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ABSTRACT

Offline goal-conditioned RL (OGCRL) learns to reach arbitrary goals from offline
dataset, but long-horizon performance hinges on crossing a handful of hard-to-cross
bottlenecks. These bottlenecks not only dictate the feasible paths toward the goal
but also act as critical keypoints, marking the transitions between adjacent regions
and providing the agent with essential directional guidance. Prior hierarchical
methods pick subgoals by time or short-horizon value heuristics, which do not
localize the bottleneck, as a result, the agent losing the clear guidance that bot-
tlenecks could provide about where to pass next. We instead model long-horizon
planning as “cross the next bottleneck”: we apply Laplacian spectral clustering to
offline dataset to expose bottlenecks and then identify trajectories from the offline
dataset that cross these boundaries, and the intersects are defined as keypoints
(KPs). Then the most representative KPs are automatically selected and a directed
KP reachability graph GKP is constructed based on the selected KPs. We then
restrict high-level choices to these bottleneck states and use a pluggable low-level
controller to execute the short transitions between them. We provide theory show-
ing that under a standard metastable decomposition of the state space, routing
through bottlenecks yields an (approximately) optimal one-step subgoal in terms
of hitting-time, and that Laplacian spectra recover bottlenecks with high overlap.
Thus, Laplacian spectral clustering can discover approximately optimal subgoals.
Empirically, the same pattern holds: across D4RL and OGBench, our method
achieves state-of-the-art results on a broad set of navigation and manipulation tasks
and across diverse dataset regimes, for example, 96.5% on AntMaze and 84.5%
on Franka-Kitchen.

1 INTRODUCTION

Figure 1: Laplacian spectral clustering in
pointmaze-large. Colors indicate regions,
boundaries align with hard-to-cross bottlenecks.

Long-horizon sparse rewards remain a core chal-
lenge for offline goal-conditioned reinforcement
learning (OGCRL): datasets are limited and bi-
ased, online interaction is unavailable, and credit
assignment couples with planning over long
time scales. In most OGCRL tasks, the state
space decomposes into well-connected regions
(e.g., rooms and corridors in navigation) linked
by a few hard-to-cross bottlenecks (e.g., door-
ways or narrow chokepoints in mazes). These
bottlenecks act as structural keypoints that any
successful trajectory must pass and thus provide
a clear high-level guidance signal: cross the next bottleneck to move from one region to the next. Fig. 1
illustrates our method’s identification of regions and bottlenecks: each colored patch corresponds to a
region, and the boundaries between patches align with bottlenecks.

Existing OGCRL approaches typically adopt hierarchical frameworks: a high level proposes a
subgoal and a low level executes to reach it (Chane-Sane et al., 2021; Zhang et al., 2020; Kim et al.,
2023; Ajay et al., 2020; Pertsch et al., 2021). In practice, most recent methods cast subgoal choice
as a time-driven decision. Midpoint priors between the current state and the goal are used only as
training supervision (midway-to-goal, Chane-Sane et al., 2021). Fixed or skip-step schedules commit
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to a new subgoal every k steps or at coarse temporal resolutions (e.g., HIQL and hierarchical diffusion
planners, Park et al., 2023; Janner et al., 2022; Ajay et al., 2023). In a similar spirit, fixed-horizon
skills execute a k-step primitive or a stitched sub-trajectory before the high level revisits the choice
(e.g., OPAL and diffusion-based sub-trajectory stitching, Ajay et al., 2020; Janner et al., 2022). A
further strand overlays a short-window value criterion on top of the time window, selecting the
highest-value candidate among states reachable in a few steps (e.g., ESD, Zhang et al., 2025). Despite
their differences, these rules remain time/value–driven and are not bottleneck-aligned, thereby failing
to exploit the valuable guidance signal the bottleneck can provide: where the agent must pass next. In
short, we argue that high-level subgoals in offline GCRL should not be chosen via value estimates
or time heuristics, but instead be derived from bottleneck states revealed by the Laplacian spectral
structure of the offline data.

To address these issues, we advance a simple principle for hierarchical OGCRL: the optimal one-step
subgoal is the next bottleneck. To identify bottlenecks from offline data, we first learn a Laplacian
representation ϕθ from replay so that states representation varies slowly within the same region
while varies sharply at boundaries. Spectral clustering in this embedding yields region labels, Fig. 1
shows the resulting partition on pointmaze-large, where boundaries between colors coincide
with hard-to-cross bottlenecks. We then identify trajectories from the offline dataset that cross
these boundaries, and the intersects are defined as keypoints. Then the most representative KPs are
automatically selected and a directed KP reachability graph GKP is constructed based on the selected
KPs. At deployment, we restrict high-level choices to these KPs and use a pluggable low-level
controller (e.g., Decision Diffuser or a lightweight MLP) to execute the short transitions between
successive KPs. We name our method BASS (Bottleneck-Aware Spectral Subgoaling).

Contributions. Our contributions form an integrated framework: (1) We introduce a bottleneck-
guided criterion that ties subgoal selection to the next bottleneck, underpinned by theoretical analysis.
(2) We develop a keypoint discovery method based on Laplacian spectral clustering to automatically
extract bottleneck keypoints from offline datasets. (3) We design a hierarchical algorithm for
OGCRL that plans by routing through these keypoints using a pluggable low-level controller. (4)
Extensive experiments on diverse navigation and manipulation benchmarks from D4RL and OGBench
demonstrate consistent bottleneck recovery and performance gains across varied data regimes.

2 PRELIMINARIES

OGCRL and metastable bottlenecks. We study offline goal-conditioned RL (OGCRL) where
a policy π(a | s, g) is learned from a fixed replay dataset. Long horizons with sparse rewards
make progress hinge on planning rather than short-term value. In practice, most OGCRL tasks are
metastable: the state space decomposes into regions that are easy to traverse, i.e., fast intra-region
mixing, and these regions are connected only through a few hard-to-cross bottlenecks that are rarely
crossed under the dataset-induced dynamics. Consequently, success to distant goals is governed
by whether the agent crosses the next bottleneck rather than by taking a few more steps within the
current region (see Fig. 1).

Laplacian RL: what it is and why we use it. Laplacian RL refers to representation-learning
approaches that build on the low-frequency structure of the random-walk Laplacian induced by
behavior dynamics (Wu et al., 2019; Wang et al., 2021a). The central idea is to encode long-horizon
connectivity: states that are well connected in the data should have nearby embeddings, while states
separated by bottlenecks should lie far apart.

The key property behind this is spectral: low-frequency eigencomponents of the Laplacian remain
nearly constant within each metastable region but change sharply across bottlenecks. As a result,
Euclidean distances in the learned embedding approximate diffusion-style reachability distances,
stretching across bottlenecks and compressing within regions.

Formally, treating the dataset as a random walk with kernel P over states, the random-walk Laplacian
is Lrw = I − P . Its low-frequency eigenvectors {ei} capture metastable structure. Mapping a state s
to its first d non-trivial components,

ϕ(s) = [e1[s], . . . , ed[s]]
⊤,

provides an embedding space aligned with the region–bottleneck topology.
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In tabular settings one can obtain {ei} by eigendecomposition. In continuous state spaces, however,
the Laplacian operator is infinite-dimensional, so we learn ϕ by minimizing a spectral graph-drawing
objective with orthogonality constraints, estimated from mini-batches of transitions:

min
{fk}d

k=1

d∑
k=1

⟨fk, Lfk⟩ s.t. ⟨fj , fk⟩ = δjk, ⟨fk,1⟩ = 0.

Earlier scalable formulations include the unconstrained graph-drawing objective (GDO) (Wu et al.,
2019) and the generalized graph-drawing objective (GGDO) that breaks rotational symmetry at the
cost of sensitive hyperparameters (Wang et al., 2021a). To avoid these issues, Proper Laplacian
Representation Learning introduces the Augmented Lagrangian Laplacian Objective (ALLO) (Gomez
et al., 2023), a min–max objective with stop-gradient asymmetry:

max
β

min
u∈Rd|S|

d∑
i=1

⟨ui, L ui⟩ +
d∑
j=1

j∑
k=1

βjk
〈
uj , uk

〉
− δjk + b

d∑
j=1

j∑
k=1

(〈
uj , uk

〉
− δjk

)2

,

where βjk are dual variables, b > 0 is a barrier coefficient, and · denotes the stop-gradient operator.
This objective uniquely recovers eigenvectors and their eigenvalues while removing untunable
hyperparameters, we follow this when enforcing orthogonality and stability (details in Appendix).

3 THEORY IN A NUTSHELL: FROM LAPLACIAN SPECTRAL CLUSTERING TO
OPTIMAL SUBGOALS

Roadmap and intuition. We study metastable environments where within-region movement is easy,
while progress to distant goals is throttled by a few hard-to-cross bottlenecks.Result I (bottleneck-
guided subgoal optimality): the next bottleneck is the optimal one-step subgoal. Result II (spectral
coverage): when crossing a bottleneck is much harder and rarer than moving inside a region, and the
learned Laplacian is accurate enough to reflect this, the low-frequency space provided by Laplacian
representation could closely expose the true bottlenecks. Thereby, Laplacian spectral clustering
recovers most bottlenecks with small error. Combining I and II: thus Laplacian spectral clustering
can identify the

3.1 RESULT I: BOTTLENECK-GUIDED SUBGOAL OPTIMALITY

Theorem 1 (Bottleneck-guidance optimality (condensed)). Given a start s ∈ R⋆cur, a goal set
G ⊆ V \R⋆cur, and the next mandatory cross-section B⋆ on any s→ G path. Then

inf
g∈V

J (g) = T (s→ B⋆) + Eξ
[
T (ξ → G)

]
± O

(
tmix

)
,

where J (g) := T (s→ g) + T (g → G) and ξ ∼ FirstHit(s,B⋆).

Where T (x→ A) := Ex[τA] is the expected hitting time, tmix is the within-region mixing time of
the reflected chain on R⋆cur, and FirstHit(s,B⋆) is the first-hit distribution on B⋆. Proof in Appendix.

Design implication. Pick the next bottleneck as the one-step subgoal. This is near-optimal
whenever moving inside a region is easy and crossing the bottleneck is the main cost.

3.2 RESULT II: SPECTRAL CLUSTERING COVERAGE OF BOTTLENECKS

Theorem 2 (Spectral clustering coverage of bottlenecks (condensed)). Given a weighted, undirected
graph G = (V,W ) with random-walk kernel P = D−1W , Laplacian L = I − P , k metastable
regions {R⋆i }ki=1 satisfying Φin(R

⋆
i ) ≥ α and Φ(R⋆i → R⋆j ) ≤ β ≪ α for i ̸= j, eigengap

γ = λk+1 − λk > 0, and an empirical Laplacian L̂ with deviation δ = ∥L̂− L∥. Let R̂ be obtained
by k-means on the row-normalized first k eigenvectors of L̂. Then there exist C1, C2, C3 > 0 such
that

MisVol ≤ C1
β

α
+ C2

δ

γ
, Overlapε ≥ 1 − C3 MisVol − µ

(
Nε(∂R⋆)

)
.
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Where Q(S, T ) =
∑
u∈S,v∈T µ(u)P (u, v) is inter-set flow, Φ(S) = Q(S, Sc)/µ(S) is conductance,

Φin(R) is conductance of the reflected chain on R, MisVol = minπ∈Sk

∑
i µ(R̂π(i)△R⋆i ) measures

mis-clustered volume, Overlapε = 1− µ(Nε(∂R̂)△Nε(∂R⋆))/µ(V ) measures boundary overlap
at tolerance ε, µ is the stationary distribution of P , and Nε(·) is an ε-neighborhood in the graph
metric. Proof in Appendix.

Design implication. Learn a Laplacian embedding and cluster it. When (i) crossing a bottleneck
is much rarer/harder than moving within a region, and (ii) the learned embedding faithfully reflects
these transition patterns, the resulting cluster boundaries closely match the true bottlenecks.

Takeaway

The next bottleneck is the right one-step subgoal, and spectral clustering on a learned Laplacian can
recover those bottlenecks under mild, data-driven conditions. Therefore, choosing subgoals at the
discovered bottlenecks yields near-optimal plans with a small, interpretable gap.

4 METHOD

In this paper, we propose BASS (Bottleneck-Aware Spectral Subgoaling) for OGCRL in environments
where the state space consists of locally connected regions linked by a few hard-to-cross bottlenecks.
Since crossing these bottlenecks dominates both time cost and failure risk, BASS follows a simple
principle: find bottlenecks, then traverse bottlenecks. As shown in Fig. 2, we reveal bottlenecks from
offline dataset via Laplacian spectral clustering and extract a dictionary of keypoints (KPs). Formally,
we denote the state space by S ⊆ RD and learn a Laplacian encoder ϕθ : S → Rd, with KPs given
by k̂p ∈ V = k̂p1, . . . , k̂pM .

At deployment, given (s0, g), we compute a KP routing over these keypoints, choose the next KP,
and using a low-level controller to drive the system into that KP’s acceptance region, a subset of state
space decided by an distance predicate:

N (k̂p) = {x ∈ S : dist(x, k̂p) ≤ ε},
with a single, task-agnostic tolerance ε > 0 per environment.

4.1 DISCOVER BOTTLENECKS

From offline dataset, we construct three artifacts that the deployment stage consumes: a Laplacian
encoder ϕθ, a set of bottleneck keypoints V , and a directed KP reachability graph GKP. We first
learn ϕθ to approximate the first non-zero d ordered low-frequency eigenvectors of the random-
walk Laplacian L (Sec. 3), so that regions become nearly flat and bottlenecks become sharp in the
embedding. Applying K-Means with a mildly over-segmented K to ϕθ(s) assigns region labels
and reveals boundaries whose boundaries align with bottlenecks. Using these labels, we then sweep
trajectories: whenever a transition (st → st+1) crosses clusters and the new cluster persists for
at least τ steps, we record st+1 as a crossing candidate, consolidating nearby candidates into one
representative yields the KP set V . Finally, we build the directed, unweighted graph GKP = (V, E) by
connecting i→j if the dataset contains a short successful fragment such that, starting from the first
hit of N (k̂pi), the trajectory first hits N (k̂pj) without entering any other KP region. Each edge thus
encodes a single, data-supported hop between successive bottlenecks. We provide the pseudocode of
this procedure in appendix A.

4.2 KP SEMANTICS AND ROUTING

Given (s0, g) and the offline artifacts (ϕθ,V,GKP), we compute a shortest KP sequence k̂pi0 →
k̂pi1→· · · and return the next KP for execution. We drop the state coordinates that do not change at
the KP and keep only those that do, which makes the KP easier to reuse on unseen goals. Formally,
we represent each KP as

KP = (I∆, v∆), I∆ ⊆ {1, . . . , D}, v∆ ∈ R|I∆|,

meaning that passing this KP deterministically sets s[I∆]← v∆ while leaving other coordinates
unconstrained.

4
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Figure 2: BASS overview. We learn a Laplacian encoder ϕθ and apply spectral clustering to
partition the state space into different regions, whose boundaries expose bottlenecks. We then
identify trajectories from the offline dataset that cross these boundaries, and the intersects are
defined as keypoints. Then the most representative KPs are automatically selected and a directed KP
reachability graph GKP is constructed based on the selected KPs. Given (st, g), a keypoint planner
performs KP routing on GKP, restricts choices to V , and selects the next KP. A pluggable low-level
controller, Decision Diffuser or a lightweight MLP, drives the system into the acceptance region
N (k̂p), repeating this over KPs reaches the goal.

4.3 PLUGGABLE LOW-LEVEL CONTROLLERS

Once the next KP is selected, the controller only needs to drive the system into its acceptance region.
We instantiate two interchangeable choices trained offline and selected by task demands at test
time: (i) a Decision Diffuser that predicts a short state rollout (st, . . . , st+k) and is paired with a
lightweight inverse-dynamics MLP to recover actions from (st, st+1), and (ii) a Lightweight MLP
that maps (st, next KP) directly to at for fast inference. An optional keypoint regressor can predict
an intermediate state s̃t+k to stabilize and shorten diffusion horizons. Inspired by the HIQL approach
(Park et al., 2023), we train a small MLP keypoint regressor can predict an intermediate state s̃t+k to
stabilize and shorten planning horizons.

When the diffusion route is optionally used, short trajectory segments are generated by simulating a
reverse-time stochastic differential equation (SDE). Let xt denote the vectorized planned trajectory
at diffusion time t and qt(xt) the diffused trajectory distribution. The reverse process follows

dxt =
[
f(t)xt − g(t)2∇x log qt(xt)

]
dt + g(t) dw̄t,

where the score ∇x log qt(xt) is approximated by the diffusion model’s learned denoiser. We
condition this process on the current state st and an intermediate waypoint ŝt+k at horizon k, then
obtain (st, . . . , st+k) and take at = I(st, st+1) via the inverse-dynamics model.

Summary. Offline we learn a Laplacian embedding, expose bottlenecks by clustering, extract KPs,
and build GKP. We route over KPs using sparse effects to minimize bottleneck crossings, and a
pluggable controller executes each hop into the next acceptance region.

5 EXPERIMENTS

5.1 SETUP

Environment We evaluate on a unified suite of long-horizon, sparse-reward offline benchmarks
spanning both navigation and manipulation, drawing from widely used D4RL and OGBench tasks.
Concretely: Maze2D/PointMaze/AntMaze/HumanoidMaze require navigating complex maps
(umaze/medium/large/ultra/giant) under sparse goal rewards, FrankaKitchen requires manipulating
the scene by executing any four of seven object-centric skills to reach a target configuration. Our
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datasets cover diverse regimes, including play/diverse, stitch and partial (test-time trajectories are
longer than training snippets), and explore (low-quality data). In addition, we evaluate BASS on
high-dimensional visual AntMaze variants; see Appendix for details and results.

Baselines We evaluate on two benchmark suites and align the baselines accordingly. On D4RL
(Maze2D/AntMaze/HumanoidMaze/VisualAntmaze/FrankaKitchen), we compare against representa-
tive offline methods spanning four paradigms: goal-conditioned imitation RvS-G (Emmons et al.,
2022), sequence models Trajectory Transformer (TT) (Janner et al., 2021), OGCRL methods HIQL
(Park et al., 2023) and ESD (Zhang et al., 2025), and diffusion-based decision making Diffusion-QL
(Wang et al., 2023c), IDQL (Hansen-Estruch et al., 2023), Decision Diffuser (DD) (Ajay et al.,
2023), Diffuser (Janner et al., 2022), and DIAR (Park et al., 2024a). On OGBench, we report
HIQL together with other OGCRL baselines enumerated in OGBench, including goal-conditioned
behavioral cloning (GCBC) (Lynch et al., 2020), goal-conditioned implicit V-learning (GCIVL) (Park
et al., 2024b), goal-conditioned implicit Q-learning (GCIQL) (Kostrikov et al., 2021; Zeng et al.,
2023), Quasimetric RL (QRL) (Wang et al., 2023b), and Contrastive RL (CRL) (Eysenbach et al.,
2022).

5.2 MAIN RESULTS

Table 1: Performance comparison on D4RL (success rate %, mean±std across 3 seeds, higher is
better). We report AntMaze (Play/Diverse), FrankaKitchen, and Maze2D. Best in bold. “–” indicates
not reported by prior work.

Dataset TT RvS-G HIQL ESD Diffusion-QL IDQL Diffuser DD DIAR BASS (Ours)
AntMaze (Play/Diverse)

antmaze-umaze-play-v2 100.0 65.4 83.3 97.1±2.6 93.4±3.4 94.0 0.0 0.0 – 99.3±0.9
antmaze-umaze-diverse-v2 – 60.9 85.4 92.9±4.2 66.2±8.6 80.2 0.0 0.0 88.8±1.5 98.0±1.6
antmaze-medium-play-v2 100.0 58.1 86.8 90.8±6.4 76.6±10.8 84.5 0.0 0.0 – 98.0±0.0
antmaze-medium-diverse-v2 93.3 57.3 84.1 88.3±6.0 78.6±10.3 84.8 0.0 0.0 68.2±6.7 96.7±0.9
antmaze-large-play-v2 60.0 32.4 88.2 88.8±6.0 46.4±8.3 63.5 0.0 0.0 – 96.0±1.6
antmaze-large-diverse-v2 66.7 36.9 86.1 87.9±5.0 56.6±7.6 67.9 0.0 0.0 60.6±2.4 98.7±1.9
antmaze-ultra-play-v2 33.3 – 52.9 56.7±9.1 – – 0.0 0.0 – 97.3±0.9
antmaze-ultra-diverse-v2 20.0 – 39.2 55.8±11.3 – – 0.0 0.0 – 88.0±1.6
Average (AntMaze) – – 75.7 82.3 69.6 – 0.0 0.0 – 96.5

FrankaKitchen
kitchen-partial-v0 – – 65.0 69.8±2.1 60.5±6.9 – 56.2 57.0 63.3±0.9 83.3±4.9
kitchen-mixed-v0 – – 67.7 67.1±5.0 62.6±5.1 – 50.0 65.0 60.8±1.4 86.0±2.8
Average (Kitchen) – – 66.4 68.5 61.2 – 53.1 61.0 62.5 84.5

Maze2D
maze2d-large-v1 – – – – – 90.1 123.0 – 200.3±3.4 189.3±6.2

Table 2: Performance comparison on OGBench (success rate %, mean±std across 3 seeds).
Baselines come from the OGBench reports. Best in bold.

Dataset GCBC GCIVL GCIQL QRL CRL HIQL BASS (Ours)
PointMaze

pointmaze-large-navigate-v0 29± 6 45± 5 34± 3 86± 9 39± 7 58± 5 97.3±1.2
pointmaze-giant-navigate-v0 1± 2 0± 0 0± 0 68± 7 27± 10 46± 9 88.0±6.0
pointmaze-teleport-navigate-v0 25± 3 45±3 24± 7 4± 4 24± 6 18± 4 22.0± 4.0
pointmaze-large-stitch-v0 7± 5 12± 6 31± 2 84± 15 0± 0 13± 6 99.3±1.2
pointmaze-giant-stitch-v0 0± 0 0± 0 0± 0 50± 8 0± 0 0± 0 85.3±3.1
pointmaze-teleport-stitch-v0 31± 9 44±2 25± 3 9± 5 4± 3 34± 4 42.0± 14.0

AntMaze (OGBench variants)
antmaze-large-stitch-v0 3± 3 18± 2 7± 2 18± 2 11± 2 67± 5 81.0±7.0
antmaze-giant-stitch-v0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 2 71.3±7.0
antmaze-large-explore-v0 0± 0 10± 3 0± 0 0± 0 0± 0 4± 5 72.7±1.2

HumanoidMaze
humanoidmaze-large-navigate-v0 1± 0 2± 1 2± 1 5± 1 24± 4 49± 4 57.3±3.1
humanoidmaze-giant-navigate-v0 0± 0 0± 0 0± 0 1± 0 3± 2 12± 4 62.0±9.2
humanoidmaze-large-stitch-v0 6± 3 1± 1 0± 0 3± 1 4± 1 28± 3 45.3±3.1
humanoidmaze-giant-stitch-v0 0± 0 0± 0 0± 0 0± 0 0± 0 3± 2 55.3±3.1

Visual Antmaze
visual-antmaze-large-navigate-v0 4± 0 5± 1 4± 1 0± 0 84±1 53± 9 78.7±2.3
visual-antmaze-large-stitch-v0 24± 3 1± 1 0± 0 1± 1 11± 3 28± 2 68.0±2.0
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Across a wide variety of navigation and manipulation tasks, scales, and dataset regimes, our method
achieves consistently higher success than prior work, highlighting the advantage of using bottlenecks
as subgoals. We also try to explain where the gains arise: (i) in precision-sensitive settings (e.g.,
AntMaze corners where high-DoF agents often stumble, Kitchen grasps that easily miss), placing
subgoals on bottlenecks lets the agent finely adjust to enter the KP acceptance region, (ii) in time-
limit–prone layouts (PointMaze/HumanoidMaze with many detour traps), KP routing finds short KP
chains, and bottleneck-anchored subgoals steer the agent onto the correct corridor early, avoiding
costly backtracking.

5.3 GENERALIZATION ACROSS ENVIRONMENTS

We evaluate generalization along two axes, organized from upper to lower levels in our hierarchy:
(G1) High-level transfer: swapping keypoint graphs across domains, and (G2) Low-level transfer:
controller across AntMaze scales. For (G1), we swap keypoint graphs among three datasets with
similar state space, including PointMaze-large-Stitch, AntMaze-large-Stitch, and AntMaze-large-
Explore, and test them across domains. For (G2), we take a diffuser-based low-level controller trained
on AntMaze-Large-Play and transfer it to other AntMaze scales. Results are summarized in Tab. 3
and Tab. 4.

Table 3: (G1) Cross-domain transfer between PointMaze and AntMaze using swapped keypoint
graphs. Rows: KP source; Columns: test environment.

KP source→ Test env Point-Stitch Ant-Stitch Ant-Explore
Point-Stitch 99.3±1.2 83.3±6.4 87.3±3.1
AntMaze-Stitch 99.3±1.2 81.0± 7.0 65.3± 5.0
Ant-Explore 98.7± 1.2 66.7± 3.1 72.7± 1.2

(G1) High-level transfer: swapping keypoint graphs across domains. Tab. 3 shows that ex-
changing the keypoint graph among the three tasks on the same map does not significantly hurt
performance. We emphasize that this is a diagnostic experiment: for each target environment, the
in-domain BASS row serves as the reference, and the other rows simply reuse the same policy with a
swapped keypoint graph. Our interpretation is that the KP graph captures the topological backbone
of the state space, critical corridors and bottlenecks, rather than the shaping of task-specific rewards.
As a result, planning on this graph remains valid even when the task or data source differs, yielding
stable success rates.

More interestingly, tranfering PointMaze KPs to AntMaze leads to higher success than native
AntMaze KPs. We hypothesize that PointMaze’s simpler point-mass dynamics produce offline
data with smoother intra-region transitions and cleaner inter-region boundaries. This makes graph
construction and the Laplacian-based representation more faithful to true connectivity and bottlenecks
according to Theorm 1. When reused in AntMaze, the upper level then proposes subgoals that
better align with the topological structure of the maze, while the lower level absorbs the actuation
complexity of the ant. This suggests a promising direction: learn KPs in simple domains with rich
coverage, and transfer them to more complex domains that share a similar state space and transition
structure.

Table 4: (G2) Frozen controller transferred across map scales (success %).

Source map→ Target map Umaze Medium Large Ultra

Large 98.7±1.2 96.7±2.3 96.0±1.6 96.7±1.2

(G2) Low-level transfer: controller across AntMaze scales. Tab. 4 demonstrates that a diffuser
planner trained on AntMaze-Large-Play generalizes strongly to other map scales when paired with
each target’s own KPs. Although global layouts differ, the controller receives short-horizon subgoals
from the upper level and only needs to execute local, easy-to-learn skills including move-to-subgoal
and pass-corridor. This decomposition makes the controller largely insensitive to global map differ-
ences and encourages robust, reusable primitives. In other words, choosing bottlenecks as subgoals
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provides near-optimal guidance, reducing the lower level to a simpler, transferable control task. This
observation supports Theorem 2.

5.4 ABLATION STUDIES

Ablation of the bottleneck-guided subgoals We ablate the high-level subgoal selector. Our method
identifies subgoals at bottlenecks via Laplacian spectral clustering. As a drop-in replacement, we use
the common time-based rule from hierarchical offline goal-conditioned RL (Chane-Sane et al., 2021;
Zhang et al., 2020; Kim et al., 2023; Ajay et al., 2020; Pertsch et al., 2021): following HIQL, every
fixed horizon way steps we choose the state with the highest value as the subgoal. We test two
typical way steps, 25 (HIQL default) and 5. Tab. 5 shows results on antmaze-large-play/diverse-v2.
Replacing bottleneck subgoals with the time-based HIQL variant causes substantial drops, especially
at the short horizon. This indicates that bottleneck-guided subgoals are the primary driver of our
gains. The evidence also supports Theorem 1, which predicts that bottlenecks are near-optimal
subgoals under our assumptions, whereas short-horizon value peaks can be myopic and ignore global
connectivity.

Table 5: Ablation of the bottleneck-guided subgoals on antmaze-large-play/diverse-v2

Setting Large-Play-v2 Large-Diverse-v2
BASS (ours) 98.0 ± 1.6 98.7 ± 1.9

BASS w/ HIQL Keypoint & way step=25 83.3 ± 3.1 84.0 ± 5.3
BASS w/ HIQL Keypoint & way step=5 18.7 ± 2.5 22.7 ± 0.9

Ablation of the Number of Clusters K. To study how the number of clusters K in Laplacian
spectral clustering affects performance, we vary K on four representative environments, the results
are shown in Table 6 and 7. Across these tasks we observe a consistent pattern: very small K
yields overly coarse partitions that under-detect bottlenecks and hurt performance; there is a broad
plateau of K where performance is stable and often matches or even exceeds the numbers in the
main tables; and only a few environments does very large K can slightly reduce performance by
introducing unnecessary path complexity. This trend supports Theorem 2 that the operative criterion
for Laplacian spectral clustering here is to cover bottlenecks.

5.5 VISUALIZATION

(a) AntMaze-Medium-Diverse (b) AntMaze-Large-Diverse (c) AntMaze-Ultra-Diverse

Figure 3: Trajectories and keypoints in three AntMaze layouts. Colors indicate metastable regions,
black dots denote transition keypoints, red crosses mark selected KPs.

In Fig. 3, colors delineate metastable regions, black dots mark transitions across bottlenecks, and red
crosses are the KPs used by the high-level policy. Keypoints concentrate at intersections precisely
where conductance is low and paths must cross—validating that spectral clustering recovers bottle-
necks. Aligning subgoals with these bottlenecks simplifies the task: high-level routing picks short KP
chains, while low-level only needs to enter the next KP’s acceptance region. This bottleneck-guided
decomposition explains the robust gains observed across scales and datasets. We also hand-annotate
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oracle keypoints on antmaze-large-diverse at the centers of required corners and visually compare the
resulting trajectories with those from BASS; see App. C.

6 RELATED WORK

Goal Conditioned Offline RL One of the mainstream OGCRL approach defines subgoals as
midpoints between the current state s and the goal g, incorporating them as priors during training but
leaving them unused during testing (Chane-Sane et al., 2021). This method enhances learning by
introducing additional supervision. Another approach (Zhang et al., 2020) constrains subgoals within
a k-step neighborhood to maintain local feasibility within a limited horizon. In addition, graph-based
planning methods also support GCRL. For instance, (Kim et al., 2023) treats subgoals as nodes in
a graph, where edges represent advantages between them and are used for path planning during
inference. This combines goal-conditioned policies with graph-based reasoning to facilitate task
completion. Meanwhile, diffusion-based methods have been used to output low-level control signals
or to plan long-horizon trajectories (e.g., Decision Diffuser and Diffuser) and can be plugged into these
frameworks (Ajay et al., 2022; Janner et al., 2022). Besides, hierarchical planning approaches explore
subgoal generation using graphs or models. (Fang et al., 2023) predicts subgoals autoregressively
with latent space representations of future states, while (Li et al., 2022) generates subgoals at regular
intervals, similar to autonomous vehicle navigation systems predicting future keypoints.CE2 (Duan
et al., 2024) leverages cluster boundaries in a learned latent space for online goal-directed exploration,
while our focus is on offline planning and subgoal selection.

Quasimetric RL (QRL) (Wang et al., 2023a) learns a temporal-distance function and uses it to
regularize value learning and planning. HILP (Park et al., 2024c) plans in a temporal latent space
and chooses subgoals as evenly spaced latent states along a trajectory. Graph-Assisted Stitching
(GAS) (Baek et al., 2025) formulates subgoal selection as graph search in a temporal-distance
representation, emphasizing micro-level trajectory stitching across offline data. In contrast, BASS
discovers macro-level bottleneck keypoints via Laplacian structure.

Laplacian Representation In Laplacian representation learning for reinforcement learning (RL),
early work (Mahadevan & Maggioni, 2007) introduced Proto-Value Functions (PVF), leveraging
random-walk Laplacian eigenvectors for state representation. (Wu et al., 2018) expanded this by
proposing a Graph Drawing Objective (GDO) for large state spaces, but it struggled with eigenvector
rotations and hyperparameter tuning. (Wang et al., 2021b) introduced the Generalized Graph Drawing
Objective (GGDO), which improved upon GDO by breaking symmetry, but still faced hyperparam-
eter sensitivity and failed to recover eigenvalues accurately. (Gomez et al., 2023) introduced the
Augmented Lagrangian Laplacian Objective (ALLO), which addresses the shortcomings of GDO and
GGDO. ALLO eliminates hyperparameter dependence, accurately recovers both eigenvectors and
eigenvalues, and provides more stable and accurate results across environments, advancing the field
significantly. In addition, (Klissarov & Machado, 2023) used Laplacian representations to improve
exploration. By contrast, our work uses Laplacian structure to build a bottleneck keypoint graph for
long-horizon offline goal-conditioned decision-making, focusing on discovering semantic bottlenecks
and routing through them rather than on exploration per se.

7 CONCLUSIONS

We reframed offline goal-conditioned RL as routing through metastable regions connected by a few
hard-to-cross bottlenecks. Our principle is simple: the near-optimal one-step subgoal is the next
bottleneck. We operationalize this by learning a Laplacian representation from offline data, applying
spectral clustering to expose bottlenecks, extracting keypoints (KPs) at the crossings, and planning
with a lightweight, dynamics-agnostic BFS over the KP graph. A pluggable low-level controller,
either a Decision Diffuser or a lightweight MLP, then drives the system into each KP’s acceptance
region.

Theory establishes subgoal optimality (Theorem 1) and boundary recovery (Theorem 2), implying
near-optimal routing. Experiments on D4RL and OGBench achieve state-of-the-art success and
generalize across controllers, domains, and scales, including KP-graph swapping (G1) and controller
transfer across AntMaze scales (G2).
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ETHICS STATEMENT

This work studies offline goal-conditioned RL with bottleneck-guided subgoals on public benchmarks
(D4RL and OGBench). No human subjects or private data are used; all datasets and libraries follow
their original licenses. Potential risks include unintended behaviors when policies are deployed out of
distribution, bias inherited from offline logs, and additional compute/energy costs. We do not deploy
to real robots; all results are in simulation. We recommend human oversight, safety constraints, and
compliance review for any downstream, high-stakes use.

REPRODUCIBILITY STATEMENT

We provide implementation details in the appendix, like Laplacian training objective and optimizer
settings, BFS routing, and low-level controller configurations. We report mean±std over three seeds.
Code will be released after the camera-ready version is finalized.
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Algorithm 1 Bottleneck keypoint discovery

Require: Offline dataset Doff = {hi}, number of clusters K, boundary persistence τ
Ensure: Keypoint set KPs

1: // Laplacian representation and spectral clustering
2: Train a Laplacian encoder ϕ on states {s | (s, ·) ∈ Doff} and obtain embeddings z = ϕ(s).
3: Run K-means with K clusters on {z}; let c(s) ∈ {1, . . . ,K} be the cluster label of state s.
4: // Collect boundary samples between clusters
5: Initialize boundary buffer B ← ∅.
6: for each trajectory h = (s0, . . . , sT ) in Doff do
7: for t = 0, . . . , T − τb − 1 do
8: if c(st) ̸= c(st+1) and c(st+1) = · · · = c(st+τb) then
9: Append st+1 to B ▷ candidate boundary state

10: end if
11: end for
12: end for
13: // Compress boundary samples into keypoints
14: Initialize keypoint set KPs← ∅.
15: Group boundary samples in B into small neighborhoods of nearby states and compute a represen-

tative center µℓ for each group.
16: for each center µℓ do
17: Construct a keypoint KPℓ = (I∆, v∆) from µℓ as described in Sec. 4.2.
18: Add KPℓ to KPs.
19: end for
20: return KPs

A PSEUDO-CODE FOR BOTTLENECK DISCOVERY

B ABLATION OF THE NUMBER OF CLUSTERS K

Table 6: The performance of our method with different numbers of clusters on antmaze-giant-stitch
and pointmaze-giant-stitch

keypoints 30 32 34 36 38 40 42 44

46 48 50 52 54 56 58

antmaze- 0.0 ± 0.0 13.3 ± 2.3 20.0 ± 7.0 11.3 ± 3.1 40.0 ± 8.0 53.3 ± 3.1 40.7 ± 4.2 60.0 ± 9.2
giant-stitch 62.0 ± 6.0 68.0 ± 3.5 71.3 ± 7.0 63.3 ± 2.3 66.7 ± 2.3 66.7 ± 5.0 61.3 ± 3.1

pointmaze- 92.0 ± 2.0 84.7 ± 1.2 80.7 ± 3.1 86.7 ± 3.1 90.0 ± 5.3 81.3 ± 1.2 78.7 ± 4.2 84.7 ± 5.1
giant-stitch 80.0 ± 3.5 88.7 ± 2.3 85.3 ± 3.1 83.3 ± 6.1 85.3 ± 6.1 88.7 ± 6.1 84.7 ± 3.1

C TRAJECTORY VISUALIZATION AND COMPARISON WITH EXPERT
HAND-ANNOTATED TRAJECTORIES

D IMPLEMENTATION DETAILS OF THE LAPLACIAN LOSS

In our framework, the Laplacian representation is learned by minimizing a loss function that creates
a feature space reflecting the temporal connectivity of the state space. In this representation space,
states that require many transitions to connect (i.e., have long transition durations) are far apart, while
states that are easily reachable (i.e., with short transition periods) are embedded close together. Such
a design not only naturally measures transition difficulty but also highlights bottlenecks and regions
where rapid changes in the learned representation indicate potential sub-task boundaries. These
boundaries manifest as clustering limits where keypoints are more likely to occur.
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Table 7: The performance of our method with different numbers of clusters on antmaze-large-play
and pointmaze-large-stitch.

keypoints 10 15 20 22 24 26 28

30 32 34 36 38 40 42

44 46 48 50

antmaze-large-play 32.0 ± 4.0 15.3 ± 7.0 96.0 ± 1.6 93.3 ± 3.1 94.7 ± 3.1 98.0 ± 2.0 91.3 ± 3.1
91.3 ± 1.2 95.3 ± 1.9 98.0 ± 0.0 92.0 ± 1.6 96.7 ± 0.9 90.7 ± 3.4 87.3 ± 5.0
94.0 ± 3.3 89.3 ± 8.1 90.0 ± 3.3 79.3 ± 4.1

pointmaze-large-stitch 98.0 ± 1.6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.3 ± 0.9 100.0 ± 0.0 100.0 ± 0.0
98.0 ± 3.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.0 ± 2.0 100.0 ± 0.0 100.0 ± 0.0

100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.7 ± 1.2

Table 8: Average evaluation steps for HIQL and our method across different environments.

Dataset HIQL Steps BASS (ours) Steps
antmaze-giant-stitch-v0 997.50 864.17
antmaze-large-stitch-v0 640.87 547.28
pointmaze-large-stitch-v0 905.04 265.33
humanoidmaze-large-navigate-v0 1667.65 1652.34
humanoidmaze-large-stitch-v0 1808.40 1717.22
humanoidmaze-giant-navigate-v0 3900.32 3287.94
humanoidmaze-giant-stitch-v0 3978.45 3319.76

Our implementation fully adheres to (Gomez et al., 2023), which training proceeds through four
high-level stages:

D.1 DATA SAMPLING

• Graph-Drawing (Primal) Pairs: From the replay buffer or trajectory dataset, randomly
sample state-transition pairs (st, st+n). These capture the temporal difficulty of moving
from st to st+n over a fixed (or randomly chosen) horizon n, exactly as in the classical
Laplacian spectral objective.

• Orthogonality (Constraint) Batches: Independently sample two small batches of states
{s1i } and {s2i }. These are not paired but serve to enforce near-orthogonality between
different embedding dimensions, consistent with the proper Laplacian constraint.

D.2 REPRESENTATION ENCODING

A single encoder network ϕθ maps each sampled state into a d-dimensional embedding:

u = ϕθ(s) ∈ Rd.

• ϕθ(st) and ϕθ(st+k) are used to compute the graph-drawing loss, matching the ⟨u, Lu⟩
term of the proper Laplacian.

• ϕθ(s1i ) and ϕθ(s2i ) are used to compute the orthogonality error matrix, implementing the
uTu = I constraint softly.

D.3 LOSS CONSTRUCTION

We combine three terms into a single augmented Lagrangian that exactly mirrors the proper Laplacian
objective:

Ltotal = Lgraph + Ldual + Lbarrier.
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Figure 4: Comparison between our trajectories and oracle trajectories.

• Graph-Drawing Term:

Lgraph =

d∑
i=1

(uit − uit+k)2 × coeffi,

which exactly implements the ⟨u, Lu⟩ spectral penalty.
• Linear Lagrangian (Dual) Term:

Ldual =
∑
j≥k

βjk ⟨uj , stopgrad(uk)⟩,

with dual variables βjk enforcing the orthogonality constraints in the augmented Lagrangian
sense.

• Quadratic Barrier Penalty:

Lbarrier = b
∑
j≥k

(⟨uj , stopgrad(uk)⟩ − δjk)2,

softly enforcing uTu = I , consistent with the proper Laplacian spectral formulation.

D.4 JOINT OPTIMIZATION WITH ALTERNATING UPDATES

1. Encoder Update: With β and b fixed, minimize Ltotal w.r.t. θ, exactly following the proper
spectral embedding procedure.

2. Dual Variables Update: With θ fixed, perform a projected gradient ascent step on β using
current orthogonality errors, corresponding to the update of Lagrange multipliers.

3. Barrier Scheduling: Increase b over training—on a schedule or when constraint violations
persist—to maintain the strength of the barrier term, as in augmented Lagrangian methods.

D.5 SUMMARY

By strictly following the classical Laplacian spectral graph objective and its augmented Lagrangian
relaxation—combining

1. a graph-drawing term preserving transition difficulty,
2. a linear Lagrangian term enforcing orthonormality,
3. a quadratic barrier penalty for soft constraints,

and by alternating minimization for the encoder with maximization for the duals, we obtain a proper
Laplacian embedding that faithfully preserves temporal connectivity and yields disentangled, stable
representations for downstream keypoint detection and hierarchical control.

15
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E RESIDUAL-STATE BFS FOR KP ROUTING

In the main text (§4.2), we represent a keypoint (KP) as

KP = (I∆, v∆), I∆ ⊆ {1, . . . , D}, v∆ ∈ R|I∆|,

which deterministically sets the coordinates in I∆ to v∆. Given a start–goal pair (s0, g), we plan
only over coordinates that differ from the goal:

R0 = { i : s0[i] ̸= g[i] }, q = |R0|.
For each KP, we keep only its goal-aligned footprint

F (KP; g) = { i ∈ I∆ : v∆[i] = g[i]}.

Routing. We perform breadth-first search only over KPs that can change at least one currently
unsatisfied coordinate (i.e., F (KP; g) ∩ R ̸= ∅), and apply light pruning: skip no-op KPs (no
residual coverage), de-duplicate visited residual sets, and optionally prioritize candidates by |F ∩R|
to reduce expansions while preserving shortest-path optimality.

Complexity and scale. Let d denote the average number of KPs whose footprints intersect the
current residual (average branching factor). In the worst case, the number of residual sets visited is
bounded by 2q , and each expansion considers O(d) candidates:

O(d · 2 q) time, O(2 q) space.
In our OGCRL settings, both quantities are very small in practice (empirically d < 5, q < 10),
making runtime acceptable.

F LOW-LEVEL STRATEGY (PLUGGABLE)

Our low level is modular and exposes a unified interface
at = LOWLEVEL(st, g̃t; η),

where g̃t is the high-level keypoint–guided mid-goal and η are backend hyperparameters. We run in a
receding horizon: compute at from (st, g̃t), step the env to get st+1, and repeat.

F.1 KEYPOINT-CONDITIONED k-STEP STATE PREDICTION

Because time-to-reach a keypoint is uncertain while planners often assume a fixed horizon k, we first
predict a k-step target state st+k conditioned on the current state and the selected keypoint:

st+k = πω
(
st, ki

)
,

where ki is the keypoint selected by the high level. Concretely:

• Inputs. (st, ki).
• Objective. A value model Vϕ(s, k) provides HIQL-style supervision to train πω so that the

predicted st+k maximizes the expected keypoint-conditioned return over k steps.
• Output. st+k, which anchors a short-horizon plan.

This k-step target is then consumed by one of two interchangeable backends.

F.2 BACKEND A: SHORT-HORIZON DIFFUSION PLANNER (DECISION DIFFUSER)

Conditioning. Generate a k-step local plan from st to the target st+k by conditional diffusion, using
(st, st+k) (or (st, g̃t) if planning in action space) as conditioning signals.

Sampling. A time-indexed network ϵθ(·, t) approximates the reverse score to produce a smooth
trajectory {st, . . . , st+k} with a small number of reverse steps.

State→Action. If planning in state space, actions are recovered via a lightweight inverse-dynamics
MLP Iζ :

at = Iζ
(
st, st+1

)
,

trained with MSE on offline transitions. If planning directly in action space, Iζ is not used.
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Table 9: Hyperparameters

Hyperparameter Value & Specifics
d (embedding dim.) 21 = 1 zero-eigenvector + 20 low-frequency eigenvectors
other Laplacian representation params follow Gómez et al. (2023) settings
k (intermediate horizon) 5 for AntMaze, 25 for Kitchen
T (diffusion steps) 5 for AntMaze, 50 for Kitchen
Diffusion model DiT with hidden dim=384, nhead=8, layers=3
Optimizer (diffusion) AdamW with lr=2× 10−4

Optimizer (ivdm) weight decay=1× 10−5

Inverse dynamics (hidden size) MLP hidden size=256, optimizer Adam lr=2× 10−4

F.3 BACKEND B: GOAL-CONDITIONED REACTIVE CONTROLLER (GC-MLP)

Inputs. Concatenate the current state and subgoal: xt = [st, g̃t] (or [st, st+k]). A small MLP fψ
outputs at = fψ(xt).

Training: IQL Objective. We train the GC-MLP with the IQL loss, together with a value network
Vϕ and a critic Qθ:

LQ(θ) = E(s,a,r,s′)∼D

[ (
Qθ(s, a)−

(
r + γ Vϕ(s

′)
))2]

, (1)

LV (ϕ) = E(s,a)∼D

[
ρτ
(
Qθ(s, a)− Vϕ(s)

)]
, ρτ (δ) = |τ − ⊮{δ < 0}| δ2, (2)

Lπ(ψ) = E(s,a)∼D

[
exp

(Qθ(s,a)−Vϕ(s)
β

)
∥a− fψ([s, g̃])∥22

]
, (3)

where τ is the expectile level and β is the temperature. At test time we condition fψ on either g̃t or
st+k depending on the configuration.

F.4 SUMMARY

• Unified pipeline. (1) Predict a keypoint-conditioned k-step target st+k; (2) realize control with
either (A) a diffusion planner (with optional inverse dynamics) or (B) a GC-MLP trained with the
IQL objective.

• Pluggability. Both backends implement the same interface at = LOWLEVEL(st, g̃t; η) and can
be swapped without changing the high level.

• Effect. Bottleneck-guided subgoals provide reliable waypoints, so the low level only needs to
execute short, simple transitions between keypoints.

G HYPERPARAMETERS

We summarize the hyperparameters in Tab. 9. In all experiments we follow the ALLO configuration
of Gómez et al. (2023) for the Laplacian encoder, except that we increase the embedding dimension
from 11 to 21 to accommodate the more complex geometries. And we fix the cluster-crossing
persistence threshold to τ = 20 in all experiments. We observed that performance is insensitive to τ
over a broad range, so we treat it as a fixed constant and do not tune it per environment.

H LAPLACIAN REPRESENTATION

In this section, we present a series of visualizations of the Laplacian representation in various antmaze
environments. The figures illustrate both the learned eigenvectors and the results of spectral clustering.

I PROOFS AND TECHNICAL DETAILS FOR THEORIES

This appendix expands the statements in Section 3, provides self-contained proofs under standard
assumptions, and aligns the notation with the main text. Throughout we work on a weighted,
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Figure 5: Learned eigenvectors for antmaze-medium-play

Figure 6: Spectral clustering results for antmaze-medium-play
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Figure 7: Learned eigenvectors for antmaze-medium-diverse

Figure 8: Spectral clustering results for antmaze-medium-diverse
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Figure 9: Learned eigenvectors for antmaze-large-play

Figure 10: Spectral clustering results for antmaze-large-play
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Figure 11: Learned eigenvectors for antmaze-large-diverse

Figure 12: Spectral clustering results for antmaze-large-diverse
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Figure 13: Learned eigenvectors for antmaze-ultra-play

Figure 14: Spectral clustering results for antmaze-ultra-play
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Figure 15: Learned eigenvector for antmaze-ultra-diverse

Figure 16: Spectral clustering results for antmaze-ultra-diverse
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undirected state-transition graph = (V,W ) built from offline data, with degree D = diag(W1),
random-walk kernel P = D−1W , and random-walk Laplacian L = I − P . The (unique) stationary
distribution is µ⊤P = µ⊤,

∑
v∈V µ(v) = 1. Eigenvalues of L satisfy 0 = λ1 ≤ λ2 ≤ · · · , and the

k-way eigengap is γ = λk+1 − λk > 0. For measurable S, T ⊆ V define the inter-set flow

Q(S, T ) =
∑

u∈S,v∈T
µ(u)P (u, v),

the (outer) conductance Φ(S) = Q(S, Sc)/µ(S), and, for a region R, the internal conductance of the
reflected chain PR (with stationary law µR),

Φin(R) = inf
∅̸=A⊆R, µR(A)≤ 1

2

QR(A,R\A)
µR(A)

.

For A ⊆ V , write ∂A = {v ∈ V : P (v,A) > 0 and P (v,Ac) > 0} and A = A ∪ ∂A. For any
B ⊆ V and ε > 0, Nε(B) denotes the ε-neighborhood in the shortest-path (graph) metric. We use
the following metastability condition (inner-strong / outer-weak):

∃R⋆ = {R⋆1, . . . , R⋆k}with µ(R⋆i ) ∈ [η, 1−η], Φin(R
⋆
i ) ≥ α, Φ(R⋆i → R⋆j ) ≤ β ≪ α (i ̸= j).

(4)
Let L̂ be the Laplacian estimated from offline data and δ = ∥L̂− L∥ its operator-norm deviation.

Hitting times and mixing. For A ⊆ V , let τA = inf{t ≥ 0 : Xt ∈ A} be the hitting time, and
define T (x→ A) = Ex[τA]. For a regionR, let tmix(R) be the least t such that maxx∈R ∥P tR(x, ·)−
µR∥TV ≤ 1/4; we write tmix for tmix(R

⋆
cur) when context is clear.

A. BOTTLENECK-GUIDED SUBGOAL OPTIMALITY (FULL VERSION OF THM. ??)

Theorem 3 (Bottleneck-first optimality). Fix a start s ∈ R⋆cur and a goal setG ⊆ V \R⋆cur. Consider
the one-step high-level objective

J (g) := T (s→g) + T (g→G), g ∈ V.

Let ⋆ denote a next mandatory cross-section for any s→G path (e.g., an s–G minimum-capacity cut
intersected with ∂R⋆cur), and let ξ ∼ FirstHit(s,⋆ ) be the first-hit distribution on ⋆. Then there exists
g⋆ ∈ ⋆ such that

inf
g∈V

J (g) = T (s→⋆) + Eξ[T (ξ→G)] ± C · tmix,

where C > 0 is an absolute constant depending only on the chosen total-variation threshold in the
definition of tmix.

Proof sketch. (Decomposition at the bottleneck) By the strong Markov property at τ⋆ ,

T (s→g) = T (s→⋆) + Eξ
[
T (ξ→g)

]
,

hence
J (g) = T (s→⋆) + Eξ

[
T (ξ→g) + T (g→G)

]
.

(Lower bound) By the triangle inequality for hitting times, T (ξ→g) + T (g→G) ≥ T (ξ→G) for
any g, yielding

J (g) ≥ T (s→⋆) + Eξ[T (ξ→G)].

(Achievability up to mixing) Pick g ∈ ⋆. Inside R⋆cur, the reflected chain mixes to µR⋆
cur

in tmix steps,
so the distance from the first-hit ξ to g is controlled by O(tmix); likewise T (g→G) = Eξ[T (ξ→
G)]±O(tmix). Combining with the decomposition gives the claim.

Design implication (restated). Placing the next bottleneck as the one-step subgoal is near-optimal
up to an O(tmix) gap whenever movement inside a region is fast compared with crossing the
bottleneck.
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B. SPECTRAL CLUSTERING COVERAGE OF BOTTLENECKS (FULL VERSION OF THM. ??)

Let U ∈ R|V |×k collect the first k nontrivial eigenvectors of L, and Z be its row-normalization (each
row scaled to unit ℓ2 norm). Likewise obtain Û , Ẑ from L̂. Running k-means on the rows of Ẑ
returns a partition R̂ = {R̂1, . . . , R̂k}. Define the misclustered volume (up to permutation π) and the
ε-thick bottleneck overlap:

MisVol = min
π∈Sk

k∑
i=1

µ
(
R̂π(i)△R⋆i

)
, Overlapε = 1−

µ
(
Nε(∂R̂)△Nε(∂R⋆)

)
µ(V )

.

Theorem 4 (High-overlap bottleneck recovery). Under metastability equation 4 with eigengap γ =

λk+1 − λk > 0 and empirical deviation δ = ∥L̂−L∥, there exist absolute constants C1, C2, C3 > 0
such that

MisVol ≤ C1
β

α
+ C2

δ

γ
, Overlapε ≥ 1 − C3 MisVol − µ

(
Nε(∂R⋆)

)
. (5)

Consequently, when β/α and δ/γ are small and the true bottleneck tube vanishes as ε ↓ 0, the
spectral partition achieves near-unity overlap with the true low-conductance bottlenecks.

Proof sketch. (i) Population embedding is region-constant up to O(β/α). Write L = L0 + E
with L0 = blkdiag(LR⋆

1
, . . . , LR⋆

k
) and ∥E∥ ≲ β; each block has spectral gap λ2(LR⋆

i
) ≳ α.

By Davis–Kahan/Weyl, the span of the first k eigenvectors of L deviates by O(β/α) from the
ideal piecewise-constant subspace that is indicator-like on {R⋆i }. Row-normalization maps the k
regions near the vertices of a regular simplex on Sk−1, with separation bounded below by a constant
depending on (k, η).

(ii) Empirical subspace stability is O(δ/γ). With ∆ = L̂−L, Davis–Kahan yields ∥ sinΘ(Û , U)∥ ≤
C δ/γ. Thus each empirical row (of Ẑ) lies within ε⋆ = C(β/α+ δ/γ) of its ideal center on the unit
sphere.

(iii) k-means stability implies a misvolume bound. Standard perturbation arguments for spherical
k-means convert ε⋆ and center separation to MisVol ≤ C ′ε⋆ (up to constants depending on (k, η)),
establishing the first inequality in equation 5.

(iv) From misclustered volume to boundary overlap. Misclustered points concentrate in a thin tube
around the true inter-region boundaries; thickening by ε absorbs local ambiguities and yields the
overlap lower bound with a linear penalty in MisVol.

Design implication (restated). Learn a Laplacian embedding and cluster it. When within-region
mixing is strong and cross-region transitions are rare (small β/α), and the learned Laplacian is
accurate relative to its eigengap (small δ/γ), spectral clustering recovers bottlenecks with small error.

C. ADDITIONAL REMARKS AND CONSTANTS

Choice of Laplacian. All results extend to the symmetric normalized Laplacian Lsym = I −
D−1/2WD−1/2 with the usual row/length normalizations; constants change by absolute factors.

Estimating δ. In practice, δ is reduced by symmetrization, lazy random walks, density-regularized
graphs, and sufficient offline coverage.

Multiple comparable bottlenecks. If several bottlenecks are comparable, λ2, . . . , λk may be
clustered; Theorem 4 still provides high overlap with their union. Our high-level planner then selects
the next bottleneck along the cheapest s→G route (cf. Theorem 3).

Mixing constant in Theorem 3. The O(tmix) term is with respect to the total-variation threshold
1/4; other constants follow by standard monotonicity of total-variation mixing times.

Summary. The next bottleneck is the near-optimal one-step subgoal up to a small, interpretable
mixing-time gap; and spectral clustering on a learned Laplacian recovers those bottlenecks with error
controlled by the inner/outer conductance contrast and the Laplacian estimation error.
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J USE OF LLMS.

We used large language models solely for language polishing (grammar, wording, and clarity). They
were not used to design experiments, generate or analyze data, write code, or substantively shape
results or claims. All LLM-assisted edits were reviewed and verified by the authors.
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