
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROTPRUNER: LARGE LANGUAGE MODEL PRUNING IN
ROTATED SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Network pruning is a crucial technique for compressing large language models
with billions of parameters, aiming to reduce memory and computational costs
with minimal performance degradation. However, existing pruning methods for
LLMs often focus on heuristic metrics or layer-wise reconstruction losses, ne-
glecting the impact on the overall model output, which can lead to suboptimal
result. Additionally, these methods operate directly on the original weight and
activation spaces, which may not be ideal for pruning. In this paper, we propose
that the original parameter space is not optimal for pruning and present a novel
training-based pruning framework called RotPruner. RotPruner rotates the spaces
of weight matrices and activations in linear layers, and applies existing pruning
methods in a rotated space that is more suitable for pruning. We introduce an effi-
cient algorithm to identify an appropriate rotation that preserves the performance
of pruned LLMs. RotPruner is capable of integrating with other pruning methods
and supporting unstructured, semi-structured, and structured pruning. We evalu-
ate RotPruner on several large language models, including OPT, LLaMA-2, and
LLaMA-3, and demonstrate state-of-the-art performance on both language mod-
eling and zero-shot tasks.

1 INTRODUCTION

Recently, Large Language models (LLMs) have became a milestone in natural language processing,
achieving great results in various tasks (Zhao et al., 2023). However, the success of these models
results from an increase in scale and computational complexity, making the storage and time con-
suming of LLMs challenging. Model compression, as a post-training technique, has arouse great
interest since it can reduce the memory and computational requirements of these models.

Model compression techniques usually include three types: distillation, pruning and quantization
(Zhu et al., 2023; Gholami et al., 2022; Hoefler et al., 2021). In this work, we focus on pruning,
which sets the several elements in the weight matrices of model to zero. Traditional pruning tech-
niques often requires a post-pruning re-training to recover the performance after pruning (Ma et al.,
2023; Huang et al., 2020; Han et al., 2015). However, this is challenging in LLMs due to its model
size. To address this limitation, post-training method without re-retaining, such as Wanda (Sun et al.,
2023) and SparseGPT (Frantar & Alistarh, 2023) are proposed.

Current pruning methods face two major challenges. First, traditional pruning methods focus on
heuristic metric or individual layer’s reconstruction loss and ignore inter-layer interaction, leading
a high accumulative error. In contrast, block-wise, or model-wise pruning, considering a block’s or
the whole model’s reconstruction loss, can reduce the error accumulation. The larger the pruning
group, the more difficult the optimization. Second, current pruning methods run the algorithm in
the original weight space, which is not the optimal space to prune. Changing the pruning space will
give a better result of the same pruning method.

To address the above challenges, we introduce RotPruner, a novel training-based pruning framework
of LLMs. Figure 1 provides the overview of our method, which applies rotation matrix to activations
and weights, and runs pruning method on the rotated activations and weights. This approach does
not update the weights and thus can preserve the knowledge of the pretrained model. On the rotated
weights and activation, our method can leverage any other one-shot pruning methods and can realize
both structured and unstructured pruning. Our further exploration finds that if we run the pruning
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Figure 1: Overview of RotPruner. RotPruner first applies rotation to activation X and weight W ,
and conduct pruning method on the rotated space. The rotation matrix is learned via cayley SGD.

method on random rotated space, the performance is catastrophic. Therefore, we propose to learn the
rotation matrices utilizing cayley SGD (Li et al., 2020), which is an efficient optimizer for training
orthonormal matrices, to optimize the rotation matrices to minimize the loss of the pruned network.
The weights of the model are fixed and thus this do not change the result of dense model.

We empirically evaluate our method on widely adopted open-source LLM: OPT (Zhang et al., 2022),
LLaMA-2 (Touvron et al., 2023) and LLaMA-3 (Dubey et al., 2024) families in the setting of un-
structured, 2:4 semi-structured and structured pruning. Our approach exceeds the performance of
state-of-the-art methods such as SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023)
and SliceGPT (Ashkboos et al., 2024a) across various language benchmarks. We show that the space
of the original weight matrices is not the optimal one to be pruned on and introduce an approach to
find a better pruning space.

2 RELATED WORK

2.1 NETWORK PRUNING

Network pruning is a widely used technique to reduce the model size and speed up the computation
of neural network by generating sparse weight matrices. Pruning can be categorized into unstruc-
tured, semi-structured, and structured pruning based on different sparsity patterns. Unstructured
pruning eliminates the entries in the weight matrix without any structured pattern. While it can de-
crease the entries of network, it can not get any inference speedup. Semi-structured pruning with
N:M sparsity (Zhou et al., 2021) requires N non-zero entries in every continuous M weights. It can
leverage NVIDIA’s Sparse Tensor Cores to accelerate matrix computation. Structured pruning elim-
inates the entries in entire rows or columns in the weight matrix and can reduce the dimension of
hidden state. It can reach significant computational and memory reducing with greater performance
loss.

2.2 ONE SHOT PRUNING AND TRAINING-BASED PRUNING

Traditional pruning requires re-training after pruning to recover the performance, which is challeng-
ing to Large Language Models due to its scale. One-shot pruning can prune LLMs in a single step
without need for re-training, reducing the time and computational cost. For example, SparseGPT
formalizes the problem of pruning LLMs by solving a local layer-wise reconstruction problem and
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prunes the weight matrices based on the weight and inverse Hessian of the loss. Wanda prunes
the weight matrices based on the product of weight magnitudes and norm of activation. SliceGPT
(Ashkboos et al., 2024a) utilizes singular value decomposition to prune small singular vectors of
activation and thus decrease the dimension of hidden state.

Training-based pruning includes mask update and weight update. ADMM-pruner (Boža) and
FISTAPruner (Zhao et al., 2024) convert the reconstruction error of a pruned model to a convex
problem and use classic convex optimization algorithm to solve the problem. They both update the
weight of the dense model, which may lose knowledge of the dense model. These methods use a
small size of calibration data, which is similar to one shot pruning. On the other hand, AST (Huang
et al., 2024) proposes a pruning framework to retrain pruned models efficiently, while using more
data than other methods. Our work is different from these methods. We do not change the weights
of LLM to preserve the knowledge of the dense model and we use the same scale of data as one shot
pruning.

2.3 OUTLIERS IN LLM

Recent studies have found that LLM has a significant phenomenon of outliers (Puccetti et al., 2022;
Kovaleva et al., 2021; Timkey & Van Schijndel, 2021), whose magnitude is much more larger than
others’. The outliers occur in both weight and activation. Several works on LLM quantization
(Ashkboos et al., 2024b; Liu et al., 2024) have developed to efficiently quantize LLMs with little
performance loss. In the field of LLM pruning, OWL (Yin et al., 2023) addresses the emergent
outliers in LLMs and provides a new technique that leverages the distribution of outliers to guide
layer-wise sparsity assignment of LLM pruning. Our work further explore the application of outlier
distribution of LLMs. We develop a method to produce more outliers and larger variance in the
weight and activation of LLM and therefore improve the performance.

3 METHOD

In this section, we will introduce our method. First, we present our method motivated by outliers
in LLMs. Next, we describe our method to combine orthonormal matrix with network pruning.
Finally, we describe how to train the orthonormal matrix.

3.1 MOTIVATION

In network quantization, researchers have focused on the outliers of activation. Removal of outliers
improves the performance of quantized networks (Ashkboos et al., 2024b; Liu et al., 2024). In
the case of pruning, where weights are eliminated, we focus on weight outliers. It is intuitive that
preserving the outliers means small weights in matrix are eliminated, leading to small changes to the
weights matrix, and therefore can keep the performance of the network. Based on this motivation,
pruning methods can obtain better results by defining better pruning metric to distinguish outliers in
LLMs. However, for a specific weight matrix, there must be a best sparsity mask that can achieve
the best result of pruning. We want to show that changing the distribution of weight matrix can get
a better result.

Consider a linear layer W and input X . The result of the linear layer is XW . In previous pruning
methods, sparsity mask M is obtained based on W and X , and the result of pruned linear layer is
X(M ⊙W ). If we introduce a matrix A with full rank and apply it to X and W , X ′ = XA−1,
W ′ = AW , the result of the dense layer is not changed. However, we can get a different pruning
result X ′(M ′ ⊙W ′). Consider a simple example:

X = [2 1] ,W =


1√
2

1√
2

− 1√
2

1√
2
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(a) original weight (b) learned rotation (c) random rotation

Figure 2: Distribution of weights in original space, learned rotated space and random rotated space.

Given the sparsity ratio 50%, it’s obvious that pruning on W will always have a wrong result.
However, if we apply a transformation,

A =


1√
2

1√
2

1√
2

− 1√
2

 = A−T , X ′ = XA−1 =

[
3√
2

1√
2

]
, W ′ = AW =

[
0 1
1 0

]

pruning on W ′ does not change the matrix, and thus does not change the result of matrix multipli-
cation.

This simple motivated example implies that pruning on a weight matrix that have more zeros is
better. If we can find an A with full rank that minimize ∥AW ∥0, we can get the best result of
pruning. However this problem is hard to solved. Moreover, the optimal L0 norm may not satisfy
the required sparsity ratio. This problem can be approximately converted to minimize ∥AW ∥1
(Candès et al., 2006), which can produce small elements in the weights. But eliminating small
elements of W ′ can harm the performance of the pruned model. The reason is that the distribution
of activation is also important to the result of pruned model. In LLMs, the activations are not
uniformly distributed, but also have emergent outliers (Ashkboos et al., 2024b).

Figure 2 shows the distribution of the weight matrices in a OPT-125M. We find that the distribution
shows the occurrence of outliers. Random rotation will reduce the outliers and harm the performance
of pruning (see Table 1). But with specially learned transform, the distribution shows more outliers
and produce larger variance.

Model OPT-125M OPT-1.3B OPT-2.7B OPT-6.7B

original space 37.41 19.01 14.60 12.38
random rotated space 12783 17786 48.40 24.61

Table 1: WikiText2 perplexity (↓) of runing Wanda in original space and rotated space.

3.2 ROTATION

Based on the analysis above, we introduce our method to combine orthonormal matrix with network
pruning.

We first restrict the transform matrix A to orthonormal matrix (denote as Q below). This can intro-
duce two advantages. Firstly, it’s easy to calculate the reversal of Q (Q−1 = QT ). Secondly, purely
applying Q introduces additional parameters. Based on the computational invariant in Transformer
(Vaswani, 2017) from SliceGPT (Ashkboos et al., 2024a), the orthonormal matrix can be fused into
linear layers with a RMSNorm connected. The first step of our method is to convert LayerNorm
(Ba, 2016) to RMSNorm (Zhang & Sennrich, 2019) (if the norm is LayerNorm) and fuse the scaling
coefficient to weight matrices.
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Figure 3: LLaMA block in rotated space. Input matrices Win are pre-multiplied by QT and out
matrices Wout are post-multiplied by Q. Layers filled with dotted line are pruned.

In each block of LLM decoder, we introduce the orthonormal matrix Qs on the linear layers, as
illustrated in Figure 3. Take LLaMA family as an example. There are 7 linear layers in every
decoder layer. In each block (self attention or MLP), the weight matrices can be divided into two
groups: input matrix Win and output matrix Wout. Linear layers in the group share the same Q
and layers with RMSNorm connected have orthonormal Qs. The input matrices are pre-multiplied
by QT and the out matrices are post-multiplied by Q. Specifically, the embedding layer is post-
multiplied by Q and the head projection is pre-multiplied by QT . The total number of Qs is two
times the number of layers plus one. Once we apply the orthonormal transform to the weight matrix,
the pruning method is conducted on them.

Compared with original network, we add an extra matrix multiplication on the residuals, which can
increase the size and computation. If the rotation matrices share the same parameters, for example
in Figure 3, Q1 = Q2, the residual is multiplied by an identity matrix, which is the same as the
original network. The more rotation matrices share parameters, the size and computation of the
pruned network is smaller but the performance is worst. Formally, if there are l layers in the decoder
layer and every k Qs share parameters, there will be n = ⌊2l/k⌋ + 1 individual Qs in total. The
number of extra parameter is (n − 1) · d2 and extra computation is 2(n − 1) · bsd2, where b, s, d
represent the batch size, sequence length and dimension of hidden state. The ablation experiment on
shared rotation shows that although this will get a worst result, but can still outperform other method
and also save memory and computational cost.

3.3 OPTIMIZING ROTATION MATRIX

To train the orthonormal matrix, we define the optimization objective as the performance of the
pruned network. The optimization objective comprise the auto-regression training loss of the
pruned network. We also add a distillation loss that measures the difference between dense model
and sparse model. We consider three types of distillation loss: L2-distance, cosine distance and
Jensen–Shannon divergence. The loss is finally defined as:

argminL(Qi;Wi,Mi,X) = LAR + αLdistill

Ldistill(Y, Ŷ ) =


LL2(Y, Ŷ ) = ∥Y − Ŷ ∥2

Lcos(Y, Ŷ ) = 1− Y · Ŷ
∥Y ∥2∥Ŷ ∥2

LJS(Y, Ŷ ) = DKL(θY , θŶ ) +DKL(θŶ , θY )

The pretrained weight W is fixed and we only train the Qs. To optimize the orthonormal matrix,
we use Cayley SGD method (Li et al., 2020), which can optimize on the Stiefel manifold efficiently.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 RotPruner
Inputs: original model weights {Wi} and input X , sparsity ratio s, one-shot pruning method M
or fixed masks {Mi}, epochs
initialize {Qi}
for epoch in epochs do

apply {Qi} on {Wi}
if given one-shot pruning method M then
Mi = M(W ′

i )
end if
optimize {Qi} to minimize L(Qi;Wi,Mi,X) using cayley SGD

end for

Specifically, in each iteration, the rotation matrices are updated by

Qk+1 = (I − α

2
Y )−1(I +

α

2
Y )Qk

Y is a skew-symmetric matrix and is chosen to Y = Ŷ − Ŷ T , where Ŷ = GQT −
1

2
QQTGQT ,G = ∇f(Q). Moreover, the update matrix can be computed via fixed-point iter-

ation to prevent matrix reversing. This optimizer keeps the Qs’ orthonormality with approximately
2 times of the standard SGD.

When training the model with sparsity matrix M , there exists a problem that the gradient cannot be
passed through the mask. Previous works use straight-through estimator (STE (Bengio et al., 2013))
to allow gradient to pass through mask by ignoring the mask in the backward pass. The backward
of STE can be written as

Wt+1 = Wt − γt(g(W̃t))

Sparse-refined straight-through (SR-STE (Zhou et al., 2021)) estimator introduced a sparse-refined
regularization term to the gradient, which can prevent mask oscillation. The backward of SR-STE
can be written as

Wt+1 = Wt − γt(g(W̃t) + λW (M̄ ⊙Wt))

We adopt SR-STE to train the orthonormal matrix.

3.4 PROCEDURE

Algorithm 1 present the procedure of our method. Our method includes a basic pruning method
without weight update and training of orthonormal matrix. For unstructured and semi-structured
pruning, we choose two activation-free methods (magnitude based (Han et al., 2015) and Wanda)
as the basic pruning method, since they need at most one forward pass and are efficient in time and
memory. Activation-based methods need a backward pass and are time consuming. For structured
pruning, we fixed the mask to the bottom rows or right columns.

In every training epoch, we apply the orthonormal matrix to the weight matrices and get sparsity
masks on every layers based on the basic pruning method. Then we apply the masks and train the
orthonormal matrices using STE with sparse-refined regularization term. After several iterations,
update the masks based on new orthonormal matrix. For unstructured and semi-structured pruning,
the orthonormal matrices are initialized to identity matrix; for structured pruning, they are initialized
to the matrices that computed by SliceGPT via Principal Components Analysis.

4 EXPERIMENTS

Models and evaluation We evaluate our method on widely adopted LLMs: OPT-
125M/1.3B/2.7B/6.7B, LLaMA-2-7B, LLaMA-3-8B. We evaluate our method on perplexity and
zero-shot task. Perplexity is measured on test set of WikiText-2 (Merity et al., 2016). We use LM
Evaluation Harness (Gao et al., 2021) to evaluate zero-shot accuracy on seven benchmarks: Wino-
Grande (Sakaguchi et al., 2021), Piqa (Bisk et al., 2020), RTE (Wang, 2018), ARC Easy (Clark
et al., 2018), ARC Challenge (Clark et al., 2018), WNLI (Wang, 2018) and QNLI (Wang, 2018).
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WinoGrande, Piqa, ARC-easy and ARC-challenge benchmark the ability for knowledge question
answering and RTE, QNLI and WNLI benchmark the ability for natural language inference.

Setup We use WikiText2 as the calibration set. We sample 128 data with sequence length 2048.
We evaluate three types of pruning: unstructured, 2:4 semi-structured and structured. We train for
5 epochs for each model and set the initial learning rate to 1e-2. The coefficient of SR-STE is 2e-5.
We are able to prune an 8B model in an L40S GPU with 48GB memory in 1.5 hour.

Baseline For unstructured and 2:4 semi-structured pruning, we choose SparseGPT and Wanda as
baseline. For structured pruning, we compare against SliceGPT.

4.1 MAIN RESULTS

4.1.1 PERPLEXITY RESULTS

In Table 2, we show the WikiText2 perplexity result for different pruning of various models. We
achieved 50% unstructured, 2:4 semi-structured or 30% sturctured sparsity by pruning linear layers
in the LLMs, except for embeddings and head. These results show that RotPruner surpasses existing
methods on perplexity. We also find that the pruned OPT-6.7B can outperform the dense model.

We also run experiments OPT-1.3B with different sparsity ratio to further analyse the performance
of RotPruner. The results are shown in figure Figure 4. We find that our method can surpass the
dense model when sparsity ratio is smaller than 50%.

OPT LLaMA-2 LLaMA-3

Method Sparsity 125M 1.3B 2.7B 6.7B 7B 8B

Dense 0% 27.65 14.62 12.47 10.85 5.47 6.13

SparseGPT 50% unstructured 34.12 17.48 13.43 11.61 6.46 8.29
Wanda 50% unstructured 37.41 19.01 14.60 12.38 6.72 9.40
RotPruner 50% unstructured 30.45 14.95 13.05 10.41 6.42 8.50

SparseGPT 2:4 semi-structured 60.02 23.83 17.20 14.13 10.37 14.65
Wanda 2:4 semi-structured 80.32 28.25 21.25 15.90 11.34 21.21
RotPruner 2:4 semi-structured 43.09 17.34 16.31 13.01 9.20 11.65
SliceGPT 30% structured 42.32 20.26 16.30 12.80 8.62 17.08
RotPruner 30% structured 32.56 16.19 14.06 12.09 8.34 15.26

Table 2: WikiText2 perplexity (↓) performance comparison for different pruning methods on LLMs

4.1.2 ZERO-SHOT TASKS

In Table 3, we present the results of zero-shot tasks of different pruning method on OPT-6.7B,
LLaMA-2-7B and LLaMA-3-8B. RotPruner surpasses other methods on OPT-6.7B and LLaMA-3-
8B on the average accuracy of zero-shot tasks.

4.2 INFERENCE SPEED

We evaluate the inference speed of our pruned models on RTX4090. As discussed in subsection 3.2,
since we add extra parameters and matrix multiplications on the residuals, we do this experiment
to test how these parameters affect the inference speed. We only test on semi-structured pruning,
because unstructured pruning has no benefit to the inference speed and we hold the same setting of
structured pruning as SliceGPT.

We use Torch’s to sparse semi structured() to accelerate the 2:4 structured sparse models and
Torch’s Timer to benchmark the inference time. We test a LLaMA layer on eight situations: dense
layer and sparse layer with residual rotation on attention or MLP. The result in show in Table 4. Tick
means adding the residual rotation and cross means not. Specially, dense model without any resid-
ual rotations is the original dense model, sparse model without any residual rotations is the sparse
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Model & sparsity Method WinoGrand Piqa RTE ARC-e ARC-c WNLI QNLI Mean

OPT-6.7B 50%

Dense 65.51 76.27 50.50 65.66 30.46 46.48 50.87 55.81

SparseGPT 62.95 73.18 46.43 62.96 29.09 43.66 49.46 53.05
Wanda 61.40 72.47 44.49 62.26 27.56 43.66 49.46 51.97

RotPruner 62.72 74.01 45.42 64.20 28.84 45.07 49.46 53.37

LLaMA2-7B 50%

Dense 69.22 78.07 62.82 76.30 43.43 45.07 49.97 60.70

SparseGPT 69.22 76.22 53.07 72.94 39.51 42.25 49.46 57.52
Wanda 67.88 76.77 53.43 72.85 39.84 43.66 52.21 58.09

RotPruner 65.27 73.99 54.15 68.85 37.03 43.66 55.45 56.91

LLaMA3-8B 50%

Dense 72.61 79.65 69.68 80.09 50.51 49.30 49.95 64.54

SparseGPT 70.96 74.76 55.66 72.43 39.25 43.66 49.46 58.02
Wanda 69.92 74.37 58.84 71.97 39.85 42.25 50.19 58.20

RotPruner 67.40 75.35 63.53 71.76 38.99 40.85 50.41 58.33

Table 3: Zero-shot tasks accuracy (↑)

attention residual rotation MLP residual rotation Dense(ms) Sparse(ms)

% % 6.210 4.593 (1.352x)
! % 6.638 4.619 (1.344x)
% ! 6.637 4.747 (1.308x)
! ! 7.045 4.837 (1.284x)

Table 4: Inference speed of sparse models

model obtained by traditional pruning method. Number in the round brackets means the speedup
ratio compared with the dense model.

We find that the extra multiplications slow down the inference time but the gap is not significant
especially with only attention residual rotation (1.006 times the time of no residual rotation). This
is because other operations in attetion and MLP cost the majority of time and lower the affect of the
residual rotation. Therefore, the residual rotation has little affect to the inference speed especially
when we decrease the number of Qs and add the residual rotation to the attention. If we use half
a quarter of Qs, which means every four Qs share the same parameter, the inference time will be
(1.003 times the time of no residual rotation). It’s close to the sparse model using traditional pruning
methods. Using less orthogonormal matrices will get closer to the traditional pruning methods.
Actually, this operation not only has little affect to the performance of the sparse model, but also
accelerate the convergence speed. We will provide experiment in the ablation experments.

4.3 ABLATION EXPERIMENTS

We conduct ablation experiments to evaluate the performance of our method with different training
losses, calibration set size, number of Qs and basic pruning methods. The experiments are all
conducted on a small model OPT-1.3B for short training time.

AR L2 cosine distance JS-divergence result

! 15.00
! 20.01

! 18.46
! 18.80

! ! 14.85
! ! 14.33
! ! 15.03

Table 5: Ablation on training loss. Tick means using this loss.
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Figure 4: Different sparsity ratio Figure 5: Different calibration set size

w/o STE w STE w SR-STE(λW = 2e− 4)

18.25 14.89 14.86

Table 6: Ablation on Straight Through Estimator.

Loss We study how the training loss influence the results. We have introduced two parts of the
loss: auto-regression training loss and distillation loss, and distillation loss can be categorized to
L2 distance, cosine distance and JS-divergence. The results are shown in Table 5. From the result,
we observe the combination of auto-regression loss and cosine distance perform best in the settings.
Therefore, for other experiments, we use this loss by default.

Straight Through Estimator We do ablation experiments on STE(Straight through estimator).
We test the performance without STE, with STE and with SR-STE. The results is shown in Table 6.
The performance of SR-STE is best among these three condition.

Optimization Method Since we need to optimize on the steifold manifold (which means keeping
the matrix’s orthogonormality), we use efficient steifold manifold optimization method. We test
Cayley Adam. The result is shown in Table 7. Cayley Adam perform worse than Cayley SGD, and
it takes more time and memory. Therefore we use Cayley SGD as the optimization method.

Calibration set size We study the calibration set size. Results are shown in Figure 5. We find that
compared with other methods, RotPruner is more sensitive to calibration set size. Since using more
calibration data increases the memory and computational cost and 128 samples can perform well,
we use 128 samples for other experiments.

Number of Qs We study how the number of Qs affect the result. Theoretically, the more the Qs,
the better the performance but worse the memory and computation. The maximum number of Qs
is two times the decoder layers plus one. In OPT-1.3B, which has 24 decoder layer, the maximum
number of Qs is 49. The result is shown in Table 8. We find that using less Qs can get a worst
result, but can still outperform other methods. For LLMs with larger scale, we suggest to use less
number of Qs to save memory and computation cost.

Cayley SGD Cayley Adam

14.86 15.65

Table 7: Ablation on Optimization method.
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number of Qs 49 25 13 7 4

perplexity 14.95 15.05 15.21 15.43 15.58

Table 8: Ablation on number of Qs

method OPT-1.3B OPT-2.7B LLaMA-2-7B

magnitude 1712 265.14 19.94
magnitude+RotPruner 17.15 21.08 18.84
SparseGPT w/o WR 23.01 23.27 7.89

SparseGPT w/o WR+RotPruner 15.20 14.26 7.32
Wanda 19.01 14.60 6.72

Wanda+RotPruner 14.86 13.05 6.42

Table 9: Ablation on different basic pruning method. WR stands for weight reconstruction.

Basic pruning method For pruning method, we choose magnitude, Wanda and SparseGPT. Mag-
nitude and Wanda are fast, while SparseGPT takes a long time for pruning and it consists of pruning
and weight construction. To shorten the training time, we use SparseGPT without weight recon-
struction so that the sparse mask can be fixed. We do experiment on OPT-1.3B, OPT-2.7B and
LLaMA-2-7B on the setting of 50% unstructured pruning. The experimental results Table 9 show
that our method can improve the performance of one-shot pruning methods.

5 CONCLUSION

In this work, we introduce RotPruner, a novel training-based pruning framework for large language
models. Unlike traditional pruning methods that operate directly in the original weight and input
spaces, RotPruner employs a rotation that transforms the weight matrices and activations into an op-
timal space for pruning. By doing this, RotPruner enables more effective pruning while minimizing
the performance degradation typically associated with model compression. Our approach is com-
patible with existing pruning methods, allowing for unstructured, semi-structured, and structured
pruning.

We evaluate RotPruner on several large language models, including OPT, LLaMA-2, and LLaMA-3,
achieving state-of-the-art results in both language modeling and various zero-shot tasks. These eval-
uations demonstrate RotPruner’s ability to enhance pruning performance. The results also highlight
the significance of choosing an appropriate transformation space when applying pruning techniques.
We hope this work can enhance the understanding of pruning in LLMs and the idea of rotated weight
space can help improving the efficiency of neural networks.
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A APPENDIX

A.1 EXPERIMENT ON MORE LLMS

We also add other LLMs: Phi-3-3.8B (Abdin et al., 2024), Mistral-7B (Jiang et al., 2023) and
Qwen2-7B (Yang et al., 2024) for comparison. The results are shown in Table 10. Our method
perform better in most of the models and pruning settings.
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Method Sparsity Phi-3-3.8B Mistral-7B Qwen2-7B

Dense 0% 6.01 5.25 7.15

SparseGPT 50% unstructured 8.56 5.99 7.92
Wanda 50% unstructured 9.37 6.28 8.40
RotPruner 50% unstructured 8.45 5.93 8.12

SparseGPT 2:4 semi-structured 11.99 8.16 9.30
Wanda 2:4 semi-structured 20.00 10.70 12.19
RotPruner 2:4 semi-structured 12.53 7.31 9.25
SliceGPT 30% structured 10.65 8.94 10.73
RotPruner 30% structured 10.16 7.42 9.64

Table 10: WikiText2 perplexity (↓) performance comparison for different pruning methods on LLMs
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