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Abstract
Automatic citation generation for sentences001
in a document or report is paramount for in-002
telligence analysts, cybersecurity, news agen-003
cies, and education personnel. In this research,004
we investigate whether large language models005
(LLMs) are capable of generating references006
based on two forms of sentence queries: (a) Di-007
rect Queries, LLMs are asked to provide author008
names of the given research article, and (b) In-009
direct Queries, LLMs are asked to provide the010
title of a mentioned article when given a sen-011
tence from a different article. To demonstrate012
where LLM stands in this task, we introduce013
a large dataset called REASONS comprising014
abstracts of the 12 most popular domains of sci-015
entific research on arXiv. From ∼ 20K research016
articles, we make the following deductions on017
public and proprietary LLMs: (a) State-of-the-018
art, often called anthropomorphic GPT-4 and019
GPT 3.5, suffers from high pass percentage020
(PP) to minimize the hallucination rate (HR).021
When tested with Perplexity.ai (7B), they un-022
expectedly made more errors; (b) Augmenting023
relevant metadata lowered the PP and gave the024
lowest HR; (c) Advance retrieval-augmented025
generation (RAG) using Mistral demonstrates026
consistent and robust citation support on in-027
direct queries, and matched performance to028
GPT-3.5 and GPT-4. The HR across all do-029
mains and models decreased by an average of030
41.93%, and the PP reduced to 0% in most031
cases. In terms of generation quality, the av-032
erage F1 Score and BLEU were 68.09% and033
57.51%, respectively; (d) Testing with adversar-034
ial samples showed that LLMs, including the035
Advance RAG Mistral, struggle to understand036
context, but the extent of this issue was small037
in Mistral and GPT-4-Preview. Our study con-038
tributes valuable insights into the reliability of039
RAG for automated citation generation tasks.040

1 Introduction041

The development of LLMs marks a significant042

advancement in computational linguistics and arti-043

ficial intelligence (AI) (Tamkin and Ganguli, 2021).044

Figure 1: An illustration and motivating example for investi-
gating LLMs for automatic citation generation task. Perplex-
ity.ai, which is an LLM-based search engine, yields a citation
that doesn’t exist [1], an incorrect one [3], and a correct cita-
tion [2]. Advance RAG (defined in this research) improved
context understanding and citation generation quality. Time:
Feb. 05, 2024.

LLMs, such as OpenAI’s GPT series, have shown 045

remarkable capabilities in text generation (Zhao 046

et al., 2023), and question-answering systems (Ra- 047

sool et al., 2023; Elgedawy et al., 2024). However, 048

their limitations become apparent as they become 049

more integrated into various domains, including 050

defense (Schwinn et al., 2023), news media (Fang 051

et al., 2023), and education (Yan et al., 2024; Hung 052

et al., 2023; Augenstein et al., 2023). The critical 053

issue is their propensity to generate hallucinated 054

sentences and propagate factually inaccurate pieces 055

of information without reference (Ji et al., 2023; 056

Rawte et al., 2023). These inaccuracies diminish 057

the models’ reliability and erode users’ trust, a vital 058

component in their widespread adoption. 059

Commercial LLM-based search systems, includ- 060

ing Bing Search-powered GPT 4 (Mehdi, 2024) and 061

Perplexity.ai (Roose, 2024), are still not capable 062
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enough of resolving the issue of citation genera-063

tion to confirm the scientific feasibility of either a064

generated sentence(s) or given sentence(s) from the065

scientific literature. For instance, Figure 1 shows066

how proprietary LLMs respond to the zero-shot in-067

direct query. It is evident from the figure that while068

general-purpose LLMs like GPT-3.5 and GPT-4069

‘pass’ the query, task-specific LLM Perplexity does070

generate relevant citations but still shows hallu-071

cination. Consider the following three use cases072

motivating this research:073

Citation Generation in Research Articles and News074

Reports: LLMs can generate highly persuasive and075

realistic content, especially in writing research ar-076

ticles or news reports, making it challenging for077

users to distinguish between genuine and fabricated078

information Nakano et al. (2021); Menick et al.079

(2022); Kumarage and Liu (2023).080

Citation Generation in Reports for Organizational081

Cybersecurity: LLMs are trained on massive082

datasets and can inadvertently reveal sensitive in-083

formation, which can put an organization at risk084

without proper citations (Yamin et al., 2024).085

Citation Generation in Reports for Legal: In a086

significant event, an attorney tried employing Chat-087

GPT for legal analysis during a trial (see subsec-088

tion A.1)(Bohannon, 2023). While ChatGPT gen-089

erated information, it failed to capture the nuanced090

complexities and critical legal precedents needed091

for the case. This underscores the importance of092

confirming and sourcing accurate legal citations093

and precedents relevant to the case. We contribute094

by addressing these challenges with the following:095

(A) Introduce REASONS, a dataset created by ex-096

tracting related works from IEEE articles spanning097

12 scientific domains from 2017 to 2023. (B) We098

employ a new RAG training regime to develop099

Advance RAG. Advance RAG and Naı̈ve RAG100

examine the factual integrity of the information re-101

trieved by dense retrievers and its presentation as ci-102

tations by LLMs. (C) We evaluate both proprietary103

and public LLMs and their RAG counterparts (10104

models) to assess their contextual awareness using105

metrics like Pass Percentage (PP) and Hallucina-106

tion rate (HR). Additionally, we have measured the107

quality of citation generation using F-1 and BLEU108

scores. (D) We conduct an adversarial examination109

to provide a clear assessment of context awareness110

regarding citation generation in LLMs.111

Findings:(I) Perplexity, faces a major challenge112

when dealing with indirect and direct query on the113

REASONS dataset (Figure 2 - Figure 5, and in Ap- 114

pendix A Table 6 - Table 9).(II) Citation generation 115

is enhanced uniformly across public and propri- 116

etary LLMs when metadata like abstract and title 117

are considered with indirect query (Figure 3 and 118

Figure 5, along with Table 7 and Table 9). (III) Ad- 119

vance RAG with Mistral LLM outperforms other 120

competitive proprietary and public LLMs. This 121

performance is realized by a reduction in the HR 122

and increments in F-1 and BLEU scores (Figure 3 123

and Figure 5 (last two bars) and Table 7 and Ta- 124

ble 9 (last two columns)). (IV) For domains such 125

as Quantum Computing and Biomolecules that are 126

heavy in mathematics and numerals, there was a 127

substantial decline in citation generation quality 128

and an increase in HR. Adversarial examination 129

strengthens our understanding that despite being 130

exorbitantly large, LLMs lack context awareness 131

(Table 2). (V) Advance RAG did provide convinc- 132

ing evidence of context understanding (Table 2). 133

Further improvements in RAG-based LLMs are de- 134

sirable, and utilizing REASONS dataset can provide 135

valuable insights into context understanding and 136

provenance in tasks such as hypothesis generation. 137

2 Background 138

Early Techniques in Citation Recommendation: 139

The practice of citing sources is a cornerstone of 140

academic and professional writing, serving as the 141

bedrock for reliability, and truthfulness in schol- 142

arly work (Cronin, 1981). The evolution of citation 143

recommendation systems mirrors the broader ad- 144

vancements in computational linguistics and nat- 145

ural language processing (NLP) (Bai et al., 2019; 146

Ali et al., 2021). Initial methods in citation recom- 147

mendation focused on basic techniques such as text 148

feature-based systems (Strohman et al., 2007), sim- 149

ple keyword matching, and basic statistical meth- 150

ods (Bethard and Jurafsky, 2010). Context-aware 151

citation recommendation systems supplemented 152

these methods (He et al., 2010; Ebesu and Fang, 153

2017; Jeong et al., 2020a; Huang et al., 2021). How- 154

ever, their inability to grasp deeper textual contexts 155

limited their effectiveness. 156

Machine learning in Citation Recommendation 157

The integration of machine learning marked a sig- 158

nificant leap in citation recommendation systems 159

(Agarwal et al., 2005; Küçüktunç et al., 2012). 160

These systems began to exhibit an improved under- 161

standing of the text, although they still lacked a nu- 162

anced grasp of complex contexts (Tran et al., 2015). 163

The application of neural networks revolutionized 164
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citation recommendation. NLP algorithms, capa-165

ble of parsing complex sentence structures, started166

identifying relevant themes for contextually ap-167

propriate citation recommendations (Zarrinkalam168

and Kahani, 2013; Beel et al., 2016; Iqbal et al.,169

2020). Concurrently, graph-based models, visualiz-170

ing literature as interconnected networks, enhanced171

citation recommendations by considering content172

similarity and citation patterns (Ali et al., 2020;173

Chakraborty et al., 2015). With deep learning, cita-174

tion recommendation systems began incorporating175

semantic analysis, employing models like word em-176

beddings and neural networks for a more nuanced177

understanding (Yang et al., 2018; Bhagavatula et al.,178

2018; Vajdecka et al., 2023). Adapted from com-179

mercial use, collaborative filtering also emerged,180

recommending citations based on similar citation181

behaviors (Wang et al., 2020).182

Large Language Models in Citation Generation:183

The advent of LLMs like GPT-3 and its succes-184

sors has further transformed NLP. Initial language185

model systems such as those based on BERT have186

significantly improved citation recommendation187

by converting unstructured text into meaningful188

vectors (Jeong et al., 2020b; Devlin et al., 2018;189

Bhowmick et al., 2021). Recent studies have fo-190

cused on evaluating the fidelity of generated text to191

its sources (Ji et al., 2023). (Rashkin et al., 2023)192

introduced the “attributable to identified sources”193

(AIS) score, while (Bohnet et al., 2022) and others194

(Honovich et al., 2022; Yue et al., 2023) have fo-195

cused on automating AIS. Concurrent work by (Liu196

et al., 2023) explored human evaluation of commer-197

cial generative search engines such as Bing. Chat,198

NeevaAI, perplexity.ai, and YouChat.199

Despite these advancements, LLMs in citation200

recommendation still struggle with generating ac-201

curate information and providing references, as202

shown in studies by (Ji et al., 2023; Zheng et al.,203

2023). Even commercial systems like BingChat204

and Perplexity.ai, which boast advanced technolo-205

gies, lack reliability, especially when generating206

analytical reports requiring proper citations.207

This limitation necessitates an approach closely208

aligning with RAG. RAG compels LLMs to pro-209

vide citations alongside the generated text. The210

concept of retrieval-augmented LLMs has gained211

traction in recent years following (Guu et al., 2020;212

Borgeaud et al., 2022; Izacard et al., 2022; Khan-213

delwal et al., 2019; Schick et al., 2023; Jiang et al.,214

2023b; Yao et al., 2022; Gao et al., 2023). We215

evaluate public and proprietary LLMs and their 216

RAG counterparts on citation generation using 217

REASONS, a meticulously curated dataset from 218

arXiv spanning key domains in computer science 219

and related fields. This allows us to assess the 220

LLM’s ability to identify a given sentence’s source 221

accurately. 222

Domain Paper
Count

IEEE
Papers

Citation
Count

CV 5488 1028 3437
Robotics 3656 292 776
Graphics 1796 384 1417
IR 1741 564 1654
AI 1697 531 2021
NLP 1526 293 1092
Cryptography 1084 371 1106
NNC 892 111 326
HCI 761 112 229
Databases 723 115 182
QC 421 126 456
Biomolecules 119 17 27

Total 19904 3944 12723
Table 1: Our benchmark dataset, REASONS, includes papers
and sentences from 12 domains. It primarily features ten
domains in computer science and 2 in biology. Full forms of
domain acronyms are provided in subsection A.5.

3 Problem Setup 223

Scope of REASONS: The dataset comprises sen- 224

tences gathered from the related work sections of 225

articles in computer science and biology available 226

on arXiv (arX). Summary is provided in Table 1. 227

Exclusions were made for mathematics, statistics, 228

and physics due to the abundance of equations in 229

the related work section, and the crawling method 230

theoremKb1 lacked the required versatility. The 231

exclusive emphasis on related work in IEEE format 232

papers stems from the notion that each sentence in 233

the related work section encapsulates the author’s 234

thought process in citing related works: (A) Ev- 235

ery sentence captures the author’s interpretation 236

and emphasis on original methodology, critique 237

of prior work, corrections to previous research, or 238

acknowledgment of pioneers. This encompasses 239

summarizing these aspects briefly and concisely. 240

(B) The cited work in the related work section 241

is either incidental or important to current work 242

(Valenzuela et al., 2015). REASONS is inspired 243

by previously constructed s2ORC and UnarXive 244

datasets containing academic papers (see Table 4 245

in Appendix A); however, we diverge on the fol- 246

lowing points: (A) We provide sentence-level anno- 247

tation of citations on major computational domains 248

1https://github.com/PierreSenellart/theoremkb

3



on arXiv. (B) Each sentence is accompanied by its249

metadata, which includes the paper title, abstract,250

and author names of the paper it cites. It also con-251

tains the title of the paper from which it was taken.252

(C) The dataset structure allows for an easy exami-253

nation of LLMs using indirect and direct queries.254

Crawling Process: The web crawler employs255

the Oxylabs2 SERP Scraper API as its methodol-256

ogy, enabling real-time data extraction from major257

search engines. This API offers a proxy chaining258

platform for efficient data extraction. The dataset259

is meticulously organized in JSON format with a260

detailed outline (see “JSON Structure”). A com-261

plete GitHub repository is provided, containing the262

dataset and the code for reproducibility (see details263

in subsection A.3). We plan to keep updating the264

repository with more articles and metadata. The265

associated costs are provided in (subsection A.2).266

JSON Structure

{"Computer Vision": {
"http://arXiv.org/abs/2012.05435v2": {
"Paper Title": "Optimization-Inspired..",
"Sentences": [
{"Sentence ID": 32,
"Sentence": "... For GM, ... ",
"Citation Text": "C. Ledig,...",
"Citation": {
"Citation Paper ID": "arXiv:1609.04802",
"Citation Paper Title": "Title:Photo..",
"Citation Paper Abstract": "Abstract:.",
"Citation Paper Authors": "Authors:..." }}]}}}

267

3.1 Problem Formulation268

We define two tasks for LLMs over the REASONS269

dataset R: (a) Direct Querying and (b) Indirect270

Querying. For experimentation, we segment R into271

RS and RM . RS represents sentences and paper272

titles for which references are to be generated with273

or without the support from metadata RM .274

Direct Querying Task: Given a title ti ∈ RS ,275

the LLM should generate the author list. For the276

task of direct querying with metadata, the LLM is277

given the following input: ti ∈ RS , the Advance278

RAG model retrieves top-40 chunks of information279

ai1, ..., ai40 ∈ RM , and generates the names.280

Indirect Querying Task: Given a sentence281

si ∈ RS , the LLM should generate a paper ti-282

tle in zero-shot setting. For the task of indirect283

querying with metadata called Sequential Indirect284

and Direct Prompting (SID Prompting), the LLM285

is given the following input: si ∈ RS and ground286

truth abstract abss ∈ RM as well as the authors287

aus ∈ RM , and the model is asked to generate the288

citation paper title.289

2https://oxylabs.io/

Examples of direct and indirect queries are: 290

Direct Prompt

Prompt: Who were the authors of the research paper
”Research Paper Title”?
Instruction: List only author names, formatted as <
firstname >< lastname >, separated by comma.
Do not mention the paper in the title, also, if you don’t
know, write ’pass’.
Response: Author Names.

291

Indirect Prompt

Prompt: I have taken a sentence from the research
paper titled “Research Paper Title”, give me the re-
search paper that this sentence is citing. If you cannot
come up with the paper titles, write ‘pass.’ Don’t
write anything else.
Instruction: Sentence ”uses fractional max-pooling
to randomly specify non-integer ratios between the
spatial dimension sizes of the input and the output to
pooling layers.”
Response: Citation Paper Title.

292

Implementation of Direct and Indirect Query- 293

ing: Direct querying is executed using zero-shot 294

prompting for scenarios without metadata and 295

chain-of-thoughts prompting for metadata situa- 296

tions. We modify the chain-of-thoughts prompting 297

with SID Prompting. It begins with an indirect 298

query. Following an incorrect response or a ‘pass,’ 299

more details about the cited paper are given (i.e., 300

direct query), including its abstract and authors’ 301

names. This is an iterative approach to generate the 302

correct citation. Following are the two examples of 303

these prompting strategies: 304

Direct Query with Metadata Prompting

Prompt: Who were the authors of the research paper
“Research Paper Title”? Let me give you some more
context by providing the abstract of the research pa-
per. Abstract:’....’.
Instruction: List only author names, formatted as
¡first name¿¡last name¿, separated by comma. Do
not mention the paper in the title. Also, if you don’t
know, write ‘pass.’
Response: Author Names.

305

SID Prompting

Prompt: I have taken a sentence from the research
paper titled ”Research Paper Title.” give me the title
of the possible research paper that this sentence is
citing. If you cannot come up with the paper titles,
write ’pass’. Don’t write anything else.
Instruction: Sentence:”......”. Let me give you
some more context by providing the authors and
the abstract of the paper the sentence is citing. Au-
thors:”......”, Abstract:”.......”
Response: Citation Paper Title.

306

4
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3.2 Models and Evaluation307

Our research has focused on a diverse array of308

LLMs, carefully chosen to provide a broad perspec-309

tive on the capabilities and limitations inherent in310

current language model technologies.311

Proprietary Models: Our selection of proprietary312

models includes those from OpenAI and Preplex-313

ity.ai. While OpenAI is known for its cutting-edge314

NLP models, driving significant advancements in315

the field, Preplexity.ai focuses on models with316

unique functionalities, such as recommending cita-317

tions and utilizing natural language prediction for318

innovative search experiences.319

Public Models: We choose LLAMA 2 (Touvron320

et al., 2023) and Mistral (Jiang et al., 2023a) as321

the two publicly available LLMs that have demon-322

strated competitive performance compared to pro-323

prietary LLMs. We evaluate their effectiveness324

on the REASONS dataset under the standard state325

and retrieval-augmentation conditions. This anal-326

ysis goes beyond simply comparing proprietary327

and public models, extending to evaluating mod-328

els based on their size, particularly those with 7B329

parameters.330

3.3 Evaluation Metrics331

Our evaluation uses four key metrics: 1) The332

BLEU Score assesses the structural alignment333

through clipped n-gram matching. 2) The F-1334

Score evaluates the balance between precision and335

recall, reflecting the models’ effectiveness in cap-336

turing key information. 3) Hallucination rate337

(HR), which we estimate by averaging over incor-338

rect and partially correct generated citations. HR339

= 1
QD

∑
I[ĉ ̸= c] + 1

|Uw|
∑|Uw|

w=1 I[ĉw ̸= cw], where340

QD: queries within a domain, and |Uw|: total num-341

ber of unique words in generated citation (ĉ) and342

true citation (c). 4) Pass Percentage (PP) mea-343

sures the tendency of an LLM to either respond344

or abstain from giving a response. It is calculated345

as follows: 1
QD

∑
I[ĉ = Pass]. It is crucial to em-346

phasize that PP serves as a safeguard to prevent347

LLMs from generating hallucinatory responses but348

also reduces engagement. Additionally, even with349

a high PP, the HR can be high. This implies that the350

model struggles to discern whether it offers correct351

or incorrect citations in the remaining instances.352

3.4 Retrieval Augmented Generation (RAG)353

RAG combines a retriever and a generator to354

create better answers. RAG can access external355

knowledge, unlike methods that feed the model356

prompts. This lets it craft more accurate, relevant,357

and informative responses than models that rely 358

solely on what they were pre-trained. 359

We investigate RAG’s ability to improve LLMs’ 360

accuracy. Ideally, RAG would help LLMs avoid 361

giving wrong answers (low PP) and making things 362

up (HR). We also investigate whether RAG works 363

consistently with direct and indirect questions 364

across different scientific fields (12 domains). We 365

experiment with two forms of RAG architecture: 366

(a) Naı̈ve RAG and (b) Advance RAG. Both ar- 367

chitectures leverage the same bi-encoder-based re- 368

triever architecture (Karpukhin et al., 2020). 369

Given a corpus of documents RM and a sentence 370

s ∈ RS , the document encoder maps d ∈ RM 371

to an embedding Eθ(c) and the query encoder 372

maps s to an embedding Eθ(s). The top-k rele- 373

vant documents for s are retrieved based on the 374

sentence-document embedding similarity, which 375

is often computed via dot product: z(s, d) = 376

exp(Eθ(s)
TEθ(d)). We start with a bi-encoder 377

retriever using an embedding model from OpenAI 378

(subsection A.4). Other ways to set up a bi-encoder 379

retriever, such as DRAGON+ (Lin et al., 2023), are 380

possible. However, those are more useful when 381

involving large-scale data augmentation. 382

The retrieved documents are ranked in two 383

ways, which separates Naı̈ve RAG from Advance 384

RAG. Under the Naı̈ve RAG, we use BM25 rele- 385

vance scoring to rank the documents, whereas, in 386

Advance RAG, we fine-tune a cross-encoder on 387

REASONS document index RM to better align it 388

with our task of citation generation with LLM. For 389

the fine-tuning of the cross-encoder, we use local- 390

ized contrastive loss (LCL) for two reasons: (a) In 391

RM , we do not have labeled positive and negative 392

documents, and (b) for a sentence s there is a pos- 393

sibility for more than one true positive documents 394

(Pradeep et al., 2022). LCL is formally defined as 395

follows: 396

LLCLs := − log
exp(zs,{d+})∑
d∈Gs

exp(zs,d)
397

398

LLCL :=
1

|S|
∑

s∈Rs,Gs∈Rs
M

LLCLs 399

where Gs represents a set of documents for a 400

sentence s, which consist of a set of relevant 401

documents ({d+}) and n-1 non-relevant docu- 402

ments {d−} sampled from Rs
M using biencoder. 403

The training of Advance RAG happens through 404

the standard cross entropy loss: LCE(ĉ|s, ϕ) = 405
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∑b
i=1 I(ĉwi = cwi ) · logPr(ĉwi |ϕ) where, ϕ is pa-406

rameter of the generator LLM and b is the mini-407

batch fine-tuning in Advance RAG. ĉi represents408

ith citation generation, and I(ĉwi = cwi ) represents409

word level comparison with ground truth citation410

(direct query: author names; indirect query: paper411

titles). For the Naı̈ve and Advance RAG, we em-412

ploy LLAMA-2 7B and Mistral 7B as competitive413

models against proprietary LLMs.414

4 Results415

We conducted experiments encompassing four416

distinct prompting styles applied to twelve scien-417

tific domains. This extensive analysis involved418

12,723 sentences, resulting in a substantial dataset419

rigorously evaluated using ten different models.420

This equates to 508920 instance assessments in-421

volving 4 (prompting styles) × 12,723 (sentences422

for all domains) × 10 (models). The time associ-423

ated with performing these experiments is given in424

the appendix (subsection A.6 and Table 5).425

Zero-Shot Indirect Prompting: In Figure 4, a426

majority of the models exhibited high HR. As ex-427

pected for a huge model GPT-4-1106-preview428

(1 Trillion Parameters) shows a relatively lower429

HR of 67.73% and a higher PP of 89% averaged430

across 12 domains. Perplexity-7b-Chat showed431

an exceptionally high PP of 97.5%, which is sur-432

prising, as this LLM is designed specifically for433

citation generation. RAG Mistral was a compet-434

itive model with GPT-4 with a lower PP of 21%435

and HR of 72.49% in comparison to other LLMs.436

Analysis shows RAG Mistral is competitive be-437

cause of the high variance in HR compared to438

GPT-4-1106-preview. Generation quality mea-439

sured by F-1 and BLEU scores were predominantly440

low across the board, with GPT-4 (not the preview,441

G1) comparatively better scores. RAG Mistral and442

RAG LLAMA 2 rank second and third best respec-443

tively.444

SID Prompting In Figure 5, showed improve-445

ment across all the LLMs in citation genera-446

tion over indirect queries. An average improve-447

ment of 21% was measured, with a reduction448

in variance. Even though some models like449

Perplexity-7b-Chat and LLAMA 2 still had high450

HR rates, the PP dropped significantly, especially451

for GPT-4-1106-preview. The results of this ex-452

periment indicate that SID prompting in LLMs can453

balance the trade-off between PP and HR, signifi-454

cantly enhancing generation quality with an (8%↑)455

increase in BLEU and a (13%↑) in F-1 (The Ap-456

pendix B provides examples for visual inspection.). 457

Zero-Shot Direct Prompting presents a very 458

idealistic scenario where the LLMs have access 459

to context through direct query. This leads to both 460

lower PP and HR. The citation generation quality is 461

great, with high F-1 and BLEU scores (see Figure 462

Figure 4). However, Perplexity-7b-Chat, oddly, 463

had high PP and HR, suggesting a need for more 464

research on such specialized LLM search engines. 465

We observed that Perplexity-7b-Chat expands its 466

search queries and adds references to the broader 467

content it finds. The issue is that the expanded 468

versions drift too far in meaning from the original. 469

In Direct Prompting with Metadata, when 470

metadata such as abstracts and titles were used 471

with indirect questions, all the LLMs got better at 472

generating citations and had low HR and PP. This 473

shows that having more information helps LLMs 474

create more accurate and related citations, proving 475

the importance of enough data for good language 476

processing. Note that PP dropped to zero for al- 477

most all models when direct promoting includes 478

metadata. All GPT LLMs achieved F-1 and BLEU 479

scores close to 1.0 and showed more consistent 480

results overall. Two main points from this experi- 481

ment are: First, adding metadata to LLMs is effec- 482

tive for all of them, especially RAG models that 483

integrate this augmentation in their learning pro- 484

cess. Second, smaller models with advance RAG 485

(Mistral and LLAMA-2) adjust better to metadata 486

than GPT-4-Preview/4/3.5 (see Figure 3). 487

Overall: Advance RAG Mistral 7b outperformed 488

other competitive proprietary and public LLMs in 489

all prompting styles. This superior performance 490

was notably marked by reduced HR, suggesting 491

this model is more adept at generating accurate 492

and relevant responses when adding metadata. Fur- 493

thermore, improvements in F-1 scores reinforce its 494

reliability in retrieving information. Higher BLEU 495

scores were observed, signifying that the language 496

output of the model aligns closely with human-like 497

text in terms of fluency & coherence. 498

5 Adversarial Examination 499

The analysis of LLMs using the REASONS 500

dataset highlights significant variability in their per- 501

formance across different domains. While they 502

perform moderately better in areas like AI and 503

CV with lower HR and higher F-1/BLEU scores, 504

they struggle in complex domains such as QC, 505

Biomolecules, and Cryptography, likely due to lim- 506

ited training data and the complexity of these sub- 507
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Figure 2: Averaged Zero-Shot Direct Prompting results of different LLMs across all 12 domains. G1 shows notably lower HR
and higher F-1 and BLEU scores, indicating superior performance in generating citations. In contrast, model P exhibits the highest
HR and the lowest scores in F-1 and BLEU, suggesting challenges in generating accurate and contextually relevant citations.
The RAG models (RM and RL) demonstrate varied results, with RM showing a better accuracy and coherence balance than RL.
G1: gpt-4-1106-preview, G2: gpt-4, G3: gpt-3.5-turbo, P: pplx-7b-chat, RM: Naı̈ve RAG mistral-7b-instruct, M:
mistral-7b-instruct, RL: Naı̈ve RAG llama-2-7b-chat, L: llama-2-7b-chat, AL: Advance RAG llama-2-7b-chat,
AM: Advance RAG mistral-7b-instruct
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Figure 3: Averaged Direct Prompting with Metadata results of different LLMs across all 12 domains. The plot indicates that
models G1, G2, and G3 stand out with their low HR and impressive F-1 and BLEU scores, in contrast to other models that face
challenges. All models except RM reach a 0% PP, suggesting that including metadata significantly enhances their contextual
understanding.
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Figure 4: Averaged Zero-Shot Indirect Prompting across 12 domains. This prompting method led to elevated HR among the
models. There was also a notable variance in PP, with models G3, P, and L exhibiting higher scores. Both conditions indicate
challenges in understanding context and generating accurate citations when using indirect prompts.
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Figure 5: Averaged SID Prompting results of different LLMs across all 12 domains. Models G1, G2, and G3 exhibit relatively
better outcomes with lower HR and higher F-1 and BLEU scores, suggesting more contextual understanding. Other models
demonstrated high HR, indicating difficulties in accurate citation generation with SID Prompting. Notably, while models G1
and G3 have high PPs, indicating some difficulties with SID, their overall performance still reflects a more advanced level of
language processing and contextual comprehension compared to the other models.

jects. This variability in performance indicates508

that LLMs have varying degrees of contextual un-509

derstanding, with a tendency to perform better in510

domains with more extensive training data and less511

complex structures (e.g., maths and numerics). 512

Motivation and Setup: We conducted adversar- 513

ial experiments across all models to better assess 514

their contextual understanding. The core concept 515
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Group PP(%) BLEU F1 HR

Changing Paper Title

G1 96.23 0.6210 0.8470 17.99
G2 31.45 0.0524 0.2640 83.66
G3 68.55 0.0389 0.1828 87.35
RM 3.14 0.0796 0.1584 86.78
M 0.00 0.0003 0.0221 94.95
RL 5.03 0.0628 0.1448 87.56
L 0.00 0.0066 0.0254 98.30

AdvRAG(L) 0.00 0.1322 0.4763 85.72
AdvRAG(M) 0.00 0.1569 0.5839 75.41

Changing Paper Abstract

G1 95.60 0.4595 0.6451 38.49
G2 32.70 0.0396 0.2186 86.22
G3 76.10 0.0034 0.1013 91.64
RM 7.55 0.0520 0.1216 89.44
M 0.00 0.0074 0.0161 90.20
RL 2.52 0.0445 0.1112 90.16
L 0.00 0.0017 0.0146 99.01

AdvRAG(L) 0.00 0.4101 0.5780 39.67
AdvRAG(M) 0.00 0.4904 0.6954 39.57

Table 2: Summary of Adversarial Analysis Results Across
Different Evaluation Metrics

behind these experiments was to provide the mod-516

els with incorrect yet similar metadata about the517

sentences in the prompts. The aim was to discern518

whether the models generated citations based on519

the contextual grasp of the provided metadata or if520

the metadata had minimal influence on the citation521

generation process. These adversarial experiments522

comprised two types: 1) Providing inaccurate pa-523

per titles related to the sentences. 2) Providing524

incorrect paper abstracts associated with the sen-525

tences. Both experiments were conducted using526

the SID prompting.527

To facilitate these experiments, we curated a528

subsample of 200 sentences from the REASONS529

dataset spanning all the domains. We extracted530

each sentence’s most similar paper title or abstract531

from this dataset and replaced the original meta-532

data. For similarity calculation, we use the Ratcliff-533

Obershelp metric, which is calculated as twice the534

length of the longest common substring plus recur-535

sively the number of matching characters in the536

non-matching regions on both sides of the longest537

common substring (Tang et al., 2023). According538

to this metric, for the following example title “Dif-539

fusion models for counterfactual explanations,” the540

best replacement is “Octet: Object-aware models541

for counterfactual explanations (0.736)” as opposed542

to “Adversarial counterfactual visual explanations543

(0.638)”. We considered a threshold of 0.70 effec-544

tive in preparing the adversarial set.545

Findings: We found that incorrect paper titles546

and abstracts easily fool most LLMs if it is similar 547

to accurate information. This means the LLMs are 548

not very good at understanding the true meaning of 549

what they are given. On such a small adversarial 550

set, we expect LLMs like GPT-4-1106-preview 551

and GPT-4 to perform exceedingly well because 552

of their extensive knowledge; however, we ob- 553

served counter-intuitive results in Table 2. We 554

do see promising direction with AdvRAG(M) and 555

AdvRAG(L); however, further investigation is re- 556

quired into how rich graphical metadata (e.g., 557

knowledge graph) and graph-theoretic approaches 558

to information retrieval can improve LLM effec- 559

tiveness (He et al., 2024). 560

6 Conclusion 561

We have developed a new resource called 562

REASONS (REtrieval and Automated citationS Of 563

scieNtific Sentences), a benchmark designed to as- 564

sess the ability of LLMs to understand context and 565

generate appropriate citations. This benchmark in- 566

cludes sentences from the related work sections of 567

papers, along with citations and metadata across 12 568

scientific and computational fields. We evaluated 569

proprietary and public LLMs’ ability to correctly 570

provide author names and paper titles under two 571

conditions: direct and indirect citation. Surpris- 572

ingly, none of the LLMs demonstrated the readi- 573

ness to annotate draft reports in various profes- 574

sional settings, such as market analysis, misinfor- 575

mation prevention, defense strategy, and healthcare 576

reporting. We observed a trade-off between PP and 577

HR, where GPT-4 and GPT-3.5 achieved higher 578

accuracy at the cost of a lower HR. In contrast, 579

though smaller with only 7B parameters, the Ad- 580

vance RAG model showed reasonable efficiency. 581

Unlike other models, in adversarial tests where ab- 582

stracts or paper titles were swapped, Advance RAG 583

unexpectedly outperformed GPT-4, suggesting it 584

does capture context before generating citations. 585

Future Work: Through reasoning and explana- 586

tion, we plan to explore and mitigate the noted 587

shortcomings in citation generation (trade-off be- 588

tween HR and PP, high variance in BLEU scores, 589

sub-par scores on adversarial set). One approach 590

is to employ the Toulmin model (Naveed et al., 591

2018)) within Advance RAG. We believe these im- 592

provements will improve the quality of citation 593

generation and better equip the models to manage 594

complex reasoning (e.g., hypothesis generation and 595

verification (Tyagin and Safro, 2023)) challenges 596

confidently. 597
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Limitations598

Several factors constrain our study on applying599

LLMs for citation generation. (a) Primarily, inte-600

grating high-parameter-size models (>13B; refer to601

Table 5 for computation time) with RAG is not fea-602

sible, limiting our ability to leverage more complex603

models. (b) Additionally, the high computational604

resources required for such models are often inac-605

cessible in academic settings. (c) One constraint in606

our study was the dataset creation, where we con-607

fined ourselves to predominantly IEEE format pa-608

pers, particularly with domains with a high count of609

submissions. (d) Another significant limitation is610

the current inability of LLMs to effectively process611

and interpret mathematical expressions, a crucial612

aspect in many academic papers. (e) Due to the lat-613

est version of Google API (time stamp: December614

04, 2023) lacking the citation generation feature,615

we have limited our experiments to OpenAI only.616

(f) While cross-encoders can be more powerful in617

understanding text relationships, they tend to be618

more computationally intensive. This is because619

they need to process every possible pair of inputs620

together, which can be a significant workload, espe-621

cially in cases where there are many potential pairs622

to consider (like in large-scale retrieval tasks in our623

REASONS dataset). These constraints highlight the624

need for advancements in model adaptability, com-625

putational resource accessibility, dataset diversity,626

and specialized content processing for more robust627

and wide-ranging applications.628

Ethical Considerations629

We followed the Oxylabs Acceptable Use Policy3630

and worked alongside some Oxylabs developers to631

ensure we respected the terms of services on arXiv.632

arXiv’s terms of service place restrictions on au-633

tomated crawling of their site for articles marked634

by “arxiv.org perpetual, non-exclusive license and635

CC BY-NC-ND”. We paid attention to the follow-636

ing key ethical issues: (a) Privacy and Consent:637

The content on arXiv is publicly available, but the638

authors who upload their work there may not have639

consented to having their preprints crawled and640

used for other purposes. It’s important to respect641

the privacy and intellectual property rights of the re-642

searchers who contribute to arXiv. We only crawled643

articles marked as CC Zero, CC BY, and CC BY-644

SA. (b) Potential misuse: We prepared REASONS645

only to test the citation generation capability of646

3https://oxylabs.io/legal/
oxylabs-acceptable-use-policy

LLMs for subsequent future downstream applica- 647

tions, such as annotating draft analytic reports. Our 648

focus on HR and PP for citation generation and 649

its quality using BLEU and F-1 shows that the 650

data scraped is not for malicious purposes, such as 651

fine-tuning LLMs to generate misinformation or 652

infringe on copyrights. (c) Transparency and Ac- 653

countability: We have been mindful of our crawl- 654

ing process, and to the best of our knowledge, we 655

have enumerated sufficient details regarding the 656

process. This would help build trust regarding re- 657

producibility, extend REASONS, and ensure that 658

the crawling process was not abused. (d) Author 659

Identity and Contact: No authors of the crawled 660

papers were contacted through their provided in- 661

formation in the publicly available arXiv papers. 662

This user study was duly approved by the authors’ 663

organization’s Institutional Review Board (IRB). 664
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A Appendix 1017

A.1 The Story of a Lawyer who employed 1018

ChatGPT 1019

In Figure 6, the reliance on LLM-generated con- 1020

tent by legal professionals, highlighted by The New 1021

York Times, illuminates the pitfalls when these 1022

LLMs produce content that lacks proper verifica- 1023

tion. This incident not only signifies the impor- 1024

tance of cross-checking LLM outputs against re- 1025

liable sources but also exemplifies the potential 1026

repercussions of neglecting this critical step. The 1027

subsequent requirement for the involved attorney to 1028

issue apologies and accept sanctions demonstrates 1029
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Figure 6: The perils of inadequate verification of LLMs-generated citations in legal documents.

the dire need for robust citation practices in the de-1030

ployment of LLMs and serves as a crucial learning1031

point for all sectors considering the integration of1032

LLMs into their workflow. Links to the New York1033

Times news articles covering the whole story:1034

• https://www.nytimes.com/1035

2023/05/27/nyregion/1036

avianca-airline-lawsuit-chatgpt.1037

html,1038

• https://www.nytimes.com/1039

2023/06/22/nyregion/1040

lawyers-chatgpt-schwartz-loduca.1041

html1042

• https://www.nytimes.com/2023/06/08/1043

nyregion/lawyer-chatgpt-sanctions.1044

html1045

A.2 Research Cost Breakdown1046

The cost associated with this research in-1047

cludes expenses for utilizing OpenAI API, totaling1048

$640.37. Additionally, the use of Perplexity API1049

incurred costs amounting to $259.39. Furthermore,1050

GPU resources, we used Replicate4 API for our1051

experiments, amounted to $466.22. For dataset cre-1052

ation, we used Oxylab for $249 for a month. In1053

total, the expenses for conducting this research sum1054

up to $1614.98.1055

4https://replicate.com/

A.3 Reproduciblity 1056

Our pipeline is straightforward to implement and 1057

can be easily reproduced. We have thoroughly doc- 1058

umented all experimental details in the main text 1059

and the appendices. Although the full text of each 1060

prompt is too lengthy to include, we offer examples 1061

of each in Appendix B to help readers understand 1062

the style used. All of our resources, including com- 1063

plete prompt scripts, crawling data, and code for 1064

evaluating our approach, are available to the pub- 1065

lic repository here: 1066

• https://anonymous.4open.science/r/ 1067

REASONS BENCHMARK-D04D/README.md 1068

A.4 Models specifications used during 1069

experimentation 1070

The ‘temperature’ hyper-parameter in the 1071

LLMs controls the creativity of the LLMs in their 1072

response. The lower the temperature, the lower 1073

the creativity in the response, and the higher the 1074

temperature value, the higher the creativity in the 1075

response. By default, the temperature for most of 1076

the LLMs is set to 1. The ‘max tokens’ describes 1077

the maximum number of tokens the LLM can gen- 1078

erate. The ‘top p’ is nucleus sampling, which helps 1079

limit the irrelevant tokens in the generation. 1080

The ‘top k’ is the number of retrieved chunks 1081

of information that will be considered during the 1082

generation in the RAG process. The ‘tokenizer’ 1083

converts the retrieved chunks of information and 1084

the prompts into tokens. 1085
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We have used two different tokeniz-1086

ers ‘NousResearch/Llama-2-7b-chat-hf’1087
5 for LLAMA-2-7b-chat and1088

‘mistralai/Mistral-7B-v0.1’ 6 for Mistral-1089

7b-instruct. The “Embedding Model” gen-1090

erates embeddings for tokens produced1091

during tokenization. We have utilized the1092

‘BAAI/bge-small-en-v1.5’7 model for this1093

purpose. And finally, the Cross-Encoder1094

‘ms-marco-MiniLM-L-12-v2’8 is fine-tuned1095

using the LCL function for re-ranking of the1096

retrieved chunks.1097

Our research utilized a dual-configuration server1098

setup provided by the University. Configuration1099

1 consists of two nodes, with each node housing1100

128 cores (totaling 256 cores), 256GB of RAM,1101

and two NVIDIA L40S GPUs, each equipped1102

with 48GB of GPU memory. Configuration 2 is1103

equipped with 8 NVIDIA A100-40GB cards, 1TB1104

of RAM, and 256 CPUs. Due to resource availabil-1105

ity in the queue, we alternate between these two1106

configurations. Currently, we have not been able to1107

compare their performance.1108

We concluded that the Zero Shot Indirect prompt-1109

ing approach is susceptible to hallucinations and is1110

ineffective for the citation generation task. Hence,1111

we did not conduct Advance RAG experiments with1112

this prompting due to earlier results from other1113

models, and also, the Advance RAG approach is1114

computationally more expensive Table 6.1115

Hyperparameter Value
temperature 1.0
max tokens 256

top p 0.95
Naı̈ve RAG

top k 2
Embedding Model BAAI/bge-small-en-v1.5

Advance RAG
top k 40

Cross-Encoder ms-marco-MiniLM-L-12-v2
LLAMA-2 Tokenizer NousResearch/Llama-2-7b-

chat-hf
Mistral Tokenizer mistralai/Mistral-7B-v0.1

Table 3: Hyper-parameters along with their values used during
experimentation

5https://huggingface.co/NousResearch/
Llama-2-7b-chat-hf

6https://huggingface.co/mistralai/
Mistral-7B-v0.1

7https://huggingface.co/BAAI/bge-small-en-v1.
5

8https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-12-v2

A.5 Dataset Comparison 1116

We contrast the REASONS dataset with other 1117

similar datasets that could have been utilized for 1118

citation generation. However, due to constraints 1119

within these datasets—such as the absence of 1120

sentence-level annotation of citations, metadata of 1121

citations, and paper titles—we would not be able 1122

to effectively assess the ability of LLMs and RAG 1123

LLMs to accurately grasp the context and generate 1124

suitable citations (see Table 4). Acronyms used in 1125

the paper: Computer Vision (CV), Information Re- 1126

trieval (IR), Artificial Intelligence (AI) Natural Lan- 1127

guage Processing (NLP), Cryptography (Crypto), 1128

Neurons and Cognition (NNC), Human-Computer 1129

Interaction (HCI), Quantum Computing (QC), and 1130

Biomolecules. 1131

A.6 GPU Machine Hours 1132

With the exception of direct prompting, all other 1133

prompting styles required a substantial number 1134

of GPU hours (see Table 5). Training Advance 1135

RAG proved to be a highly time-intensive endeavor, 1136

which we attempted to mitigate by alternating be- 1137

tween NVIDIA L40S and A100. We also found 1138

that LLAMA 2 required less time in training than 1139

Mistral. The reasons behind this can be a subject of 1140

future work. We provide machine-hour estimates 1141

to assist other researchers interested in RAG and 1142

its applications in provenance and context compre- 1143

hension, facilitating better time management. 1144

B Examples of Prompts in Direct and 1145

Indirect Queries 1146

In the following visual examples, each model 1147

is followed by a checkbox indicating whether it 1148

generated citations correctly or incorrectly. See 1149

Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, 1150

Figure 12, Figure 13. 1151

B.1 Individual Results of all the domains 1152

across all the prompting styles 1153

A comparative analysis of hallucination rates 1154

(HR) across several LLMs in zero-shot indirect 1155

prompting reveals distinct patterns, focusing on 1156

common domains. The G1, G2, G3, P, RM, M, 1157

RL, and L models consistently show variations in 1158

HR. High HR domains like NNC, Cryptography, 1159

and NLP appear recurrently across several models. 1160

Low HR results frequently occur in IR, CV, and 1161

HCI, indicating a general resilience in these ar- 1162

eas across different settings. For instance, NNC 1163

features prominently with high HR in the G1, G2, 1164

G3, RM, and RL models, while IR and CV con- 1165

sistently show low HR across G1, G2, RM, and M 1166
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REASONS UnarXive PubMed CiteULike S2orc
Main Purpose Sentence Anno-

tation
Citation Rec-
ommendation

Medical Re-
search

Benchmark for
Recommenda-
tion Systems
and Collabora-
tive Filtering
Algorithms

Citation recom-
mendation, text
summarization

Contains Sentences? ✓ ✗ ✗ ✗ ✗
Contains Paper Title? ✓ ✗ ✓ ✓ ✓
Contains Abstract? ✓ ✓ ✓ ✓ ✗ (Not all docu-

ments)
Contains Authors Names? ✓ ✓ ✓ ✓ ✓
Contains Keywords? ✗ ✗ ✓ ✓ ✗
Cover Multiple Domains? ✓ ✓ ✗ ✓ ✓
Covers Metadata of citation ✓ ✗ ✗ ✗ ✗
Data Time Period 2017-2023 1991-2023 1990-2023 2004-2023 Last release:

2021-02-01
Table 4: Comparison of different datasets

Domain OpenAI Mistral L RM RL Perplexity AdvRAG(L) AdvRAG(M)
AI 34:25 26:03 11:10 74:49 73:09 34:31 156:24 163:28
Biomolecules 01:11 00:41 00:10 4:38 4:10 00:20 7:29 7:40
CV 47:45 18:35 19:24 189:20 198:45 42:05 259:32 302:14
Crytography 03:50 02:18 04:59 83:28 89:21 13:23 190:19 194:25
Databases 01:27 00:51 00:40 49:34 45:46 00:51 96:19 97:48
Graphics 07:08 08:55 06:08 108:08 127:48 16:52 214:25 227:23
HCI 03:01 01:10 00:42 48:32 50:51 02:47 95:56 98:44
IR 20:31 11:40 06:52 91:30 99:43 19:50 193:37 202:23
NLP 28:26 11:42 05:09 91:07 88:40 13:06 175:58 156:49
NNC 05:00 01:39 02:12 34:56 41:09 01:19 70:17 84:07
QC 07:26 02:46 01:59 61:09 67:56 03:17 109:21 113:54
Robotics 19:39 05:41 06:11 41:67 46:55 09:17 92:67 98:45

Table 5: Time taken by different models with respect to each domain during experimentation, converted to hours and minutes.
Red Color: Time recorded while using Replicate API, and Blue Color: Time recording while using NVIDIA A100/L40S USC
server.

models.1167

For direct prompting with metadata also1168

shows common domains across the models. No-1169

table high HR domains such as NNC, IR, NLP,1170

QC, and Graphics feature prominently across dif-1171

ferent models, indicating frequent challenges in1172

these areas.1173

Low HR results consistently appear in CV, NLP,1174

Cryptography, and Biomolecules, showcasing1175

general robustness against hallucinations in these1176

domains. Specifically, NNC is recurrently ob-1177

served with high HR in the G1, AdvRAG(L),1178

and AdvRAG(M) models, while QC shows up1179

frequently in high HR scenarios (G1, G2, L,1180

AdvRAG(M)).1181

Similarly, IR is highlighted in high HR for the P,1182

RM, RL, and AdvRAG(L) models, indicating its1183

susceptibility, whereas NLP and Graphics show1184

variability in HR across multiple models.1185

For zero-shot direct prompting also show sig-1186

nificant patterns in common domains.1187

High HR is commonly observed in domains like1188

QC, Cryptography, Robotics, and Databases, in-1189

dicating areas prone to hallucinations. Low HR1190

domains frequently include IR, HCI, CV, and 1191

Biomolecules, highlighting resilience in these ar- 1192

eas. 1193

Specifically, QC appears as a high HR domain 1194

in the G1, G2, G3, RL, L, AdvRAG(L), and 1195

AdvRAG(M) models, reflecting a consistent chal- 1196

lenge across these models. IR and HCI are no- 1197

tably present as low HR domains in G2, G3, 1198

AdvRAG(L), showing widespread reliability. 1199

Moreover, Robotics and Cryptography are fre- 1200

quently observed in high HR scenarios in mod- 1201

els like G2, M, and AdvRAG(M), while CV and 1202

Biomolecules commonly appear in low HR set- 1203

tings across G2, G3, M, and AdvRAG(). 1204

For SID prompting, high HR domains such 1205

as QC, Cryptography, Databases, NNC, and 1206

Robotics frequently appear across several models, 1207

highlighting a general susceptibility in these areas. 1208

On the other hand, low HR domains commonly in- 1209

clude IR, HCI, CV, and Graphics, demonstrating 1210

resilience against hallucinations. 1211

Specifically, QC is observed as a high HR do- 1212

main in the G1, G2, G3, RM, RL, AdvRAG(L), 1213

and AdvRAG(M) models, signifying a consistent 1214

15



Figure 7: Example 1 of an indirect query where a sentence from the research paper is provided and asked for the correct title. We
have ground truth for the paper title and responses from various LLMs. Only Adv. RAG+LLAMA generated the correct title.

challenge in this area. IR and HCI are notably1215

present as low HR domains in G1, G2, G3, RM,1216

and AdvRAG(L), indicating widespread reliability1217

in these areas.1218

Moreover, Cryptography and Robotics are fre-1219

quently observed in high HR scenarios in models1220

like G1, G2, and RM, while CV and Graphics1221

commonly appear in low HR settings across G2, L,1222

and AdvRAG(L). To summarize our results1223

• The zero-shot indirect and SID promoting1224

styles are more prone to hallucinations, which1225

lack contextual understanding.1226

• Notably, NNC and QC consistently show1227

high HR across multiple models and promot-1228

ing styles, indicating common challenging do-1229

mains.1230

• Conversely, CV and IR low HR, which show1231

robustness in models, suggesting reliability1232

in these domains across different prompting1233

strategies.1234

B.2 Further Discussion on Adversarial1235

Examination1236

This analysis emphasizes the strengths and weak-1237

nesses of current LLMs and the need for domain-1238

specific training. It shows that a general approach1239

is insufficient and highlights the importance of spe- 1240

cialized training to meet the unique demands of 1241

different fields. As LLMs evolve, aligning their 1242

development with human knowledge’s varied and 1243

intricate nature is crucial. 1244

The study finds a significant relationship be- 1245

tween the specificity of prompts, especially those 1246

with metadata, and the linguistic accuracy of LLMs, 1247

as evidenced by higher F-1 and BLEU scores. 1248

This suggests that providing detailed, context-rich 1249

prompts can significantly improve the quality of 1250

generated citations. 1251

Pass Percentage (PP): The varying PP among dif- 1252

ferent models points to a key challenge in LLM 1253

development: the ability to understand and reason 1254

through complex situations. Models with lower PP 1255

struggle with generating relevant responses in com- 1256

plex or critical scenarios, underlining the impor- 1257

tance of enhancing reasoning capabilities in LLMs 1258

for effective application. 1259

Prompt Design: There’s a noticeable difference 1260

in how individual models, such as gpt-4-1106- 1261

preview and gpt-4, respond to different prompts. 1262

This underscoring the significance of prompt de- 1263

sign in leveraging the full potential of LLMs sug- 1264

gests a complex interplay between the model’s 1265

structure, prompt formulation, and performance. 1266
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Zero-Shot Indirect

Domain G1 G2 G3 P RM M RL L

Hallucination Rate (%)

AI 63.61 72.44 81.87 96.27 93.98 97.16 92.21 95.87
Biomolecules 96.82 69.77 84.68 95.06 96.63 85.14 96.25 95.57

Crypto 75.04 70.21 81.97 94.16 93.07 96.11 93.83 97.23
CV 51.83 64.3 79.34 94.63 91.42 97.12 94.68 95.96

Databases 76.66 69.99 78.93 96.99 93.42 97.28 95.68 95.84
Graphics 57.49 70.76 85.39 97.25 92.32 97.55 96.1 95.92

HCI 51.83 73.46 73.41 96.71 93.01 96.83 96.85 95.61
IR 51.78 67.89 73.41 96.80 92.01 96.81 96.85 96.01

NLP 63.03 73.98 74.77 97.11 94.10 97.05 94.29 97.93
NNC 77.27 80.75 82.11 95.49 94.32 97.13 97.92 96.14
QC 91.72 84.85 76.09 95.15 92.13 97.14 95.34 95.56

Robotics 55.78 71.55 76.73 95.81 94.26 97.2 97.51 95.67

Mean 67.73 72.49 79.05 95.95 93.38 96.04 95.64 96.10
Standard Deviation 15.64 5.51 4.19 1.05 1.40 3.45 1.67 0.72

F-1 Score

AI 0.02 0.22 0.00 0.00 0.10 0.08 0.07 0.05
Biomolecules 0.00 0.26 0.00 0.07 0.09 0.06 0.06 0.05

Crypto 0.01 0.25 0.00 0.00 0.08 0.04 0.06 0.04
CV 0.06 0.29 0.00 0.00 0.07 0.05 0.05 0.04

Databases 0.00 0.26 0.00 0.00 0.09 0.06 0.05 0.04
Graphics 0.06 0.25 0.00 0.00 0.05 0.03 0.03 0.01

HCI 0.04 0.23 0.00 0.00 0.07 0.03 0.04 0.03
IR 0.06 0.29 0.00 0.00 0.04 0.01 0.03 0.02

NLP 0.02 0.21 0.00 0.00 0.07 0.04 0.04 0.03
NNC 0.02 0.16 0.00 0.00 0.06 0.04 0.02 0.01
QC 0.01 0.13 0.00 0.00 0.05 0.02 0.03 0.01

Robotics 0.03 0.21 0.00 0.00 0.08 0.05 0.03 0.02

Mean 0.02 0.23 0.00 0.00 0.07 0.04 0.04 0.02
Standard Deviation 0.02 0.04 0.00 0.02 0.01 0.01 0.01 0.01

BLEU Score

AI 0.01 0.09 0.00 0.00 0.05 0.00 0.06 0.00
Biomolecules 0.00 0.12 0.00 0.00 0.00 0.00 0.04 0.00

Crypto 0.01 0.12 0.00 0.00 0.07 0.00 0.05 0.00
CV 0.04 0.16 0.00 0.00 0.02 0.00 0.03 0.00

Databases 0.00 0.12 0.00 0.00 0.08 0.00 0.03 0.00
Graphics 0.04 0.12 0.00 0.00 0.03 0.00 0.01 0.00

HCI 0.03 0.09 0.00 0.00 0.05 0.00 0.02 0.00
IR 0.04 0.14 0.00 0.00 0.01 0.00 0.02 0.00

NLP 0.02 0.09 0.00 0.00 0.06 0.00 0.00 0.00
NNC 0.02 0.05 0.00 0.00 0.02 0.00 0.00 0.00
QC 0.00 0.02 0.00 0 0.01 0.00 0.00 0.00

Robotics 0.02 0.08 0.00 0.00 0.06 0.00 0.00 0.00

Mean 0.01 0.10 0.00 0.00 0.03 0.00 0.02 0.00
Standard Deviation 0.01 0.03 0.00 0.00 0.02 0.00 0.02 0.00

Pass Percentage (%)

AI 92.92 24.15 97.08 97.77 4.95 0.05 0 0
Biomolecules 88.89 19.76 97.81 0 0 0 0 0

Crypto 92.45 20.47 98.17 99.01 5.63 0.09 0 0
CV 86.7 23.8 95.66 96.48 3.84 0 0 0

Databases 97.25 20.11 97.67 97.14 6.23 0 0 0
Graphics 86.38 19.69 97.32 98.8 1.34 0 0 0

HCI 90.83 19.21 96.61 98.32 6.11 0 0 0
IR 87.67 16.69 96.61 97.83 5.21 0 0 0

NLP 92.4 21.98 97.89 98.53 6.75 0 0 0
NNC 87.73 20.86 98.16 95.21 6.39 0 0 0
QC 75 17.76 99.34 95.09 5.72 0 0 0

Robotics 92.91 31.7 97.68 95.95 5.73 0 0 0

Mean 89.26 21.34 97.50 89.17 4.82 0.01 0.00 0.00
Standard Deviation 5.528 3.91 0.94 28.11 2.10 0.02 0.00 0.00

Table 6: Zero-Shot Indirect
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Direct with Metadata

Domain G1 G2 G3 P RM M RL L AdvRAG(L) AdvRAG(M)

Hallucination Rate (%)

AI 0.32 0.10 6.04 61.31 37.6 71.39 72.16 80.90 19.24 7.67
Biomolecules 0.46 0.01 5.29 73.99 94.5 67.98 87.10 79.15 8.15 0.07

Crypto 0.42 0.05 5.41 61.77 40.87 71.56 73.18 80.45 6.76 4.15
CV 0.42 0.07 4.9 62.35 41.60 73.67 74.16 78.93 5.51 2.22

Databases 0.20 0.15 5.05 62.55 39.60 73.33 75.16 0.79 9.73 7.60
Graphics 0.20 0.15 5.43 62.64 42.31 71.43 78.21 79.80 11.45 8.10

HCI 0.24 0.26 5.26 60.38 40.75 73.29 75.45 80.66 17.65 7.04
IR 0.39 0.09 5.26 63.88 48.98 73.1 79.43 80.98 19.71 7.81

NLP 0.64 0.27 6.20 58.79 37.44 69.68 71.24 80.17 12.60 5.80
NNC 0.51 0.16 5.82 61.12 38.73 72.04 75.14 81.31 28.11 57.95
QC 0.54 0.17 4.95 61.97 38.54 69.34 72.09 81.70 18.19 9.25

Robotics 0.45 0.12 5.98 61.89 39.01 70.62 71.02 80.34 10.27 3.88

Mean 0.39 0.13 5.46 62.72 44.99 71.45 75.36 80.28 13.94 10.70
Standard Deviation 0.13 0.07 0.44 3.76 15.89 1.79 4.52 0.90 6.67 15.01

F-1 Score

AI 0.99 0.89 0.95 0.69 0.71 0.36 0.33 0.28 0.84 0.92
Biomolecules 0.97 0.99 0.96 0.36 0.07 0.07 0.21 0.32 0.96 0.95

Crypto 0.93 0.97 0.96 0.61 0.60 0.40 0.37 0.31 0.91 0.94
CV 0.98 0.99 0.96 0.39 0.52 0.38 0.34 0.35 0.98 0.98

Databases 0.99 0.98 0.96 0.42 0.59 0.34 0.34 0.33 0.92 0.95
Graphics 0.99 0.99 0.96 0.45 0.64 0.44 0.41 0.32 0.94 0.90

HCI 0.99 0.98 0.96 0.34 0.58 0.35 0.35 0.34 0.82 0.94
IR 0.99 0.98 0.94 0.52 0.54 0.39 0.39 0.30 0.84 0.92

NLP 0.99 0.92 0.95 0.53 0.62 0.42 0.40 0.31 0.86 0.91
NNC 0.99 0.99 0.95 0.51 0.62 0.41 0.36 0.30 0.92 0.39
QC 0.99 0.99 0.96 0.58 0.65 0.43 0.33 0.29 0.82 0.86

Robotics 0.99 0.99 0.95 0.63 0.69 0.35 0.49 0.31 0.92 0.95

Mean 0.98 0.98 0.95 0.50 0.56 0.36 0.35 0.32 0.89 0.88
Standard Deviation 0.01 0.00 0.00 0.11 0.16 0.09 0.06 0.02 0.05 0.15

BLEU Score

AI 0.99 0.99 0.93 0.31 0.43 0.24 0.11 0.12 0.81 0.92
Biomolecules 0.95 0.99 0.94 0.22 0.00 0.00 0.07 0.12 0.93 0.02

Crypto 0.95 0.97 0.94 0.33 0.41 0.24 0.13 0.12 0.93 0.95
CV 0.95 0.99 0.94 0.32 0.39 0.22 0.13 0.13 0.95 0.96

Databases 0.98 0.99 0.94 0.33 0.41 0.21 0.13 0.13 0.79 0.86
Graphics 0.99 0.99 0.94 0.33 0.45 0.24 0.17 0.12 0.91 0.91

HCI 0.99 0.98 0.94 0.33 0.43 0.22 0.13 0.14 0.91 0.92
IR 0.99 0.99 0.94 0.36 0.48 0.23 0.16 0.11 0.87 0.92

NLP 0.99 0.99 0.93 0.37 0.46 0.27 0.12 0.12 0.82 0.91
NNC 0.99 0.99 0.93 0.34 0.46 0.22 0.12 0.11 0.90 0.17
QC 0.98 0.98 0.93 0.28 0.38 0.26 0.15 0.11 0.80 0.83

Robotics 0.99 0.99 0.93 0.34 0.49 0.26 0.18 0.12 0.89 0.94

Mean 0.97 0.98 0.93 0.32 0.39 0.21 0.13 0.12 0.87 0.77
Standard Deviation 0.01 0.00 0.00 0.03 0.13 0.07 0.02 0.00 0.05 0.32

Pass Percentage (%)

AI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Biomolecules 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Crypto 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00
CV 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Databases 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00
Graphics 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00

HCI 0.00 0.00 0.00 0.24 0.44 0.00 0.00 0.00 0.00 0.00
IR 0.00 0.00 0.00 0.03 0.67 0.00 0.00 0.00 0.00 0.00

NLP 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
NNC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Robotics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mean 0.00 0.00 0.00 0.13 0.09 0.00 0.00 0.00 0.00 0.00
Standard Deviation 0.00 0.00 0.00 0.21 0.22 0.00 0.00 0.00 0.00 0.00

Table 7: Direct with Metadata
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Zero-Shot Direct Prompting

Domain G1 G2 G3 P RM M RL L AdvRAG(L) AdvRAG(M)

Hallucination Rate (%)

AI 30.9 53.99 73.13 95.64 56.45 94.23 72.17 76.85 43.77 34.42
CV 35.9 36.32 61.38 95.84 58.45 92.84 73.17 76.67 35.38 35.43
NLP 27.51 52.49 72.28 96.18 63.92 93.89 83.17 75.91 47.95 36.63
IR 24.82 42.55 64.19 95.23 63.12 91.59 77.38 78.16 42.01 37.93

Databases 37.48 53.33 74.08 95.98 55.45 93.81 74.17 77.92 58.11 40.23
Graphics 29.3 54.29 73.71 95.67 52.4 92.99 71.19 75.57 47.41 40.26

HCI 22.92 38.02 64.19 95.01 62.67 92.64 78.15 76.49 38.51 41.11
Biomolecules 21.01 53.25 73.88 90.83 94.00 43.84 91.2 79.92 67.56 46.28

NNC 36.05 53.13 72.39 93.37 63.51 91.18 83.73 78.24 48.51 46.31
Crypto 34.41 54.68 73.01 95.39 54.45 94.78 76.59 76.44 66.16 50.08

Robotics 34.71 56.62 76.29 93.25 60.89 94.69 81.99 75.92 59.017 50.65
QC 53.04 70.01 82.26 93.70 65.07 89.75 85.64 81.24 69.108 60.81

Mean 32.33 51.55 71.73 94.67 62.53 88.85 79.04 77.44 51.95 43.34
Standard Deviation 8.52 9.02 5.80 1.58 10.76 14.25 6.14 1.73 11.66 7.75

F-1 Score

AI 0.42 0.39 0.21 0.04 0.41 0.06 0.31 0.36 0.46 0.53
Biomolecules 0.37 0.42 0.21 0.08 0.07 0.05 0.14 0.31 0.29 0.65

Crypto 0.42 0.41 0.22 0.04 0.43 0.06 0.32 0.36 0.40 0.56
CV 0.42 0.60 0.33 0.05 0.39 0.07 0.32 0.36 0.62 0.62

Databases 0.40 0.42 0.21 0.05 0.41 0.06 0.31 0.34 0.42 0.55
Graphics 0.49 0.41 0.22 0.05 0.44 0.07 0.33 0.38 0.42 0.56

HCI 0.51 0.55 0.29 0.05 0.36 0.07 0.27 0.36 0.62 0.56
IR 0.51 0.52 0.29 0.05 0.35 0.08 0.26 0.34 0.57 0.69

NLP 0.39 0.38 0.21 0.04 0.35 0.06 0.21 0.37 0.52 0.66
NNC 0.39 0.39 0.19 0.06 0.37 0.08 0.24 0.34 0.48 0.57
QC 0.22 0.25 0.12 0.06 0.34 0.09 0.18 0.30 0.30 0.40

Robotics 0.35 0.36 0.20 0.06 0.33 0.05 0.15 0.37 0.41 0.54

Mean 0.40 0.42 0.22 0.05 0.35 0.06 0.25 0.34 0.45 0.57
Standard Deviation 0.07 0.09 0.05 0.01 0.09 0.01 0.06 0.02 0.10 0.07

BLEU Score

AI 0.37 0.31 0.11 0.00 0.24 0.00 0.17 0.15 0.38 0.49
Biomolecules 0.34 0.33 0.10 0.00 0.00 0.02 0.04 0.11 0.27 0.60

Crypto 0.37 0.32 0.11 0.00 0.25 0.00 0.18 0.15 0.26 0.47
CV 0.40 0.52 0.23 0.00 0.24 0.00 0.16 0.15 0.57 0.58

Databases 0.32 0.33 0.10 0.00 0.25 0.00 0.18 0.14 0.31 0.42
Graphics 0.44 0.31 0.11 0.00 0.23 0.00 0.19 0.16 0.70 0.51

HCI 0.46 0.46 0.18 0.00 0.22 0.00 0.13 0.15 0.64 0.51
IR 0.45 0.44 0.18 0.00 0.28 0.00 0.17 0.14 0.48 0.62

NLP 0.34 0.32 0.11 0.00 0.21 0.00 0.12 0.16 0.46 0.51
NNC 0.33 0.28 0.11 0.00 0.19 0.00 0.10 0.14 0.48 0.57
QC 0.17 0.14 0.02 0.00 0.17 0.00 0.08 0.11 0.20 0.29

Robotics 0.30 0.28 0.09 0.00 0.18 0.00 0.09 0.16 0.30 0.41

Mean 0.35 0.33 0.12 0.00 0.20 0.00 0.13 0.14 0.42 0.49
Standard Deviation 0.07 0.09 0.05 0.00 0.07 0.00 0.04 0.01 0.16 0.09

Pass Percentage (%)

AI 37.26 9.70 12.37 0.66 1.65 0.00 0.00 0.00 0.00 0.00
Biomolecules 51.85 6.77 6.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Crypto 33.4 5.43 10.52 0.20 2.15 0.00 0.00 0.00 0.00 0.00
CV 32.26 3.84 8.67 0.09 3.12 0.09 0.00 0.00 0.00 0.00

Databases 32.42 6.70 10.59 0.95 2.49 0.00 0.00 0.00 0.00 0.00
Graphics 28.86 6.49 10.30 0.15 0.45 0.07 0.00 0.00 0.00 0.00

HCI 31.00 8.30 14.51 0.32 0.56 0.00 0.00 0.00 0.00 0.00
IR 30.11 6.11 14.51 0.86 0.87 0.00 0.00 0.00 0.00 0.00

NLP 44.6 15.75 17.03 0.18 1.76 0.00 0.00 0.00 0.00 0.00
NNC 37.12 13.19 21.47 0.74 1.53 0.00 0.00 0.00 0.00 0.00
QC 50.22 10.09 19.96 0.00 1.94 0.00 0.00 0.00 0.00 0.00

Robotics 45.10 11.60 9.02 0.00 4.54 0.00 0.00 0.00 0.00 0.00

Mean 37.85 8.66 12.97 0.34 1.75 0.01 0.00 0.00 0.00 0.00
Standard Deviation 8.06 3.50 4.61 0.35 1.25 0.03 0.00 0.00 0.00 0.00

Table 8: Zero-Shot Direct
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SID

Domain G1 G2 G3 P RM M RL L AdvRAG(L) AdvRAG(M)

Hallucination Rate (%)

AI 29.44 48.49 61.18 95.08 85.21 94.18 86.68 98.42 51.47 38.45
Biomolecules 35.71 54.99 66.34 95.79 96.87 86.32 96.51 99.06 52.15 40.89

Crypto 40.44 48.15 66.48 91.18 85.28 94.78 86.91 98 53.67 45.77
CV 34.44 38.15 59.77 93.47 87.65 94.13 89.58 99.56 38.82 39.25

Databases 40.74 62.34 66.00 93.91 86.66 93.96 86.10 98.67 62.49 43.2
Graphics 25.54 62.34 66.55 95.28 85.91 94.39 86.41 58.83 59.65 47.72

HCI 27.35 39.58 57.01 94.41 85.68 93.87 88.15 98.12 30.53 23.39
IR 24.01 41.87 57.01 94.68 85.61 93.33 88.45 98.57 58.58 40.97

NLP 29.2 50.69 61.68 95.87 88.46 93.88 89.28 98.64 60.26 37.72
NNC 32.68 57.13 74.64 95.97 88.01 95.14 89.56 99.34 59.42 64.43
QC 51.83 63.63 80.05 92.10 89.75 95.49 90.73 98.98 69.18 59.84

Robotics 32.45 49.76 57.27 95.07 89.46 94.36 90.86 98.27 49.24 34.95

Mean 33.65 51.42 64.49 94.40 87.87 93.65 89.10 95.371 53.788 43.048
Standard Deviation 7.80 8.85 7.16 1.51 3.25 2.38 2.85 11.51 10.60 10.84

F-1 Score

AI 0.30 0.54 0.05 0.09 0.12 0.11 0.20 0.02 0.50 0.61
Biomolecules 0.15 0.51 0.03 0.05 0.05 0.03 0.05 0.00 0.52 0.57

Crypto 0.35 0.67 0.03 0.07 0.13 0.10 0.19 0.02 0.62 0.71
CV 0.35 0.67 0.06 0.09 0.13 0.11 0.16 0.03 0.72 0.73

Databases 0.21 0.03 0.03 0.08 0.14 0.10 0.19 0.02 0.29 0.48
Graphics 0.41 0.03 0.03 0.05 0.13 0.09 0.18 0.41 0.38 0.58

HCI 0.33 0.66 0.07 0.08 0.15 0.13 0.18 0.03 0.70 0.85
IR 0.38 0.64 0.07 0.08 0.14 0.12 0.15 0.02 0.43 0.68

NLP 0.30 0.51 0.05 0.07 0.16 0.10 0.13 0.02 0.41 0.49
NNC 0.21 0.45 0.03 0.09 0.11 0.08 0.17 0.00 0.50 0.31
QC 0.10 0.37 0.02 0.06 0.10 0.07 0.13 0.01 0.31 0.42

Robotics 0.28 0.54 0.05 0.07 0.13 0.09 0.14 0.02 0.60 0.62

Mean 0.28 0.46 0.04 0.07 0.12 0.09 0.15 0.05 0.49 0.58
Standard Deviation 0.09 0.22 0.01 0.01 0.02 0.02 0.04 0.11 0.14 0.14

BLEU Score

AI 0.25 0.31 0.02 0.00 0.06 0.00 0.04 0.00 0.32 0.51
Biomolecules 0.14 0.34 0.01 0.00 0.00 0.00 0.00 0.00 0.32 0.56

Crypto 0.27 0.48 0.01 0.00 0.06 0.00 0.06 0.00 0.47 0.55
CV 0.25 0.46 0.03 0.00 0.03 0.01 0.06 0.00 0.51 0.51

Databases 0.17 0.01 0.01 0.00 0.06 0.00 0.03 0.00 0.12 0.42
Graphics 0.35 0.01 0.01 0.00 0.03 0.00 0.01 0.26 0.22 0.44

HCI 0.28 0.45 0.03 0.00 0.07 0.01 0.05 0.00 0.53 0.71
IR 0.32 0.39 0.03 0.00 0.07 0.01 0.07 0.00 0.54 0.45

NLP 0.26 0.27 0.03 0.00 0.04 0.01 0.04 0.00 0.23 0.43
NNC 0.15 0.24 0.01 0.00 0.05 0.00 0.05 0.00 0.40 0.11
QC 0.08 0.17 0.00 0.00 0.04 0.00 0.03 0.00 0.20 0.31

Robotics 0.22 0.28 0.03 0.00 0.04 0.00 0.03 0.00 0.30 0.44

Mean 0.22 0.28 0.01 0.00 0.04 0.00 0.03 0.02 0.34 0.45
Standard Deviation 0.07 0.15 0.01 0.00 0.02 0.00 0.02 0.07 0.14 0.14

Pass Percentage (%)

AI 56.8 4.21 87.14 1.86 7.25 0.00 0.00 0.00 0.00 0.00
Biomolecules 74.07 7.21 89.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Crypto 53.34 3.6 89.7 0.84 6.89 0.00 0.00 0.00 0.00 0.00
CV 52.3 1.6 83.42 0.79 4.94 0.00 0.00 0.00 0.00 0.00

Databases 63.19 89.98 90.61 0.00 6.04 0.00 0.00 0.00 0.00 0.00
Graphics 44.25 88.91 90.19 0.64 6.29 0.00 0.79 0.00 0.00 0.00

HCI 54.15 0.44 83.68 0.96 4.37 0.00 0.00 0.00 0.00 0.00
IR 49.52 1.45 83.68 0.79 4.39 0.00 0.00 0.00 0.00 0.00

NLP 57.33 5.49 86.45 2.38 4.91 0.00 0.00 0.00 0.00 0.00
NNC 69.33 5.21 87.42 2.88 5.93 0.00 0.00 0.00 0.00 0.00
QC 76.75 7.46 88.6 2.14 5.97 0.00 0.00 0.00 0.00 0.00

Robotics 57.6 3.35 86.86 2.65 7.31 0.00 0.00 0.00 0.00 0.00

Mean 59.05 18.33 87.31 1.30 5.357 0.00 0.65 0.00 0.00 0.00
Standard Deviation 9.92 33.53 2.63 1.02 1.97 0.00 0.22 0.00 0.00 0.00

Table 9: SID
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Figure 8: Example 2 of an indirect query is where a sentence from the research paper is provided and asked for the correct title.
Here, we can see that GPT-4, RAG+Mistral, Adv. RAG+Mistral, Adv. RAG+LLAMA and Perplexity yield the correct title.

Figure 9: Example 1 of zero-shot direct prompting demonstrated that only the Adv.RAG(M), i.e., with cross-encoder reranking,
accurately produced all the correct author names. It’s noteworthy that the basic RAG+Mistral version only made a single error in
the author names, but the addition of the advance reranking process in Adv. RAG+Mistral rectified this and yielded the correct
title.
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Figure 10: Example 2 of zero-shot direct prompting demonstrated RAG+LLAMA, Adv. RAG+LLAMA, Adv. RAG+Mistral
yields the correct title.

Figure 11: In SID prompting, asking the indirect query yielded a pass for all models. After providing a complete abstract ([...], in
the image, we did not add a complete abstract because of space constraints, but the actual prompt was provided with a complete
abstract), it still yielded a pass. Then, we provided the abstract names, which shows that only RAG models yielded the right
titles.
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Figure 12: Worst case example of SID prompting where it did not yield correct title to any model.

Figure 13: An example of a direct prompt scenario where initially all models failed to identify the author names and responded
pass. Upon presenting the abstract, all but the LLAMA model, and to some extent Mistral (a few of the wrong names in the list
with correct names were generated), failed to respond appropriately to the prompt.
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