Pinpointing Attention-Causal Communication in
Language Models

Gabriel Franco Mark Crovella
Department of Computer Science Department of Computer Science and
Boston University Faculty of Computing & Data Sciences
gvfranco@bu.edu Boston University

crovella@bu.edu

Abstract

The attention mechanism plays a central role in the computations performed by
transformer-based models, and understanding the reasons why heads attend to spe-
cific tokens can aid in interpretability of language models. Although considerable
work has shown that models construct low-dimensional feature representations,
little work has explicitly tied low-dimensional features to the attention mechanism
itself. In this paper we work to bridge this gap by presenting methods for identify-
ing attention-causal communication, meaning low-dimensional features that are
written into and read from tokens, and that have a provable causal relationship to
attention patterns. The starting point for our method is prior work [1-3] showing
that model components make use of low dimensional communication channels
that can be exposed by the singular vectors of QK matrices. Our contribution is to
provide a rigorous and principled approach to finding those channels and isolating
the attention-causal signals they contain. We show that by identifying those sig-
nals, we can perform prompt-specific circuit discovery in a single forward pass.
Further, we show that signals can uncover unexplored mechanisms at work in
the model, including a surprising degree of global coordination across attention
heads.

1 Introduction

Transformer-based language models exhibit remarkable abilities [4—6] and consequently have been
very widely deployed. However, it is quite challenging to explain how language models are able
to accomplish such sophisticated tasks [7]. Nonetheless, progress on interpretability for language
models is critical, e.g., to build a foundation for improving model safety and alignment [8].

A meaningful explanation for model behavior should capture causal, rather than merely correlative,
relationships. Elucidating causal relationships within language models has been largely approached
using interventions during model execution [9—-15], a method termed causal mediation analysis [16].
However, in this paper we treat the model itself as a structural causal model [13, 17] and thereby
exactly identify the impact of a given counterfactual on the model’s computation.

We focus on causal analysis of a key model computation: attention. In the attention mechanism a
head uses its QK matrix to compute an attention weight for each token pair, and when the weight is
large, we say the head atfends to the token pair, resulting in a significant movement of information
within the model. The attention mechanism has been celebrated for its ability to respond to precise
features in activations and enable sophisticated behaviors [18-20]. From the standpoint of causal
analysis, the attention mechanism raises a basic question: when a head attends to a token pair, what
is the most useful counterfactual? That is, what are the most informative features present in the
tokens that explain the head’s attention to the token pair [16]? Answering this question has potential

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



to make progress on critical challenges in interpretability. As shown in [21], model components
work together to implement complex behaviors by reading and writing to residuals, so precisely
identifying attention-causal features uncovers key communication taking place within the model.

Leverage in addressing our question comes from the large amount of work showing that many impor-
tant features in models are encoded in one-dimensional subspaces [15, 22-28] or in low-dimensional
subspaces [29-32]. Hence we seek to explain a head’s attention in terms of the presence or absence
of features encoded in low-dimensional subspaces of the residuals.

This suggests a focus on parsimony in selecting counterfactuals. We frame the question as follows:
Given an attention head attending to a pair of tokens, for each token we seek to identify a low-
dimensional subspace and a small number of upstream components, such that if the components
had not written into the token in that subspace, the head would not have attended to the token pair.
We show that this strategy identifies low-dimensional signals that are causal for attention, directly
provide efficient and useful circuit traces, and can uncover model-wide control mechanisms at work.

Our approach to this question starts from prior work [1-3] showing that the singular vectors of QK
matrices will tend to be aligned with important features in residuals. Hence we start by decomposing
residuals in the spectral bases of QK matrices. However, placing activations in a new basis is not
enough. Model heads use the Softmax function to compute attention; this nonlinearity complicates
the question of deciding which components of a residual are causal when a head attends to a token
pair. In the body of the paper we show how we overcome these challenges to identify the signals
that are causal for attention.

Once signals are identified, they can be used to address a number of challenges in model inter-
pretability. First, they enable precise and simple circuit discovery (emphasized as an open problem
in [8, 33]). We show a general method for using signals to identify the model components that are
causal for model outputs. Across the models and tasks we study, the circuits we identify are all
consistent with those found via previous methods. Each circuit obtained is specific to a given model
input, and requires only a single model execution (without need for counterfactual inputs). Together,
these aspects constitute an advance over the state of the art in circuit tracing.

Further, identifying signals uncovers and explains fundamental model mechanisms. Because the
signals we identify are jointly determined by both model weights and runtime activations, they are
not limited to data-dependent features. We broadly identify two classes: data signals and control
signals. Control signals are present across many or all tokens, and are often used in the control of
large groups of attention heads. This novel phenomenon occurs across models in our study.

Related Work. Our work relates to mechanistic interpretability [34, 35], which seeks to under-
stand neural network computations in human-understandable terms. Significant bodies of work in
the area concern (a) how features are represented [22] and (b) how to trace circuits, ie, to identify
model components that are responsible for solving specific tasks [23]. Our work contributes to both
of these areas.

With respect to feature representation, much prior work has established the low-dimensionality of
many feature representations [15, 22—-32]. Feature representations have been extensively explored
using Sparse Autoencoders (SAEs) [36, 37], but those methods have been shown to have significant
drawbacks [38—42]; one reason for this can be that SAEs are built only from model activations, and
do not take into account model parameters [43]. In contrast, our work jointly analyzes activations
and model parameters (QK matrices) to identify features that are provably causal for attention. On
the other hand, our work shares some ideas with [44], but that work is not based on causal analysis.

With respect to circuit tracing, much recent work has used methods based on counterfactual inputs
(‘activation patching’) for establishing causality of model components [10, 11, 14, 45-47]. Patching
is time-consuming, requiring many forward passes, generally requires the creation of a counterfac-
tual data set to provide task-neutral activation patches, and exhibits a number of other weaknesses
[48-51]. In this work, we trace circuits using only a single forward pass, eliminating the need for
counterfactual inputs and avoiding the problems associated with patching.

Our method has similarities to but also important differences from [3]. Unlike that paper, we start
with a formal problem definition of attention-causal communication and we present an algorithm that
provably identifies attention-causal communication. Further, the method in [3] needs modification
to work in general. This is because [3] assumed that moving the attention score of a token pair



towards zero will decrease the attention on the pair. However, this is not true in general (eg, when
attention scores are negative), which is one motivation for our introduction of relative attention.

As noted above, our approach to signal identification builds on prior work showing that model
components often communicate in low dimensional subspaces defined by the spectral decomposition
of QK matrices [1-3]. Furthermore we show that the control signals we identify are proximal causes
for attention sinks [52, 53] and generalize previous attention-sink mechanisms [54].

Background. In the model, token embeddings are D-dimensional, there are H attention heads in
each layer, and there are L layers. We define R = %, which is the dimension of the spaces used for
keys and queries in the attention mechanism. We use N to denote the number of tokens in a given
prompt. Superscript indices will denote (layer, head, destination token, source token); reduced sets
of indices will be used where there is no confusion, and subscripts will generally denote matrix

components.

To simplify exposition in the body of the paper, we consider models in which the attention mecha-
nism does not apply a bias term to computation of keys and queries.! In Appendix B we describe
how we handle models with bias terms in the QK circuit. Further, the body of the paper only dis-
cusses models with global positional encoding; in Appendix C we describe how we handle models
that use rotary positional encoding [57] (RoPE). We emphasize that all the methods in the paper
extend to models having attention bias terms and using RoPE, and we provide code > implementing
our methods for those models.

The attention mechanism operates on a set of N tokens in D-dimensional embeddings: X € RV *P.
Each token x € RP is passed through linear transforms given by x' Wy, x" W, using weight
matrices Wy, Wg € RP*E, Then the inner product is taken for all pairs of transformed tokens to
yield attention scores:

e = x4TOx’ (1)

in which Q = I/VQV[/'I—(r , x% is the destination token, and x* is the source token of the attention
computation. We also refer to §2 as the head’s QK matrix.

To enforce masked self-attention, A, is set to —oco for d < s. Attention scores are then normalized

for each destination d, yielding attention weights Ay = Softmax(A’,/v/R). The resulting attention
weight A, is the amount of attention that destination d is placing on source s. We denote the portion
of the output of attention head (¢, a) that comes from x* and is written into x¢ via the OV-circuit as
o’eds_Further details of model computations are given in Appendix A.

2 Signals

Problem Statement. As described in §1, our goal is to identify low-dimensional features that
are causal for attention patterns. We define the problem of attention-causal communication as the
following. For a given model and input, and given a head (¢, a) that attends to a token pair (x¢,x*),
consider one of x? or x*, denoted x. Identify a c-dimensional subspace C, and a set M consisting
of m model components upstream of (¢, a), with ¢ and m as small as possible, such that if the
components in M had not written into x in subspace C, head (¢,a) would not have attended to
(x4,x*).

To make our problem statement precise, we need to define when a head “attends to” a token pair. We
adopt a very conservative definition: we say that a head (¢, a) attends to the token pair (d, s) when
Ag‘; > 1/n, where n is the number of tokens considered in the Softmax calculation. That is, the
head attends to the token pair when the attention it places on this pair is greater than what it would
be for a uniform distribution over tokens. This could be considered too low a value in many cases —
when the context window is large, the value of 1/n will be quite small. However, we emphasize that
our methods can be used for any setting of attention threshold greater than 1/n, and it is a simple
matter to use a larger threshold in practice. The other phrase we need to make precise is for “c and

"Models in this category include the Gemma [55] and Llama 3 [56] families.
2Code available at https://github.com/gaabrielfranco/
pinpointing-attention—-causal-communication


https://github.com/gaabrielfranco/pinpointing-attention-causal-communication
https://github.com/gaabrielfranco/pinpointing-attention-causal-communication

m to be as small as possible.” In practice we optimize these separately, first finding a subspace C
having small dimension, and then finding the smallest set of upstream components (M) given C.

We do not attempt to solve the attention-causal communication problem exactly, but instead present
a heuristic method that gives very good results in practice. In the following sections we describe the
method in detail.

Relative Attention. We first attack the problem of identifying the subspace C. We isolate this
problem as follows: consider a head (¢, a) and a token pair (x¢,x*), such that A% > 1/n. Working
for example with x? (methods for x* are analogous), we seek a low-dimensional subspace C such
that in a counterfactual setting where the component of x% in C were removed, we would have
A% < 1/n. That is, under the intervention do(x? = Pp.x?), the head (¢, a) would not attend to
the token pair (x%, x%).

An additional constraint on C is that upstream components must write into x? in C. By virtue of the
model’s residual connections, we can consider x to be an initial encoding plus a sum of upstream
additions [21]. Hence it is attractive to consider linear decompositions of x in determining C. How-
ever, this strategy faces a key challenge: a head’s attention A, is a nonlinear function of €2, x?, and
x* through the Softmax function.

To address this problem, we introduce an ersatz function that usefully stands in for Softmax in

causal analysis. Recall that A; = Softmax(A’;/v/R) as described in §1. We define the relative
attention at head (¢, a) and position (d, s) as:

1
= Ay — o D Ay 2

J<d,j#s
where A/, = x?Qfexs . Relative attention has two important properties: first, it is linear in each of
x?, Q% and x?. The linearity of c/®®* in each of these will be important for our methods below.

The second important property of relative attention is that it is useful for causal analysis. In particu-
lar, we have the following Lemma:

Lemma 1. Let n < N be equal to the number of tokens considered in self-attention at head (¢, a)
for destination token d, and c'®®* be defined as in (2). If Afl‘; > 1/n, then c**%* > (.

We prove Lemma 1 in Appendix D. We can interpret Lemma 1 as saying that if an attention head
puts more weight on a source than would occur under a uniform distribution, the relative attention
(2) will be positive; likewise, when the relative attention is negative, the attention weight is less than
what is given by the uniform distribution.

Using relative attention we can reframe the search for causal mediators of attention. Instead of
looking for low-dimensional components of x that are causal for (nonlinear) attention greater than
1/n, we can search for low-dimensional components that are causal for (linear) relative attention
greater than zero.

Attention Decomposition. Relative attention is a useful tool in searching for attention-causal fea-
tures, because it allows us to consider linear decompositions of x as candidate features. We first
note that relative attention (2) can be expanded in the singular vectors of €:

1 )
clads _ Z ATk ok kT xts T Z AT yF kB T 5t (3)
1<k<R J<d,j#s

where Y, .z ufo*vFT is the singular value decomposition of Q“. Then the following
hypothesis (adapted from [3]) drives our approach:

Hypothesis (Sparse Attention Decomposition [3]) When an attention head performs a task that
requires detecting components in a pair of low-dimensional subspaces in its inputs x% and x*, and
its inputs have significant components in those subspaces, the terms in (3) will show large values for
a distinct subset of values of k.

In §3 we demonstrate that sparse attention decomposition occurs widely across the models, tasks,
and attention heads we examine. Typically the number of significant terms in (3) is 20 or less, and



is often as small as 5. This gives us leverage on determining C. When considering an attention
head (¢, a) that is attending to tokens (x?, x*), we will have that c/*?* will be positive. We then can
identify C as defined by the smallest set of terms responsible for the positive value of c/*?*, and by
the sparse attention decomposition hypothesis, we expect that C will typically be a low-dimensional
subspace. This strategy builds on prior work [1-3] showing that the singular vectors of QK matrices
provide useful decompositions of attention and inter-layer communication.

Why Should Attention Show Sparse Decomposition? Here we pause to ask: why should atten-
tion show sparse decomposition? To simplify matters, we consider just the bilinear form x¢ " Qx*
and ask why it should show sparse decomposition in its singular vectors.

We start by noting that for a square matrix A, a consequence of the Courant-Fischer theorem is that,
over all unit vectors x, the maximum value of the quadratic form x " Ax is obtained when x is the
principal eigenvector of A. This is readily extended to bilinear forms: over all unit vectors x and
y, the maximum value of x " Ay is obtained when x is the principal left singular vector, and y the
principal right singular vector, of A. From the standpoint of model training, another view is useful:
Lemma 2. Given vectors x and 'y, among all rank-1 matrices having unit Frobenius norm, the

matrix D that maximizes x ' Dy is D = ”—1” ﬁ (Proof is provided in Appendix E.)

In a model training setting, we can hypothesize (following [15, 22-32]) that x¢ and x® contain
corresponding feature sets {¢'}, {~'} that are encoded in one-dimensional or in low-dimensional
subspaces. For example, feature ¢° € RP could correspond to a geographic location encoded in x,
as in [27]. We further note that the authors in [22] argue that models will tend to represent correlated
feature sets in a manner such that, considered in isolation, the sets are nearly orthogonal. They term
this the use of “local, almost-orthogonal bases.” In our case, if an attention head with QK matrix
€ is tuned to detect feature sets {¢'} and {~*} that are important when performing a specific task,
then we may hypothesize that training will construct the sets to be “nearly-orthogonal,” meaning that
cosine similarities among the features in each set would typically be small. In this case, Lemma 2
suggests that the learned 2 will have sets of singular vectors {uy}, {vy} that are likely to sparsely

encode the {¢'} and {~'}.

Isolating Signals. We can now describe how to decompose residuals to separate causal signals
they contain from background. The goal is to identify which terms in (3) form the sparse represen-
tation of ¢®®* | which is akin to denoising in signal processing. Starting from a head (¢, a) attending
to token pair (x?,x*), we have that A%* > 1/n, and so by Lemma 1 c*¢4* > 0. We separate the
terms in (3) into two sets, one of which is the smallest set whose sum exceeds ¢‘®?*, and the other
whose sum is close to (but less than) zero.

Specifically, we define S*®?* as (the indices of) the smallest set of terms in (3) that in sum exceed
cf@ds  The terms captured in S**?* are strictly positive, and are the largest positive terms in (3).
Given S*@9%, we can decompose model residuals into ‘signal’ and ‘noise’ in terms of their impact
on attention scores as measured by c‘®4*. Define subspaces i = Span{u* |k € S} and V =
Span{v* |k € S%9s} and associated projectors P,; and Py. The denoising step separates the
residuals x‘? and X into:

s =px' 2 =pux" S'=X'P], Z'=X'P], )
where P,,. = I — Py and P,,. = I — Py. Then we have x*? = s/@ 4 z°¢ X! = §* + Z* and

1 1
V4 La Qb V4 La Qb Lads V4 La 7l V4 La rz7l
s“TQ Se-7— Y sTQlsl e and 2O Zi—a— > 2Ttz <o,

d- j<d,j#s j<d,j#s
&)
where |S%9%| = dimU = dimV is as small as possible. Note that by definition, under the coun-
terfactual in which signal s*@ is not present in x‘? (i.e., do(x’? = P, 1 x*®)) then c/*¥* < 0, and so
(¢,a) would not have attended to token pair (x?,x*). The corresponding conclusion holds as well
for S¢ and X*.



8
gptZV—smaH 6] 9Pt2_'5m3” 10.0 4 —— gpt2-small
6 pythia-160m pythia-160m pythia-160m
g gemma-2-2b g 2 754 gemma-2-2b
24 24+ a
a 3 & 504
4 24
2 2.5
0 T T T T T T 0 T T T T T 0.0 T T T T T
00 01 02 03 04 05 06 00 01 02 03 04 05 00 01 02 03 04 05

Fraction of singular vectors in 59 Fraction of singular vectors in 59 Fraction of singular vectors in 5%

Figure 1: Dimension of signal subspace compared to R in (left to right): 101 task, GT task, GP task.

3 Sparse Attention Decomposition

Next we confirm prior work showing that the phenomenon of sparse attention decomposition is
ubiquitous [1-3]. We utilize models spanning various architectures and scales: GPT-2 small [19],
Pythia-160M [58], and Gemma-2 2B [55]. These models are evaluated on multiple tasks: Indirect
Object Identification (IOI) [45], the Greater Than (GT) task® [59], and Gender Pronoun (GP) [60].
These models and tasks cover a wide range of studies in mechanistic interpretability, specifically in
circuit discovery [14, 61-63].

We first determine S*4* for significant Afl‘; > %L values using the strategy in §2. We then count the
number of singular vectors utilized from Equation (3) for each relevant head and token pair. Figure 1
illustrates the resulting distributions of the fraction of singular vectors used to construct Stads e
the distribution of |S**?*|/R. The figure illustrates the sparsity of attention decomposition across
different attention heads, prompts, models, and tasks. Typically, models use only 5-10% of the
available R dimensions (e.g., 3—6 for GPT-2/Pythia, 13-25 for Gemma-2)—and almost always less
than half—to compute their attention scores. Additional plots demonstrating this sparse attention
decomposition for individual attention heads in various tasks are in Appendix G. These findings
confirm that sparse attention decomposition is widespread, indicating that signals generally inhabit
low-dimensional subspaces.

4 Application: Tracing Communication and Circuits

The results of §3 suggest an application to tracing communication. In this section we describe how
one may use signals to trace communication within the model.

Causal Structure. To start, we note that the use of residual connections in the model makes it
possible to describe a residual x? at the input to layer ¢ in the model as the following sum:

AH outputs FEN outputs attn. biases input at layer 0
—_—— =~
x“eRP = 3" ) Y ool Y fldy N bl + x™ (6)
1<I<£1<a<H 1<s<N 1<i<e 1<i<e

where 0!%% is defined in §1, f'¢ is the output of the FFN at layer [ for resdual d, b, is the bias term
for layer [, and x°¢ is the input embedding of token d. Equation (6) provides a complete and exact
decomposition of a residual at any layer in the model.

To characterize the causal structure of the model with respect to relative attention, we define two
functions d(-) and s(-) parameterized by a head (£, a) and a token pair (x?,x*). These functions
measure the extent to which a particular model component affects the relative attention c/®4s. The
function d“*?*(w) measures what the relative attention c‘®®* would be if the source tokens were
fixed as X while w had been the destination token; and 5% (W) if the set of source tokens had
been W but the destination token were fixed as x¢ (formal definitions are in Appendix H). Each
function is linear in its argument. Note that

Céads — d@ads (Xﬁd) _ Séads (X/) (7)
To characterize causality in the model with respect to relative attention, we distribute (7) over (6) as

described in Appendix H. This gives, for each upstream component, its contribution to the relative
attention at head (£, a) and token pair (x?, x°).

3Gemma-2 2B was not analyzed for the GT task, as its distinct number tokenization (requiring two sequen-
tial tokens for two-digit numbers) complicates performance comparisons; details are in the Appendix F.



Tracing Attention-Causal Communication. The pieces are now in place to trace causal commu-
nication within the model. Our goal is, given Afl‘; > 1/n, find the upstream components that are

responsible for head (¢, a) attending to token pair (x%, x*).

We describe the tracing process starting from a destination token x*?. The process starting from a
source token is analogous, and we provide full details in Appendix H.

Using the methods of §2, we obtain the subspace U/ in which the signals reside. This allows us to
isolate signals as in (4), obtaining st By (5), (7) and the properties of the SVD, we have

Céads ~ déads(séd) _ deads(PuXéd). (8)
To identify the upstream components writing these signals into the residuals, we distribute (8) over
(6). Then we can determine the upstream contributions to c/?* by making use of the linearity of

d(-) and the projection operations. Specifically, distributing (8) over (6) results in the upstream
contributions:

df}(i(cilis — d@ads (Puolhdt)7 dlngS — d[ads (Pufld)7 dléads _ déatiS(PublO>7 déads _ déaoiS(PMXOd)7
(where subscripts here denote upstream indices), allowing us to decompose the relative attention in
terms of each upstream component’s contribution:

Cfads ~ Z dfﬁgf + Zdlfgds + Zdléads + d(l;ads )
I<th<Ht<N 1<t 1<t
We provide more details, and an equivalent decomposition for the source token, in Appendix H.
Equation (9) shows how to measure the contribution of each upstream component to the downstream
relative attention. Each term in Equation (9) represents an edge in the communication graph of the
model’s computation.

To build a communication graph for a given model and prompt, we start by finding the heads that
contribute the largest signal in the direction of the model output. Then, for any of those heads that
are attending to a token pair and writing in that direction, we find the upstream components (atten-
tion heads, MLPs, bias terms, or input tokens) causal for their attention. We then work backward,
recursively tracing signals from downstream to upstream. The recursion terminates on any head in
the first layer, or that is not attending to a token pair, or on an MLP, bias term, or input token. Our
algorithm is described in detail in Appendix H, and the code for all our methods is available.

Communication Graphs. We construct communication graphs
for GPT-2 small, Pythia-160M, and Gemma-2 2B across the 10], 0.5

GP, and GT tasks. Appendix H provides details of the process, run-

ning times, and examples of resulting communication graphs. All = i
experiments were conducted on CPU-only machines. E 004 3 # 777777
Communication graphs (Appendix H) are highly detailed and con- 4

tain extensive information about information flow in a model’s com- =

putation. To illustrate, we present aggregated versions for the 10 -0.5 T T T
task in Figure 3, in which each edge’s thickness reflects the num- Qﬂq} Q{’ S Q,”
ber of edges between tokens in the full communication graph. Even §§ &F /\5&-§
aggregated, these graphs illustrate differences in the task solution é? & IF & 5
strategies used by the three models. For example, they confirm that gL T4 &F

GPT and Pythia rely on identifying duplication of the subject token
(‘Simon’), and later tokens receive information from both occur-
rences (as reported in [45, 63]). In contrast, Gemma uses the token
‘Andrew’ as an information-aggregating anchor, with subsequent
tokens receiving information from this anchor. Complete commu-
nication graphs for these prompts are in the Appendix.

Figure 2: Intervention effect,
GPT-2/IOL. Green: signal ab-
lation; Red: signal boosting;
Blue: random ablation; Or-
ange: random boosting.

Interventions. To validate our communication graphs, we demonstrate that intervening in the
signals we identify has a causal impact on model performance. For any signal s, we boost it
(do(x = x + s)) or ablate it (do(x = x — s)) for the relevant token x at input to the relevant
attention head (¢,a) *. We then measure the performance of the model on the given task. Perfor-
mance is task-specific, but is measured in all cases via relative logit differences between correct and
incorrect outputs, with positive values indicating improved model performance.

*Specifically, we intervene only on the input of either the Q or K transformation.



Then , Simon and Andrew were working at the restaurant . Simon decided to give a basketball to

Then s Simon and Andrew were working at the restaurant . Simon decided to give a basketball to

<bos> Then , Simon and Andrew were working at the restaurant . Simon decided to give a basketball to

Figure 3: Aggregated communication graphs, IOl task. Top to bottom: GPT-2, Pythia, Gemma-2.

pythia-160m, IOl gpt2-small, 101 gpt2-small, GP gpt2-small, GT

Metric Value

Ours ACDC EAP Ours EP Ours EAP ACDC EP Ours
I Precision m Recall I F1-Score

Figure 4: Circuit performance. First-reported circuit used for comparison for every task/model.

Figure 2 shows typical results; full results are in Appendix J. We find that ablating any of the test
signals leads to performance decreases, and boosting the signal leads to performance improvements,
across the three models and three tasks. Note also that these interventions have an extremely small
impact on residuals themselves, with an average relative change in vector norm less than 1% and
cosine similarity before and after typically greater than 0.99 (see Appendix J).

Circuits. To find circuits (maximal collections of model components causal for performance),
we aggregate communication graphs over multiple prompts, threshold edges based on their causal
impact on model output, and remove components not causal for the output. For comparative anal-
ysis, we focus on methods that report full circuit components, such as Edge Pruning (EP) [61],
ACDC [14], and EAP [62]. We note that reported circuits for each task vary considerably and lack
definitive ground-truth, so we seek to know whether our circuits are broadly consistent with those
reported by others. To choose a baseline for comparison, we use the first-reported circuit for each
task and model combination (Pythia/IOI: [63], GPT-2/10I: [45], GPT-2/GP: [60], and GPT-2/GT:
[59]), against which we compute precision, recall, and F}-scores for all other methods. Figure 4
shows that our approach reports circuits that are consistent with previously reported circuits. Details
and more comparisons are in Appendix K.

S Application: Control Signals

As a second application of our methods, we examine all signals used in a single forward pass (no
longer limiting to those in the communication graph as in §4). We find that many signals are data-
independent — they are used by heads in many layers, and they are present in many or all tokens.
These signals play a role in organizing model computation; we call them control signals.



e o
N O

z z
k k
E £ 04
n (7]
g Zos6
v w
o o
o O 0.8
1.0
o ° T e
.
o~ - ~N -
— < — <
4 %
> >
T © o ©
- -
0 ©
S - S
1 H 1 1 1 1 1 1
01234567 8 91011 01234567 891011
Attention Head Index Attention Head Index
0.0
z 202
o S
E E o4
[ w
2 208
3 3
(&) O 0.8
1.0
o - o -
o~ o~
o T [
o 9]
> >
[t} @ O
- —~
© ©
o o
— —
1 1 [ 1
01234567 891011 01234567 891011
Attention Head Index Attention Head Index
0.0 0.0
£02 2024 [c
© s
€ 0.4 €04
[ wn
2oe6 2os
3 3
O 0.8 O 0.8
1.0
0 —,
3 -
6 -
L 9-
g 12 _L—__
©
— 15 -m—
18 -
21 -
24

0 1 2 3 4 5 6 7
Attention Head Index Attention Head Index

Figure 5: Control signals and associated heads: top: GPT-2, middle: Pythia, bottom: Gemma-2.

Control signals are easily identified; in each of the models we study, two clear clusters of signals are
present, with the larger cluster corresponding to control signals. The functional distinction between
control signals and data signals concerns the source token that the head is attending to. When the
source token is the first token (in GPT-2), the first token or a punctuation token (in Pythia and
Gemma), the signal that is causal for attention is from the control cluster. When the source token is
not one of those, the causal signal is a data signal.



Hence, control signals are the mechanism implementing attention sink behavior [52-54] at the signal
level. The attention sink phenomenon is the tendency of models to attend to an initial token when the
head does not need to move information into the destination token. The Softmax operation imposes
an attention distribution over sources, so the head uses a semantically unimportant token as source
in these situations. We observe that typically more than 80% of all token pairs attended to in our
experiments are due to attention sink.

Control signals come in pairs: one that resides in the relevant source (eg, start) token, and one
that resides in every token as a potential destination. We find that control signals are the causal
mechanism for attention sinking; they are strongly predictive of attention-sink behavior, with F-
scores of 0.965 (GPT-2), 0.952 (Pythia), and 0.994 (Gemma-2). In intervention experiments akin to
those in §4, we observe that boosting the control signal in either source or target tokens causes the
head to revert to attention sinking, essentially “shutting it down,” regardless of the tokens presented.

Next, we show that most control signals belong to one of a small number of clusters and that attention
heads are functionally organized according to those clusters. In Figure 5 the top row shows signal
clusters (source left, destination right) for the three models. Height corresponds to cosine similarity;
note that a similarity greater than 0.2 is quite significant, and most clusters have internal similarity
greater than 0.4. Hence, there are only a few really distinct control signals used in these models —
less than a dozen. More surprisingly, these distinct control signals generally are used in different
parts of the model. The second row shows where each control signal from the top row is used in
the model. We see that models are hierarchically organized into groups of heads that tend to share
a common control signal. The functional significance of this organization is an intriguing direction
for further study.

Finally, we ask how models manage the control signals in tokens. We observe that control signals
are added in layer O, either by the attention head layer or the MLP. Over the layers of the model,
signal strength tends to rise towards the layers where the signal is used (as shown in lower row in
Figure 5). As expected, source control signals have a strongly negative cosine similarity with non-
start tokens, and vice versa; this is to avoid confusion in the attention sink process. Figures 24 and
25 in Appendix M show how control signals vary over the layers of the models.

6 Conclusions

In this paper we make a number of contributions. We define the attention-causal communication
problem, and we develop a theoretically grounded, heuristic approach to address it. Our approach
is based on two key ideas: first, singular vectors of the QK matrix should in some sense ‘match’
relevant features in residuals; and second, relative attention (which we define) provides a causally-
useful linear ersatz for the nonlinear attention computation. We build on previous observations that
attention is generally sparsely decomposable in the QK basis, which leads to an efficient method for
identifying low-dimensional subspaces in which signals reside. These signals enable new, precise
methods to expose important communication with the model, and expose mechanisms of global
model coordination.

Limitations. Our approach, while promising, shares the quadratic complexity in the number of to-
kens inherent in standard attention mechanisms. Additionally, the proposed solution to the attention-
causal communication problem is a heuristic. While empirically effective, future work could explore
more formally guaranteed methods as well as causality involving MLPs.

Acknowledgments and Disclosure of Funding

This research was funded by a grant from Open Philanthropy and by NSF award CNS-
2312711. Code for our method is available at https://github.com/gaabrielfranco/
pinpointing-attention-causal-communication;its implementation was enabled by
the TransformerLens library [64]. We thank Evimaria Terzi, Aaron Mueller, and members of our
research group at Boston University for helpful discussions, and we thank the anonymous NeurIPS
referees for their feedback which improved this paper.

10


https://github.com/gaabrielfranco/pinpointing-attention-causal-communication
https://github.com/gaabrielfranco/pinpointing-attention-causal-communication

References

[1] Xu Pan, Aaron Philip, Zigian Xie, and Odelia Schwartz. Dissecting query-key interaction in
vision transformers. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak,

and C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages
54595-54631. Curran Associates, Inc., 2024.

[2] Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Talking heads: Understanding inter-layer
communication in transformer language models, 2024.

[3] Gabriel Franco and Mark Crovella. Sparse attention decomposition applied to circuit tracing,
2024.

[4] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023.

[5] Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

[6] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von
Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Bryn-
jolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen,
Kathleen Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya,
Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn,
Trevor Gale, Lauren E. Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel
Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle
Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass,
Ranjay Krishna, Rohith Kuditipudi, and et al. On the opportunities and risks of foundation
models. CoRR, abs/2108.07258, 2021.

[7] Zachary C. Lipton. The mythos of model interpretability, 2017.

[8] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman,
Zhaowei Zhang, Mario Giinther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond,
Eric Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Zhang, Ruiqi Zhong,
Seén O hEigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian
Edwards, Aleksandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwan, Yoshua
Bengio, Danqi Chen, Philip H. S. Torr, Samuel Albanie, Tegan Maharaj, Jakob Foerster, Flo-
rian Tramer, He He, Atoosa Kasirzadeh, Yejin Choi, and David Krueger. Foundational chal-
lenges in assuring alignment and safety of large language models, 2024.

[9] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. Investigating gender bias in language models using causal mediation anal-
ysis. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 12388—12401. Curran Associates,
Inc., 2020.

[10] Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023.

[11] Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
Metrics and methods, 2024.

[12] Lawrence Chan, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrubbing: a
method for rigorously testing interpretability hypotheses. Redwood Research.

[13] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. arXiv, 2021.

[14] Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in
Neural Information Processing Systems, volume 36, pages 16318—16352. Curran Associates,
Inc., 2023.

11



[15] Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language mod-
els. arXiv, 2024.

[16] Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash,
Can Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, Eric Todd, David Bau,
and Yonatan Belinkov. The Quest for the Right Mediator: A History, Survey, and Theoretical
Grounding of Causal Interpretability. arXiv, 2024.

[17] Judea Pearl. Causality. Cambridge University Press, second edition, 2009.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. OpenAlblog, 2019.

[20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901. Curran Associates, Inc., 2020.

[21] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. A Mathematical Framework for Transformer Circuits. Transformer Circuits
Thread, 2021.

[22] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam
McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy
Models of Superposition. Transformer Circuits Thread, 2022.

[23] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan
Carter. Zoom in: An introduction to circuits. Distill, 5(3):e00024—-001, 2020.

[24] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff, editors,
Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 746751, Atlanta, Georgia,
June 2013. Association for Computational Linguistics.

[25] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes, 2018.

[26] Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the
geometry of large language models. In Causal Representation Learning Workshop at NeurIPS
2023,2023.

[27] Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-
11, 2024. OpenReview.net, 2024.

[28] Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris
Bertsimas. Finding neurons in a haystack: Case studies with sparse probing. arXiv, 2023.

[29] Amit Arnold Levy and Mor Geva. Language models encode numbers using digit representa-
tions in base 10, 2025.

[30] Joshua Engels, Eric J. Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language
model features are one-dimensionally linear, 2025.

12



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition,
2025.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob
Andreas, Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer
language models, 2024.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman,
Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg,
Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saun-
ders, David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and
Tom McGrath. Open problems in mechanistic interpretability, 2025.

Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable
bases. https://transformer—-circuits.pub/2022/mech-interp-essay/
index.html.

Neel Nanda. A comprehensive mechanistic interpretability explainer & glossary. https:
//www.neelnanda.io/mechanistic-interpretability/glossary.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey.
Sparse autoencoders find highly interpretable features in language models. In The Twelfth
International Conference on Learning Representations, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan
Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Chris Olah. Towards monosemanticity: Decomposing language models with dictionary learn-
ing. https://transformer-circuits.pub/2023/monosemantic—-features.

Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al
Moubayed, Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units
of analysis, 2025.

Lucius Bushnagq. Lesswrong post. https://www.lesswrong.com/posts/
cCgxp3Bgd4asS9z5xgd/lucius-bushnag-s—-shortform?comment Id=
wETE2ebypKzAdH8De.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024.

Bart Bussmann, Michael Pearce, Patrick Leask, Joseph Bloom, Lee Sharkey,
and Neel Nanda. Showing SAE latents are not atomic using Meta-
SAEs. https://www.lesswrong.com/posts/TMAMHh4DdMr4nCSr5/
showing-sae-latents—-are-not-atomic-using-meta-saes.

David Chanin, James Wilken-Smith, Tomds Dulka, Hardik Bhatnagar, and Joseph Bloom. A
is for absorption: Studying feature splitting and absorption in sparse autoencoders, 2024.

bilalchughtai and Lucius Bushnag. Activation space interpretability may be
doomed. https://www.lesswrong.com/posts/gYfpPbww3wQRaxAFD/
activation-space-interpretability-may-be-doomed.

Javier Ferrando and Elena Voita. Information flow routes: Automatically interpreting language
models at scale, 2024.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model. arXiv, 2023.

Tom Lieberum, Matthew Rahtz, Janos Kramar, Neel Nanda, Geoffrey Irving, Rohin Shah, and
Vladimir Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice
capabilities in chinchilla. arXiv, 2023.

13


https://transformer-circuits.pub/2022/mech-interp-essay/index.html
https://transformer-circuits.pub/2022/mech-interp-essay/index.html
https://www.neelnanda.io/mechanistic-interpretability/glossary
https://www.neelnanda.io/mechanistic-interpretability/glossary
https://transformer-circuits.pub/2023/monosemantic-features
https://www.lesswrong.com/posts/cCgxp3Bq4aS9z5xqd/lucius-bushnaq-s-shortform?commentId=wETE2ebypKzAdH8De
https://www.lesswrong.com/posts/cCgxp3Bq4aS9z5xqd/lucius-bushnaq-s-shortform?commentId=wETE2ebypKzAdH8De
https://www.lesswrong.com/posts/cCgxp3Bq4aS9z5xqd/lucius-bushnaq-s-shortform?commentId=wETE2ebypKzAdH8De
https://www.lesswrong.com/posts/TMAmHh4DdMr4nCSr5/showing-sae-latents-are-not-atomic-using-meta-saes
https://www.lesswrong.com/posts/TMAmHh4DdMr4nCSr5/showing-sae-latents-are-not-atomic-using-meta-saes
https://www.lesswrong.com/posts/gYfpPbww3wQRaxAFD/activation-space-interpretability-may-be-doomed
https://www.lesswrong.com/posts/gYfpPbww3wQRaxAFD/activation-space-interpretability-may-be-doomed

[48] Aleksandar Makelov, Georg Lange, and Neel Nanda. Is this the subspace you are looking for?
an interpretability illusion for subspace activation patching. arXiv, 2023.

[49] Aaron Mueller. Missed causes and ambiguous effects: Counterfactuals pose challenges for
interpreting neural networks. arXiv, 2024.

[50] Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The
hydra effect: Emergent self-repair in language model computations. arXiv, 2023.

[51] Cody Rushing and Neel Nanda. Explorations of self-repair in language models. arXiv, 2024.

[52] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks, 2024.

[53] Nicola Cancedda. Spectral filters, dark signals, and attention sinks. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pages 4792-4808, Bangkok,
Thailand, August 2024. Association for Computational Linguistics.

[54] Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large lan-
guage models, 2024.

[55] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[56] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[57] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. CoRR, abs/2104.09864, 2021.

[58] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397-2430. PMLR, 2023.

[59] Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model. Advances in Neural Infor-
mation Processing Systems, 36:76033-76060, 2023.

[60] Chris Athwin, Guillaume Corlouer, Esben Kran, Fazl Barez, and Neel Nanda. Identifying a
preliminary circuit for predicting gendered pronouns in gpt-2 small, 2023. URL https://cmathw.
itch. io/identifying-a-preliminary-circuit-for-predicting-gen dered-pronouns-in-gpt-2-smal.

[61] Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer

circuits with edge pruning. Advances in Neural Information Processing Systems, 37:18506—
18534, 2025.

[62] Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated
circuit discovery. In The 7th BlackboxNLP Workshop, 2024.

[63] Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. LLM circuit analyses are consis-
tent across training and scale. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[64] Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/
TransformerLensOrg/TransformerLens, 2022.

[65] Philipp Schmid, Omar Sanseviero, Louis Castricato, and Pedro Cuenca. Welcome gemma 2 -
google’s new open llm. https://huggingface.co/blog/gemma2, 6 2024. Accessed
on: 2025-05-14.

14


https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://huggingface.co/blog/gemma2

A Further Background

Here we provide further background on model computations and associated notation.

To compute the output of the attention head each input token is first passed through an affine trans-
formation: V = XWy + 1b{, with Wy, € RPXE by, € RE. Attention weights are then used to
combine rows of V' to construct the attention head’s outputs: Z = AV, with Z € RN*E Next each
head’s output is passed through a linear transformation yielding the per-head output O = ZWy
which transforms it back into the D-dimensional embedding space, with O € RN¥*P_ For a given
layer / the final output of the attention block is then the sum over heads plus a per-layer bias:

O'= > 0"+1b, (10)
1<a<H

For a given attention head, we will at times need to decompose the per-head output O = AV,
into the portions contributed by each source token s. Let 0®® € R” denote the output of head (¢, a)
for token d. This corresponds to row d of O%®. Let Ay € RY be the d-th row of the (¢, a) attention
matrix, V' € RV be the value computation in head (¢, a), and W € R*P be the output matrix
of head (¢, a). Then the per-source output is:

o' = A4 V.Wo (11)

where V is row s of V. Note that we have 0% = Y~ _ __ . 0%9%, with 0% = 0 when s > d due
to masked self-attention.

SVD. Our methods make use of the SVD of ). The matrix €2 has size D x D, but due to its
construction it has maximum rank R. We therefore work with the SVD of Q@ = UXV' T in which
UeRPXE V¢ RPXE gpd ¥ € REXE U and V are orthonormal matrices with U TU = T and
VTV =1, and ¥ = diag(oy, 09, . ..,0r) With oy > 09 > -+ > op > 0. Important to our work is
that the SVD of (2 can equivalently be written as

R
0= Z uFolvET (12)
k=1

in which {u*} and {v*} are orthonormal sets and each term in the sum is a rank-1 matrix having
Frobenius norm oy,

B Bias in Attention

Here we discuss how to handle models in which the attention head’s key-query computation includes
bias terms.

In such a model, each token x € RP is passed through two affine transforms given by x' Wx +b .,

XTWQ + bg, using weight matrices Wy, W € RP*% and offsets b, bg € R, Then the inner
product is taken for all pairs of transformed tokens to yield attention scores. Specifically:

b = (xXTWo+bg)(x Wk +bj)"
xTWoWgx® +xWobk + byWix® + bbbk (13)
in which x¢ is the destination token and x* is the source token of the attention computation.

As a result, for models with bias we will use two versions of (13). We define Q; =

g
[WQW;{r WQbK] , Qs = Fggg//g} , and we use X to denote {ﬂ . Then:
hs = X QR + bLWix® + b)bk, (14a)
he =% QX"+ xTTWobk +bbk. (14b)

15



Given these new definitions, when expanding (2) using (14b) we still have that:

Zi“”gﬁax@'. (15)
j<d
i#s

However, when expanding (2) using (14a) we have that

CZads _ iﬁdTgﬁaxés o

d—1

Cfads _ XZdTQ(l;aiés . § XédTQflaiEJ +c (16)

j<d
s

d—1

where ¢; = b,Wxx" — (d—il) D iss b/, Wxx". To understand the significance of this term, note
that c; is only a function of source tokens; it arises due to the inner products of source keys with the
constant query bias.

When determining the subspaces corresponding to signals as described in §2, we use the SVDs of
Qg or 2 as appropriate to the setting. Specifically, when determining P, we use

1 .
fads _ ., _ €dT Tgls _ edT T lj
c c1 = Z X" ugop vy X 1-1 Zx R0V, X (17
1<k<R j<d
J#s
where the SVD of ) is used. Note that we can ignore the ¢; term because it only arises due to
source tokens, and so adds a constant that can be ignored when defining P, for decomposing the
destination token. The terms from (17) are chosen using same rule as in §2, namely the smallest set
that equals or exceeds ctads _ ¢ these terms are used to define P, € RP*P in terms of the left

singular vectors {uy } of Q4. When determining Py, we use

: - ) 1 _ .
clads — E xMTukokv;—x& ] E xMTukav,—crng (18)
1<k<R j<d
i7s

where the SVD of (), is used. Here again we select the smallest set of terms that equals or exceeds
@5 and use those to determine P, in terms of the right singular vectors of 2.

To perform communication tracing as described in §4 requires the following adjustment to (7):

1 .
dZads(W) — WTQéilaiEs _ y— ZWTQ?L}EQ (19)

and

1
tads _ =4dT la ~dT ylayys.
sAB(W) =% Q Ws—diljidx QW (20)

i#s
With these new definitions, we still have
C@ads — SZads (Xf) (21)

however, we also have
clads — diads (de) 4 . (22)

Hence to perform communication tracing on the destination token, we look for the smallest set of
upstream components whose portions of the contribution sum to ¢‘®®* — ¢;. Here again we ignore
the c; term because it arises due to source tokens, and we are tracing inputs to the destination token.

Finally, one complication that arises is that it can happen that even though Afﬂ; > 1/n for some
token pair (d, s), the quantity d**?(x*?) = cf@ds — ¢ is not positive. If this occurs, it is because
the bias term c; is responsible for the positive value of /% leading to A%? > 1/n. In this case, we

simply ignore the fact that Ag‘; > 1/n —ie, we do not compute signals, nor trace upstream from this
(¢, a,d, s) tuple.

16



C RoPE

In models using Rotary Position Encoding (RoPE) [57], before computing the attention score, each
token has a set of rotations performed that depend on the token’s position in the prompt. The result
is that for a given pair of tokens (d, s), we can capture the effect of RoPE using a rotation matrix

R(@=9) ¢ REXE where (d — s) is used to denote the relative positions of the d and s tokens in the
prompt. As a result, we must define 2 with respect to (d — s). Specifically, we define

Q=) = Wo R W
Then we can rewrite the attention score computation as
/dS _ XdTQ(dfs)Xs (23)

(All the work in this section we will be in the context of given head (¢,a) and we will drop the
indices for the head — so for example c¢**?* will be written as just ¢?°.)

Expanding (2) in terms of (23) we have that:

1 N
ds _ LdT(d—s)y,s _ dT O (d—7)J
c” =x"Q X 7d71§ x“'Q b'¢ 24)
j<d
J#s
in which we have dropped a constant term that is handled similarly to ¢; in Appendix B.

It’s no longer possible to write (3) in its given form because ¢ involves multiple, different

matrices. However, our goal is still to decompose the contribution ¢?* in terms of the singular vectors
of Q(4=%), Hence we proceed by defining the projection matrices associated with each singular
vector of Q4=%); P, = uggd_‘(")(u,(fd_s))T and P, = v,(gd_s) (v,(cd_s))T. Because {uéd_s)} and
{v,(cd_s)} are orthonormal bases for RP, we have that x = >, P,,x = >, P,,x for any x. We
can now formulate (3) in two equivalent ways:

T T
1 L
1<k<R j<d \1<k<R
#s
s 1 s
= Z xITp,, Qld=9)xs — HZXdTPqu(d N xi (25a)
1<k<R j<d
i7s
1 , ,
cds — 5 dT ld=s) Z P, x° 7mZXdTQ(d7J) Z P, x’
1<k<R j<d 1<k<R
J#s
—s s 1 —7 j
— Z x1TQU=)p, x _mzxdmw Ip,, xI (25b)
1<k<R Jj<d
Jj#s

When determining the subspaces corresponding to signals, we proceed with separate analyses for
source and destination (similar to the process in Appendix B). We choose the smallest set of terms of
(25a) summing to c¢?* to define Py, and the smallest set of terms of (25b) summing to c?* to define
Py.

To perform communication tracing as described in §4 requires the corresponding adjustments to (29)
and (30):

1 o
d%(w) =w ' QUd=9)xs — — Z w Q=) (26)
1<d
i#s

17



and
1 A
ds _ AT old—s) 7 _ dT o(d—i) 117
sH(W)=x%"Q W, d—léx QW
Jj<d
s
after which the tracing procedure is unchanged.

D Proof of Lemma 1

Here we prove a generalization of Lemma 1.

27)

Lemma 1 (generalized). Let n < N be equal to the number of tokens considered in self-
attention at head (¢, a) for destination token d, and c**?* be defined as in (2). For 0 < a < 1, if

Ags > a, then ¢fds > /R (ln< ) +In(n — 1))

Proof. Assume d > 1. (If d = 1, the destination is the first token or the BOS token, which always
places full attention only on itself.) By self-attention, we always have s < d. Accordingly n is equal

to d (so by assumption, n > 1.)

Expanding the computation of attention weights from scores:

exp(Ay,/VR) exp(Ay,/VR)
> exp(Ay /VR) X, exp(Ay /VR) + exp(Ay,/VE)

Ads =

Soif Ags > «, then

exp(Ap/VR) > o= > exp(Aly/VR),

J#s

By Jensen’s inequality

Li/VR) > exp ﬁZAldj/\/R ,

J#s J#s
so
exp(Al,/VR) > fa(n—l exp ZA
J;ﬁs
so
/\F>1n< >+ln(n—1 ZA
Jsﬁs
so
gadg>\/>(ln(1 )+ln(n—1)). O
So we see that a sufficient condition for c?*?* to be positive is that In(n — 1) > —1In (1 ) With

positive n and «, this condition is met when o > 1/n.

An important corollary is the contrapositive:

18



cfals < /R <1n <1a> + In(n — 1)) = Ay < a.
-

Thus we can place an upper bound on the attention weight o as a function of ¢‘*?*:

exp(c® /VR)/(n — 1) < /(1 —a) = Ags < @
or

exp<c€ads/\/ﬁ)
n — 1+ exp(cteds /\/R)

In §4, we consider the effect of upstream components on a downstream c‘?*. Here we note that (28)
shows the precise nature of the nonlinear impact of upstream contributions on attention weight. The
relationship (through the logistic) suggests that a more sophisticated approach (e.g., Shapley values)
may be beneficial in determining the impact of each upstream component. We leave this extension
for future work.

<a = Ags < a (28)

E Proof of Lemma 2

Lemma 2. Given vectors x and y, among all rank-1 matrices having unit Frobenius norm, the matrix

e
D that maximizes x ' Dy is D = ﬁﬁ

Proof. Given vectors x and y, among all rank-1 matrices having unit Frobenius norm, the matrix D
T
that maximizes x ' Dy is D = H%H I}\,TH

First we show that any rank-1 matrix having unit Frobenius norm can be expressed as the outer
product of two unit-norm vectors. Consider a rank-1 matrix X having unit Frobenius norm. Since

~ T ~
X is rank-1, we can write X = xy'. Now construct X = H%HHyTH By construction X is both

rank-1 and unit norm. Matrices X and X differ by a constant factor m However, since they

have the same norm, we must have ||x||||y|| = 1, and so X can be expressed as the outer product of
two unit vectors.

Next consider a unit-norm, rank-1 matrix G' = uv " for unit vectors u and v. By way of contradic-
tion, suppose x' Gy > x' Dy. Thenx 'uv'y > xTn—inﬁy. The right hand side is the positive
quantity ||x||||y||- The left hand side is the product of the projections of x onto u, and y onto v.
The product is maximized when u = x/||x||, v = y/|ly||, or u = —x/||x||, v = —y/|ly||. In either
case,x ' Gy = x' Dy. O

F Details of the Experimental Setup

Indirect Object Identification (IOI). The Indirect Object Identification (IOI) task [45] uses
prompts that are structured as in this example: “When Mary and John went to the store, John gave
the drink to”. In this scenario, the model’s goal is to predict Mary, which is the indirect object,
rather than John. We used the authors’ code to generate 256 prompts for this task, using a mix of
the ABBA and BABA templates.

Gender Pronoun (GP). In the Gender Pronoun (GP) task [60], the model is given prompts of
the form: “So John is a really great friend, isn’t”. The objective for the model is to predict the
correct pronoun, which would be either he or she. We used the authors’ code with the 100 provided
examples.

Greater Than (GT). The Greater Than (GT) task, as described by [59], involves prompts of the
form: “The attack lasted from the year 1920 to the year 19”. In this task, the model’s objective is to
predict any two-digit number greater than 20. We utilized the authors’ provided code to generate 256
prompts for this specific task. However, Gemma-2 2B was not analyzed for the GT task. The primary
reason is that Gemma-2 2B’s tokenizer predominantly uses single-digit tokens for numerical values,

19



— AHG.5) —— AH(3,2)
] AH(6, 1) | AH(3, 0)
0.4 0.2

z AH(6, 9) z AH(1, 7)
4 —— AH(7, 10) 5 — AHG3,1)
0 0.24 AH(8, 11) 2014/ AH(1, 2)

0.0 . T T 0.0 oS T

0 10 20 30 0 10 20 30
Number of singular vectors in |5%9s| Number of singular vectors in |59

Figure 6: Dimension of signal subspace for key heads in the GT Task: (a) GPT-2 (b) Pythia.

—— AH(10, 9) 0.6 4 —— AH(3, 2) 1.5 1 —— AH(12,7)
1.54 AH(9, 7) AH(9, 3) AH(3, 0)
z AH(4, 3) 2044 AH(1, 2) 2104 AH(21, 4)
@ @ 0 @ 1
g 1.01 —— AH(1, 10) S — AH(2,11) S — AH(2,5)
o o o
0.5 4 024 AH(11, 9) 054 AH(2, 6)
00 FALASS— . 0.0 ———— 0.0 sy r . .
0.0 25 5.0 7.5 10.0 125 0 5 10 15 20 25 0 20 40 60 80
Number of singular vectors in |S%%)| Number of singular vectors in |S5!29%| Number of singular vectors in |S!%|

Figure 7: Dimension of signal subspace for key heads in the GP task: (a) GPT-2 (b) Pythia (c)
Gemma-2.

which leads to two-digit numbers being a sequence of two separate tokens. Such a fundamental
difference in number tokenization makes direct performance comparisons on this task challenging
and potentially misleading.

Handling Layer Norm We use the TransformerLens library [64] for our experiments. To prop-
erly attribute contributions of upstream heads to downstream relative attention, we need to take
into account the effect of the (downstream) layer norm. For GPT-2 and Pythia models, the layer
norm operation can be decomposed into four steps: centering, normalizing, scaling, and translation.
Gemma-2 models apply the same steps except for centering. Centering, scaling, and translation are
affine maps, which means that they can be folded into different parts of the model with mathematical
equivalence. The TransformerLens library handles the centering step by setting each weight matrix
that writes into the residual stream to have zero mean. Moreover, it folds the scaling and translation
operations into the weights of the next downstream layer.’ The result is that centering, scaling, and
translation make changes to the matrices used to compute €2 as shown in (1). The remaining step is
the normalizing step. This step does not change the direction of the residual; it only affects the mag-
nitude of the contribution to the relative attention (33). Since for any relative attention calculation,
we are considering a specific addition to the residual o?, we can simply scale its contribution by the
same scaling factor used for the corresponding token x’ when it is input to the downstream layer.

G Sparse Attention Decomposition

Here we provide additional examples showing that sparse attention decomposition holds across all
tasks, models, and heads we examine. Figure 6 shows typical results for key heads in each model
on the GT task, and Figure 7 shows typical results for key heads in each model on the GP task.

Figure 8 presents typical results for key attention heads in each model, specifically for the IOI task.
For models like GPT-2 and Pythia, which have an R value of 64, attention scores for various attention
heads with distinct roles are typically computed using fewer than 20 dimensions, and sometimes
even fewer than 5. A similar trend is observed in Gemma-2, which has a larger R value of 256.

H Details of Tracing

Here we provide more detail and formal definitions to supplement §4. The functions d*?*(w) and
stads(1/) are defined as:

SSee https://github.com/TransformerLensOrg/TransformerLens/blob/main/
further_comments.md for more details.

20


https://github.com/TransformerLensOrg/TransformerLens/blob/main/further_comments.md
https://github.com/TransformerLensOrg/TransformerLens/blob/main/further_comments.md

0.20 AH(B, 6) 0.15 4 AH(2, 6) —— AH(12,7)
J AH(4, 11) AH(4, 11) 0.04 AH(10, 0)
0.15
2 AH(3, 0) 2 0.10 o AH(7,9) Z AH(2, 5)
£ 0.10 —— AH(9, 9) H —— AH(8,2) g —— AH(3,0)
a AH(9, 6) 9 6.05 4 AH(8, 10) Q 0.02 1 3 AH(10, 3)
0.05 A / \ —— AH(10, 0) J —— AH(10, 7)
0.00 T T T T 0.00 T T T T 0.00 T T T T
0 10 20 30 40 0 10 20 30 40 0 25 50 75 100
Number of singular vectors in |S'%| Number of singular vectors in |S'%| Number of singular vectors in [S!%|

Figure 8: Dimension of signal subspace for heads in (a) GPT-2 (b) Pythia (c) Gemma-2, I0OI task.

1 .
déads (W) — WTQéaXZs _ T Z WTQZaXEJ (29)
C o j<d
J#s
where w € R, and

SEads (W) — X@dTQfCLWS — Z XZdT Q[(LW (30)

JSd
J#s

d—1

where W € RV*D,

The computation of upstream contributions to relative attention relies on the linearity of d‘*?*(w)
and 5“4 (W) to distribute these functions over (6). Specifically, for any given contribution (char-
acterizing an attention score) between tokens d and s at head (¢, a), we compute the portion of that
contribution due to each upstream model component’s writing into the destination token d as

AH outputs FEFN outputs attn. biases input at layer 0
—_——N—
Céads — d[ads(xfd) _ § : § : 2 d[ads(olhdt)+ § : dlads(fld)+ § : dlads(bl())+d£ads(xod)
1<I<€1<h<H 1<t<N 1<i<e 1<i<t
(€29

and we write the portion of that contribution due to each upstream model component’s writing into
the source token s as

AH outputs FEN outputs attn. biases input at layer 0
—N—
Céads — Zads XZ § : § : § /‘ Lads Olh*t) § Sﬁads (Fl) + § SZads(lbg) + SZads (XO)
1<I<£1<h<H 1<t<N 1<i<e 1<l<e
(32)

where Ot ¢ RV*D g the matrix for which row d is 0¥ and F! € RN¥N*D jg the matrix for
which row d is fi9,

By (5), (7) and the properties of the SVD, we have
CZads ~ dlads(séd) — d@ads(puxld) and C@ads ~ slads(Sl) — Slads (XZPJ) (33)

The process of distributing (33) over (31) and (32) results in, for the destination token (repeating
9)):

C[ads ~ Z lel?(tiif + Z d[ads + Z dlﬁads + dléads (34)

I<6h<H,t<N 1<t i<t

And for the source token is:

Céads ~ Z Slfggite + Z Sfade + Z Slfads + Sgads (35)
I<Ch<Ht<N 1<t 1<
Where the terms in (34) and (35) are defined as:
dfﬁgf _ dZads (Puolhdt) dllczizds _ déads (Pufld), dléads _ déads (Pubﬁ)), dgads _ déads(Pude)’
and
{g,;lf _ @ads (Olh*tPJ)7 l@gds — Séads (le});—)7 Slfads _ Séads(]_bgl'});—)7 Séads _ Séads ()(O‘P];r)7
where O'* is the matrix for which row d is 0"t and F"! is the matrix for which row d is f*?.

)

21



Constructing Communication Graphs Communication graphs are constructed as follows. The
objective is to identify the causal communication pathways within the model that lead to a particular
output. We formalize this by first defining an “output of interest” based on the model’s final logit
predictions, y. This output is a task-specific metric, calculated as a linear combination of logits,
which can be represented as a " y. This formulation captures common task-specific success metrics.

* For the Indirect Object Identification (IOI) task, a'y represents the logit difference
between the indirect object (I0) and subject (S) tokens.

* For the Gender Pronoun (GP) task, it is the logit difference between the correct and
incorrect gender pronouns (e.g., “he” versus “she”).

* For the Greater Than (GT) task, it corresponds to the average logit difference between
token predictions for two-digit numbers greater than a base number YY and those for num-
bers smaller than or equal to YY.

Using the vector a and the model’s unembedding matrix Wy, € RP*II (where |2| is the vocabulary
size), we derive a “success direction” vector g = Wya € RP in the residual stream space. For
the IOI task, this would be g = Wéo — W[}g , Where W(t] is the column of Wy for token t. We
then analyze the model’s final residual stream output for the token position being predicted, which
we denote x°'*. The projection of this vector onto the success direction, x°"'" g, quantifies the
model’s performance on the task for that specific prompt. We trace this value back by measuring
the contribution of each component from the residual stream decomposition (Equation (6)) to this
projection. “Seed” components are those with the largest contributions, specifically the smallest set
of components whose contributions sum to the total projection value, x°"'T g. We also include any
single component whose contribution is at least half of the total. If no attention heads are present
among these seeds, tracing is not performed. The token at the output position serves as the initial
destination token d for tracing, while the source token for a seed attention head is identified from its
OV circuit decomposition.

Starting from the identified seed components, we recursively trace their upstream contributors. Typ-
ically, the terms in equations (9) and (35) will show a few large values and many small values. As a
result, it is important to filter these terms to isolate the important communication taking place in the
model. To do so, we again rely on the property ensured by Lemma 1, namely, that c/24* is a positive
quantity. For each of (9) and (35), we select the smallest set of terms that sum to 3c/4* for some
0 < 8 < 1. The parameter g is set based on the degree to which the less important edges should be
filtered from the communication graph. In practice, we use 5 = 0.7 in all our results, which filters
most of the low-weight edges while preserving the largest-weight edges. Algorithm 1 outlines the
pseudocode for the complete process of construction communication graphs.

I Communication Graphs

In this section we provide details on how we construct communication graph, and we show commu-
nication graphs for example prompts from the tasks and models we study.

We generated communication graphs and circuits for specific prompts that met two key criteria:

1. The model successfully predicted the correct answer for the prompt.

2. The prompt has at least one attention head in the “seeds” components set.

The total number of prompts that satisfied these conditions and were traced for each model and task
is detailed in Table 1.

On CPU hardware (machines with 28 cores), tracing a 22-token prompt (the largest prompt size
across all tasks that we used) takes approximately one minute for GPT-2 and for Pythia, and about
one hour for Gemma-2. Our code is not highly optimized, and significant improvements are possible.

The time complexity for tracing a single prompt is O(a - L - C). In this expression, where L is
the number of layers, and C' denotes the number of components in the model, ie, attention heads,
attention biases, MLPs, and embeddings (see Equation 6). The factor a represents the number of
significant attention values (i.e., those with Ag‘; > %); itis upper-bounded by the number of attention

N2_N

values in a auto-regressive model =

+ N, but is in practice much less because only heads

22



that make causal contributions downstream are included in the trace. Thus, model size differences
explain the increased tracing time for Gemma-2 compared to GPT-2 and Pythia.

The following figures illustrate the communication graphs used by various models to solve example
prompts from three distinct tasks:

* Indirect Object Identification (IOI): For the prompt “Then, Simon and Andrew were
working at the restaurant. Simon decided to give a basketball to”, communication graphs
are shown for GPT-2 small (Figure 9), Pythia-160M (Figure 10), and Gemma-2 2B (Fig-
ure 11).

* Gender Pronoun (GP): The communication graphs for GPT-2 small (Figure 12), Pythia-
160M (Figure 13), and Gemma-2 2B (Figure 14) correspond to the prompt: “So John is a
really great friend, isn’t”.

* Greater Than (GT): For the prompt “The consultation lasted from the year 1673 to the
year 16”, communication graphs are presented for GPT-2 small (Figure 15) and Pythia-
160M (Figure 16).

J Interventions

An intervention targets an edge connecting an upstream (signal-writing) node and a downstream
(signal-consuming) node. The intervention removes the signal from the downstream node’s com-
putation. Specifically, for a destination token edge, as characterized by Equation (9), the signal is
removed from the query computation; for a source token edge, as characterized by Equation (35),
the signal is removed from the key computation.

We implement two types of interventions: boosting, which involves adding the signal to the down-
stream attention head, and suppressing, which involves removing it. To evaluate these, we compare
interventions using signals derived from S**?* (i.e., the singular vectors identified by our method)
against a random baseline, which is done by selecting |S?@?*| random singular vectors that are not
in Sfads_

The effectiveness of an intervention is measured by the error W, where F'(E, h) denotes the
logit difference metric after the intervention, and F’ represents this value before the intervention. A
negative error value signifies that the model’s performance has gotten worse, while a positive value
indicates an improvement.

Figure 17 illustrates these intervention results across all three models and all three tasks. We observe
that interventions using our signals are more causal than the random baseline. We further illustrate
in Figure 18 that interventions have exactly the effect predicted by Lemma 1 — namely that signal
ablation reduces attention and signal boosting increases attention. Finally, in Figure 19 we show the
very small changes in vector norm and vector direction that result from these interventions.

In terms of time efficiency, performing an intervention requires approximately the same duration
as a single forward pass through the model. To illustrate with our largest batch—consisting of 256
prompts, each 22 tokens long—executing an intervention on a 28-core CPU machine takes a few
seconds for GPT-2 and Pythia, and around 2 minutes for Gemma-2.

K Circuits

Leveraging the observation that interventions can causally affect model performance, we use this in-
sight as a basis for identifying circuits. Our method for finding circuits from communication graphs
begins by aggregating multiple such graphs into a single graph, G. From this aggregated graph,
we first prune nodes that appear in less than 1% of the instances. Subsequently, edges are removed
based on their impact on downstream task performance. Specifically, an edge F that occurred in p
Fi(E,h)—F;
( Fh )
falls below a threshold 7. In this formula, F; and F;(E, h) represent the logit difference metrics
before and after the intervention for prompt ¢, respectively, and 7 is a threshold determined empir-
ically for each task and model. Figures 20, 21, and 22 shows the precision, recall, and F}-scores,
respectively, considering every possible method as a baseline for comparison.

. . . . . . 1
prompts is removed from G if its average intervention impact—calculated as > Do

23



L. Handling logit soft-capping in Gemma-2 models

Gemma-2 models have soft-capping for attention scores and logits. The soft-capping is given by

f(x) =c-tanh (%) ,
where c is the soft-capping constant (¢ = 50 for attention scores and ¢ = 30 for the final logits
in Gemma-2 [55]) and z are either the scores of the logits. To handle non-linearity in our tracing,
we used the first non-zero term of the Taylor expansion for the logit soft-capping function, yielding
the approximation f(z) ~ x (valid when £ is small). The Gemma 2 team observed very minor
differences when soft-capping is removed during inference [65]. Moreover, we saw empirically that
f(x) = x is a good enough approximation for the soft-capping. Figure 23 shows the attention scores

and their respective values after soft-capping for an IOI prompt.

M Control Signals

Figures 24 and 25 illustrate how control signals vary across the layers of the models we study. In
these figures, the colors used for signals correspond to those in Figure 5. These control signals
were initially identified using the IOI task with a subset of the prompts. To verify their broader
applicability, Figures 24 and 25 were specifically generated using a prompt not part of this initial
set. Other prompts that are not in this initial set also have very similar behavior. The consistent
appearance of these signals on prompts that were not used to find the control signals corroborates
their data-independent nature.

We also show in Figure 26 the distribution of inner products between the V' signals and zero and
non-zero token signals for GPT-2, Pythia-160M, and Gemma-2 2B. We observe that the V' signals
have considerably higher inner products with zero token signals than non-zero token signals across
all the models.

24



1

N S R W N

=)

10

11
12
13
14
15

16
17

18

19
20

21

22
23
24
25

26
27
28
29

Algorithm 1: Communication Graph Construction

// Main function to find seeds and initiate tracing

ConstructGraph (M, P,a, 3)
Input : M: The transformer model.
P: The input prompt.
a: A vector defining the task metric over the logit vocabulary.
B: The contribution threshold for filtering (0 < 5 < 1).
Output: G: The final communication graph.
G < InitializeEmptyGraph();
Activations, y < ForwardPass(M, P);
Wy < GetUnembeddingMatrix(M);
g < Wya Calculate the ”success direction” vector
x°ut « GetFinalResidual (P, Activations);
PerformanceScore < x/ ,g;
// Decompose the final residual and project contributions onto the success direction
Contributions <— DecomposeResidual (x°"*) > Using Eq. (6)
ProjectedContributions <+ {c; g for each ¢; € Contributions};
// Identify the smallest set of components whose scores sum to the total score
S <+ FindSmallestSubsetSum(ProjectedContributions, PerformanceScore);
// Also include any single component that contributes more than half the total score
Shigh < {c; | ¢/ g > 0.5 x PerformanceScore};
Seeds < S'U Shign;
foreach seed component (£,a,d, s) € Seeds do
if (¢, a) is an attention head then
L | RecursiveTrace (G,{,a,d,s,3);

return G

// Recursive helper function to trace upstream contributors

RecursiveTrace (G,¢, a,d,s, )
Input : G: The graph (modified in-place).
(¢, a,d, s): The current component (layer, head, destination token, source token).
B: The contribution threshold. We use 0.7 in the experiments.
Output: Modifies the graph G.
> Base Cases: Stop recursion for all these cases or for when attention weight less than 1/n
(see Lemma 1)
if(=00rd=00rd< sor A%’ <1/n then
L return;

c’@ds «+ CalculateRelativeAttention(¢, a, d, 5);
// Find upstream contributors to the destination token’s signal
U(d) + FindUpstreamContributors(d, c‘*®*, 3) > Using Eq. (9)
foreach upstream component (', h',d,t) € U(d) do
Add edge (¢, 1/ ,d,t) = (¢,a,d,s) to G,
L RecursiveTrace (G, ¢, h,d,t,3);

// Find upstream contributors to the source token’s signal

U(s) + FindUpstreamContributors(s, c’*®, 3) > Using Eq. (35)
foreach upstream component (¢, 1, s,t) € U(s) do
L Add edge (¢, 1, s,t) — (£, a,d, s) to G,

RecursiveTrace (G, ¢ I, s,t,3) > Source token is destination upstream.

25



Table 1: Number of Traced Prompts per Model and Task

Model I01 GT GP
GPT-2 Small 230 166 100
Pythia-160M 159 39 99
Gemma-2 2B 206 - 94

26



[

Figure 9: Communication graph used for GPT-2 small to solve an IOI prompt, with 247 nodes and
683 edges. The prompt used is: “Then, Simon and Andrew were working at the restaurant. Simon

decided to give a basketball to”.

27



FAT
WA
i
s

)%

Figure 10: Communication graph used for Pythia-160M to solve an IOI prompt, with 158 nodes and
344 edges. The prompt used is: “Then, Simon and Andrew were working at the restaurant. Simon
decided to give a basketball to”.

28



/7 /
— ////
=
= 77 7
4—’4’-711,/;5’ 7

7
£ 77 //// ,/// //
7 I/h/ V2

22 ";//:mu‘
%&%' uy ‘Y\\‘ \

..... = [ ) = = — - = B = = —— ) . = . )

Figure 11: Communication graph used for Gemma-2 2B to solve an IOI prompt, with 352 nodes and
1358 edges. The prompt used is: “Then, Simon and Andrew were working at the restaurant. Simon
decided to give a basketball to” .



==
/)

/XAl

o ||

71 -“[!i\
/7 J‘i‘ ~\
-mj' i

"l\||\\

i

Figure 12: Communication graph used for GPT-2 small to solve a GP prompt, with 87 nodes and
152 edges. The prompt used is: “So John is a really great friend, isn’t”.

30



s

AN
%l |
gy ‘ \’V/ g
.

|

il |

|

7l ‘ |
/ o,

e
i/
/

|

Afibias
e

Figure 13: Communication graph used for Pythia-160M to solve a GP prompt, with 86 nodes and
172 edges. The prompt used is: “So John is a really great friend, isn’t”.

31



<<<<< ) Lol [m ) Lo (o] L] [ we ] L) ) ]

Figure 14: Communication graph used for Gemma-2 2B to solve a GP prompt, with 38 nodes and
31 edges. The prompt used is: “So John is a really great friend, isn’t”.

32



\§

S ea=am

N \\
oo
N R

\
N

SRS TR Y
Es=zc- s =

S

—
S

\
R

=
SEEas

S

D

N

—
N

N
\\\\
N

— §§\\ \
\\:\\\ S

/’f"/ /
Vi
Yl
N/ 4
AW%W’W
‘| /;\/,

—_—
Il
“mm‘\f\w
"ﬂW’%

—— RS i
N B
NS IS IR B
= e
N \

[/]]
[//
|/ /
|/ /1]
/]

Figure 15: Communication graph used for GPT-2 small to solve a GT prompt, with 150 nodes and
412 edges. The prompt used is: “The consultation lasted from the year 1673 to the year 16”.

33



Figure 16: Communication graph used for Pythia-160M to solve a GT prompt, with 94 nodes and
189 edges. The prompt used is: “The consultation lasted from the year 1673 to the year 16”.

34



gpt2-small pythia-160m gemma-2-2b

S-Inhibition Head -> | ) ] 3 ]
Name Mover Head ) S o - _}_’_
5 Induction Head -> _| b 1 |
= S-Inhibition Head % . il J,
Previous Token Head -> | 1 | e o | i
Induction Head . T e i
T T T T T T T T T
—0.5 0.0 0.5 -1 0 1 —0.01 0.00 0.01
(‘end', 'end') -> —t 1 _j;. | 3
(end’,'is) (1) | 7 e - -
a (‘end’, 'end') -> | _t 1 J 1 2
(] ('end', 'iS') (2) -50 -.—.:’_ e E
Cis', is') -> | J i 3 | z
(‘end’, "is’) ® [ — ——=s
T T T T T T T T T
—-0.1 0.0 0.1 —-0.5 0.0 0.5 —-0.02 0.00 0.02
(‘end', 'end') -> _| . _$
(‘end’, "YY') B ! B Removing (Random)
= ('YY', 'XX1') -> | 1 ] [ Boosting (Random)
O (end, YY) (1) !F B Removing (SVs)
+ H B Boosting (SVs)
('Yy', 'XX1') -> | 3 ]
(‘end', 'YY') (2) . N i
T T T T
0.0 0.5 -2 0 2
(F(E,h)-F)/F (F(E, h)-F)/F

Figure 17: Intervention effect on GPT-2, Pythia, and Gemma-2 in the IOI, GP, and GT tasks. Green:
signal ablation; Red: signal boosting; Blue: random ablation; Orange: random boosting.

gpt2-small pythia-160m gemma-2-2b
) 0.5 ~ i T
<
— |
(el 0.0‘*"" 1 |I!* -+ 4 e - ———
°: " oyt .
< -0.5 - . .
T T T T T T T T T
] 0.5 ~ i T
<
%zl O.O—+l!i e -|+!* | H _.,.-l-_—_-
[
< -05 - . .
T T T T T T T T T
4] 0.5 ~ i
< BN Removing (Random)
= | i i B Boosting (Random)
O 2 0.0 + ! EEE Removing (SVs)
ca B Boosting (SVs)
< —-0.5 1 E
T T T T T T

Edges Edges

Figure 18: Interventions effect on the attention weight. Error bars are the standard deviation.

35



1000 4 1000 400
£ £ £
s S S
H 3 3

S 5004 S 500 4 © 200 4

" r | T , | o

098 0.99 1.00 0.98 0.99 1.00 095 1.00 1.05
Cosine similarity Cosine similarity Norm ratio

Figure 19: Distribution of cosine similarities and norm ratios between the intervened input residual

and the original input residual (a) SVs (b) Random (c) SVs (d) Random.

Task: gp; Model: gpt2-small

600 o

400 4

Count

200 4

" T T T
1.000 1.025 1.050 1.075
Norm ratio

Task: gt; Model: gpt2-small

Task: ioi; Model: gpt2-small 1.0 acoc- 1 R RN 0.92
-10 Q 0.9
ACDC- 1 o- 1 -09 £ap
< < : 0.8
< 08 3
08 %L oo 8  Edge
< EAP- 1 3 o< £ Pruning 07
H £ @S 07 2
2 ¥ 2 = Oursw/ | 1 0.6
8 Oursw/ _ 06 = 0.6 th=0.2
= th=0.2 B : Path 1 0.5
o ; ;
Path _ 04 g_‘lé 1 05 Patching ) 04
Patching : o+ 8] a 2 In o
| ' g & 2f 53 <f
ACDC EAP Oursw/ Path ACDC Edge Ours w/ 3 £5 51 8%
th=0.2 Patching Pruning th=0.2 x O% s
Method B Method B Method B

Figure 20: Heatmap with Precision

(a) 101 task (b) GP task (c) GT task.

Task: ioi; Model: gpt2-small

-1.0
ACDC -
< 08 I
> EAP o
£ 8
@ Oursw/ 06 =
= th=0.2
Path
Patching oS 2 04

i l
EAP Oursw/ Path
th=0.2 Patching
Method B

scores considering Method A as a baseline for comparison for

Task: gp; Model: gpt2-small Task: gt; Model: gpt2-small

-1.0
Lo ACDC -
(S} -09
8 - 1 0.75 -0.9
Q « EAP 08
oo 0.8 8 Edge 0.7
o< £ Pruning .
B8< 1 07 2
3 *" = Oursw/ 0.6
o th=0.2
B 06 Path _ mm 2 05
0 1 Patching .
SAI‘% 0.5 ) , ] 0.4
. 8 & o2 ¥y _ 2
ACDC Edge  Oursw/ 2 55 81 8%
Pruning  th=0.2 « o= T
Method B Method B

Figure 21: Heatmap with Recall scores considering Method A as a baseline for comparison for (a)

101 task (b) GP task (c) GT task.

Task: ioi; Model: gpt2-small

- 0.9
<
< EAP 08 3
8 <
£ 07 8
@ Ours w/ —
= th=0.2 0.6
Path 05

Patching

l

EAP Oursw/ Path

th=0.2 Patching
Method B

Task: gp; Model: gpt2-small Task: gt; Model: gpt2-small

_10 - 1.0
o . ACDC - 0.76 | 0.79 0.65 0.71
s - 0.9 00
2 9 o EAP 0.81 0.68 0.57
°
o o Edge 0.8
2L 0.8 S Pruning
o5 £ oursw/
& 0.7 th=0.2 0.68 0.65 0.7
=N Path
0§ 0. Patching 057 B 0.6
35 ) 6 & o 3 o
~
§ & $f o s£
ACDC Edge Ours w/ Ed 82 51 s¢
Pruning th=0.2 x O% s
Method B Method B

Figure 22: Heatmap with F'-scores considering Method A as a baseline for comparison (a) IOI task

(b) GP task (c) GT task.

50
—
<R 25+
S
N
c 0 -
©
Ic)
o -—25
n

_50_

—200 —-100 0 100 200
A///

Figure 23: The attention scores and their respective values after soft-capping for an IOI prompt.

36



— Custer0 @ Residual (pre)

A Residual (post)

—— Custer0 @ Residual (pre)

W Residual (post) — Clustero @ Residual(pre) A Residual (post)
— Cluster1 [l Residual (mid) — Cluster 1 = Cluster1 [l Residual (mid)
"y T
044 xeuttuismiy, 03
z ! “teita z z
5037 e 502 5
Eoa el E -t £
@ 02+ = @ . &
o Bagumdtmatmion laitnady . © 0.1+ @
£ Auituillag £ £
70144 z g
S S o004+ S
0.0 4 3
S mswonr® o0 g o S o N mswon~o®o g o
$ 8 3 T 8§ 3 8 8 3 T v oL § 8 3 38 3 8 8T 8 v v
R R EEEEEEEAE S 5555555588
5 3335355335358 8383S%8§-3 55835355583 5535%3%58%3%37%®
g5 g3
Layer Layer

Figure 24:

(a) GPT-2 (b) Pythia (c) Gemma-2.

—— Custer0 @ Residual (pre)

A Residual (post)

— Cluster0 @ Residual (re) Ml Resicual (post)
— Custer1 Ml Residual (mid) — Cluster 1
om =3
dem -y "tee, i
> 031 024 "t adae
5 H we
E 024 £ PR R R SR
@ . AMAIRAORLAGRLIGmAGRAGRASE @ 4 LR SY
H pmapmse 01 ¥ g
g 2
@ 5 Y .
201 2 aq
S s S
0.0 - i
004+ )
© 4 N m T oOo~N® O O o o H N mMm<T IO~ ® o0 o o
T § & & & T T 8§ 86 & = = § § § & ¢ & T & T T v =
28822228 ¢ 22 5 5 £ 22222 22 5 5
T s 3 e s s sz s 22 R
5383333838353 33 333333533833 23%3
53 55
Layer Layer

Figure 25: Cosine similarity between source control signals and the residuals of the first token. (a)

GPT-2 (b) Pythia (c) Gemma-2.

—— zero tokens

~— non-zero tokens

—— zero tokens ~ —— non-zero tokens

34
24 2

2 a5

@ o

a2 01

oo wll .

T T
0.0 0.5
Inner product

-0.5

Figure 26: Distribution of inner products between the V" signals and zero and non-zero token signals

t
1.0

T T T T T T T
—0.50-0.25 0.00 0.25 0.50 0.75 1.00
Inner product

in (a) GPT-2 (b) Pythia (c) Gemma-2.

37

Cosine similarity

Density

Cosine similarity between destination control signals and the residuals of the last token.

— Custer0 @ Residual (pre) A Residual (post)
— Custer1 M Residual (mid)
P
0.40 i —
ol '
0.35 4 o el
- o
0.30 4+
e
025" = "‘.-._
. g A
% ot "
0.20 o
T T T
S T PP 2RNnIASERARRANIR
PR SRR
TR R enea88998299099899
R R e
538353355355585558
Layer

—— zero tokens

10 A

~— non-zero tokens

"

t T T T T T

-0.25 0.00 0.25 0.50 0.75 1.00
Inner product



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims made in the abstract and introduction are supported by Sec-
tions 2, 3, 4, and 5, besides the Appendices.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

38



Justification: Sections 1-4 of the paper, alongside Appendices D, E, and H provide all the
theory assumptions and proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Besides describing in the main body of the paper our derivations and tracing
strategy (Sections 1-4), we provide more details and a pseudocode in Appendix H. All the
LLMs used in this paper are open source.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

39



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code to reproduce all the experiments and results of
the paper is available at https://github.com/gaabrielfranco/
pinpointing—attention—-causal-communication. Moreover, we pro-

vide implementation details and a pseudocode in Appendix H.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are described in Appendix H.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the intervention results, we report the full distribution across different
prompts (e.g., Figure 2). When we use aggregated measures, we report standard deviations,
such as in Figure 18.

Guidelines:

* The answer NA means that the paper does not include experiments.

40


https://github.com/gaabrielfranco/pinpointing-attention-causal-communication
https://github.com/gaabrielfranco/pinpointing-attention-causal-communication
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer ~’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These are shown in Appendices I and J.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research exclusively uses publicly available open-source datasets and
models, adhering to their licenses, and does not involve new data collection from human
subjects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

41


https://neurips.cc/public/EthicsGuidelines

11.

12.

Justification: As discussed in Section 1, progress on the interpretability of language models
is critical for improving model safety and alignment. We do not anticipate negative direct
impacts from an increased understanding of the model’s operations.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|

Justification: We do not release any data or model. All data and models used in this paper
are open source.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets and models that we use are open source, and we cite accordingly
all of them.

Guidelines:

* The answer NA means that the paper does not use existing assets.

42



13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: The code has a README to show how to reproduce all the results of the
paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

43


paperswithcode.com/datasets
paperswithcode.com/datasets

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs for core methods in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.

44


https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Signals
	Sparse Attention Decomposition
	Application: Tracing Communication and Circuits
	Application: Control Signals
	Conclusions
	Further Background
	Bias in Attention
	RoPE
	Proof of Lemma 1
	Proof of Lemma 2
	Details of the Experimental Setup
	Sparse Attention Decomposition
	Details of Tracing
	Communication Graphs
	Interventions
	Circuits
	Handling logit soft-capping in Gemma-2 models
	Control Signals

