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ABSTRACT

The imperative to eliminate undesirable data memorization underscores the sig-
nificance of machine unlearning for large language models (LLMs). Recent re-
search has introduced a series of promising unlearning methods, notably boosting
the practical significance of the field. Nevertheless, adopting a proper evaluation
framework to reflect the true unlearning efficacy is also essential yet has not re-
ceived adequate attention. This paper seeks to improve the evaluation of LLM
unlearning by addressing two key challenges—a) the robustness of evaluation
metrics and b) the trade-offs between competing goals. The first challenge stems
from findings that current metrics are susceptible to various red teaming scenar-
ios. It indicates that they may not reflect the true extent of knowledge retained by
LLMs but rather tend to mirror superficial model behaviors, thus prone to attacks.
We address this issue by devising and assessing a series of candidate metrics,
selecting the most robust ones under various types of attacks. The second chal-
lenge arises from the conflicting goals of eliminating unwanted knowledge while
retaining those of others. This trade-off between unlearning and retention often
fails to conform the Pareto frontier, rendering it subtle to compare the efficacy
between methods that excel only in either unlearning or retention. We handle this
issue by proposing a calibration method that can restore the original performance
on non-targeted data after unlearning, thereby allowing us to focus exclusively
on assessing the strength of unlearning. Our evaluation framework notably en-
hances the effectiveness when assessing and comparing various LLM unlearning
methods, further allowing us to benchmark existing works, identify their proper
hyper-parameters, and explore new tricks to enhance their practical efficacy.

1 INTRODUCTION

Large language models (LLMs), like Llama (Touvron et al., 2023a;b) and GPT (Brown et al., 2020;
Achiam et al., 2023), have exhibited remarkable proficiency in general-purpose language generation
and understanding (Azerbayev et al., 2023; Huang et al., 2023; Roziere et al., 2023; Wu et al., 2023;
Thirunavukarasu et al., 2023). These advancements are credited to the development of Transformer-
based architectures (Vaswani et al., 2017) with billions of parameters and to the extensive pre-
training on web-sourced corpora with trillions of tokens (Brown et al., 2020). However, on the
other side, scaling up models aggravates the risk of memorizing effects (Arpit et al., 2017) and
sourcing from the web makes LLMs inherent its inaccuracies and biases (Liu et al., 2023a). It
raises the invoking concerns for LLM privacy and fidelity, posing a long array of undesirable LLM
behaviors sourced from training corpora (Liu et al., 2023a), including copyright (Yao et al., 2023a),
fairness (Gallegos et al., 2023), and toxicity (Liu et al., 2023b), among many others.

How to Erase Undesirable Data Memorization in LLMs? Machine unlearning (Bourtoule et al.,
2021; Zhu et al., 2024) offers a general solution. In the context of LLMs, the primary goal of un-
learning is to precisely remove the parameterized knowledge related to unlearning targets meanwhile
maintaining model performance for non-targets (Liu et al., 2024). The unlearning targets within
LLMs are typically characterized by an unlearning set, denoted as Du = {su = [x, yu]}nu

, and we
need to develop unlearning methods upon Du that meet the goals of LLM unlearning. Some of the
noteworthy baselines are gradient ascent (GA) (Yao et al., 2023b), gradient difference (GD) (Maini
et al., 2024), negative preference optimization (NPO) (Zhang et al., 2024), preference optimization
(PO) (Maini et al., 2024), and representation misdirection for unlearning (RMU) (Li et al., 2024).
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While algorithmic designs are crucial, their proper evaluations are equally vital. Misleading metrics
can lead us to overestimate the unlearning efficacy, potentially causing severe consequences when
applying these methods in practice. In general, effective unlearning metrics should accurately quan-
tify the extent of knowledge parameterization. Previous studies have introduced a set of intriguing
metrics, such as “familiarity” (Eldan & Russinovich, 2023), “model utility” (Maini et al., 2024),
“forget quality” (Maini et al., 2024), and “QA accuracy” (Li et al., 2024). However, these metrics
are often intertwined or reliant on manual-designed prompting, which are not general. Even worse,
recent works (Lynch et al., 2024) have shown that some metrics are highly susceptible to various red
teaming attacks, such as jail-breaking (Shen et al., 2023). It indicates that the current metrics might
not adequately reflect the extent to which targeted knowledge is erased—even if models notably
retain the targeted knowledge, these metrics may still falsely indicate its complete removal.

We conjecture that an effective metric for unlearning should exhibit robustness across diverse red
teaming scenarios. This robustness can manifest as strong linear correlations between metric scores
calculated from the original unlearning set and those computed after attacking. Large distortion in
this correlation would suggest that the associated metrics fail to capture the extent of knowledge
parameterization, instead mirroring more superficial behaviors that are vulnerable to attacks. To
investigate effective metrics for LLM unlearning, we consider a set of basic metrics, either derived
from previous works or mentioned in other related fields (Duan et al., 2024), cf., Section 3. We
further examine their robustness under 4 red teaming behaviors, including jail-breaking (Shen et al.,
2023), embedding probing (Belrose et al., 2023), relearning (Lo et al., 2024), and token noising.
Then, measuring by the Pearson correlation coefficient (PCC) (Cohen et al., 2009), we observe that
the extraction strength (ES)—quantifying the amount of information required to recover original
outputs—emerges to be the most effective choice, thus employed for assessing unlearning.

Figure 1: For effective unlearning, it is prefer-
able to have large ES scores for retention (x-
axis) yet small for removal (y-axis). For the
raw results (orange), we observe that GA ex-
cels at removal whereas NPO is better in re-
tention, making it hard to determine which
method is overall better. UWC resolves this
challenge by aligning ES scores for retention,
allowing us to focus on comparing the ES
scores for unlearning (blue). It leads to the con-
clusion that NPO is overall superior.

Even with the ES as an effective metric, com-
paring various LLM unlearning methods remains
challenging. This difficulty primarily arises from
the need to balance between two conflicting goals
for effective unlearning: retaining performance on
non-targeted data (retention) while removing tar-
geted knowledge (removal). For example, when
comparing two unlearned models, it is common
the case where one model outperforms in removal
but another one excels at retention, making it dif-
ficult to determine which model is overall supe-
rior, cf., Figure 1. We address this issue by align-
ing their common performance, i.e., their capac-
ity of retention, in a post-unlearning manner. It is
achieved by mixing model parameters from both
before and after unlearning, modulated through a
trade-off hyper-parameter α. With proper control
of α, we observe that model mixing enables us to
finely calibrate the extent of unlearning such that
performance on common data is adequately pre-
served, while the inevitable compromise on the ex-
tent of removal is typically minimized, cf., Sec-
tion 4. Thereafter, we can fairly concentrate on
assessing the strength of the removal on targeted
data, thereby alleviating the challenges associated
with comparing different unlearning methods or
unlearned models when pursuing to goals of re-
moval and retention concurrently.

We refer to our evaluation framework as “unlearning with control” (UWC), which incorporates the
ES as the basic metric and utilizes model mixing for calibration to ease assessments and compar-
isons across methods/setups. Based on UWC, we benchmark a series of representative works along
with suggestions for their hyper-parameters. We challenge the currently perceived advancements in
LLM unlearning, where the ostensibly positive behaviors of current state-of-the art methods may
be the result of either excessive unlearning or insufficient unlearning. Nevertheless, proper hyper-
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parameter tuning can remarkably enhance the efficacy of many earlier works, such as GA-based
works, showing potential to exceed many advanced counterparts. Leveraging UWC, we also benefit
the community by exploring a range of simple yet intriguing tricks to further enhance the practical
efficacy of current unlearning methods, which are not covered in previous works.

2 LLM LEARNING AND UNLEARNING

To begin with, we discuss the necessary backgrounds for LLM learning as well as unlearning.

LLM Learning. We study the LLM parameterized by θ with layer-wise self-attention struc-
tures (Liu et al., 2018). Upon receiving an input s, the LLM estimates the probability distributions,
denoted by p(·|s;θ), over the next possible tokens. The LLM is trained on a substantial web-scale
corpora, denoted by Dt = {s = [x, y]}nt of size nt. During training, we aim at minimizing the pre-
diction loss ℓ(y|x;θ) = − log p(y|x;θ) overDt. The resulting LLM is capable of properly handling
a wide range of language generation tasks. We adopt the notation yi to represent the i-th token, y<i

for the prefix up to the i-th token, and the string generated via greedy decoding by f(s;θ).

LLM Unlearning. However, employing training corpora sourced from the wild heavily raises the
risk that our LLMs will learn from sensitive information, thereby precipitating a host of legal and
ethical concerns (Yao et al., 2023a; Ji et al., 2023; Gallegos et al., 2023; Liu et al., 2023b). These
issues further necessitate the need for a post-training mechanism that enables our LLMs to eradicate
any associated parameterized knowledge that is undesirable. This requirement motivates the recent
research on LLM unlearning (Yao et al., 2023b; Maini et al., 2024), formalizing the above goal by
involving so-called the unlearning set Du = {su = [x, yu]}nu

(nu ≪ nt, typically). Overall, LLM
unlearning aims to adjust model parameters θ such that the content related to Du is sufficiently
erased. More specifically, for practical-effective unlearning, it should pursue two main goals jointly:

• Removal: the parameterized knowledge associated with the unlearning dataset Du should sig-
nificantly deteriorate, revealing effective unlearning on knowledge targeted to be erased.

• Retention: the knowledge for other data, following Dt\Du, should be retained, such that com-
mon model responses are sufficiently preserved, thereby ensuring its overal integrity.

To ease our discussion in the following, we distinguish between two types of data: a) targeted data,
which are targeted to be unlearned (i.e., within the unlearning set Du), and b) non-targeted data,
which are required to be retained (i.e., all other data within Dt\Du).

Unlearning Methods. Stemming from formalization for above two goals, gradient difference
(GD) (Maini et al., 2024) has established as a foundational baseline. Its unlearning objective is

−Esu∼Du
ℓ
(
yu|x;θ

)︸ ︷︷ ︸
unlearning risk

+λEs∼Dt\Du
ℓ
(
y|x;θ

)︸ ︷︷ ︸
retaining risk

, (1)

which composes of two terms: the unlearning risk and the retaining risks, balanced by the hyper-
parameter λ. The unlearning risk increases the prediction losses for undesirable responses yu, align-
ing with gradient ascent (GA) when updating LLMs. The retaining risk is implemented to retain
the original model integrity, aiming to ensure that the responses for non-targeted data remain un-
changed. Despite its mechanisms, previous works believe that GD is still susceptible to catastrophic
collapse (Zhang et al., 2024), wherein LLM parameters are remarkably altered and common model
responses are severely distorted after unlearning. To further enhance the practical utility, a series
of subsequent works have been explored. Among them, methods such as KL (Maini et al., 2024),
NPO (Zhang et al., 2024), PO (Maini et al., 2024), and RMU (Li et al., 2024), are well-established
and have received reasonable attentions. Please refer to Appendix C for more discussions.

3 EVALUATION METRICS

Accompanying advances in algorithmic designs, it is also essential to accurately assess the effective-
ness for various unlearning methods. Particularly, an inappropriate evaluation framework, such as
those that overestimate the strength of unlearning, can mislead practitioners to be overconfident on
the reliability of the resulting unlearned models. An ideal evaluation framework for LLM unlearning
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should effectively quantify the extent to which targeted knowledge remains parameterized within.
Moreover, it should be general-actionable across tasks, simply to implement, and free from specific
prompt engineering that may introduce modeling and prompting bias.

In our pursuit of such an evaluation framework, we begin by examining a series of basic metrics to
determine their robustness and suitability, as detailed in the following.

• Perplexity (PPL) (Chen et al., 1998): assessing the model confidence of auto-regressive models,
defined as the exponentiation of the cross entropy, i.e., exp{− log p(y|x;θ)}.

• ROUGE-L (ROUGE) (Lin, 2004) : measuring output quality by the proportion of the longest
common sub-sequence presents between the ground truth y and the model response f(x;θ).

• Exact Memorization (EM) (Tirumala et al., 2022): measuring output quality by the proportion
of the same tokens with the ground truth y, i.e., 1

|y|
∑

k 1{argmaxy f(y|[x, y<k];θ) = yk},
where 1{·} returns 1 if the condition therein is true, otherwise 0.

• Extraction Strength (ES) (Carlini et al., 2021): quantifying the strength of memorization by the
minimal proportion of the prefix to recover the suffix. To better align with its name, we adjust
the metric to use 1 minus its negative value, i.e., 1− 1

|y| mink
{
k|f([x, y<k];θ) = y>k

}
.

• KL Divergence (KL): the KL divergence for predictions between original and unlearned models.
It is formalized as KL

[
p(y|x;θ) || p(y|x;θref)

]
with KL the operation of the KL divergence.

These metrics cover a broad range of practical metrics that are widely recognized in prior research.
For example, PPL is used as a part of the metrics for “model utility” in (Maini et al., 2024), the
“rewrite score” in (Patil et al., 2023), among many others (Patil et al., 2023); EM serves as the key
metric for (Barbulescu & Triantafillou, 2024; Jin et al., 2024); ROUGE is adopted in (Du et al., 2024;
Maini et al., 2024); KL is mentioned in (Garg et al., 2024). We also take into account a less common
yet intriguing metric that quantifies data memorization, i.e., ES, particularly pertinent in studies of
membership attacks (Garg et al., 2024). Nevertheless, we exclude certain metrics that are difficult to
compute, such as those dependent on gold standard models that require the full re-training without
targeted data (Garg et al., 2024; Thudi et al., 2022; Maini et al., 2024). Moreover, for generality,
we also disregard task-specific metrics, including GPT-based evaluations (Lynch et al., 2024; Eldan
& Russinovich, 2023), QA accuracy that relies on manual-designed multiple choice questions (Patil
et al., 2023; Li et al., 2024), and those dependent on task-specific detectors (Yao et al., 2023b).

What Ensures a Good Metric? Among candidates, we wonder whether they can effectively quan-
tify the internal parameterization of knowledge, a question that is directly tied to the general goals
of LLM unlearning, as mentioned in Section 2. Overall, a proper metric should demonstrate robust-
ness against various red teaming scenarios; if not, it risks only capturing superficial model behaviors,
thereby vulnerable to manipulative attacks (cf., Appendix A). To gauge this robustness, we examine
the metrics with several representative attacking behaviors considered as follows.

• Jail-breaking (Shen et al., 2023): manipulating LLM behaviors to elicit undesirable knowledge
via crafted prompts. A proper metric should be robust to jail-breaking attacks.

• Probing (Belrose et al., 2023): decoding middle embeddings via extra linear unembedding mod-
ules. It should be hard to recover unlearned knowledge from embeddings after proper unlearning.

• Relearning (Lo et al., 2024): few-shot fine-tuning for unlearned LLMs. In an ideal case, un-
learned models are hard to sufficiently relearn the previously unlearned knowledge.

• Token Noising: perturbing 5% of tokens within each s by replacing them with random noise.
The resulting strings with token noise are used as targets when computing scores across metrics.

Some attacking scenarios have been explored in previous works (Lynch et al., 2024), such as re-
learning and jail-breaking, while others, like probing and token noise, remain less explored. These 4
attacking scenarios are motivated by a broader interest in comprehending LLM behaviors across di-
verse contexts. For example, LLMs may maintain knowledge without explicitly outputting it (Patil
et al., 2023), a phenomenon related to jail-breaking; parameterized knowledge can be extracted
from embeddings (Belrose et al., 2023), pertaining to probing attacks; fine-tuning may inadvertently
lead to emergence of harmful model behaviors (Lo et al., 2024), associated with relearning. Please
refer to Appendix D for detailed descriptions on these attacking strategies. Also, as discussed in
Appendix A, jail-breaking and probing are more important for assessing robustness than other ones.
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Figure 2: Robustness of Metrics under Red Teaming Attacks. We depict the metric scores before
(x-axis) and after (y-axis) attacks jointly for different unlearning setups: across 2 LLMs (Phi-1.5
and Llama-2-7B), 3 unlearning percentages (1%, 5%, and 10%), and 4 unlearning methods (GA,
GD, PO, and NPO). We consider 3 representative metrics under 4 red teaming behaviors. We apply
the log-scale for PPL to avoid numeric errors. For each of these scenarios, we compute the PPC
with respect to targeted and non-targeted data respectively, displayed at the top of each figure (tar-
geted data / non-targeted data). We provide linear fits for targeted and non-targeted data separately,
accompanied by shaded areas representing the standard deviations that visualize the PPC scores.

How to Assess the Metric Robustness? To account for the inherent challenges posed for vary-
ing attacks aforementioned, it is generally unrealistic to expect that the metric scores to remain
unchanged. A more reasonable, yet still rigorous, criterion is to examine whether the metrics ex-
hibit a linear relationship between the original values and that after attacks. Accordingly, although
values may change, the relative rankings (i.e., the orders of superiority across unlearned models)
remains the same without skewing. Here, we use the Pearson correlation coefficient (PCC) (Co-
hen et al., 2009) to gauge the linear correlation before and after attacks. However, note that the
potential sensitivities could be attributed to either the limitations of metrics or unlearning methods,
yet distinguishing between these two factors is hard. We mitigate this issue by computing the PCC
across LLMs, unlearning setups, and various unlearning methods, neutralizing influences from those
factors unrelated to the metrics themselves to much extent.

The Results. Due to space limit, we examine the robustness of three representative metrics among
five candidate metrics, across various attacks as illustrated in Figure 2, please refer to Section 6 for
the experimental setups and Appendix D for more results. We observe that relearning has the largest
impacts on the robustness of metrics, mainly due to the further tuning of parameters for unlearned
LLMs. Under relearning attacks, ROUGE shows to be the least effective metric, while ES stands
out to be the best one. The probing attacks also have substantial impacts, particularly on the PPL
for non-targeted data, even demonstrating negative correlations. Under probing attacks, the ES is
more robust than other candidates. At last, jail-breaking and feature noising attacks are generally
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less effective at disturbing the metrics, with ROUGE again exhibiting the least robustness. Overall,
ES stands out as the most reliable metric for LLM unlearning. It shows superior robustness during
relearning and probing attacks, and maintains a small PCC gap over the PPL for other attacks.

3.1 THE ES METRICS FOR ASSESSING UNLEARNING

We recommend the ES as the optimal metric for reflecting the extent of parameterized knowledge.
It is versatile across various unlearning setups and can properly quantify unlearning behaviors with
respect to both removal and retention. For removal, the average ES, calculated for targeted data as

ES(Du;θ) = E(x,yu)∼Du

[
1− 1

|yu|
min
k
{k|f([x, y<k

u ];θ) = y>k
u }

]
, (2)

should be small after unlearning. For retention, the average ES for non-targeted data should be high:

ES(Dt\Du;θ) = E(x,y)∼Dt\Du

[
1− 1

|y|
min
k
{k|f([x, y<k];θ) = y>k}

]
. (3)

ES will be used as the basic metric for evaluating LLM unlearning in our following experiments.

4 UNLEARNING CONTROLS

An essential aspect of quantifying model performance is enabling their reliable comparisons, which
can facilitate the identification of superior unlearning methods and effective hyper-parameter tuning.
However, achieving such a fair comparison is not straightforward for unlearning, even with the ES
as an effective metric. The challenge mainly originates from the inherent tension between the dual
goals of removal and retention, both of which are crucial for unlearning efficacy.

Often, unlearning methods that excel at removing targeted data will under-perform in retaining non-
targeted knowledge, and vice versa. This scenario necessitates subjective judgments to balance their
trade-offs and identify the overall superior choice. Figure 1 presents an example: When comparing
between NPO and GA, we observe that the ES computed on targeted data for GA is smaller than
that for NPO, indicating GA is more effective in erasing targeted knowledge. On the other side,
the ES computed on non-targeted data for NPO is higher than that for GA, suggesting that NPO
better preserves the original model performance. While GA may be the appropriate choice when
focusing solely on removal, its efficacy relative to NPO becomes less clear when retention is also
considered. This scenario is commonly observed in existing methods, cf., Section 6, where their
claimed improvements often do not align with the Pareto frontiers (between removal and retention).

On the Importance of Calibration. To ensure an easy and fair way of comparison, our motivation
is to align LLM performance on non-targeted data post-unlearning, i.e., aligning the ES scores on
non-targeted data across methods. Once this calibration can be established, we can focus solely on
the ES comparison on targeted data. Refer to Figure 1 for the illustration. To achieve the goal of
proper calibration, we seek for a flexible control method that permits the adjustment for the extent
of unlearning after the unlearning procedure. Inspired by parameter disentanglement (Wortsman
et al., 2022; Ortiz-Jimenez et al., 2023)—where mixing parameters from two models can endow the
resulting one with characteristics from both—we propose model mixing (MM) as a flexible method
for such control. Formally, considering parameters before unlearning, denoted as θref , and after
unlearning, denoted as θ, their mixture is given by

(1− α)θref + αθ, (4)
with 0 ≤ α ≤ 1 the mixing factor that can be tuned. In general, a lower α emphasizes the param-
eterization of the original model, whereas a higher α accentuates those of the unlearned one. By
carefully adjusting α, we can control the extent of unlearning to align performance on non-targeted
data, such that the associated ES scores can be maintained, i.e., similar to those before unlearning.

Is MM Proper for Calibration? The answer is yes! We observe that MM ensures a smooth control
over the extent of unlearning, supported by an overall monotonic relationship between α and the ES
scores. We illustrate several examples in Figure 3 as evidence of this effect. The benefits of this
smooth control extend beyond stability, which enabling the calibration of unlearned models such
that the strength of removal on targeted data is minimally compromised. Therefore, comparisons of
ES scores on targeted data after calibration are fair and valid. This smooth control also facilitates us
to suggest an efficient method for the estimation of the optimal α, as detailed in Appendix E.
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Figure 3: ES Scores with MM Control. We depict values of α (x-axis) versus the ES scores (y-axis)
on targeted (unlearn) and non-targeted (retain) data. We consider 2 LLMs (Phi-1.5 and Llama-2-7B)
and 4 unlearning methods (GA, GD, PO, and NPO) under the 5% TOFU unlearning setup.

5 UNLEARNING WITH CONTROL

With the ES as the basic metric and the MM for performance calibration, we name the overall
framework as “unlearning with control” (UWC). It is a two-step evaluation strategy, consisting of a)
calibration and b) assessment, structured in the following.

• Calibration: We control the extent of unlearning such that the ES scores on non-targeted data
should be close to that before unlearning. Formally, we aim for the largest possible α such that
at least τ × 100% of the original ES scores on non-targeted data can be preserved, i.e.,

max
α

{
α | ES(Dt\Du; (1− α)θref + αθ) > τES(Dt\Du;θref)

}
, (5)

where τ should close to 1 to ensure strong calibration. Note that we pursue for the largest α to
minimize the compromise on the strength of removal, as mentioned in Section 4.

• Assessment: For unlearned LLMs that are well calibrated for retention, one can fairly evaluate
and compare their strength of removal, i.e., their ability to erase parameterized knowledge tar-
geted to be unlearned. The overall efficacy of unlearning can then be accurately assessed via the
ES, where a lower ES(Du; (1− α)θref + αθ) indicates better performance of unlearning.

With UWC, we can assess the efficacy of unlearning across various models in a general and reliable
framework. UWC will facilitate our hyper-parameter tuning and the comparisons of previous works,
further supporting our explorations of practical tricks in the following section.

6 EXPERIMENTS

We benchmark existing LLM unlearning methods using UWC, recommending their proper hyper-
parameters, and then assessing and comparing their efficacy in achieving effective unlearning. For
the promising methods among the candidates, we further examine a series of simple tricks for them,
which can further enhance their practical effectiveness in unlearning.

Experimental Setups. Our main evaluations were based on the well-established benchmarks of
TOFU fictitious unlearning (Maini et al., 2024), incorporating two popular LLMs, including Phi-
1.5 (Li et al., 2023) and Llamma-2-7B (Touvron et al., 2023a). For the unlearning setups, original
training data are separated into targeted and non-targeted parts, of which the adopted proportions
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Table 1: Comparison between different unlearning methods on TOFU fictitious unlearning with
UWC calibration. ↓ / ↑ indicate smaller / larger values are preferable. We primarily focus on the
ES scores for unlearning (shaded), given that the ES scores for retention are calibrated.

LLM Phi-1.5 Llama-2-7B

setup method ES-exact ES-perturb ES-exact ES-perturb
retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

GA 0.4262 0.3748 0.2071 0.1551 0.7536 0.1333 0.4976 0.0230
GD 0.4212 0.3449 0.2072 0.1413 0.7471 0.0293 0.4471 0.1860
KL 0.4232 0.2123 0.2005 0.0840 0.7337 0.0515 0.4428 0.0913
PO 0.4242 0.6001 0.1936 0.1468 0.7508 0.2387 0.4757 0.2509

NPO 0.4424 0.1259 0.2136 0.0702 0.7383 0.2543 0.4776 0.1703
RMU 0.4245 0.4682 0.2115 0.1855 0.7559 0.5093 0.4096 0.3538

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

GA 0.4497 0.2958 0.2136 0.2349 0.7780 0.7033 0.4031 0.4765
GD 0.3919 0.4140 0.2004 0.0045 0.7432 0.3385 0.4775 0.3166
KL 0.3823 0.3766 0.1794 0.1614 0.7207 0.0953 0.4814 0.1516
PO 0.4086 0.4524 0.2020 0.2343 0.7715 0.5496 0.4792 0.3502

NPO 0.4433 0.3768 0.1836 0.1509 0.7207 0.1104 0.4804 0.2777
RMU 0.4404 0.4252 0.2047 0.2147 0.7112 0.4034 0.4927 0.3884

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

GA 0.3796 0.2486 0.2137 0.1624 0.7015 0.4916 0.4825 0.2419
GD 0.4454 0.4935 0.1761 0.0345 0.7771 0.0980 0.4780 0.1200
KL 0.4424 0.4912 0.2075 0.0922 0.7765 0.2791 0.4734 0.1236
PO 0.4177 0.5499 0.2042 0.1786 0.7543 0.7397 0.5302 0.3435

NPO 0.4072 0.3499 0.2028 0.1281 0.7769 0.3700 0.5100 0.1243
RMU 0.4364 0.5208 0.1944 0.1547 0.7874 0.7526 0.4871 0.3196

are 1:99 (1% unlearning), 5:95 (5% unlearning), and 10:90 (10% unlearning). Please refer to Ap-
pendix B for more details about the adopted experimental setups.

Hyper-parameter Configurations. We conduct thorough hyper-parameter tuning for the consid-
ered unlearning methods, as detailed in Appendix C. The full results across each setup of hyper-
parameters can be found in Appendix H. With meticulous selection, we suggest λ = 2 for GD,
λ = 10 for KL, and λ = 20 and β = 0.5 for NPO. Moreover, for RMU, we select the 9-th layer
with c = 4 for Phi-1.5 and 21-th layer with c = 2 for Llama-2-7B.

We report not only the ES scores for original data but also for the associated paraphrased versions
provided by TOFU. These paraphrased datasets maintain the original semantics but feature varied
syntax and order, which can be employed to assess the generalization capability of the resulting
models. To make the following discussion clear, we term the ES calculated for the original data as
ES-exact, and that calculated for the paraphrased versions as ES-perturb. The full results after the
UWC calibration are summarized in Table 1. Here, we summarize some of our key observations.

Hardness of Unlearning Tasks. Across unlearning setups, we observe that larger forget rates do
not necessarily correspond to more challenging unlearning tasks, contrary to prior believes (Zhang
et al., 2024). Our results indicate that 5% setup more challenges compared to that for both 1% and
10%. Therefore, specific data targeted for unlearning should also be taken into consideration when
deciding the hardness of unlearning tasks. Across models, we find that Llama-2-7B can lead to
overall better efficacy than Phi-1.5, indicating that unlearning for smaller models are harder.

GA Variants Remain Promising. Previous works often take GA and its variants as ineffective.
However, via proper fine-tuning for the trade-off hyper-parameter, it reveals that GA-based methods,
particularly GD and KL, can exhibit superior performance. Note that while we identify several
cases where the original GA achieves the best ES-exact scores, this might be attributed to excessive
unlearning that leads to overfitting, signifying by its higher ES-perturb with poor generalization.
Therefore, we conclude that the retain loss is indispensable for GA-based methods.

Excessive / Incomplete Unlearning is Common. GA and NPO are two important methods in the
literature. However, we show that, after UWC calibration, their efficacy in unlearning is not that
attractive as our previous belief. However, the causes of their inferior performance are different,
which can be seen from the results without UWC calibration in Table 3. As we can see, after
unlearning, the ES scores of NPO are much greater than 0, a signal where the strength of unlearning
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Table 2: Comparison between different tricks for KL on TOFU with UWC calibration. ↓ / ↑ indicate
smaller / larger values are preferable. We primarily focus on the ES scores for unlearning (shaded),
given that the ES scores for retention are calibrated.

LLM Phi-1.5 Llama-2-7B

setup method ES-exact ES-perturb ES-exact ES-perturb
retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

1%

origin 0.4232 0.2123 0.2005 0.0840 0.7337 0.0515 0.4428 0.0913
BS 0.4232 0.1931 0.2005 0.1078 0.7241 0.0428 0.4791 0.0000
ES 0.4232 0.2033 0.2136 0.0571 0.8277 0.1029 0.4419 0.0403
LC 0.4149 0.1952 0.2005 0.0800 0.7337 0.0505 0.4785 0.0000

5%

origin 0.3823 0.3766 0.1794 0.1614 0.7207 0.0953 0.4814 0.1516
BS 0.3879 0.3352 0.2049 0.1432 0.6825 0.0590 0.4450 0.0604
ES 0.4536 0.2224 0.2137 0.1386 0.7928 0.0231 0.4493 0.0144
LC 0.4404 0.3728 0.1929 0.1552 0.7207 0.0033 0.4428 0.0913

10%

origin 0.4424 0.4912 0.2075 0.0922 0.7765 0.2791 0.4734 0.1236
BS 0.4302 0.3358 0.2334 0.1621 0.7228 0.2287 0.4285 0.1071
ES 0.4433 0.3974 0.2024 0.1360 0.7803 0.2163 0.4482 0.1076
LC 0.4124 0.2752 0.2092 0.0731 0.7582 0.2120 0.4343 0.1236

is insufficient. We provide more justification from the weighting perspective and the risk perspective
in Appendix G. On the other side, the ES scores of GA are all near 0, whether for unlearning or
retention, indicate its strength of unlearning may too large, occupying the parameterized knowledge
for non-targeted data, thereby making the resulting model completely useless. Nevertheless, we find
that GD and KL with regularization terms of retention can largely mitigate its drawbacks.

Tricks. Beyond benchmarking existing works, the UWC framework further enables us to delve into
a variety of practical tricks that can empirically enhance the efficacy of unlearning. This aspect has
been overlooked in the past, partly due to the pursuit of both removal and retention. Such dual goals
render it hard to determine whether the overall efficacy of unlearning has indeed improved after
applying a particular trick. We fill this gap with the aid of UWC, examining a set of tricks listed
in Appendix F. Our investigations are focused on KL, which is identified by UWC as a promising
work. Overall, we find that adapting batch size (BS) and early stopping (ES) play crucial roles for
unlearning efficacy, which can explicitly control the accuracy of the stochastic-estimated gradients
and the extent of unlearning. Additionally, likelihood capping (LC), which prevents excessive un-
learning by assigning a minimal-allowed value for predicted token likelihood, can also facilitate
effective unlearning. The results from adjusting batch size, early stopping, and likelihood capping
are summarized in Table 2. Please see Appendix H for more results and discussions.

7 CONCLUSION

This paper addresses the critical challenges in evaluating and comparing LLM unlearning methods.
Recognizing the susceptibility of existing metrics to various attacks and the difficulty in balancing
the trade-off between unlearning (removal) and retention goals, we propose an effective evaluation
framework named UWC. The UWC introduces the ES as a reliable and robust metric to quantify the
parameterized knowledge, outperforming others in capturing the true extent of unlearning. More-
over, to address the trade-off between unlearning and retention, we calibrate model performance
on non-targeted data via MM, ensuring that the retention of desirable knowledge is adequately pre-
served. By doing so, we can focus solely on assessing the unlearning efficacy on targeted data,
facilitating fair comparisons across different methods, models, and setups. Using the UWC frame-
work, we benchmark representative unlearning methods. We find GA-based methods remain to be
a powerful line a work, while we need to careful control its extent of unlearning. We also explore
other tricks that can further improve the practical efficacy of unlearning, where we find that early
stopping and using large batch size are in general helpful.
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8 ETHIC STATEMENT AND REPRODUCIBILITY

LLMs, trained on extensive web-sourced datasets, risk inadvertently memorizing and disseminating
sensitive, private, or harmful information. This could lead to potential violations of privacy, intellec-
tual property rights, and societal harm. Unlearning methods offer a promising solution to mitigate
these ethical concerns, thus attracting increasing research attentions recently. Rather than devel-
oping new methods, we focus on ensuring effective evaluations and fair comparisons for various
unlearning methods and unlearned models. Our studies contribute to the assessments of safe, legal,
and trustworthy LLM usages, reflecting the true extent for the potential to disseminate sensitive per-
sonal data, copyrighted material, and other forms of harmful or unethical information. It aligns with
the wide goal of ensuring that AI technologies can respect the rights of individuals. Furthermore,
for reproducibility, we have detailed the experimental configurations, hyper-parameter setups, and
hardware specifications. We will release our code upon the acceptance of this paper.
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Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint
arXiv:1801.10198, 2018.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun
Xu, Yuguang Yao, Hang Li, Kush R Varshney, et al. Rethinking machine unlearning for large
language models. arXiv preprint arXiv:2402.08787, 2024.

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo Hao Cheng, Yegor
Klochkov, Muhammad Faaiz Taufiq, and Hang Li. Trustworthy llms: a survey and guideline for
evaluating large language models’ alignment. arXiv preprint arXiv:2308.05374, 2023a.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao, Tianwei
Zhang, and Yang Liu. Jailbreaking chatgpt via prompt engineering: An empirical study. arXiv
preprint arXiv:2305.13860, 2023b.

Michelle Lo, Shay B Cohen, and Fazl Barez. Large language models relearn removed concepts.
arXiv preprint arXiv:2401.01814, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen Casper, and Dylan Hadfield-Menell. Eight meth-
ods to evaluate robust unlearning in llms. arXiv preprint arXiv:2402.16835, 2024.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task
of fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In NeurIPS, 2023.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from llms? ob-
jectives for defending against extraction attacks. arXiv preprint arXiv:2309.17410, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. NeurIPS,
2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
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A CONCEPTUAL PROOF FOR METRIC EFFECTIVENESS

We formalize our discussion by developing a causal framework for assessing metric effectiveness. It
delineates the relationships between knowledge parameterization (K), the considered metric (M ) to
quantify this knowledge, model behaviors (B), and the interventions (I) introduced by red teaming
attacks. We further incorporate the mediator of superficial behaviors (S), which explain the change
due to I without changing the underlying knowledge K.

Figure 4: The causal graph for the assessment
of unlearning metrics. The solid / dashed arrows
represent known / unknown relationships.

Pathways. All considered metrics are presumed
capable of assessing the strength of knowledge
parameterization more or less, denoted as K →
M , such that changes in K should manifest in
M . Additionally, the knowledge parameteriza-
tion directly influences model behaviors, repre-
sented as K → B. This relationship underscores
that the way a model processes inputs and gen-
erates outputs is definitely a function of its inter-
nal knowledge. For intervention I , it will intro-
duce superficial behaviors S without altering the
underlying knowledge K, and these superficial
behaviors mediate the effect of interventions on
model behaviors, i.e. I → S and S → B, while
I ↛ K. The causal relationships can be visual-
ized in Figure 4. Therein, by identifying S as a
mediator, we recognize that changes in B due to
I are not indicative of changes in K.

Assessing Effectiveness. Our goal is to ensure that the crafted metrics M are effective indicators of
K and are not unduly influenced by changes in B caused by I , of which the directly modeling is not
feasible. Instead, based on Figure 4, we conclude that an ideal metric should depend on K, holding
true in general, and is robust to the change of B via I . Therefore, to validate the effectiveness of
a metric, we can test its robustness by testing a series of red teaming attacks that modify model
behaviors by affecting superficial behaviors S without altering the underlying knowledge K. Then,
we can measure metrics before and after interventions to test their linear correlation, of which the
high values suggest that the metric is robust and primarily dependent on K.

B EXPERIMENTAL CONFIGURATIONS

Our evaluations were based on the well-established benchmarks of TOFU fictitious unlearn-
ing (Maini et al., 2024), focusing on LLMs fine-tuned with a series of fictitious authors profiles.
These profiles were created by prompting GPT-4 (Achiam et al., 2023), which has been filtered to
avoid the occurrence of any real author profile, thus mitigating the inadvertent impacts of other un-
related variates. For each fictitious profile, TOFU crafted 20 question-answer pairs that can be used
for fine-tuning, along with their paraphrased versions for evaluations.

The pre-trained LLMs were further fine-tuned on such question-answer pairs, where we considered
two popular LLMs, i.e., Phi-1.5 (Li et al., 2023) and Llamma-2-7B (Touvron et al., 2023a) of their
question-answering versions. For the unlearning setups, the original TOFU data were separated into
targeted and non-targeted parts, of which the adopted proportions are 1:99 (1% unlearning), 5:95
(5% unlearning), and 10:90 (10% unlearning). Moreover, we further separated 400 non-targeted
data that were not involved during the unlearning procedure for evaluations, reflecting real-world
situations where it is not feasible to go through all non-targeted data during the unlearning process.

For all the considered methods, we adopt the following implementation setups: the AdamW opti-
mizer (Loshchilov & Hutter, 2017), the initial learning rate 2e−5 for Phi-1.5 and 1e−5 for Llama-2-
7B, the batch size 16 for both the targeted and non-targeted data, the epoch number 5, and the linear
warm-up for the first epoch. For MM calibration, we set τ = 0.95 for Phi-1.5 and τ = 0.90 for
Llama-2-7B. All our experiments were realized by Transformers 4.42.4 with CUDA 12.1, using a
series of computation nodes equipped with NVIDIA-A100-80GB GPUs and Intel(R) Xeon(R) Gold
6248R CPU @ 3.00GHz Processors.
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C BASELINE METHODS

We examine a collection of representative unlearning methods that are wide recognized in the liter-
ature. To provide clarity, we elaborate on their implementations and discuss their significance.

Gradient Ascent (GA) (Yao et al., 2023c). As one of the earliest unlearning methods, GA decreases
the log-likelihood log p(su;θ) for targeted data. The unlearning objective is articulated as

−E(x,yu)∼Du
ℓ
(
yu|x;θ

)
, (6)

corresponding to applying gradient ascent to the cross entropy loss. GA has been widely explored
due to its simplicity (Liu et al., 2024). Nevertheless, it is also notorious for causing catastrophic
collapse (Zhang et al., 2024)—its efficacy in removing targeted knowledge often comes at the large
costs that damage the overall integrity of LLMs, rendering the resulting LLMs completely useless.

Gradient Difference (GD) (Maini et al., 2024). To counteract the negative impacts of catastrophic
collapse, various regularization terms are explored to retain the common model integrity. GD im-
proves upon GA by further decreasing the negative log-likelihood for non-targeted data, following

−E(x,yu)∼Du
ℓ
(
yu|x;θ

)
+ λE(x,y)∼Dt\Du

ℓ
(
y|x;θ

)
, (7)

where λ is a trade-off hyper-parameter that should be tuned. The use of GD can mitigate the ad-
verse effects of GA on knowledge retention. However, when the unlearning steps are extensive, the
extreme scale of E(x,yu)∼Du

ℓ
(
yu|x;θ

)
will overshadow that of E(x,y)∼Dt\Du

ℓ
(
y|x;θ

)
. Therefore,

the GD will be less effective in the later unlearning phrase, reducing its ability to maintain utility.

KL Regularization (KL) (Maini et al., 2024). Similar to GD, KL also involves regularization for
GA. However, instead of learning from original data, KL retains the original responses for data by
minimize the KL divergence before and after unlearning. The overall unlearning objective is

−E(x,yu)∼Du
ℓ
(
yu|x;θ

)
+λE(x,y)∼Dt\Du

∑
k

KL
(
p(y<k | x;θ)∥p(y<k | x;θref)

)
, (8)

which averages the KL divergence with respect to a sequence of prefixes.

Negative Preference Optimization (NPO) (Zhang et al., 2024). It is motivated by direct prefer-
ence optimization (DPO), a well-known alignment method (Rafailov et al., 2023), which originally
utilizes paired corpora comprising preferred versus dis-preferred data. NPO segregates the dis-
preferred part from DPO, heuristically employing it as the unlearning objective, following

2

β
E(x,yu)∼Du

log
(
1 + (

p(yu|x;θ)
p(yu|x;θref)

)β
)

+λE(x,y)∼Dt\Du

∑
k

KL
(
p(y<k | x;θ)∥p(y<k | x;θref)

)
, (9)

where β is the hyper-parameter of the inverse temperature. The effective realization of NPO still
relies on regularization for retention, we default to use KL in our realization. We do not introduce
the trade-off parameter λ to ease hyper-parameter tuning, which is suggested by (Zhang et al., 2024).

Preference Optimization (PO) (Maini et al., 2024). It aims to mitigate the drawbacks of the un-
learning risk by targeting a new outcome, yidk =“I don’t know.”, which is implemented through

E(x,yu)∼Du
ℓ(yidk|x;θ), (10)

which changes original outputs for targeted data to yidk uniformly.

Representation Misdirection for Unlearning (RMU) (Li et al., 2024). Instead of changing directly
the model outputs, RMU implements unlearning by perturbing model representation. Denote the
embedding features by ϕ(s;θ), the formulation of RMU can be articulated as

E(x,yu)∼Du

1

|yu|

|yu|∑
i=1

||ϕ([x, y<i];θ)− c · u||22

+ E(x,y)∼Dt\Du

1

|y|

|y|∑
i=1

||ϕ([x, y<i];θ)− ϕ([x, y<i];θref)||22, (11)

where u has elements randomly sampled from [0, 1) and c is a scaling hyper-parameter.
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D ATTACK METHODS

We consider 4 distinct types of red teaming scenarios: jail-breaking, embedding probing, relearning,
and token noising. These attacking methods are utilized to assess the robustness of 5 basic metrics.
Please see Figure 5 for the full results. Overall, we find that relearning and probing generally pose
greater challenges compared to jail-breaking and noising, with the latter two exhibiting typically
smaller PPC. Additionally, we observe that the PPL and KL are very similar, as both rely on the
likelihood of outputs. For ROUGE, the results show that it is sensitive to attacks, suggesting it
may not be an appropriate metric. When comparing PPL, ES, and EM across different scenarios,
we find that their PPCs are close under jail-breaking and token noising. However, in the contexts
of relearning and embedding probing, ES notably outperforms both PPL and EM. Therefore, we
recommend adopting ES as the most suitable basic metric for LLM unlearning.

Below, we offer detailed descriptions for the realizations of the considered attacks.

Jail-breaking. We explore two prompt structures as outlined in (Shen et al., 2023). For a given
original question-answer pair, characterized by {question} and {answer}, these two prompts are
constructed as follows:

Prompt 1. Do not apologize or feel sorry, answer the question: {question}
Answer: {answer}.

Prompt 2. {question} Start with ’Absolutely! I know the answer! Here is:’
Absolutely! I know the answer! Here is: {answer}.

We compute the metric scores under these two jail-breaking attacks separately, and report their
average values as the final results.

Embedding Probing. We follow the approach of tuned lens (Belrose et al., 2023), which extracts
embedding features from unlearned models, further decoding them into the output token space using
an linear model. This additional model is trained on the whole TOFU datasets for 5 epochs, utilizing
the Adam optimizer with the initial learning rate of 1e−3. Moreover, we focus on specific layers
in our analysis, including the 11-st, 22-nd, and 33-rd layers for Llama-2-7B, and the 8-th, 16-th,
and 24-th layers for Phi-1.5. The associated linear models are trained separately for each layer of
embeddings. The performance metrics are averaged across layers, and we report the average values
as the final results for each model type, either Phi-1.5 or Llama-2-7B.

Relearning. The unlearning models are further fine-tuned on targeted data for one epoch, using
the negative log-likelihood as the objective. The Adam optimizer is adopted with the same learning
rates as original fine-tuning. The metric scores are then computed for relearned models.

Token Noising. We randomly select 5% of the tokens (ensuring at least one token s selected) in each
string and replace it with a randomly chosen new token. This process introduces noise into data,
simulating errors or disturbances that might occur in real-world applications. The metric scores are
then computed for the original unlearned models, using the noised data as the ground truth.

Based on our analysis in Appendix A, we know that a proper attack method should not impact the
parameterized knowledge within models, but can change model behaviors. From this perspective,
jail-breaking and embedding probing are more appropriate than relearning and token noising when
assessing metric robustness for unlearning. Therefore, the results of jail-breaking and embedding
probing should receive our main focus when assessing metric effectiveness.
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Figure 5: Robustness of Metrics under Red Teaming Attacks. We depict the metric scores before
(x-axis) and after (y-axis) attacks jointly for different unlearning setups: across 2 LLMs (Phi-1.5 and
Llama-2-7B), 3 unlearning percentages (1%, 5%, and 10%), and 4 unlearning methods (GA, GD,
PO, and NPO). We consider 5 different metrics under 4 red teaming behaviors. We apply the log-
scale for PPL to avoid numeric errors. For each of these scenarios, we compute the PPC with respect
to targeted and non-targeted data respectively, displayed at the top of each figure (targeted data / non-
targeted data). We provide linear fits for targeted and non-targeted data separately, accompanied by
shaded areas representing the standard deviation to further visualize the PPC scores.
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Algorithm 1 Binary Search for MM Calibration
Input: parameters θref before unlearning and θ after unlearning; datasetsDu andDt; num iter
of total searching steps; threshold τ .
lcur = 0 and ucur = 1
for iter = 1 to num iter do
αcan ← (ucur + lcur)/2;
θmix = (1− αcan)θref + αcanθ
if ES(Dt\Du;θmix) ≥ τES(Dt\Du;θref) then
lcur ← (ucur + lcur)/2;

else
ucur ← (ucur + lcur)/2;

end if
end for
Output: optimal α∗ = αcan.

E UWC REALIZATION

While we have demonstrated the effectiveness of the UWC in evaluating and comparing unlearned
models or unlearning methods, the computational expenses associated with its straightforward im-
plementation, including the ES computation and the MM calibration, can be exorbitantly high.

Specifically, for the precise computation of the ES, it is necessary to iterate through each integer
value k ∈ [1, |y|] to determine if the condition f([x, y<k

u ];θ) = y>k
u is satisfied, then identifying the

smallest value of k among candidates. For the MM calibration, it is essential to sample a sufficient
number of candidates α from the continuous range between 0 and 1. This involves testing whether
the corresponding mixed model, with parameters (1 − α)θref + αθ, maintains acceptable perfor-
mance on non-targeted data, i.e., ES(Dt\Du; (1−α)θref +αθ) > τES(Dt\Du;θref). To accurately
estimate the optimal α with minimal damage on common integrity, it is crucial that coverage of α
should be sufficiently fine-grained, thereby largely increasing the overall costs of calibration.

Fortunately, we observe approximately monotonic relationships for both k and α with respect to
their associated conditions. These scenarios indicate that the binary search can be effectively used
to streamline the selection process for their appropriate values. Taking MM-based calibration as an
example, Algorithm 1 outlines a general framework for the efficient parameter search of optimal α.

F MORE DISCUSSION ABOUT PRACTICAL TRICKS

In Section 6, we explore a series of practical tricks, such as adjusting common hyper-parameters for
optimization, including the learning rate, batch size, unlearning epochs. Additionally, we suggest
some more intriguing methods such as temperature scaling, loss selection, and likelihood capping.
We begin by briefly summarzing these methods as follows.

• Learning Rate, Early Stopping, and Batch Size. The learning rate dictates the intensity of un-
learning, early stopping limits the number of updates, and the batch size connects to the stability
of gradient estimation. These tricks are common tools to refine parameter updating.

• Temperature Scaling. The temperature is typically applied to logits prior to the softmax out-
puts. Its utilization during training can prevent overfitting and enhance robustness against noise.

• Loss Selection. We select a portion of tokens that exhibit the largest loss values and apply
gradient updates only for them. It is designed to prevent excessive unlearning for tokens that
already demonstrate very small loss values, especially intriguing when using GA.

• Likelihood Capping. Similar to loss selection, likelihood capping can also prevent excessive
unlearning. However, it imposes a constant threshold on the conditional likelihood of tokens,
rather than a proportion, serving as an alternative approach to loss selection.

We further discuss the detailed implementations for the last three methods that are less common.
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Temperature Scaling. By manipulation logits of model outputs, the temperature scaling is particu-
lar useful in avoid overfitting. Denote the original output logits as z, then the softmax function with
the temperature scaling χ can be articulated as

exp{zi/χ}∑
j exp{zj/χ}

. (12)

Overall, higher temperatures will result in a softer probability distribution over candidate tokens.
During training, a higher temperature can prevent the model from becoming too confident on the
training data, which can help avoid excessive unlearning and improve generalization.

Loss Selection. We particular focus on the loss selection for GA-based methods, i.e., those methods
that use GA as the unlearning risk. During unlearning, we assume a proportion of tokens with
already small loss values should not be involved during model updating, otherwise, severe excessive
unlearning may occurs. Written the formulation of GA in a token-wise manner, we have

E(x,yu)∼Du

1

|y|
∑
k

log−p
(
yk|[x, y<k];θ

)
. (13)

Then, we select q × 100% proportion of tokens with largest loss values, satisfying the condition

K ← arg max
|K′|≥q|y|

1

|K ′|
∑
k∈K′

log−p
(
yk|[x, y<k];θ

)
, (14)

with K ′ defining as a set of the selected tokens within y. Then, the GA with loss selection can be
simply written as

E(x,yu)∼Du

1

|K|
∑
k∈K

log−p
(
yk|[x, y<k];θ

)
. (15)

Loss selection is particular attractive for those unbounded loss functions just like GA. In avoiding
to update loss for the part of tokens that have been sufficiently unlearned, the resulting unlearning
procedure has the potent to avoid excessive unlearning.

Likelihood Capping. The mechanism of likelihood capping closely resembles that of loss selection.
However, likelihood capping employs a fixed threshold to select loss values, as opposed to loss
selection, which chooses a proportion of data. A crucial distinction in this design is that likelihood
capping might reject all data points during unlearning, whereas loss selection ensures that some data
is always used for learning. Also taking GA as an illustration, we have

E(x,yu)∼Du

1

|y|
∑
k

log−max
{
p
(
yk|[x, y<k];θ

)
, κ

}
, (16)

where the token-wise likelihood smaller than κ should be capped. Similar procedure works for NPO,
where we can directly detach those tokens whose likelihoods are smaller than κ.

G EXCESSIVE UNLEARNING AND INCOMPLETE UNLEARNING

step 20 step 40 step 600.0
0.2
0.4
0.6
0.8
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Figure 6: The dynamics of the implicit NPO
weighting mechanism for Llama-2-7B.

We claim that NPO suffers from incomplete un-
learning, while GA exhibits tendencies of exces-
sive unlearning. For NPO, its unlearning behav-
iors can be analyzed through its gradient behav-
iors as outlined in (Zhang et al., 2024). Specifi-
cally, when taking gradient with respect to θ, we
have the gradients of the NPO as (the KL risk for
retention is not involved for simplicity)

E(x,y)u∼Du
wx,yu∇θ log p(yu;x,θ), (17)

with wx,yu = 2p(yu|x;θ)β
p(yu|x;θ)β+p(yu|x;θo)β

can be
viewed as a weighting mechanism. The ef-
fects of this mechanism for 5% unlearning with
Llama-2-7B is illustrated in Figure 6, which shows the average wx,yu

computed during NPO un-
learning. Notably, these values quickly decline to 0 shortly after the end of the first epoch. The loss
values and the ES scores do not significantly change thereafter, which signifies that wx,yu

plays the
role of early stopping, thereby leading to incomplete unlearning.
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Table 3: Comparison between different unlearning methods on TOFU fictitious unlearning without
UWC calibration. ↓ / ↑ indicate smaller / larger values are preferable. We primarily focus on the
ES scores for unlearning (shaded), given that the ES scores for retention are calibrated.

LLM Phi-1.5 Llama-2-7B

setup method ES-exact ES-perturb ES-exact ES-perturb
retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

GA 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000
KL 0.0459 0.0092 0.0458 0.0092 0.1676 0.0000 0.1564 0.0000

NPO 0.2066 0.0648 0.1059 0.0558 0.4981 0.1201 0.3960 0.0963
RMU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

GA 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KL 0.0873 0.0000 0.0892 0.0000 0.1985 0.0000 0.1459 0.0000

NPO 0.1361 0.0877 0.0992 0.0725 0.4991 0.0891 0.3055 0.0780
RMU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

GA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
KL 0.1105 0.0000 0.0791 0.0000 0.2690 0.0308 0.2566 0.0221

NPO 0.3087 0.1201 0.1687 0.0671 0.6939 0.1623 0.4490 0.1227
RMU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

step 20 step 40 step 60
0

4
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12

(a) GA Risk
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Figure 7: The trajectories of risk values and ES
scores for unlearning.

Moreover, we examine the risk values and
the ES scores for GA, as shown in Figure 7
for 5% unlearning with Llama-2-7B. Con-
trary to the NPO case, we observe that the
ES scores quickly drop to 0 for unlearning,
while the associated unlearning risks con-
tinue to decrease, indicating that the exces-
sive unlearning may be occurring. The pri-
mary consequence of such excessive un-
learning is a degradation in model perfor-
mance on non-targeted data, evidenced by
poor ES scores on non-targeted data with-
out calibration and poor ES scores on tar-
geted data with calibration.

H MORE RESULTS

We list detailed results involved during hyper-parameter tuning. For baseline methods, it in-
volves the trade-off parameter λ for GD, KL, and NPO; the inverse temperature β for NPO;
the scaling parameter c and the embedding layers for RMU. λ is chosen from the candidate
set of {1, 2, 4, 7, 10, 20, 50, 100}; β is chosen from {1, 2, 4, 7, 10, 20, 50, 100}, c is chosen from
{0, 1, 2, 4, 5, 7, 10}. The embedding layers of RMU is chosen from shallow, middle, and deep lay-
ers, respectively defined as 8-th, 16-th, and 24-th layers for Phi-1.5 and 11-th, 22-th, and 33-th
layers for Llama-2-7B. Moreover, for NPO, we simplify its tuning procedure into two steps: a)
fixing λ = 1 (original suggested) and tuning β and b) fixing the tuned β and tuning λ.

For the bunch of tricks, the learning rate is chosen from {1e−3, 1e−4, 1e−5, 1e−6, 1e−7}; the
batch size is chosen from {2, 4, 8, 14, 20}; the training epochs for early stopping is chosen from
{1, 2, 3, 4, 5}; the temperature scaling χ is chosen from {0.9, 2, 3, 4, 5}; the likelihood capping κ is
chosen from {0.01, 0.1, 0.2, 0.3, 0.5}; the loss selection q is chosen from {0.1, 0.3, 0.7}.
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Table 4: UWC Tuning for GD. ↓ / ↑ indicate smaller / larger values are preferable.
GD Phi-1.5 Llama-2-7B

setup λ
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓
before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

1 0.4212 0.3449 0.2050 0.1010 0.8028 0.0873 0.4773 0.0000
2 0.4212 0.3449 0.2072 0.1413 0.7471 0.0293 0.4471 0.1860
4 0.4212 0.5219 0.2017 0.0506 0.7656 0.0241 0.5302 0.3242
7 0.4404 0.5219 0.1644 0.0737 0.7177 0.1036 0.4791 0.0000

10 0.4361 0.5219 0.2147 0.1120 0.7489 0.1775 0.4806 0.0719
20 0.4312 0.5101 0.2009 0.1330 0.7420 0.3454 0.4829 0.2414
50 0.4297 0.5969 0.2039 0.2039 0.7420 0.5682 0.4650 0.3501
100 0.4263 0.5969 0.1994 0.2039 0.7928 0.7334 0.4905 0.3889

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

1 0.4404 0.4310 0.1862 0.0563 0.7794 0.4362 0.4754 0.4126
2 0.3919 0.4140 0.2004 0.0045 0.7432 0.3385 0.4775 0.3166
4 0.3934 0.4574 0.2051 0.0000 0.7486 0.0903 0.4789 0.2176
7 0.4454 0.4387 0.2137 0.0833 0.7822 0.2086 0.4498 0.3312

10 0.4182 0.3381 0.2063 0.1663 0.7447 0.4527 0.4875 0.4126
20 0.3826 0.4574 0.1899 0.2044 0.7366 0.5595 0.4696 0.2816
50 0.4242 0.4494 0.1930 0.2079 0.7500 0.7001 0.4715 0.3309
100 0.4411 0.4964 0.2036 0.2079 0.7467 0.7449 0.4970 0.3309

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

1 0.4184 0.4683 0.2002 0.0841 0.7630 0.2926 0.4806 0.2428
2 0.4454 0.4935 0.1761 0.0345 0.7771 0.0980 0.4780 0.1200
4 0.4454 0.4878 0.1870 0.1182 0.7301 0.3178 0.4583 0.2035
7 0.3913 0.4762 0.1940 0.1369 0.7731 0.3927 0.4782 0.2439

10 0.4393 0.4935 0.2095 0.1540 0.7633 0.2772 0.4881 0.1115
20 0.4433 0.5024 0.1958 0.1843 0.7394 0.2914 0.4790 0.1726
50 0.3728 0.4967 0.2033 0.1600 0.7408 0.7278 0.4919 0.3051
100 0.4242 0.5177 0.2051 0.1786 0.7422 0.7794 0.5210 0.3089

Table 5: UWC Tuning for KL. ↓ / ↑ indicate smaller / larger values are preferable.
KL Phi-1.5 Llama-2-7B

setup λ
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓
before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

1 0.4358 0.3606 0.1865 0.0789 0.7655 0.1307 0.4976 0.0373
2 0.4251 0.3206 0.2005 0.0737 0.7655 0.1307 0.4867 0.0000
4 0.4010 0.2679 0.1989 0.1283 0.7920 0.0382 0.4782 0.0000
7 0.4232 0.2242 0.2136 0.0862 0.8277 0.0960 0.4754 0.2597

10 0.4232 0.2123 0.2005 0.0840 0.7337 0.0515 0.4428 0.0913
20 0.4232 0.1899 0.2051 0.0702 0.7826 0.0115 0.4729 0.0000
50 0.4212 0.5219 0.1937 0.0724 0.7036 0.0633 0.4876 0.0281
100 0.4232 0.3189 0.2172 0.1274 0.7567 0.0722 0.4532 0.0618

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

1 0.4220 0.3466 0.1792 0.2349 0.7649 0.6896 0.4685 0.4031
2 0.4419 0.3535 0.1991 0.2276 0.7346 0.6986 0.4796 0.3799
4 0.4160 0.3340 0.2047 0.2162 0.7442 0.4097 0.4675 0.2461
7 0.4220 0.3636 0.2182 0.1698 0.7702 0.5423 0.4816 0.7894

10 0.3823 0.3766 0.1794 0.1614 0.7207 0.0953 0.4814 0.1516
20 0.4109 0.1704 0.2027 0.1470 0.7196 0.1222 0.5302 0.3884
50 0.4242 0.2129 0.2018 0.1691 0.7700 0.3494 0.5152 0.3243
100 0.3588 0.2052 0.2115 0.1872 0.7697 0.3973 0.5302 0.3884

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

1 0.4265 0.2989 0.2168 0.1459 0.7128 0.4250 0.4636 0.2343
2 0.3582 0.2921 0.1957 0.1624 0.7274 0.6159 0.4738 0.2317
4 0.4336 0.2373 0.2042 0.1168 0.7765 0.4791 0.4879 0.2317
7 0.4164 0.4799 0.2048 0.0535 0.7554 0.4250 0.4761 0.2199

10 0.4424 0.4912 0.2075 0.0922 0.7765 0.2791 0.4734 0.1236
20 0.4418 0.5008 0.2069 0.0075 0.7860 0.2975 0.4927 0.1874
50 0.3858 0.4722 0.2051 0.0691 0.7344 0.3132 0.4810 0.1870
100 0.4242 0.4337 0.1991 0.1610 0.7720 0.4126 0.4959 0.2550
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Table 6: UWC Tuning for NPO (λ = 1). ↓ / ↑ indicate smaller / larger values are preferable.
NPO Phi-1.5 Llama-2-7B

setup β
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓
before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

0.05 0.4283 0.1587 0.2136 0.0702 0.7655 0.1262 0.5084 0.2545
0.10 0.4553 0.1587 0.2121 0.0945 0.7547 0.1857 0.4995 0.2113
0.50 0.4030 0.0947 0.2136 0.1083 0.6967 0.2513 0.4777 0.1898
0.70 0.3909 0.1072 0.2136 0.1083 0.7517 0.2607 0.4733 0.1863
1.00 0.4261 0.1806 0.2136 0.1083 0.7517 0.2607 0.4777 0.1863
2.00 0.3954 0.1166 0.2136 0.1655 0.7234 0.2876 0.4588 0.2025
4.00 0.4223 0.1166 0.2136 0.1551 0.0000 0.0000 0.0000 0.0000
5.00 0.4218 0.1806 0.2136 0.1551 0.0000 0.0000 0.0000 0.0000
7.00 0.4218 0.1806 0.2001 0.1551 0.7874 0.2941 0.4588 0.2197
10.0 0.4218 0.1806 0.2136 0.1551 0.0000 0.0000 0.0000 0.0000

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

0.05 0.4265 0.3671 0.2052 0.2349 0.0000 0.0000 0.0000 0.0000
0.10 0.4161 0.3709 0.1942 0.2228 0.7652 0.5473 0.4976 0.4066
0.50 0.4433 0.4539 0.2098 0.2228 0.7780 0.4966 0.4773 0.4009
0.70 0.3970 0.3452 0.2058 0.2314 0.7459 0.5005 0.4903 0.4013
1.00 0.4086 0.4177 0.1982 0.2228 0.7836 0.5195 0.4918 0.3785
2.00 0.4086 0.3863 0.2043 0.2203 0.7572 0.5809 0.4976 0.3884
4.00 0.4433 0.4188 0.2043 0.2147 0.7836 0.5809 0.4781 0.3884
5.00 0.4433 0.4188 0.2150 0.2147 0.7836 0.5946 0.5175 0.3726
7.00 0.4127 0.4034 0.2109 0.1805 0.7836 0.5303 0.4887 0.3674
10.0 0.4433 0.4034 0.1848 0.2000 0.7836 0.5703 0.5012 0.3674

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

0.05 0.4370 0.4360 0.2231 0.1526 0.7765 0.6204 0.4825 0.3137
0.10 0.4222 0.4290 0.2048 0.1383 0.7765 0.5818 0.4809 0.3137
0.50 0.4270 0.4708 0.2088 0.1645 0.7836 0.6310 0.4825 0.3271
0.70 0.4413 0.4781 0.2088 0.1645 0.7836 0.6545 0.4825 0.3271
1.00 0.4073 0.4689 0.2074 0.1588 0.7836 0.6291 0.4825 0.3271
2.00 0.4433 0.4712 0.2362 0.2224 0.7836 0.6375 0.4874 0.3244
4.00 0.4433 0.4771 0.2225 0.1996 0.7836 0.6018 0.4795 0.3030
5.00 0.4433 0.4771 0.2260 0.2105 0.7836 0.5387 0.5101 0.2989
7.00 0.4433 0.4954 0.2260 0.1967 0.7479 0.5387 0.4809 0.2672
10.0 0.4404 0.5465 0.1905 0.1990 0.7479 0.5387 0.4838 0.2774
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Table 7: UWC Tuning for NPO (β = 0.5). ↓ / ↑ indicate smaller / larger values are preferable.
NPO Phi-1.5 Llama-2-7B

setup λ
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓
before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

1 0.4742 0.1166 0.2136 0.1551 0.7346 0.3134 0.4743 0.2066
2 0.4627 0.1259 0.2136 0.1551 0.7648 0.3134 0.4777 0.2101
4 0.4606 0.1259 0.2136 0.1551 0.7346 0.2941 0.4805 0.2066
7 0.4535 0.1259 0.1837 0.0980 0.7952 0.2941 0.4909 0.3273

10 0.4473 0.1259 0.1927 0.0702 0.6978 0.2543 0.4776 0.1672
20 0.4424 0.1259 0.2136 0.0702 0.7383 0.2543 0.4776 0.1703
50 0.4181 0.1259 0.1843 0.0983 0.6183 0.1383 0.5286 0.3017
100 0.3970 0.1259 0.1909 0.0702 0.7251 0.2568 0.5302 0.3685

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

1 0.4253 0.4462 0.1958 0.2228 0.7836 0.6062 0.4976 0.3635
2 0.4125 0.3965 0.1923 0.2228 0.7836 0.6062 0.4641 0.3664
4 0.4127 0.4354 0.2027 0.1985 0.7770 0.6177 0.4770 0.3835
7 0.4148 0.3922 0.1984 0.1900 0.7820 0.4756 0.4938 0.3233

10 0.4086 0.3991 0.2112 0.1381 0.7836 0.4756 0.4875 0.2784
20 0.4433 0.3768 0.1836 0.1509 0.7207 0.1104 0.4804 0.2777
50 0.3987 0.3396 0.2055 0.1120 0.7261 0.0443 0.4849 0.2092
100 0.4242 0.3051 0.2118 0.1559 0.7509 0.1020 0.4672 0.2317

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

1 0.4370 0.4478 0.2048 0.1502 0.7836 0.6139 0.4825 0.3244
2 0.4393 0.4459 0.1870 0.1331 0.7836 0.4961 0.4796 0.2860
4 0.4209 0.4505 0.2107 0.1188 0.7462 0.4479 0.4781 0.2066
7 0.4433 0.4459 0.2110 0.0762 0.7479 0.4392 0.5059 0.1979

10 0.4433 0.4397 0.1989 0.0764 0.7479 0.3208 0.4669 0.1738
20 0.4072 0.3499 0.2028 0.1281 0.7769 0.3700 0.5100 0.1243
50 0.4265 0.5221 0.2002 0.1018 0.7238 0.3439 0.4645 0.1867
100 0.4173 0.4974 0.1735 0.0823 0.7362 0.3857 0.5302 0.3169

Table 8: UWC Tuning for RMU (shallow). ↓ / ↑ indicate smaller / larger values are preferable.
RMU Phi-1.5 Llama-2-7B

setup c
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓
before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

0.00 0.4530 0.5969 0.2007 0.1855 0.7604 0.5993 0.4888 0.3816
1.00 0.4122 0.4356 0.2115 0.1855 0.7502 0.6278 0.4890 0.4253
2.00 0.4312 0.4080 0.2072 0.1855 0.7653 0.6714 0.4531 0.4002
4.00 0.4245 0.4682 0.2115 0.1855 0.7356 0.7223 0.0000 0.0000
5.00 0.4398 0.5149 0.1981 0.1855 0.7163 0.6287 0.4871 0.4008
7.00 0.4460 0.5096 0.2201 0.1855 0.7292 0.7128 0.4516 0.4104
10.0 0.4215 0.4816 0.2018 0.1855 0.7292 0.6195 0.4453 0.4104

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

0.00 0.4164 0.4924 0.1918 0.2172 0.7516 0.7292 0.4676 0.3616
1.00 0.4284 0.5124 0.2194 0.2172 0.7762 0.7357 0.4677 0.4504
2.00 0.4044 0.4774 0.1939 0.2172 0.7146 0.6370 0.4453 0.4126
4.00 0.4404 0.4252 0.2047 0.2147 0.7619 0.6758 0.4812 0.4126
5.00 0.4404 0.4838 0.2181 0.2207 0.7139 0.6758 0.4812 0.4164
7.00 0.4204 0.3772 0.2073 0.2339 0.7604 0.6758 0.4793 0.4126
10.0 0.4194 0.4114 0.1903 0.2339 0.7146 0.6370 0.4453 0.4126

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

0.00 0.4425 0.5761 0.2055 0.1424 0.7887 0.8165 0.4246 0.2662
1.00 0.4424 0.5968 0.2133 0.1567 0.7568 0.6869 0.4771 0.2989
2.00 0.4304 0.5961 0.2028 0.1360 0.7628 0.6755 0.4690 0.2989
4.00 0.4364 0.5208 0.1944 0.1547 0.7229 0.5784 0.4812 0.2766
5.00 0.4284 0.5184 0.2007 0.1547 0.7262 0.6268 0.4797 0.2944
7.00 0.4404 0.5184 0.2007 0.1754 0.7271 0.5778 0.4232 0.3033
10.0 0.4404 0.4693 0.2136 0.1675 0.7032 0.5455 0.4849 0.3033
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Table 9: UWC Tuning for RMU (middle). ↓ / ↑ indicate smaller / larger values are preferable.
RMU Phi-1.5 Llama-2-7B

setup c
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓
before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

0.00 0.4203 0.5969 0.2153 0.2069 0.7606 0.5127 0.5115 0.4001
1.00 0.4203 0.5969 0.2180 0.1409 0.7416 0.5093 0.4878 0.4001
2.00 0.4203 0.5969 0.1831 0.1261 0.7512 0.4263 0.4644 0.3794
4.00 0.4203 0.5969 0.1831 0.1261 0.7559 0.5093 0.4096 0.3538
5.00 0.4203 0.5969 0.2073 0.1328 0.7413 0.4810 0.4927 0.4001
7.00 0.4218 0.5969 0.2119 0.1261 0.7413 0.4810 0.4927 0.4001
10.0 0.4203 0.5969 0.2119 0.1350 0.7655 0.4137 0.4927 0.3624

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

0.00 0.4262 0.5723 0.1952 0.2207 0.0000 0.0000 0.0000 0.0000
1.00 0.4232 0.4999 0.2032 0.2207 0.7381 0.4284 0.4798 0.3884
2.00 0.4232 0.5013 0.2229 0.2207 0.7179 0.5146 0.4379 0.3884
4.00 0.4218 0.5309 0.1887 0.2030 0.7112 0.4034 0.4927 0.3884
5.00 0.3578 0.3762 0.2119 0.2030 0.7438 0.6323 0.4927 0.3884
7.00 0.4218 0.5946 0.1990 0.1971 0.7438 0.6684 0.4927 0.4126
10.0 0.4262 0.4000 0.1968 0.2005 0.7552 0.6615 0.4644 0.4126

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

0.00 0.4262 0.4584 0.1952 0.1786 0.0000 0.0000 0.0000 0.0000
1.00 0.4203 0.4909 0.2108 0.1816 0.7493 0.7636 0.4379 0.3139
2.00 0.4232 0.5025 0.2212 0.1786 0.7374 0.7275 0.4831 0.3158
4.00 0.4394 0.5025 0.2117 0.1901 0.7874 0.7526 0.4871 0.3196
5.00 0.4224 0.4511 0.2117 0.1799 0.7874 0.6907 0.4653 0.3220
7.00 0.4005 0.4568 0.1496 0.1741 0.7434 0.5821 0.4776 0.2908
10.0 0.0000 0.0000 0.0000 0.0000 0.7534 0.6495 0.4927 0.3316

Table 10: UWC Tuning for RMU (deep). ↓ / ↑ indicate smaller / larger values are preferable.
UWC Phi-1.5 Llama-2-7B

setup c
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓
before unlearning 0.4433 0.5969 0.2115 0.1605 0.8277 0.8039 0.5302 0.4001

1%

0.00 0.3936 0.5219 0.2136 0.1574 0.7836 0.6364 0.4927 0.4089
1.00 0.4156 0.5219 0.2117 0.1574 0.7461 0.4564 0.4442 0.3402
2.00 0.4212 0.5219 0.2080 0.1655 0.6977 0.2814 0.4847 0.2790
4.00 0.4212 0.5153 0.1951 0.1655 0.6913 0.2992 0.4428 0.2748
5.00 0.4212 0.5121 0.2062 0.1655 0.7122 0.3974 0.4976 0.1982
7.00 0.4212 0.5108 0.1885 0.1686 0.7509 0.3271 0.4428 0.2305
10.0 0.4184 0.4963 0.2136 0.1717 0.7106 0.3815 0.4428 0.2062

before unlearning 0.4433 0.5619 0.2115 0.2374 0.8277 0.7735 0.5302 0.4126

5%

0.00 0.4212 0.4953 0.2007 0.2182 0.7731 0.7074 0.4675 0.3953
1.00 0.4049 0.5144 0.2115 0.2182 0.7731 0.6488 0.4801 0.3850
2.00 0.4110 0.5602 0.1967 0.2227 0.7410 0.6683 0.4801 0.3714
4.00 0.4151 0.5621 0.1930 0.2227 0.7731 0.6031 0.4598 0.3869
5.00 0.4212 0.5271 0.2099 0.2394 0.7464 0.7001 0.4613 0.3958
7.00 0.4212 0.5285 0.1951 0.2394 0.8113 0.6983 0.5015 0.4464
10.0 0.4064 0.4816 0.2025 0.2349 0.7319 0.7763 0.4600 0.4393

before unlearning 0.4433 0.5299 0.2115 0.1843 0.8277 0.8307 0.5302 0.3099

10%

0.00 0.4212 0.4935 0.2095 0.1933 0.7577 0.6868 0.4410 0.2884
1.00 0.4049 0.4935 0.2039 0.1963 0.7673 0.7560 0.4571 0.2906
2.00 0.4212 0.4935 0.1969 0.1933 0.7731 0.7402 0.4865 0.3239
4.00 0.4212 0.4935 0.2115 0.1933 0.7731 0.7414 0.4426 0.2674
5.00 0.4212 0.4959 0.1967 0.1933 0.7486 0.7688 0.4738 0.2192
7.00 0.4212 0.4799 0.2097 0.1933 0.7620 0.7402 0.4784 0.2547
10.0 0.3934 0.4799 0.1951 0.1786 0.7394 0.7402 0.4890 0.2547
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Table 11: UWC Tuning for the Learning Rate of KL. ↓ / ↑ indicate smaller / larger values are
preferable.

UWC Phi-1.5 Llama-2-7B

setup learning
rate scale

ES-exact ES-perturb ES-exact ES-perturb
retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

1%

1e−3 0.4149 0.5053 0.1902 0.0770 0.7815 0.2315 0.4442 0.3080
1e−4 0.4126 0.5219 0.1823 0.0228 0.7546 0.3095 0.4516 0.3289
1e−5 0.4232 0.2031 0.2005 0.1078 0.7241 0.0428 0.4791 0.0000
1e−6 0.4439 0.5108 0.2136 0.1551 0.8277 0.6798 0.4990 0.3458
1e−7 0.4404 0.5876 0.2136 0.1889 0.8229 0.8039 0.5302 0.4001

5%

1e−3 0.3904 0.3970 0.2202 0.2207 - - - -
1e−4 0.4105 0.4390 0.1968 0.1850 0.7351 0.5389 0.4789 0.2941
1e−5 0.4404 0.4345 0.2069 0.1652 0.7377 0.0953 0.4258 0.0880
1e−6 0.4212 0.3359 0.2030 0.2084 0.7238 0.4063 0.4364 0.3458
1e−7 0.4433 0.4999 0.2115 0.2374 0.8277 0.7735 0.4990 0.4126

10%

1e−3 0.4187 0.5360 0.2101 0.1843 0.7874 0.8453 0.4787 0.3305
1e−4 0.4124 0.5314 0.1876 0.1338 0.7764 0.9376 0.4918 0.8172
1e−5 0.3864 0.4585 0.2001 0.1215 0.7649 0.2791 0.4449 0.1057
1e−6 0.4245 0.4211 0.2136 0.1623 0.7641 0.5214 0.4936 0.2777
1e−7 0.4454 0.4872 0.2115 0.1843 0.8258 0.8307 0.5302 0.3139

Table 12: UWC Tuning for the Batch Size of KL. ↓ / ↑ indicate smaller / larger values are prefer-
able.

UWC Phi-1.5 Llama-2-7B

setup batch size ES-exact ES-perturb ES-exact ES-perturb
retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

1%

4 0.4115 0.2904 0.1979 0.0000 0.7042 0.1082 0.4490 0.0154
8 0.4232 0.1931 0.2005 0.1078 0.7241 0.0428 0.4791 0.0000

12 0.4232 0.3238 0.2117 0.1126 0.7297 0.1952 0.4863 0.1043
16 0.4232 0.2645 0.2136 0.1677 0.7249 0.1704 0.3928 0.0603
20 0.4244 0.3531 0.1927 0.1412 0.7606 0.3072 0.3977 0.2072

5%

4 0.4445 0.4022 0.2041 0.1272 0.7463 0.5809 0.4419 0.3627
8 0.4404 0.4345 0.2069 0.1652 0.7377 0.0953 0.4258 0.0880

12 0.3879 0.3352 0.2049 0.1432 0.6825 0.0590 0.4450 0.0604
16 0.4211 0.2169 0.1882 0.1879 0.7836 0.5181 0.4496 0.1138
20 0.4284 0.2514 0.1987 0.1879 0.7413 0.3749 0.4486 0.1443

10%

4 0.3924 0.4736 0.2209 0.0826 0.7765 0.6994 0.5008 0.2605
8 0.3864 0.4585 0.2001 0.1215 0.7649 0.2791 0.4449 0.1057

12 0.4302 0.3358 0.2334 0.1621 0.7228 0.2287 0.4285 0.1071
16 0.4424 0.4710 0.2225 0.1360 0.7557 0.3363 0.4769 0.1389
20 0.3924 0.4340 0.2003 0.1238 0.7720 0.3990 0.4305 0.0927
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Table 13: UWC Tuning for the Unlearning Epochs of KL. ↓ / ↑ indicate smaller / larger values
are preferable.

UWC Phi-1.5 Llama-2-7B

setup epochs ES-exact ES-perturb ES-exact ES-perturb
retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

1%

1 0.4439 0.3368 0.2136 0.1551 0.8277 0.6284 0.4990 0.3444
2 0.4223 0.2614 0.1942 0.1274 0.7370 0.2182 0.4560 0.2324
3 0.4232 0.2033 0.2136 0.0571 0.8277 0.1029 0.4419 0.0403
4 0.4232 0.2242 0.2005 0.1178 0.8277 0.1048 0.4435 0.0029

5%

1 0.4393 0.2954 0.2192 0.2172 0.7418 0.5809 0.4563 0.3799
2 0.4536 0.2224 0.2137 0.1386 0.7928 0.0231 0.4493 0.0144
3 0.4268 0.2829 0.2276 0.1652 0.7496 0.0053 0.4420 0.0053
4 0.4404 0.4395 0.2308 0.1652 0.7401 0.0053 0.4390 0.0620

10%

1 0.4433 0.3974 0.2024 0.1360 0.7803 0.2163 0.4482 0.1076
2 0.4424 0.4799 0.2004 0.1302 0.7939 0.3214 0.4828 0.1623
3 0.4404 0.4575 0.2141 0.0715 0.7231 0.2479 0.4297 0.1071
4 0.3944 0.4819 0.1813 0.1025 0.6989 0.2791 0.4487 0.1171

Table 14: UWC Tuning for the Likelihood Capping of KL. ↓ / ↑ indicate smaller / larger values
are preferable.

UWC Phi-1.5 Llama-2-7B

setup κ
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

1%

0.01 0.4232 0.2679 0.2136 0.1412 0.7337 0.0515 0.4428 0.0913
0.10 0.4235 0.2228 0.2136 0.1402 0.7241 0.0428 0.4791 0.0000
0.20 0.4149 0.1952 0.2005 0.0800 0.7337 0.0505 0.4785 0.0000
0.30 0.4232 0.2228 0.2136 0.1412 0.7320 0.0510 0.4428 0.0913

5%

0.01 0.4404 0.3728 0.1929 0.1552 0.7207 0.0033 0.4428 0.0913
0.10 0.4244 0.4220 0.2257 0.1614 0.7385 0.0129 0.4791 0.0000
0.20 0.4404 0.4890 0.1937 0.1432 0.7344 0.1210 0.4520 0.1000
0.30 0.3924 0.4345 0.2242 0.1652 0.7337 0.2090 0.4428 0.1771

10%

0.01 0.4424 0.4935 0.1987 0.1169 0.7649 0.2491 0.4637 0.1236
0.10 0.4124 0.2752 0.2092 0.0731 0.7582 0.2120 0.4343 0.1236
0.20 0.4404 0.4890 0.2092 0.0822 0.7447 0.2791 0.4449 0.1057
0.30 0.4184 0.4866 0.1991 0.0869 0.7649 0.3425 0.4449 0.1057

Table 15: UWC Tuning for the Loss Selection of KL. ↓ / ↑ indicate smaller / larger values are
preferable.

UWC Phi-1.5 Llama-2-7B

setup χ
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

1%
0.5 - - - - - - - -
2.0 0.4424 0.5969 0.1975 0.1757 0.7749 0.6735 0.4766 0.3644
4.0 0.4212 0.5969 0.1974 0.1805 0.7749 0.6507 0.4890 0.3806

5%
0.5 - - - - - - - -
2.0 0.4244 0.4420 0.2051 0.2297 0.7389 0.6931 0.4511 0.4145
4.0 0.4182 0.3906 0.2051 0.2410 0.7636 0.7074 0.4497 0.4145

10%
0.5 - - - - - - - -
2.0 0.4212 0.4799 0.1975 0.1744 0.7645 0.7924 0.4040 0.3389
4.0 0.4194 0.4852 0.1975 0.1992 0.7279 0.7082 0.4845 0.3392
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Table 16: UWC Tuning for the Temperature Scaling of KL. ↓ / ↑ indicate smaller / larger values
are preferable.

UWC Phi-1.5 Llama-2-7B

setup χ
ES-exact ES-perturb ES-exact ES-perturb

retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓ retain ↑ unlearn ↓

1%
0.1 0.4176 0.5938 0.2186 0.1605 0.7904 0.7869 0.4989 0.3907
0.3 0.4276 0.5938 0.2202 0.1655 0.7701 0.7756 0.4532 0.4407
0.7 0.4412 0.1117 0.1930 0.0404 0.7753 0.2891 0.5192 0.3853

5%
0.1 0.4176 0.5938 0.1787 0.2349 0.7443 0.6907 0.4789 0.3700
0.3 0.4276 0.5985 0.1985 0.2349 0.7422 0.5644 0.4846 0.3262
0.7 0.4412 0.2028 0.1816 0.0620 0.7543 0.7735 0.4927 0.4470

10%
0.1 0.4243 0.5290 0.2102 0.1843 0.7532 0.7409 0.4399 0.2830
0.3 0.4207 0.4991 0.2054 0.1367 0.7333 0.6683 0.4375 0.3239
0.7 0.3976 0.5083 0.1924 0.0447 0.7671 0.6630 0.4603 0.3239
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