=1

λi

S
log

S

λi
= KEN1(X|Y).

For a general η, KENη(X|Y) can be interpreted as
H(Xmode|Yadv) if each sample of Y allows the adversary
to learn η samples of X belonging to the same mode as Y,
resulting in P(Yadv = i |Xmode = i) = min{ηγi/ωi, 1}.
The next section shows how we can use the kernel trick to
compute the KEN score from the pairwise similarity scores
between the observed test and reference samples.

5. Computation of the KEN Novelty Score
Since the KEN score is characterized using the difference
CX − ηCY of kernel covariance matrices, the computation
of this score will be challenging in the kernel feature space
under a high-dimensional kernel feature map. Specifically,
the kernel feature map for a Gaussian kernel is infinitely
high-dimensional. Our next theorem reduces the eigende-
composition task to the differential kernel matrix based on
only the kernel similarity scores of empirical samples.
Theorem 3. Suppose we observed empirical samples
x1, . . . ,xn from test distribution P and y1, . . . ,ym from
reference distribution Q. Then, the difference of empirical
kernel covariance matrices Λ̂X|ηY = ĈX−ηĈY shares the

Algorithm 1 Computation of KEN & novel mode centers
1: Input: Sample sets {x1, . . . ,xn} and {y1, . . . ,ym},

parameter η > 0, Gaussian kernel bandwidth σ

2: Compute matrices KXX = 1
n [k(xi,xj)]n×n, KYY =

1
m [k(yi,yj)]m×m, KXY = 1√

mn
[k(xi,yj)]n×m

3: Apply Cholesky decomposition to compute upper-
triangular V ∈ R(n+m)×(n+m) such that

V ⊤V =

[
KXX

√
η KXY

√
η K⊤

XY η KYY

]

4: Compute Γ = V diag([+1, . . . ,+1︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
m times

])V ⊤

5: Perform eigendecomposition to get Γ = U⊤diag(λ)U

6: Find the positive eigenvalues λ1 ≥ · · · ≥ λk′ > 0 and
the corresponding eigenvectors u1, . . . ,uk′

7: Set ui ← sgn(
∑n

j=1 ui,j) · ui for i = 1, . . . , k′

8: Output: KEN-score =
∑k′

i=1 λi log
∑k′

j=1 λj

λi
and

eigenvectors u1, . . . ,uk′ .

same positive eigenvalues with the following matrix, which
we call the η-differential kernel matrix:

KX|ηY :=

 KXX
√
η KXY

−√η K⊤
XY −η KYY

 (3)

In the above, KXX = 1
n

[
k(xi,xj)

]
n×n

and KYY =
1
m

[
k(yi,yj)

]
m×m

are the kernel similarity matrices for
observed X and Y, samples respectively, and KXY =

1√
nm

[
k(xi,yj)

]
n×m

is the n×m cross-kernel matrix be-
tween observed X,Y samples.

Theorem 3 simplifies the eigendecomposition of the matrix
Λ̂X|ηY to the (n+m)×(n+m) kernel-based matrix KX|ηY.
We remark that each eigenvector vi ∈ Rm+n of this matrix
contains the expected inner-product of empirical X and Y
data with the ith detected mode, which can be utilized to
rank the samples based on their likelihood of belonging to
the ith identified novel cluster. Due to the sign ambiguity for
each eigendirection vi, we multiply computed eigenvector
vi by the sign of sum of its first n entries, sgn

(∑n
j=1 vi,j

)
,

to prefer a positive score for test x1, . . . ,xn samples.

While the discussed eigendecomposition can be addressed
via O

(
(n+m)3

)
computations, KX|ηY is a non-Hermitian

matrix, for which standard Hermitian matrix-based algo-
rithms do not apply. In the following theorem, we apply
Cholesky decomposition to reduce the task to an eigenvalue
computation for a symmetric matrix.
Theorem 4. In the setting of Theorem 3, define the following
joint kernel matrix:

5



An Interpretable Evaluation of Entropy-based Novelty of Generative Models

KEN: 0.74, R-KEN: 1.42 KEN: 1.40, R-KEN: 1.40 KEN: 1.39, R-KEN: 1.83KEN: 0.92, R-KEN: 0.81 KEN: 0.83, R-KEN: 0.37 KEN: 0.02, R-KEN: 0.01

𝜙𝑟: 0.25
𝜙𝑡: 0.25

𝜙𝑟: 0.25𝜙𝑟: 0.25
𝜙𝑡: 0.5 𝜙𝑡: 0.167

0.167 < 0.25

𝜙𝑟: 0.25
𝜙𝑡: 0.05

0.4 > 0.25 0.25 = 0.25

𝜙𝑟: 0.125
𝜙𝑡: 0.25

𝝀 ≈ 𝟎. 𝟓 𝝀 ≈ 𝟎. 𝟐𝟓 𝝀 ≈ 𝟎. 𝟏𝟔 𝝀 ≈ 𝟎. 𝟏𝟓

𝝀 ≈ 𝟎. 𝟎𝟓

𝝀 ≈ 𝟎

𝝀 ≈ 𝟎. 𝟐𝟓

Figure 1. Experimental results on synthetic Gaussian mixture distributions including KEN and R-KEN (Reversed-KEN) scores, and
principal eigenvalues of the differential kernel covariance matrix ΛX|ηY . Top row: Reference (in blue) and test (in red) samples with
ϕt, ϕr denoting the test and reference modes’ frequency. Bottom row: Positive eigenvalues of ΛX|ηY .

KX,ηY :=

[
KXX

√
η KXY

√
η K⊤

XY η KYY

]
.

Consider the Cholesky decomposition of the above PSD ma-
trix satisfying KX,ηY = V ⊤V for upper-triangular matrix
V ∈ R(n+m)×(n+m). Then, Λ̂X|ηY shares the same non-
zero eigenvalues with the symmetric matrix V DV ⊤ where
D is a (n+m)× (n+m) diagonal matrix with diagonal
entries in

[
+1, . . . ,+1︸ ︷︷ ︸

n times

,−1, . . . ,−1︸ ︷︷ ︸
m times

]
.

Based on the above theorem, we propose Algorithm 1 to
compute the KEN score and find the eigendirections cor-
responding to the detected novel modes. We note that the
eigendecomposition task in the algorithm reduces to the
spectral decomposition of a symmetric matrix that can be
handled more efficiently than the eigenvalue computation
for a general non-symmetric matrix.

Finally, note that each computed eigenvector ui ∈ Rn+m

in Algorithm 1 corresponds to the function ũi : Rd → R,

ũi(x) =

n∑
j=1

ui,jk(xj ,x) +

m∑
s=1

ui,s+nk(ys,x),

where ui,j stands for the j-th entry of ui. The above func-
tion’s output ũi(x) can be viewed as the data point x’s score
of belonging to the identified i-th cluster. Therefore, we in-
clude Step 7 in Algorithm 1, which multiplies the computed
eigenvector ui with +1 or −1, to prefer a non-negative
score for test data x1, . . . ,xn in the novelty evaluation task.

6. Numerical Results
6.1. Experimental Setup

Datasets. We performed experiments on the following im-
age datasets: 1) CIFAR-10 (Krizhevsky et al., 2009) with
60k images of 10 classes, 2) ImageNet-1K (Deng et al.,

2009) with 1.4 million images of 1000 classes, containing
20k dog images from 120 different dog breeds, 3) CelebA
(Liu et al., 2015) with 200k face images of celebrities, 4)
FFHQ (Karras et al., 2019) with 70k human-face images,
5) AFHQ (Choi et al., 2020) with 15k animal-face images
of dogs, cats, and wildlife. The AFHQ-dog subset has 5k
images from 8 dog breeds. 6) Wildlife dataset (Mehta, 2023)
with 2k wild animal images.
Pre-trained generative models and neural nets for fea-
ture extraction: We used the following embeddings in
our experiments: 1) pre-trained Inception-V3 (Szegedy
et al., 2016) which is the standard in FID and IS scores.
2) DINOv2 (Oquab et al., 2023) suggested by Stein et al.
(2023) to reduce the biases in ImageNet-based Inception-V3
embedding, 3) CLIP (Radford et al., 2021) suggested by
Kynkäänniemi et al. (2023) to lessen the inductive biases of
Inception-V3 embedding. For a fair comparison between
the tested image-based generative models, we downloaded
the pre-trained models from the StudioGAN (Kang et al.,
2023) and (Stein et al., 2023)’s GitHub repositories.
Bandwidth parameter σ and sample size: Similar to
(Jalali et al., 2023), we chose the kernel bandwidth to be the
smallest σ satisfying variance < 0.01. In our experiments,
we observed σ ∈ [10, 15] could satisfy this requirement for
all the tested image data with the Inception-V3 embedding.
In the case of synthetic Gaussian mixtures, we used σ = 0.5.
In our experiments, we used m,n = 5000 sample size for
the test and reference data.

6.2. Numerical Results on Synthetic Gaussian Mixtures

First, we tested the proposed methodology on Gaussian
mixture models (GMMs) as shown in Figure 1. The experi-
ments use the standard setting of 2-dimensional Gaussian
mixtures in (Gulrajani et al., 2017). We show the samples
from the reference distribution (in blue) with a 4-component
GMM where the components are centered at [0, 1], [1, 0],
[0, -1], [-1, 0]. The generated data in the test distribution
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Reference distribution: 
5 Terrestrial animals

Novel-mode ratio: 𝛼 = 0 𝛼 = 0.5𝛼 = 1𝛼 = 0.5 𝛼 = 1

Test distribution: 
Mixing 5 Terrestrial & 1 Aquatic animals

Test distribution: 
Mixing 5 Terrestrial & 3 Aquatic animals
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Figure 2. Top 3 rows: Trends of baseline and KEN scores in evaluating novel yet less-diverse distributions with Inception-V3, DINOv2
and CLIP embeddings. Bottom: ImageNet-1K Samples from reference and test distributions. Reference modes: 5 terrestrial animals.
Novel modes: 1-3 aquatic lives. α is the ratio of novel modes in testing distribution. α = 0, 1 represents pure reference and novel
distributions, respectively.

(in red) follow a Gaussian mixture in all the experiments,
where we center the novel modes (unexpressed in the ref-
erence) at [±0.7, ±0.7] and center the shared modes at the
same component-means of the reference distribution. In
the experiments, we chose parameter η = 1 for the KEN
evaluation.

Based on the KEN scores and eigenspectrum of the η-
differential kernel matrix reported in Figure 1, our proposed
spectral method successfully identifies the novel modes, and
the KEN scores correlate with the novel modes’ number
and frequencies. We highlight the following trends in the
evaluated KEN scores:

1. More novel modes result in a greater KEN score. The
first two columns of Figure 1 illustrate that adding two novel
modes to the test distribution increases the KEN score from
0.74 to 1.40. The bar plots of the differential kernel matrix’s
eigenvalues also show two extra principal eigenvalues ap-
proximating the frequencies of novel modes.
2. Transferring weight from novel to common modes
decreases KEN score. Columns 3-5 in Figure 1 show the

effects of overlapping modes on KEN score. In Column
3, the test distribution has six components with uniform
frequencies of 1/6, of which two modes are centered at
the same points as the reference modes with frequency 1/4.
The KEN score decreased from 1.40 to 0.92, and we ob-
served only four principal eigenvalues in the differential
kernel matrix. Also, when we increased the frequencies of
the common modes from 0.25 to 0.4, as shown in Column
4, we could observe 6 outstanding eigenvalues, from which
two of them approximate the difference of common mode
frequencies. Moreover, under two identical distributions,
the KEN score was nearly 0.
3. KEN does not behave symmetrically between the ref-
erence and test distributions. In our experiments, we also
measured the KEN score of the reference distribution with
respect to the test distribution, which we call Reverse KEN
(R-KEN). We observed that the KEN and R-KEN scores
could behave differently, and the roles of test and reference
distributions were different. Regarding KEN and R-KEN’s
mismatch, when we included four extra reference modes in
the last column, the KEN score did not considerably change
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Test: AFHQ / Reference: ImageNet-dogs
Novel mode #1 Novel mode #2 Novel mode #3

Test: AFHQ / Reference: Wildlife Dataset
Novel mode #1 Novel mode #2 Novel mode #3

Figure 3. Identified top-3 novel modes between image datasets: (Left-half) AFHQ w.r.t. ImageNet-dogs, (Right-half) AFHQ w.r.t. Wildlife.
Inception-V3 embedding is used. Shown samples are the test data with the maximum entry values on the top three principal eigenvectors
of the differential kernel matrix KX|ηY defined in (3).

(1.40 vs. 1.39) while the R-KEN value jumped from 1.40 to
1.83.

6.3. Novelty vs. Diversity Evaluation via KEN and
Baseline Metrics

The novelty and diversity evaluation criteria may not align
under certain conditions. To test our proposed method and
the existing scores’ capability to capture novelty under less
diversity, we designed experimental settings where the test
distribution possessed less diversity while containing novel
modes compared to the reference distribution. The baseline
diversity-based scores we attempted in the experiment were
improved Recall (Kynkäänniemi et al., 2019), Coverage
(Naeem et al., 2020), and RKE (Jalali et al., 2023). We
also evaluated the sample divergence: FLD (Jiralerspong
et al., 2023) and sample Rarity (Han et al., 2023), which are
proposed to assess sample-based novelty. We extract images
from 5 terrestrial animal classes in ImageNet-1K to form
the reference distribution Pr and images from 1-3 aquatic
life classes to form the novel distribution Pn. To simulate
different novelty ratios, we mixed the two distributions with
a ratio parameter 0 ≤ α ≤ 1 to form the test distribution as
Pt = αPn + (1− α)Pr.

As shown in Figure 2, all the diversity-based baseline met-
rics decreased under a larger α, i.e., as the test distribution
Pt becomes closer to the novel distribution Pn. The obser-
vation can be interpreted as the diversity and novelty levels
change in opposite directions in this experiment. The pro-
posed KEN score and baseline FLD and Rarity scores could
capture the higher novelty and increased with α. On the
other hand, when we increased the number of novel modes
from 1 to 3 aquatic animals, the sample-based FLD and Rar-
ity scores did not change significantly, while our proposed
KEN score could capture the extra novel modes and grew
with the number of novel modes. This experiment shows
the distribution-based novelty evaluation by the KEN score
vs. the sample-based novelty evaluation by FLD and Rarity.

6.4. Numerical Results on Real/Generated Image Data

We evaluated the KEN score and visualized identified novel
modes for the real image dataset and sample sets generated
by widely-used generative models. For the identification of
samples belonging to the detected novel modes, we followed
Algorithm 1 to obtain the eigenvectors corresponding to
the top eigenvalues. Every eigenvector ui is an (m + n)-
dimensional vector where the entries (sample indices) with
significant values greater than a threshold ρ are clustered as
mode i. In our visualization, we show top-r images with
the maximum entry value on the shown top eigenvectors as
the top novel modes.

Novel modes between real datasets. Based on the pro-
posed method, we visualized the novel modes samples’
across content-similar datasets (AFHQ, ImageNet-dogs) and
(AFHQ, Wildlife). Figure 3 visualizes the identified sam-
ples from the top three novel modes (principal eigenvectors).
We observed that the detected modes exhibit semantically
meaningful picture types of novel wildlife types missing
in the ImageNet-dogs samples and novel docile ”cat” and
”dog” types compared to the Wildlife dataset. We did not
find such samples when searching for these image types
in the reference datasets. We postpone the presentation of
similar results on other dataset pairs and CLIP and DINOv2
embeddings to the Appendix.
Novel modes between standard generative models. We
analyzed FFHQ-trained models: GAN-based InsGen, Style-
GAN2, StyleGAN-XL, diffusion-based LDM, and VAE-
based VDVAE. Figure 4 illustrates samples from the de-
tected top novel mode between different pairs of generative
models. For example, we observed that InsGen has more
novelty in ”people wearing sunglasses” than LDM, and
StyleGAN2 has more novelty in ”kids” than VDVAE. We
present and discuss more visualizations for other pairs of
generative models in Appendix A.2. According to Table
1, considering the averaged KEN scores over all

(
5
2

)
pairs,

InsGen obtained the maximum averaged-KEN among the
tested generative models in the FFHQ case.
Detection of missing sample types of generative models.
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Test: InsGen (GAN) 

Reference: LDM (DDPM)

Test: LDM

Reference: InsGen

Test: StyleGAN2 (GAN) 

Reference: VDVAE (VAE)

Test: VDVAE

Reference: StyleGAN2

Figure 4. Identified top novel modes between FFHQ-trained generative models. Inception-V3 embedding is used.

Table 1. FFHQ-trained generative models’ pairwise KEN score. Inception-V3 embedding is used.

Generative Models
(Test Models)

Reference Models

InsGen LDM StyleGAN2 VDVAE StyleGAN-XL Avg. KEN

InsGen (Yang et al., 2021) - 1.26 1.18 1.87 1.17 1.37
LDM (Rombach et al., 2021) 1.09 - 1.14 1.59 1.08 1.23
StyleGAN2 (Karras et al., 2019) 1.12 1.26 - 1.76 1.18 1.33
VDVAE (Child, 2020) 0.96 0.91 0.94 - 0.95 0.94
StyleGAN-XL (Sauer et al., 2022) 1.16 1.24 1.19 1.83 - 1.36

To detect missing modes of the generators, we used the
larger value η = 10 for parameter η in the computation of
KX|ηY. For example, our experimental results suggest the
sample types ”Microphone”, ”Round hat”, and ”Black uni-
form hat” to be not well-expressed in LDM. The visualiza-
tion of our numerical results is postponed to the Appendix.
In the Appendix, we will also present the applications of our
spectral method for conditionally generating novel-mode
samples and benchmarking model fitness.

7. Conclusion
In this paper, we proposed a spectral method for the evalua-
tion of the novel modes in a mixture distribution P which
are expressed more frequently than in a reference distribu-
tion Q. We defined the KEN score to measure the entropy
of the novel modes and tested the evaluation method on
benchmark synthetic and image datasets. We note that our
numerical evaluation focused on computer vision settings,
and its extension to language models will be an interesting
future direction. Also, characterizing tight statistical and
computational complexity bounds for the novelty evaluation
method will be a related topic for future exploration.

8. Limitations
Similar to other evaluation methods for image-based gen-
erative models, the results of KEN novelty evaluation are
influenced by the choice of embedding, which may lead

to biased results under ImageNet pre-trained models, such
as the standard Inception-V3. Our work mainly focused
on introducing and developing the kernel method for KEN
novelty evaluation, and we leave a detailed analysis of the
role of embedding in the novelty assessment, similar to the
analysis in (Kynkäänniemi et al., 2023; Stein et al., 2023)
for quality and diversity metrics, for future studies. Further-
more, the spectral algorithm for KEN evaluation requires
eigendecomposition of an (n+m)× (n+m) kernel matrix
for n, m test and reference samples, whose computational
complexity O

(
(n+m)3

)
will remain a barrier towards ap-

plying the framework to large sample sizes needed for large-
scale datasets e.g. ImageNet. Exploring scalable extensions
of the KEN framework is an interesting future direction.
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ception distance. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=4oXTQ6m_ws8.

Lim, J. H. and Ye, J. C. Geometric gan. arXiv preprint
arXiv:1705.02894, 2017.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pp. 3730–
3738, 2015.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and
Paul Smolley, S. Least squares generative adversarial
networks. In Proceedings of the IEEE international con-
ference on computer vision, pp. 2794–2802, 2017.

Marchesi, M. Megapixel size image creation us-
ing generative adversarial networks. arXiv preprint
arXiv:1706.00082, 2017.

Meehan, C., Chaudhuri, K., and Dasgupta, S. A non-
parametric test to detect data-copying in generative mod-
els. In International Conference on Artificial Intelligence
and Statistics, 2020.

Mehta, A. Wildlife animals images, version
1, 2023. URL https://www.kaggle.
com/datasets/anshulmehtakaggl/
wildlife-animals-images.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks,
2018.

Naeem, M. F., Oh, S. J., Uh, Y., Choi, Y., and Yoo, J. Reli-
able fidelity and diversity metrics for generative models.
In International Conference on Machine Learning, pp.
7176–7185. PMLR, 2020.

Odena, A., Olah, C., and Shlens, J. Conditional image
synthesis with auxiliary classifier gans. In International
conference on machine learning, pp. 2642–2651. PMLR,
2017.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H. V.,
Szafraniec, M., Khalidov, V., Fernandez, P., Haziza, D.,
Massa, F., El-Nouby, A., Howes, R., Huang, P.-Y., Xu,
H., Sharma, V., Li, S.-W., Galuba, W., Rabbat, M., As-
sran, M., Ballas, N., Synnaeve, G., Misra, I., Jegou, H.,
Mairal, J., Labatut, P., Joulin, A., and Bojanowski, P.
Dinov2: Learning robust visual features without supervi-
sion, 2023.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision, 2021.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2021.

Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and
Gelly, S. Assessing generative models via precision and
recall. Advances in neural information processing sys-
tems, 31, 2018.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., Chen, X., and Chen, X. Improved techniques
for training GANs. In Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

Sauer, A., Schwarz, K., and Geiger, A. Stylegan-xl: Scaling
stylegan to large diverse datasets. In ACM SIGGRAPH
2022 conference proceedings, pp. 1–10, 2022.

Stein, G., Cresswell, J. C., Hosseinzadeh, R., Sui, Y., Ross,
B. L., Villecroze, V., Liu, Z., Caterini, A. L., Taylor, J.
E. T., and Loaiza-Ganem, G. Exposing flaws of genera-
tive model evaluation metrics and their unfair treatment
of diffusion models, 2023.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Wu, Y., Donahue, J., Balduzzi, D., Simonyan, K., and Lil-
licrap, T. Logan: Latent optimisation for generative ad-
versarial networks. arXiv preprint arXiv:1912.00953,
2019.

Yang, C., Shen, Y., Xu, Y., and Zhou, B. Data-efficient
instance generation from instance discrimination. arXiv
preprint arXiv:2106.04566, 2021.

11

https://openreview.net/forum?id=4oXTQ6m_ws8
https://openreview.net/forum?id=4oXTQ6m_ws8
https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images
https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images
https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images


An Interpretable Evaluation of Entropy-based Novelty of Generative Models

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A.
Self-attention generative adversarial networks. In Inter-
national conference on machine learning, pp. 7354–7363.
PMLR, 2019.

12



An Interpretable Evaluation of Entropy-based Novelty of Generative Models

A. Appendix
A.1. Proofs

A.1.1. PROOF OF THEOREM 1

To prove the theorem, note that every mode variable Xi ∼ Pi can be written as Xi = µi +Vi where Vi is a zero-mean
random vector satisfying a bounded second-order moment E

[
∥Vi∥22

]
≤ σ2

i . Then, we can decompose the kernel covariance
matrix CX into the following two terms:

CX =

k∑
i=1

[
ωiϕ(µi)ϕ(µi)

⊤
]
+

k∑
i=1

[
ωi

(
E
[
ϕ(µi +Vi)ϕ(µi +Vi)

⊤]− ϕ(µi)ϕ(µi)
⊤
)]

.

Therefore, we can write∥∥∥CX −
k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥2
F
=
∥∥∥ k∑
i=1

[
ωi

(
E
[
ϕ(µi +Vi)ϕ(µi +Vi)

⊤]− ϕ(µi)ϕ(µi)
⊤
)]∥∥∥2

F

(a)

≤
k∑

i=1

[
ωi

∥∥∥E[ϕ(µi +Vi)ϕ(µi +Vi)
⊤]− ϕ(µi)ϕ(µi)

⊤
∥∥∥2
F

]

=

k∑
i=1

[
ωi

∥∥∥E[ϕ(µi +Vi)ϕ(µi +Vi)
⊤ − ϕ(µi)ϕ(µi)

⊤]∥∥∥2
F

]
(b)

≤
k∑

i=1

ωiE
[∥∥∥ϕ(µi +Vi)ϕ(µi +Vi)

⊤ − ϕ(µi)ϕ(µi)
⊤
∥∥∥2
F

]
(c)
=

k∑
i=1

ωiE
[
2− 2

(
ϕ(µi)

⊤ϕ(µi +Vi)
)2]

=

k∑
i=1

2ωiE
[
1− exp

(
−∥Vi∥22

σ2

)]
(d)

≤
k∑

i=1

2ωi

(
1− exp

(
−
E
[
∥Vi∥22

]
σ2

))
≤

k∑
i=1

2ωi

(
1− exp

(
−σ2

i

σ2

))
(e)

≤ 2
k∑

i=1

ωi
σ2
i

σ2

In the above, (a) and (b) follow from Jensen’s inequality applied to the convex Frobenius-norm-squared function. (c) holds
because given the unit-norm vectors a = ϕ(µi +Vi) and b = ϕ(µi) the following holds∥∥ϕ(µi +Vi)ϕ(µi +Vi)

⊤ − ϕ(µi)ϕ(µi)
⊤∥∥2

F
= ∥aa⊤ − bb⊤∥2F = ∥a∥4 + ∥b∥4 − 2(a⊤b)2 = 2− 2(a⊤b)2.

Finally, (d) follows from Jensen’s inequality for the concave function t(z) = 1− exp(−z), and (e) holds because of the
inequality 1− e−t ≤ t for every t ∈ R. Next, we create the following orthogonal basis consisting of vectors u1, . . . ,uk of
the span of the k unit-norm vectors ϕ(µ1), . . . , ϕ(µk) as follows: We choose u1 = ϕ(µ1), and for every 2 ≤ i ≤ k we
construct ui as

ui :=ϕ(µi)−
i−1∑
j=1

⟨ϕ(µi),uj⟩uj .

Therefore, we will have:∥∥∥ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤ −

k∑
i=1

ωiuiu
⊤
i

∥∥∥2
F

=
∥∥∥ k∑
i=1

ωi

(
ϕ(µi)ϕ(µi)

⊤ − uiu
⊤
i

)∥∥∥2
F
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(f)

≤
k∑

i=1

ωi

∥∥∥ϕ(µi)ϕ(µi)
⊤ − uiu

⊤
i

∥∥∥2
F

(g)
=

k∑
i=1

ωi

(
1 + ∥ui∥4 − 2

(
u⊤
i ϕ(µi)

)2)
≤

k∑
i=1

ωi

(
2− 2

(
u⊤
i ϕ(µi)

)2)
=

k∑
i=1

2ωi

(
1 + u⊤

i ϕ(µi)
)(

1− u⊤
i ϕ(µi)

)
(h)

≤
k∑

i=1

i−1∑
j=1

4ωi exp
(−∥µi − µj∥22

σ2

)
.

In the above, (f) comes from the application of Jensen’s inequality for the convex Frobenius norm-squared function. (g)
follows because of the same reason as for item (c). (h) holds because 1 + u⊤

i ϕ(µi) ≤ 2 and

u⊤
i ϕ(µi) = 1−

i−1∑
j=1

⟨ϕ(µi),uj⟩2 ≥ 1−
i−1∑
j=1

exp
(−∥µi − µj∥22

σ2

)
.

Since for every two matrices A, B we have ∥A+B∥2F ≤ 2∥A∥2F +2∥B∥2F , we can combine the previous shown inequalities
to obtain∥∥∥CX −

k∑
i=1

ωiuiu
⊤
i

∥∥∥2
F
≤ 2

∥∥∥CX −
k∑

i=1

ωiϕ(µi)ϕ(µi)
⊤
∥∥∥2
F
+ 2

∥∥∥ k∑
i=1

ωiϕ(µi)ϕ(µi)
⊤ −

k∑
i=1

ωiuiu
⊤
i

∥∥∥2
F

≤ 4

k∑
i=1

ωiσ
2
i

σ2
+ 8

k∑
i=1

i−1∑
j=1

ωi exp
(−∥µi − µj∥22

σ2

)
Since we know that ∥ui∥2ωi for i = 1, . . . , k are the eigenvalues of

∑k
i=1 ωiuiu

⊤
i where 1− 2

∑i−1
j=1 exp

(
−∥µi−µj∥

2
2

σ2

)
≤

∥ui∥2 ≤ 1, then the eigenspectrum stability bound in (Hoffman & Wielandt, 2003) implies that for the top k eigenvalues of
CX, denoted by λ1, . . . , λk, we will have

k∑
i=1

(
λi − ∥ui∥2ωi

)2 ≤ 4

k∑
i=1

ωiσ
2
i

σ2
+ 8

k∑
i=1

i−1∑
j=1

ωi exp
(−∥µi − µj∥22

σ2

)
Therefore, since

(
λi − ∥ui∥2ωi

)2 ≤ (
λi − ωi

)2
+ 2(1− ∥ui∥2)ωi, we obtain the following which completes the proof:

k∑
i=1

(
λi − ωi

)2 ≤ 4

k∑
i=1

ωiσ
2
i

σ2
+ 16

k∑
i=1

i−1∑
j=1

ωi exp
(−∥µi − µj∥22

σ2

)
.

A.1.2. PROOF OF THEOREM 2

To show the theorem, we first follow Theorem 1’s proof where we showed that:∥∥∥CY −
k∑

i=1

γiϕ(µ
′
i)ϕ(µ

′
i)

⊤
∥∥∥2
F
≤ 2

k∑
i=1

γiσ
2
i

σ2

Next, we attempt to bound the norm difference between CX and
∑k

i=1 ωiϕ(µ
′
i)ϕ(µ

′
i)

⊤:

∥∥∥CX −
k∑

i=1

ωiϕ(µ
′
i)ϕ(µ

′
i)

⊤
∥∥∥2
F
=
∥∥∥ k∑
i=1

[
ωi

(
E
[
ϕ(µi +Vi)ϕ(µi +Vi)

⊤]− ϕ(µ′
i)ϕ(µ

′
i)

⊤
)]∥∥∥2

F
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(a)

≤
k∑

i=1

[
ωi

∥∥∥E[ϕ(µi +Vi)ϕ(µi +Vi)
⊤]− ϕ(µ′

i)ϕ(µ
′
i)

⊤
∥∥∥2
F

]

=

k∑
i=1

[
ωi

∥∥∥E[ϕ(µi +Vi)ϕ(µi +Vi)
⊤ − ϕ(µ′

i)ϕ(µ
′
i)

⊤]∥∥∥2
F

]
(b)

≤
k∑

i=1

ωiE
[∥∥∥ϕ(µi +Vi)ϕ(µi +Vi)

⊤ − ϕ(µ′
i)ϕ(µ

′
i)

⊤
∥∥∥2
F

]
(c)
=

k∑
i=1

ωiE
[
2− 2

(
ϕ(µ′

i)
⊤ϕ(µi +Vi)

)2]
=

k∑
i=1

2ωiE
[
1− exp

(−∥Vi + δi∥22
σ2

)]
(d)

≤
k∑

i=1

2ωi

(
1− exp

(−E[∥Vi + δi∥22
]

σ2

))
(e)
=

k∑
i=1

2ωi

(
1− exp

(
−
E
[
∥Vi∥22

]
+ ∥δi∥22

σ2

))
≤

k∑
i=1

2ωi

(
1− exp

(
−σ2

i + ∥δi∥22
σ2

))
(f)

≤ 2

k∑
i=1

ωi

(
σ2
i + ∥δi∥22

)
σ2

Note that in the above (a), (b), (c), (d), and (f) hold for the same reason as the same-numbered items hold in the proof of
Theorem 1. Also, (e) holds because E[Vi] = 0.

Then, since for every matrices A,B we have ∥A+B∥2F ≤ 2∥A∥2F + 2∥B∥2F , we can combine the above two parts to show:∥∥∥(CX − ηCY

)
−

k∑
i=1

(ωi − ηγi)ϕ(µ
′
i)ϕ(µ

′
i)

⊤
∥∥∥2
F

=
∥∥∥(CX −

k∑
i=1

ωiϕ(µ
′
i)ϕ(µ

′
i)

⊤
)
− η

(
CY −

k∑
i=1

γiϕ(µ
′
i)ϕ(µ

′
i)

⊤
)∥∥∥2

F

≤ 2
∥∥∥CX −

k∑
i=1

ωiϕ(µ
′
i)ϕ(µ

′
i)

⊤
∥∥∥2
F
+ 2η2

∥∥∥CY −
k∑

i=1

γiϕ(µ
′
i)ϕ(µ

′
i)

⊤
)∥∥∥2

F

≤ 4

k∑
i=1

ωi

(
σ2
i + ∥δi∥22

)
+ η2γiσ

2
i

σ2

=4

k∑
i=1

(
ωi + η2γi

)
σ2
i + ωi∥δi∥22

σ2

Next, we create an orthogonal basis consisting of vectors u1, . . . ,ut of the span of the t unit-norm vectors ϕ(µ′
1), . . . , ϕ(µ

′
t)

as follows where for every 1 ≤ i ≤ t we construct ui as

ui :=ϕ(µi)−
i−1∑
j=1

⟨ϕ(µi),uj⟩uj

As a result, we can show:∥∥∥ k∑
i=1

(ωi − ηγi)ϕ(µ
′
i)ϕ(µ

′
i)

⊤ −
k∑

i=1

(ωi − ηγi)uiu
⊤
i

∥∥∥2
F

=
∥∥∥ k∑
i=1

(ωi − ηγi)
(
ϕ(µ′

i)ϕ(µ
′
i)

⊤ − uiu
⊤
i

)∥∥∥2
F
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≤
k∑

i=1

(1 + η)(ωi + ηγi)
∥∥∥ϕ(µ′

i)ϕ(µ
′
i)

⊤ − uiu
⊤
i

∥∥∥2
F

=

k∑
i=1

(1 + η)(ωi + ηγi)
(
1 + ∥ui∥4 − 2

(
u⊤
i ϕ(µ

′
i)
)2)

≤
k∑

i=1

i−1∑
j=1

4(1 + η)(ωi + ηγi) exp
(−∥µ′

i − µ′
j∥22

σ2

)
.

Therefore, we can combine the above results to show:

∥∥∥(CX − ηCY

)
−

k∑
i=1

(ωi − ηγi)uiu
⊤
i

∥∥∥2
F

≤ 8

k∑
i=1

(
ωi + η2γi

)
σ2
i + ωi∥δi∥22

σ2

+ 8(1 + η)
k∑

i=1

i−1∑
j=1

(ωi + ηγi) exp
(−∥µ′

i − µ′
j∥22

σ2

)
.

Since we know that ∥ui∥2(ωi − ηγi) for i = 1, . . . , t are the eigenvalues of
∑k

i=1(ωi − ηγi)uiu
⊤
i where 1 −

2
∑i−1

j=1 exp
(

−∥µ′
i−µj∥

2
2

σ2

)
≤ ∥ui∥2 ≤ 1, then the eigenspectrum stability bound in (Hoffman & Wielandt, 2003) shows

that for the top k eigenvalues of CX − ηCY, denoted by λ1 ≥ . . . ≥ λk, we will have

k∑
i=1

(
λi − ∥ui∥2(ωi − ηγi)

)2
≤ 8

k∑
i=1

(
ωi + η2γi

)
σ2
i + ωi∥δi∥22

σ2
+ 8(1 + η)

k∑
i=1

i−1∑
j=1

(ωi + ηγi) exp
(−∥µ′

i − µ′
j∥22

σ2

)
.

As a consequence, since
(
λi−∥ui∥2(ωi−ηγi)

)2 ≤ (
λi− (ωi−ηγi)

)2
+2(1−∥ui∥2)max{ωi−ηγi, 0} and ReLU(z) =

max{z, 0} is a 1-Lipschitz function, we obtain the following which finishes the proof:

k∑
i=1

(
max{λi, 0} −max{ωi − ηγi, 0}

)2
≤ 8

k∑
i=1

(
ωi + η2γi

)
σ2
i + ωi∥δi∥22

σ2
+ 16(1 + η)

k∑
i=1

i−1∑
j=1

(ωi + ηγi) exp
(−∥µ′

i − µ′
j∥22

σ2

)

A.1.3. PROOF OF THEOREM 3

We note that given the empirical kernel feature matrices ΦX ∈ Rn×s and ΦX ∈ Rm×s, we can write

ĈX =
1

n
Φ⊤

XΦX, ĈY =
1

m
Φ⊤

YΦY.

Therefore, defining Φ̃X = 1√
n
ΦX and Φ̃Y = 1√

m
ΦY, we can rewrite the definition of the η-differential kernel covariance

matrix as

ĈX − ηĈY = Φ̃⊤
XΦ̃X − ηΦ̃⊤

YΦ̃Y

=

[
Φ̃X
√
ηΦ̃Y

]⊤ [
Φ̃X

−√ηΦ̃Y

]
.
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Defining A =

[
Φ̃X√
ηΦ̃Y

]
and B =

[
Φ̃X

−√ηΦ̃Y

]
, we use the property that A⊤B and BA⊤ share the same non-zero

eigenvalues, because if for λ ̸= 0 and v we have A⊤Bv = λv, then for u = Bv we have BA⊤u = λu. Therefore, the
non-zero eigenvalues of the η-differential kernel covariance matrix ΛX|ηY = ĈX − ηĈY will be the same as the non-zero
eigenevalues of [

Φ̃X

−√ηΦ̃Y

][
Φ̃X
√
ηΦ̃Y

]⊤

=

[
Φ̃XΦ̃⊤

X

√
ηΦ̃XΦ̃⊤

Y

−√ηΦ̃YΦ̃⊤
X −ηΦ̃YΦ̃⊤

Y

]

=

[
KXX

√
η KXY

−√η K⊤
XY −η KYY

]
= KX|ηY.

In addition, given every eigenvector v of KX|ηY, the vector u = A⊤v =

[
Φ̃X√
ηΦ̃Y

]⊤
v will be an eigenvector of

ΛX|ηY = ĈX − ηĈY, which will be[
Φ̃X√
ηΦ̃Y

]⊤
v =

n∑
i=1

viϕ(xi) +

m∑
j=1

√
ηvn+jϕ(yj).

Therefore, the proof is complete.

A.1.4. PROOF OF THEOREM 4

First, we note that KX,ηY is a symmetric PSD matrix, because defining A =

[
Φ̃X√
ηΦ̃Y

]
where Φ̃X = 1√

n
ΦX and Φ̃Y =

1√
m
ΦY we will have KX,ηY = AA⊤. Therefore, applying the Cholesky decomposition, we can find a V ∈ R(m+n)×(m+n)

such that KX,ηY = V ⊤V .

Next, we note the following identity given D = diag{[+1, . . . ,+1︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
m times

]}:

KX|ηY =

 KXX
√
η KXY

−√η K⊤
XY −η KYY


= D

 KXX
√
η KXY

√
η K⊤

XY η KYY


= DKX,ηY

= DV ⊤V.

However, we observe that based on the same argument in Theorem 2’s proof, DV ⊤V and V DV ⊤ have the same non-zero
eigenvalues. Therefore, the symmetric matrix V DV ⊤ and KX|ηY share the same non-zero eigenvalues.

A.2. Experimental Results

A.2.1. APPLICATIONS OF KEN SCORE

Missing mode detection. To enable missing mode detection, we can select a large enough η for KX|ηY. For example,
according to Figure 6, the modes ”Microphone”, ”Round hat”, and ”Black uniform hat” are found missing in LDM by its
training set and other generative models.
Specific novel mode generation. The qualitative analysis can reveal most related samples of a novel mode. Therefore, we
can retrieve the latent z of these novel samples to fit a Gaussian. Then, we sample from this Gaussian to obtain new samples
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Reference

Single dog class

Test (intra-class) 

novel dog classes

Test (inter-class)

novel non-dog classes

Quantified KEN score

of novel intra-class/inter-class modes

𝟏

. 𝟕

𝝍

. 𝟑

𝟎

Truncated 

StyleGAN-XL Samples

Quantified KEN score

of Truncated StyleGAN-XL 

Figure 5. Quantified KEN score in real and generated distributions. Left: KEN score in ImageNet-1K. Intra-class means similarity in
taxonomy (e.g. Dogs with different breeds). Right: KEN score in truncated StyleGAN-XL. ψ is truncation factor. ψ = 1 reduces to
normal StyleGAN-XL. ”R-KEN” means switching test and reference distributions. Inception-V3 embedding is used.

in the same novel mode. We put an example of specifically generating more FFHQ ”kids” with StyleGAN-XL in Figure 7.
Benchmarking mode novelty. For a group of generative models with the same training set. We can evaluate the mode
novelty between them. The average novelty of a generative model to others can be used for benchmarking. Table 1 shows
mode novelty between generative models trained on FFHQ. We observe that InsGen has the highest average novelty and
VDVAE has the lowest average novelty in this group.
Benchmarking fitness. If we use generative models and their training sets as testing and reference distribution, our proposed
KEN can be recognized as a divergence measurement. When two distributions are identical, their KEN evaluation will be
0. In Table 2, we observe KEN behave similarly with FID in ImageNet and CIFAR-10, except for GGAN, DCGAN, and
WGAN in CIFAR-10.

A.2.2. EXTRA QUANTIFIED ANALYSIS OF KEN SCORE

Distinct modes contain richer novelty. To define similar modes, we extract 120 dog classes from ImageNet-1K. The
remaining 880 classes are dog-excluded and represent distinct modes. We select a single dog class as the reference, other
dog classes as novel intra-class modes, and 880 dog-excluded classes as novel inter-class modes. Figure 5 shows that adding
novel modes to test distribution increases mode novelty. Meanwhile, the line chart in Figure 5 indicates inter-class modes
contain richer novelty than intra-class modes since the red inter-class line is higher. The reversed novelty lines remain flat,
illustrating the asymmetric property.

Truncation trick decreases mode novelty. Truncation trick (Marchesi, 2017; Brock et al., 2018) is a procedure sampling
latent z from a truncated normal to trade-off diversity for high-fidelity generated images. We observe this trick also reduces
the KEN score of generative model in Figure 5.

A.2.3. EXTRA EXPERIMENTAL RESULTS

Additional real dataset results. Figure 8 shows detected novel modes between more real datasets. The novel modes of
CelebA to FFHQ relate to the background of celebrities. For dog subsets of ImageNet and AFHQ, ImageNet-dogs seems to
be novel in the dog breeds, while AFHQ-dogs seem to have more young dogs than ImageNet-dogs. Figure 9 shows novel
modes of all possible pairs of generative models in Figure 4.

Novel modes detection with different embedding. Figure 10, 11, 12 shows the detected top-9 novel modes of the AFHQ
dataset with respect to the ImageNet-dogs dataset with Inception-V3, DINOv2, and CLIP embedding, respectively. The
choice of embedding affect the detected novel modes and their rankings by the proposed KEN method.

Generative models’ KEN scores with different embedding. Table 3, 4, and 5 shows KEN scores between generative
models trained on the FFHQ dataset with Inception-V3, DINOv2, and CLIP embedding. We observed the rankings of the
average KEN score are consistent with the same embedding but different choices of bandwidth parameter σ. However,
the average KEN score ranking of generative models evaluated by the Inception-V3 embedding is different from rankings
evaluated with DINOv2 and CLIP embedding.
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Missing Modes of LDM by Real FFHQ

Microphone Round Hat Black Uniform Hat

Missing Modes of LDM by Other FFHQ Models

InsGen to LDM StyleGAN2 to LDM StyleGAN-XL to LDM

Figure 6. Missing modes of LDM in FFHQ. Training set and other generative models both capture similar missing modes of LDM with
large η = 10 in KX|Y . Inception-V3 embedding is used.

Top 25 generated samples 

retrieved from top eigenvector

1. Fit a multivariate Gaussian 

with their latent z

2. Sample from this Gaussian 

and send to network

New samples in the novel mode

Figure 7. Generating new samples in a specific novel mode by fitting a Gaussian with samples from qualitative analysis. Inception-V3
embedding is used.

Table 2. Benchmarking fitness of generative models. More powerful models tend to have lower KEN to the training set. σ = 10.
Inception-V3 embedding is used.

Dataset Model IS FID Precision Recall Density Coverage KEN

GGAN (Lim & Ye, 2017) 6.51 40.22 0.56 0.30 0.42 0.31 3.03
DCGAN (Radford et al., 2015) 5.76 51.98 0.62 0.16 0.56 0.25 3.02
WGAN-WC (Arjovsky et al., 2017) 3.99 95.69 0.53 0.04 0.40 0.11 3.01
WGAN-GP (Gulrajani et al., 2017) 7.04 26.42 0.62 0.56 0.55 0.46 2.99
ACGAN (Odena et al., 2017) 7.02 35.42 0.60 0.23 0.50 0.32 2.99
LSGAN (Mao et al., 2017) 7.13 31.31 0.61 0.41 0.50 0.42 2.97
LOGAN (Wu et al., 2019) 7.95 17.86 0.64 0.64 0.60 0.56 2.90
SAGAN (Zhang et al., 2019) 8.67 9.58 0.69 0.63 0.72 0.72 2.70
SNGAN (Miyato et al., 2018) 8.77 8.50 0.71 0.62 0.79 0.75 2.65
BigGAN (Brock et al., 2018) 9.14 6.80 0.71 0.61 0.86 0.80 2.59
ContraGAN (Kang & Park, 2021) 9.40 6.55 0.73 0.61 0.87 0.81 2.57

CIFAR10

StyleGAN2-ADA (Karras et al., 2020) 10.14 3.61 0.73 0.67 0.98 0.89 2.50

SAGAN (Zhang et al., 2019) 14.47 64.04 0.33 0.54 0.16 0.14 3.46
StyleGAN2-SPD (Karras et al., 2019) 21.08 35.27 0.50 0.62 0.37 0.33 3.17
StyleGAN3-t-SPD (Karras et al., 2021) 20.90 33.69 0.52 0.61 0.38 0.32 3.13
SNGAN (Miyato et al., 2018) 32.28 28.66 0.54 0.67 0.42 0.41 3.07
ContraGAN (Kang & Park, 2021) 25.19 28.33 0.67 0.53 0.64 0.34 2.91
ReACGAN (Kang et al., 2021) 52.95 18.19 0.76 0.40 0.88 0.49 2.67
BigGAN-2048 (Brock et al., 2018) 104.57 11.92 0.74 0.40 0.98 0.75 2.56

ImageNet
1282

StyleGAN-XL (Sauer et al., 2022) 225.16 2.71 0.80 0.63 1.12 0.93 2.42
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Test: CelebA / Reference: FFHQ
Novel mode #1 Novel mode #2 Novel mode #3

Test: ImageNet-dogs / Reference: AFHQ-dogs
Novel mode #1 Novel mode #2 Novel mode #3

Test: AFHQ-dogs / Reference: ImageNet-dogs
Novel mode #1 Novel mode #2 Novel mode #3

Figure 8. Novel modes between real datasets visualized with top-3-ranked eigenvectors. Extra samples of Figure 3. Inception-V3
embedding is used.
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LDM to StyleGAN2 LDM to VDVAE VDVAE to LDM

InsGen to StyleGAN2 InsGen to VDVAE

VDVAE to InsGen

StyleGAN2 to LDM StyleGAN2 to InsGen

InsGen (GAN) to LDM (DDPM) LDM to InsGen StyleGAN2 (GAN) to VDVAE (VAE) VDVAE to StyleGAN2

Figure 9. Novel modes between FFHQ-trained generative models in various architecture with the top-ranked eigenvector. Extra samples
of Figure 4. Inception-V3 embedding is used.

Table 3. FFHQ-trained generative models’ pairwise KEN score. Inception-V3 embedding is used.

Bandwidth
σ

Generative Models
(Test Models)

Reference Models

InsGen StyleGAN-XL StyleGAN2 LDM VDVAE Avg. KEN

10

InsGen (Yang et al., 2021) - 3.56 3.55 3.64 4.27 3.76
StyleGAN-XL (Sauer et al., 2022) 3.57 - 3.61 3.61 4.21 3.75
StyleGAN2 (Karras et al., 2019) 3.46 3.54 - 3.60 4.08 3.67
LDM (Rombach et al., 2021) 3.45 3.45 3.49 - 3.97 3.59
VDVAE (Child, 2020) 3.26 3.24 3.19 3.17 - 3.22

15

InsGen (Yang et al., 2021) - 1.17 1.18 1.26 1.87 1.37
StyleGAN-XL (Sauer et al., 2022) 1.16 - 1.19 1.24 1.83 1.36
StyleGAN2 (Karras et al., 2019) 1.12 1.18 - 1.26 1.76 1.33
LDM (Rombach et al., 2021) 1.09 1.08 1.14 - 1.59 1.23
VDVAE (Child, 2020) 0.96 0.95 0.94 0.91 - 0.94
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An Interpretable Evaluation of Entropy-based Novelty of Generative Models

Test: AFHQ / Reference: ImageNet-dogs

Figure 10. Top 9 novel modes of the AFHQ dataset w.r.t. the ImageNet-dogs dataset. Inception embedding is used.
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An Interpretable Evaluation of Entropy-based Novelty of Generative Models

Test: AFHQ / Reference: ImageNet-dogs

Figure 11. Top 9 novel modes of the AFHQ dataset w.r.t. the ImageNet-dogs dataset. DINOv2 embedding is used.
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An Interpretable Evaluation of Entropy-based Novelty of Generative Models

Test: AFHQ / Reference: ImageNet-dogs

Figure 12. Top 9 novel modes of the AFHQ dataset w.r.t. the ImageNet-dogs dataset. CLIP embedding is used.
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An Interpretable Evaluation of Entropy-based Novelty of Generative Models

Table 4. FFHQ-trained generative models’ pairwise KEN score. DINOv2 embedding is used.

Bandwidth
σ

Generative Models
(Test Models)

Reference Models

StyleGAN-XL LDM InsGen StyleGAN2 VDVAE Avg. KEN

30

StyleGAN-XL (Sauer et al., 2022) - 4.35 4.53 4.59 4.75 4.56
LDM (Rombach et al., 2021) 4.25 - 4.28 4.37 4.52 4.36
InsGen (Yang et al., 2021) 4.39 4.24 - 3.92 4.70 4.31
StyleGAN2 (Karras et al., 2019) 4.38 4.27 3.87 - 4.64 4.29
VDVAE (Child, 2020) 4.17 4.02 4.22 4.24 - 4.16

50

StyleGAN-XL (Sauer et al., 2022) - 1.48 1.60 1.65 1.84 1.64
LDM (Rombach et al., 2021) 1.41 - 1.46 1.53 1.71 1.53
InsGen (Yang et al., 2021) 1.50 1.44 - 1.25 1.83 1.51
StyleGAN2 (Karras et al., 2019) 1.50 1.47 1.21 - 1.79 1.49
VDVAE (Child, 2020) 1.42 1.34 1.47 1.49 - 1.43

Table 5. FFHQ-trained generative models’ pairwise KEN score. CLIP embedding is used.

Bandwidth
σ

Generative Models
(Test Models)

Reference Models

StyleGAN-XL LDM InsGen StyleGAN2 VDVAE Avg. KEN

5

StyleGAN-XL (Sauer et al., 2022) - 4.11 3.82 3.92 4.26 4.03
LDM (Rombach et al., 2021) 4.03 - 3.85 3.80 4.30 4.00
InsGen (Yang et al., 2021) 3.80 3.88 - 3.64 4.26 3.90
StyleGAN2 (Karras et al., 2019) 3.84 3.77 3.57 - 4.10 3.82
VDVAE (Child, 2020) 3.49 3.58 3.49 3.46 - 3.51

10

StyleGAN-XL (Sauer et al., 2022) - 0.90 0.77 0.82 1.10 0.90
LDM (Rombach et al., 2021) 0.87 - 0.79 0.79 1.11 0.89
InsGen (Yang et al., 2021) 0.79 0.82 - 0.72 1.12 0.86
StyleGAN2 (Karras et al., 2019) 0.80 0.78 0.69 - 1.05 0.83
VDVAE (Child, 2020) 0.73 0.75 0.73 0.73 - 0.74
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