
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOTTLENECK-GUIDED SPECTRAL SUBGOALS FOR OF-
FLINE GOAL-CONDITIONED RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline goal-conditioned RL (OGCRL) learns to reach arbitrary goals from offline
dataset, but long-horizon performance hinges on crossing a handful of hard-to-cross
bottlenecks. These bottlenecks not only dictate the feasible paths toward the goal
but also act as critical keypoints, marking the transitions between adjacent regions
and providing the agent with essential directional guidance. Prior hierarchical
methods pick subgoals by time or short-horizon value heuristics, which do not
localize the bottleneck, as a result, the agent losing the clear guidance that bot-
tlenecks could provide about where to pass next. We instead model long-horizon
planning as “cross the next bottleneck”: we apply Laplacian spectral clustering to
offline dataset to expose bottlenecks and then identify trajectories from the offline
dataset that cross these boundaries, and the intersects are defined as keypoints
(KPs). Then the most representative KPs are automatically selected and a directed
KP reachability graph GKP is constructed based on the selected KPs. We then
restrict high-level choices to these bottleneck states and use a pluggable low-level
controller to execute the short transitions between them. We provide theory show-
ing that under a standard metastable decomposition of the state space, routing
through bottlenecks yields an (approximately) optimal one-step subgoal in terms
of hitting-time, and that Laplacian spectra recover bottlenecks with high overlap.
Thus, Laplacian spectral clustering can discover approximately optimal subgoals.
Empirically, the same pattern holds: across D4RL and OGBench, our method
achieves state-of-the-art results on a broad set of navigation and manipulation tasks
and across diverse dataset regimes, for example, 96.5% on AntMaze and 84.5%
on Franka-Kitchen.

1 INTRODUCTION

Figure 1: Laplacian spectral clustering in
pointmaze-large. Colors indicate regions,
boundaries align with hard-to-cross bottlenecks.

Long-horizon sparse rewards remain a core chal-
lenge for offline goal-conditioned reinforcement
learning (OGCRL): datasets are limited and bi-
ased, online interaction is unavailable, and credit
assignment couples with planning over long
time scales. In most OGCRL tasks, the state
space decomposes into well-connected regions
(e.g., rooms and corridors in navigation) linked
by a few hard-to-cross bottlenecks (e.g., door-
ways or narrow chokepoints in mazes). These
bottlenecks act as structural keypoints that any
successful trajectory must pass and thus provide
a clear high-level guidance signal: cross the next bottleneck to move from one region to the next. Fig. 1
illustrates our method’s identification of regions and bottlenecks: each colored patch corresponds to a
region, and the boundaries between patches align with bottlenecks.

Existing OGCRL approaches typically adopt hierarchical frameworks: a high level proposes a
subgoal and a low level executes to reach it (Chane-Sane et al., 2021; Zhang et al., 2020; Kim et al.,
2023; Ajay et al., 2020; Pertsch et al., 2021). In practice, most recent methods cast subgoal choice
as a time-driven decision. Midpoint priors between the current state and the goal are used only as
training supervision (midway-to-goal, Chane-Sane et al., 2021). Fixed or skip-step schedules commit

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to a new subgoal every k steps or at coarse temporal resolutions (e.g., HIQL and hierarchical diffusion
planners, Park et al., 2023; Janner et al., 2022; Ajay et al., 2023). In a similar spirit, fixed-horizon
skills execute a k-step primitive or a stitched sub-trajectory before the high level revisits the choice
(e.g., OPAL and diffusion-based sub-trajectory stitching, Ajay et al., 2020; Janner et al., 2022). A
further strand overlays a short-window value criterion on top of the time window, selecting the
highest-value candidate among states reachable in a few steps (e.g., ESD, Zhang et al., 2025). Despite
their differences, these rules remain time/value–driven and are not bottleneck-aligned, thereby failing
to exploit the valuable guidance signal the bottleneck can provide: where the agent must pass next. In
short, we argue that high-level subgoals in offline GCRL should not be chosen via value estimates
or time heuristics, but instead be derived from bottleneck states revealed by the Laplacian spectral
structure of the offline data.

To address these issues, we advance a simple principle for hierarchical OGCRL: the optimal one-step
subgoal is the next bottleneck. To identify bottlenecks from offline data, we first learn a Laplacian
representation ϕθ from replay so that states representation varies slowly within the same region
while varies sharply at boundaries. Spectral clustering in this embedding yields region labels, Fig. 1
shows the resulting partition on pointmaze-large, where boundaries between colors coincide
with hard-to-cross bottlenecks. We then identify trajectories from the offline dataset that cross
these boundaries, and the intersects are defined as keypoints. Then the most representative KPs are
automatically selected and a directed KP reachability graph GKP is constructed based on the selected
KPs. At deployment, we restrict high-level choices to these KPs and use a pluggable low-level
controller (e.g., Decision Diffuser or a lightweight MLP) to execute the short transitions between
successive KPs. We name our method BASS (Bottleneck-Aware Spectral Subgoaling).

Contributions. Our contributions form an integrated framework: (1) We introduce a bottleneck-
guided criterion that ties subgoal selection to the next bottleneck, underpinned by theoretical analysis.
(2) We develop a keypoint discovery method based on Laplacian spectral clustering to automatically
extract bottleneck keypoints from offline datasets. (3) We design a hierarchical algorithm for
OGCRL that plans by routing through these keypoints using a pluggable low-level controller. (4)
Extensive experiments on diverse navigation and manipulation benchmarks from D4RL and OGBench
demonstrate consistent bottleneck recovery and performance gains across varied data regimes.

2 PRELIMINARIES

OGCRL and metastable bottlenecks. We study offline goal-conditioned RL (OGCRL) where
a policy π(a | s, g) is learned from a fixed replay dataset. Long horizons with sparse rewards
make progress hinge on planning rather than short-term value. In practice, most OGCRL tasks are
metastable: the state space decomposes into regions that are easy to traverse, i.e., fast intra-region
mixing, and these regions are connected only through a few hard-to-cross bottlenecks that are rarely
crossed under the dataset-induced dynamics. Consequently, success to distant goals is governed
by whether the agent crosses the next bottleneck rather than by taking a few more steps within the
current region (see Fig. 1).

Laplacian RL: what it is and why we use it. Laplacian RL refers to representation-learning
approaches that build on the low-frequency structure of the random-walk Laplacian induced by
behavior dynamics (Wu et al., 2019; Wang et al., 2021a). The central idea is to encode long-horizon
connectivity: states that are well connected in the data should have nearby embeddings, while states
separated by bottlenecks should lie far apart.

The key property behind this is spectral: low-frequency eigencomponents of the Laplacian remain
nearly constant within each metastable region but change sharply across bottlenecks. As a result,
Euclidean distances in the learned embedding approximate diffusion-style reachability distances,
stretching across bottlenecks and compressing within regions.

Formally, treating the dataset as a random walk with kernel P over states, the random-walk Laplacian
is Lrw = I − P . Its low-frequency eigenvectors {ei} capture metastable structure. Mapping a state s
to its first d non-trivial components,

ϕ(s) = [e1[s], . . . , ed[s]]
⊤,

provides an embedding space aligned with the region–bottleneck topology.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In tabular settings one can obtain {ei} by eigendecomposition. In continuous state spaces, however,
the Laplacian operator is infinite-dimensional, so we learn ϕ by minimizing a spectral graph-drawing
objective with orthogonality constraints, estimated from mini-batches of transitions:

min
{fk}d

k=1

d∑
k=1

⟨fk, Lfk⟩ s.t. ⟨fj , fk⟩ = δjk, ⟨fk,1⟩ = 0.

Earlier scalable formulations include the unconstrained graph-drawing objective (GDO) (Wu et al.,
2019) and the generalized graph-drawing objective (GGDO) that breaks rotational symmetry at the
cost of sensitive hyperparameters (Wang et al., 2021a). To avoid these issues, Proper Laplacian
Representation Learning introduces the Augmented Lagrangian Laplacian Objective (ALLO) (Gomez
et al., 2023), a min–max objective with stop-gradient asymmetry:

max
β

min
u∈Rd|S|

d∑
i=1

⟨ui, L ui⟩ +
d∑
j=1

j∑
k=1

βjk
〈
uj , uk

〉
− δjk + b

d∑
j=1

j∑
k=1

(〈
uj , uk

〉
− δjk

)2

,

where βjk are dual variables, b > 0 is a barrier coefficient, and · denotes the stop-gradient operator.
This objective uniquely recovers eigenvectors and their eigenvalues while removing untunable
hyperparameters, we follow this when enforcing orthogonality and stability (details in Appendix).

3 THEORY IN A NUTSHELL: FROM LAPLACIAN SPECTRAL CLUSTERING TO
OPTIMAL SUBGOALS

Roadmap and intuition. We study metastable environments where within-region movement is easy,
while progress to distant goals is throttled by a few hard-to-cross bottlenecks.Result I (bottleneck-
guided subgoal optimality): the next bottleneck is the optimal one-step subgoal. Result II (spectral
coverage): when crossing a bottleneck is much harder and rarer than moving inside a region, and the
learned Laplacian is accurate enough to reflect this, the low-frequency space provided by Laplacian
representation could closely expose the true bottlenecks. Thereby, Laplacian spectral clustering
recovers most bottlenecks with small error. Combining I and II: thus Laplacian spectral clustering
can identify the

3.1 RESULT I: BOTTLENECK-GUIDED SUBGOAL OPTIMALITY

Theorem 1 (Bottleneck-guidance optimality (condensed)). Given a start s ∈ R⋆cur, a goal set
G ⊆ V \R⋆cur, and the next mandatory cross-section B⋆ on any s→ G path. Then

inf
g∈V

J (g) = T (s→ B⋆) + Eξ
[
T (ξ → G)

]
± O

(
tmix

)
,

where J (g) := T (s→ g) + T (g → G) and ξ ∼ FirstHit(s,B⋆).

Where T (x→ A) := Ex[τA] is the expected hitting time, tmix is the within-region mixing time of
the reflected chain on R⋆cur, and FirstHit(s,B⋆) is the first-hit distribution on B⋆. Proof in Appendix.

Design implication. Pick the next bottleneck as the one-step subgoal. This is near-optimal
whenever moving inside a region is easy and crossing the bottleneck is the main cost.

3.2 RESULT II: SPECTRAL CLUSTERING COVERAGE OF BOTTLENECKS

Theorem 2 (Spectral clustering coverage of bottlenecks (condensed)). Given a weighted, undirected
graph G = (V,W) with random-walk kernel P = D−1W , Laplacian L = I − P , k metastable
regions {R⋆i }ki=1 satisfying Φin(R

⋆
i) ≥ α and Φ(R⋆i → R⋆j) ≤ β ≪ α for i ̸= j, eigengap

γ = λk+1 − λk > 0, and an empirical Laplacian L̂ with deviation δ = ∥L̂− L∥. Let R̂ be obtained
by k-means on the row-normalized first k eigenvectors of L̂. Then there exist C1, C2, C3 > 0 such
that

MisVol ≤ C1
β

α
+ C2

δ

γ
, Overlapε ≥ 1 − C3 MisVol − µ

(
Nε(∂R⋆)

)
.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Where Q(S, T) =
∑
u∈S,v∈T µ(u)P (u, v) is inter-set flow, Φ(S) = Q(S, Sc)/µ(S) is conductance,

Φin(R) is conductance of the reflected chain on R, MisVol = minπ∈Sk

∑
i µ(R̂π(i)△R⋆i) measures

mis-clustered volume, Overlapε = 1− µ(Nε(∂R̂)△Nε(∂R⋆))/µ(V) measures boundary overlap
at tolerance ε, µ is the stationary distribution of P , and Nε(·) is an ε-neighborhood in the graph
metric. Proof in Appendix.

Design implication. Learn a Laplacian embedding and cluster it. When (i) crossing a bottleneck
is much rarer/harder than moving within a region, and (ii) the learned embedding faithfully reflects
these transition patterns, the resulting cluster boundaries closely match the true bottlenecks.

Takeaway

The next bottleneck is the right one-step subgoal, and spectral clustering on a learned Laplacian can
recover those bottlenecks under mild, data-driven conditions. Therefore, choosing subgoals at the
discovered bottlenecks yields near-optimal plans with a small, interpretable gap.

4 METHOD

In this paper, we propose BASS (Bottleneck-Aware Spectral Subgoaling) for OGCRL in environments
where the state space consists of locally connected regions linked by a few hard-to-cross bottlenecks.
Since crossing these bottlenecks dominates both time cost and failure risk, BASS follows a simple
principle: find bottlenecks, then traverse bottlenecks. As shown in Fig. 2, we reveal bottlenecks from
offline dataset via Laplacian spectral clustering and extract a dictionary of keypoints (KPs). Formally,
we denote the state space by S ⊆ RD and learn a Laplacian encoder ϕθ : S → Rd, with KPs given
by k̂p ∈ V = k̂p1, . . . , k̂pM .

At deployment, given (s0, g), we compute a KP routing over these keypoints, choose the next KP,
and using a low-level controller to drive the system into that KP’s acceptance region, a subset of state
space decided by an distance predicate:

N (k̂p) = {x ∈ S : dist(x, k̂p) ≤ ε},
with a single, task-agnostic tolerance ε > 0 per environment.

4.1 DISCOVER BOTTLENECKS

From offline dataset, we construct three artifacts that the deployment stage consumes: a Laplacian
encoder ϕθ, a set of bottleneck keypoints V , and a directed KP reachability graph GKP. We first
learn ϕθ to approximate the first non-zero d ordered low-frequency eigenvectors of the random-
walk Laplacian L (Sec. 3), so that regions become nearly flat and bottlenecks become sharp in the
embedding. Applying K-Means with a mildly over-segmented K to ϕθ(s) assigns region labels
and reveals boundaries whose boundaries align with bottlenecks. Using these labels, we then sweep
trajectories: whenever a transition (st → st+1) crosses clusters and the new cluster persists for
at least τ steps, we record st+1 as a crossing candidate, consolidating nearby candidates into one
representative yields the KP set V . Finally, we build the directed, unweighted graph GKP = (V, E) by
connecting i→j if the dataset contains a short successful fragment such that, starting from the first
hit of N (k̂pi), the trajectory first hits N (k̂pj) without entering any other KP region. Each edge thus
encodes a single, data-supported hop between successive bottlenecks. We provide the pseudocode of
this procedure in appendix A.

4.2 KP SEMANTICS AND ROUTING

Given (s0, g) and the offline artifacts (ϕθ,V,GKP), we compute a shortest KP sequence k̂pi0 →
k̂pi1→· · · and return the next KP for execution. We drop the state coordinates that do not change at
the KP and keep only those that do, which makes the KP easier to reuse on unseen goals. Formally,
we represent each KP as

KP = (I∆, v∆), I∆ ⊆ {1, . . . , D}, v∆ ∈ R|I∆|,

meaning that passing this KP deterministically sets s[I∆]← v∆ while leaving other coordinates
unconstrained.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

…

Eigenvector 1

Eigenvector 2

Eigenvector N

Eigenvector 3

Spectral Clustering

KP Extraction

Extract

Bottleneck Discovery Keypoint Annotated Datasets Deployment

High-Level

Low-Level

Keypoint
Planner

�������

���

��������

Diffusion Planner

[����+�…��������]

Inverse Dynamic

pluggable

Lightweight
MLP

��

Laplacian
Encoder (ϕθ)

������� �������

All States
KP candidates
Selected KPs

Figure 2: BASS overview. We learn a Laplacian encoder ϕθ and apply spectral clustering to
partition the state space into different regions, whose boundaries expose bottlenecks. We then
identify trajectories from the offline dataset that cross these boundaries, and the intersects are
defined as keypoints. Then the most representative KPs are automatically selected and a directed KP
reachability graph GKP is constructed based on the selected KPs. Given (st, g), a keypoint planner
performs KP routing on GKP, restricts choices to V , and selects the next KP. A pluggable low-level
controller, Decision Diffuser or a lightweight MLP, drives the system into the acceptance region
N (k̂p), repeating this over KPs reaches the goal.

4.3 PLUGGABLE LOW-LEVEL CONTROLLERS

Once the next KP is selected, the controller only needs to drive the system into its acceptance region.
We instantiate two interchangeable choices trained offline and selected by task demands at test
time: (i) a Decision Diffuser that predicts a short state rollout (st, . . . , st+k) and is paired with a
lightweight inverse-dynamics MLP to recover actions from (st, st+1), and (ii) a Lightweight MLP
that maps (st, next KP) directly to at for fast inference. An optional keypoint regressor can predict
an intermediate state s̃t+k to stabilize and shorten diffusion horizons. Inspired by the HIQL approach
(Park et al., 2023), we train a small MLP keypoint regressor can predict an intermediate state s̃t+k to
stabilize and shorten planning horizons.

When the diffusion route is optionally used, short trajectory segments are generated by simulating a
reverse-time stochastic differential equation (SDE). Let xt denote the vectorized planned trajectory
at diffusion time t and qt(xt) the diffused trajectory distribution. The reverse process follows

dxt =
[
f(t)xt − g(t)2∇x log qt(xt)

]
dt + g(t) dw̄t,

where the score ∇x log qt(xt) is approximated by the diffusion model’s learned denoiser. We
condition this process on the current state st and an intermediate waypoint ŝt+k at horizon k, then
obtain (st, . . . , st+k) and take at = I(st, st+1) via the inverse-dynamics model.

Summary. Offline we learn a Laplacian embedding, expose bottlenecks by clustering, extract KPs,
and build GKP. We route over KPs using sparse effects to minimize bottleneck crossings, and a
pluggable controller executes each hop into the next acceptance region.

5 EXPERIMENTS

5.1 SETUP

Environment We evaluate on a unified suite of long-horizon, sparse-reward offline benchmarks
spanning both navigation and manipulation, drawing from widely used D4RL and OGBench tasks.
Concretely: Maze2D/PointMaze/AntMaze/HumanoidMaze require navigating complex maps
(umaze/medium/large/ultra/giant) under sparse goal rewards, FrankaKitchen requires manipulating
the scene by executing any four of seven object-centric skills to reach a target configuration. Our

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

datasets cover diverse regimes, including play/diverse, stitch and partial (test-time trajectories are
longer than training snippets), and explore (low-quality data). In addition, we evaluate BASS on
high-dimensional visual AntMaze variants; see Appendix for details and results.

Baselines We evaluate on two benchmark suites and align the baselines accordingly. On D4RL
(Maze2D/AntMaze/HumanoidMaze/VisualAntmaze/FrankaKitchen), we compare against representa-
tive offline methods spanning four paradigms: goal-conditioned imitation RvS-G (Emmons et al.,
2022), sequence models Trajectory Transformer (TT) (Janner et al., 2021), OGCRL methods HIQL
(Park et al., 2023) and ESD (Zhang et al., 2025), and diffusion-based decision making Diffusion-QL
(Wang et al., 2023c), IDQL (Hansen-Estruch et al., 2023), Decision Diffuser (DD) (Ajay et al.,
2023), Diffuser (Janner et al., 2022), and DIAR (Park et al., 2024a). On OGBench, we report
HIQL together with other OGCRL baselines enumerated in OGBench, including goal-conditioned
behavioral cloning (GCBC) (Lynch et al., 2020), goal-conditioned implicit V-learning (GCIVL) (Park
et al., 2024b), goal-conditioned implicit Q-learning (GCIQL) (Kostrikov et al., 2021; Zeng et al.,
2023), Quasimetric RL (QRL) (Wang et al., 2023b), and Contrastive RL (CRL) (Eysenbach et al.,
2022).

5.2 MAIN RESULTS

Table 1: Performance comparison on D4RL (success rate %, mean±std across 3 seeds, higher is
better). We report AntMaze (Play/Diverse), FrankaKitchen, and Maze2D. Best in bold. “–” indicates
not reported by prior work.

Dataset TT RvS-G HIQL ESD Diffusion-QL IDQL Diffuser DD DIAR BASS (Ours)
AntMaze (Play/Diverse)

antmaze-umaze-play-v2 100.0 65.4 83.3 97.1±2.6 93.4±3.4 94.0 0.0 0.0 – 99.3±0.9
antmaze-umaze-diverse-v2 – 60.9 85.4 92.9±4.2 66.2±8.6 80.2 0.0 0.0 88.8±1.5 98.0±1.6
antmaze-medium-play-v2 100.0 58.1 86.8 90.8±6.4 76.6±10.8 84.5 0.0 0.0 – 98.0±0.0
antmaze-medium-diverse-v2 93.3 57.3 84.1 88.3±6.0 78.6±10.3 84.8 0.0 0.0 68.2±6.7 96.7±0.9
antmaze-large-play-v2 60.0 32.4 88.2 88.8±6.0 46.4±8.3 63.5 0.0 0.0 – 96.0±1.6
antmaze-large-diverse-v2 66.7 36.9 86.1 87.9±5.0 56.6±7.6 67.9 0.0 0.0 60.6±2.4 98.7±1.9
antmaze-ultra-play-v2 33.3 – 52.9 56.7±9.1 – – 0.0 0.0 – 97.3±0.9
antmaze-ultra-diverse-v2 20.0 – 39.2 55.8±11.3 – – 0.0 0.0 – 88.0±1.6
Average (AntMaze) – – 75.7 82.3 69.6 – 0.0 0.0 – 96.5

FrankaKitchen
kitchen-partial-v0 – – 65.0 69.8±2.1 60.5±6.9 – 56.2 57.0 63.3±0.9 83.3±4.9
kitchen-mixed-v0 – – 67.7 67.1±5.0 62.6±5.1 – 50.0 65.0 60.8±1.4 86.0±2.8
Average (Kitchen) – – 66.4 68.5 61.2 – 53.1 61.0 62.5 84.5

Maze2D
maze2d-large-v1 – – – – – 90.1 123.0 – 200.3±3.4 189.3±6.2

Table 2: Performance comparison on OGBench (success rate %, mean±std across 3 seeds).
Baselines come from the OGBench reports. Best in bold.

Dataset GCBC GCIVL GCIQL QRL CRL HIQL BASS (Ours)
PointMaze

pointmaze-large-navigate-v0 29± 6 45± 5 34± 3 86± 9 39± 7 58± 5 97.3±1.2
pointmaze-giant-navigate-v0 1± 2 0± 0 0± 0 68± 7 27± 10 46± 9 88.0±6.0
pointmaze-teleport-navigate-v0 25± 3 45±3 24± 7 4± 4 24± 6 18± 4 22.0± 4.0
pointmaze-large-stitch-v0 7± 5 12± 6 31± 2 84± 15 0± 0 13± 6 99.3±1.2
pointmaze-giant-stitch-v0 0± 0 0± 0 0± 0 50± 8 0± 0 0± 0 85.3±3.1
pointmaze-teleport-stitch-v0 31± 9 44±2 25± 3 9± 5 4± 3 34± 4 42.0± 14.0

AntMaze (OGBench variants)
antmaze-large-stitch-v0 3± 3 18± 2 7± 2 18± 2 11± 2 67± 5 81.0±7.0
antmaze-giant-stitch-v0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 2 71.3±7.0
antmaze-large-explore-v0 0± 0 10± 3 0± 0 0± 0 0± 0 4± 5 72.7±1.2

HumanoidMaze
humanoidmaze-large-navigate-v0 1± 0 2± 1 2± 1 5± 1 24± 4 49± 4 57.3±3.1
humanoidmaze-giant-navigate-v0 0± 0 0± 0 0± 0 1± 0 3± 2 12± 4 62.0±9.2
humanoidmaze-large-stitch-v0 6± 3 1± 1 0± 0 3± 1 4± 1 28± 3 45.3±3.1
humanoidmaze-giant-stitch-v0 0± 0 0± 0 0± 0 0± 0 0± 0 3± 2 55.3±3.1

Visual Antmaze
visual-antmaze-large-navigate-v0 4± 0 5± 1 4± 1 0± 0 84±1 53± 9 78.7±2.3
visual-antmaze-large-stitch-v0 24± 3 1± 1 0± 0 1± 1 11± 3 28± 2 68.0±2.0

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Across a wide variety of navigation and manipulation tasks, scales, and dataset regimes, our method
achieves consistently higher success than prior work, highlighting the advantage of using bottlenecks
as subgoals. We also try to explain where the gains arise: (i) in precision-sensitive settings (e.g.,
AntMaze corners where high-DoF agents often stumble, Kitchen grasps that easily miss), placing
subgoals on bottlenecks lets the agent finely adjust to enter the KP acceptance region, (ii) in time-
limit–prone layouts (PointMaze/HumanoidMaze with many detour traps), KP routing finds short KP
chains, and bottleneck-anchored subgoals steer the agent onto the correct corridor early, avoiding
costly backtracking.

5.3 GENERALIZATION ACROSS ENVIRONMENTS

We evaluate generalization along two axes, organized from upper to lower levels in our hierarchy:
(G1) High-level transfer: swapping keypoint graphs across domains, and (G2) Low-level transfer:
controller across AntMaze scales. For (G1), we swap keypoint graphs among three datasets with
similar state space, including PointMaze-large-Stitch, AntMaze-large-Stitch, and AntMaze-large-
Explore, and test them across domains. For (G2), we take a diffuser-based low-level controller trained
on AntMaze-Large-Play and transfer it to other AntMaze scales. Results are summarized in Tab. 3
and Tab. 4.

Table 3: (G1) Cross-domain transfer between PointMaze and AntMaze using swapped keypoint
graphs. Rows: KP source; Columns: test environment.

KP source→ Test env Point-Stitch Ant-Stitch Ant-Explore
Point-Stitch 99.3±1.2 83.3±6.4 87.3±3.1
AntMaze-Stitch 99.3±1.2 81.0± 7.0 65.3± 5.0
Ant-Explore 98.7± 1.2 66.7± 3.1 72.7± 1.2

(G1) High-level transfer: swapping keypoint graphs across domains. Tab. 3 shows that ex-
changing the keypoint graph among the three tasks on the same map does not significantly hurt
performance. We emphasize that this is a diagnostic experiment: for each target environment, the
in-domain BASS row serves as the reference, and the other rows simply reuse the same policy with a
swapped keypoint graph. Our interpretation is that the KP graph captures the topological backbone
of the state space, critical corridors and bottlenecks, rather than the shaping of task-specific rewards.
As a result, planning on this graph remains valid even when the task or data source differs, yielding
stable success rates.

More interestingly, tranfering PointMaze KPs to AntMaze leads to higher success than native
AntMaze KPs. We hypothesize that PointMaze’s simpler point-mass dynamics produce offline
data with smoother intra-region transitions and cleaner inter-region boundaries. This makes graph
construction and the Laplacian-based representation more faithful to true connectivity and bottlenecks
according to Theorm 1. When reused in AntMaze, the upper level then proposes subgoals that
better align with the topological structure of the maze, while the lower level absorbs the actuation
complexity of the ant. This suggests a promising direction: learn KPs in simple domains with rich
coverage, and transfer them to more complex domains that share a similar state space and transition
structure.

Table 4: (G2) Frozen controller transferred across map scales (success %).

Source map→ Target map Umaze Medium Large Ultra

Large 98.7±1.2 96.7±2.3 96.0±1.6 96.7±1.2

(G2) Low-level transfer: controller across AntMaze scales. Tab. 4 demonstrates that a diffuser
planner trained on AntMaze-Large-Play generalizes strongly to other map scales when paired with
each target’s own KPs. Although global layouts differ, the controller receives short-horizon subgoals
from the upper level and only needs to execute local, easy-to-learn skills including move-to-subgoal
and pass-corridor. This decomposition makes the controller largely insensitive to global map differ-
ences and encourages robust, reusable primitives. In other words, choosing bottlenecks as subgoals

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

provides near-optimal guidance, reducing the lower level to a simpler, transferable control task. This
observation supports Theorem 2.

5.4 ABLATION STUDIES

Ablation of the bottleneck-guided subgoals We ablate the high-level subgoal selector. Our method
identifies subgoals at bottlenecks via Laplacian spectral clustering. As a drop-in replacement, we use
the common time-based rule from hierarchical offline goal-conditioned RL (Chane-Sane et al., 2021;
Zhang et al., 2020; Kim et al., 2023; Ajay et al., 2020; Pertsch et al., 2021): following HIQL, every
fixed horizon way steps we choose the state with the highest value as the subgoal. We test two
typical way steps, 25 (HIQL default) and 5. Tab. 5 shows results on antmaze-large-play/diverse-v2.
Replacing bottleneck subgoals with the time-based HIQL variant causes substantial drops, especially
at the short horizon. This indicates that bottleneck-guided subgoals are the primary driver of our
gains. The evidence also supports Theorem 1, which predicts that bottlenecks are near-optimal
subgoals under our assumptions, whereas short-horizon value peaks can be myopic and ignore global
connectivity.

Table 5: Ablation of the bottleneck-guided subgoals on antmaze-large-play/diverse-v2

Setting Large-Play-v2 Large-Diverse-v2
BASS (ours) 98.0 ± 1.6 98.7 ± 1.9

BASS w/ HIQL Keypoint & way step=25 83.3 ± 3.1 84.0 ± 5.3
BASS w/ HIQL Keypoint & way step=5 18.7 ± 2.5 22.7 ± 0.9

Ablation of the Number of Clusters K. To study how the number of clusters K in Laplacian
spectral clustering affects performance, we vary K on four representative environments, the results
are shown in Table 6 and 7. Across these tasks we observe a consistent pattern: very small K
yields overly coarse partitions that under-detect bottlenecks and hurt performance; there is a broad
plateau of K where performance is stable and often matches or even exceeds the numbers in the
main tables; and only a few environments does very large K can slightly reduce performance by
introducing unnecessary path complexity. This trend supports Theorem 2 that the operative criterion
for Laplacian spectral clustering here is to cover bottlenecks.

5.5 VISUALIZATION

(a) AntMaze-Medium-Diverse (b) AntMaze-Large-Diverse (c) AntMaze-Ultra-Diverse

Figure 3: Trajectories and keypoints in three AntMaze layouts. Colors indicate metastable regions,
black dots denote transition keypoints, red crosses mark selected KPs.

In Fig. 3, colors delineate metastable regions, black dots mark transitions across bottlenecks, and red
crosses are the KPs used by the high-level policy. Keypoints concentrate at intersections precisely
where conductance is low and paths must cross—validating that spectral clustering recovers bottle-
necks. Aligning subgoals with these bottlenecks simplifies the task: high-level routing picks short KP
chains, while low-level only needs to enter the next KP’s acceptance region. This bottleneck-guided
decomposition explains the robust gains observed across scales and datasets. We also hand-annotate

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

oracle keypoints on antmaze-large-diverse at the centers of required corners and visually compare the
resulting trajectories with those from BASS; see App. C.

6 RELATED WORK

Goal Conditioned Offline RL One of the mainstream OGCRL approach defines subgoals as
midpoints between the current state s and the goal g, incorporating them as priors during training but
leaving them unused during testing (Chane-Sane et al., 2021). This method enhances learning by
introducing additional supervision. Another approach (Zhang et al., 2020) constrains subgoals within
a k-step neighborhood to maintain local feasibility within a limited horizon. In addition, graph-based
planning methods also support GCRL. For instance, (Kim et al., 2023) treats subgoals as nodes in
a graph, where edges represent advantages between them and are used for path planning during
inference. This combines goal-conditioned policies with graph-based reasoning to facilitate task
completion. Meanwhile, diffusion-based methods have been used to output low-level control signals
or to plan long-horizon trajectories (e.g., Decision Diffuser and Diffuser) and can be plugged into these
frameworks (Ajay et al., 2022; Janner et al., 2022). Besides, hierarchical planning approaches explore
subgoal generation using graphs or models. (Fang et al., 2023) predicts subgoals autoregressively
with latent space representations of future states, while (Li et al., 2022) generates subgoals at regular
intervals, similar to autonomous vehicle navigation systems predicting future keypoints.CE2 (Duan
et al., 2024) leverages cluster boundaries in a learned latent space for online goal-directed exploration,
while our focus is on offline planning and subgoal selection.

Quasimetric RL (QRL) (Wang et al., 2023a) learns a temporal-distance function and uses it to
regularize value learning and planning. HILP (Park et al., 2024c) plans in a temporal latent space
and chooses subgoals as evenly spaced latent states along a trajectory. Graph-Assisted Stitching
(GAS) (Baek et al., 2025) formulates subgoal selection as graph search in a temporal-distance
representation, emphasizing micro-level trajectory stitching across offline data. In contrast, BASS
discovers macro-level bottleneck keypoints via Laplacian structure.

Laplacian Representation In Laplacian representation learning for reinforcement learning (RL),
early work (Mahadevan & Maggioni, 2007) introduced Proto-Value Functions (PVF), leveraging
random-walk Laplacian eigenvectors for state representation. (Wu et al., 2018) expanded this by
proposing a Graph Drawing Objective (GDO) for large state spaces, but it struggled with eigenvector
rotations and hyperparameter tuning. (Wang et al., 2021b) introduced the Generalized Graph Drawing
Objective (GGDO), which improved upon GDO by breaking symmetry, but still faced hyperparam-
eter sensitivity and failed to recover eigenvalues accurately. (Gomez et al., 2023) introduced the
Augmented Lagrangian Laplacian Objective (ALLO), which addresses the shortcomings of GDO and
GGDO. ALLO eliminates hyperparameter dependence, accurately recovers both eigenvectors and
eigenvalues, and provides more stable and accurate results across environments, advancing the field
significantly. In addition, (Klissarov & Machado, 2023) used Laplacian representations to improve
exploration. By contrast, our work uses Laplacian structure to build a bottleneck keypoint graph for
long-horizon offline goal-conditioned decision-making, focusing on discovering semantic bottlenecks
and routing through them rather than on exploration per se.

7 CONCLUSIONS

We reframed offline goal-conditioned RL as routing through metastable regions connected by a few
hard-to-cross bottlenecks. Our principle is simple: the near-optimal one-step subgoal is the next
bottleneck. We operationalize this by learning a Laplacian representation from offline data, applying
spectral clustering to expose bottlenecks, extracting keypoints (KPs) at the crossings, and planning
with a lightweight, dynamics-agnostic BFS over the KP graph. A pluggable low-level controller,
either a Decision Diffuser or a lightweight MLP, then drives the system into each KP’s acceptance
region.

Theory establishes subgoal optimality (Theorem 1) and boundary recovery (Theorem 2), implying
near-optimal routing. Experiments on D4RL and OGBench achieve state-of-the-art success and
generalize across controllers, domains, and scales, including KP-graph swapping (G1) and controller
transfer across AntMaze scales (G2).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work studies offline goal-conditioned RL with bottleneck-guided subgoals on public benchmarks
(D4RL and OGBench). No human subjects or private data are used; all datasets and libraries follow
their original licenses. Potential risks include unintended behaviors when policies are deployed out of
distribution, bias inherited from offline logs, and additional compute/energy costs. We do not deploy
to real robots; all results are in simulation. We recommend human oversight, safety constraints, and
compliance review for any downstream, high-stakes use.

REPRODUCIBILITY STATEMENT

We provide implementation details in the appendix, like Laplacian training objective and optimizer
settings, BFS routing, and low-level controller configurations. We report mean±std over three seeds.
Code will be released after the camera-ready version is finalized.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive
discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022. URL https://arxiv.org/abs/2211.15657.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=sP1fo2K9DFG.

Seungho Baek, Taegeon Park, Jongchan Park, Seungjun Oh, and Yusung Kim. Graph-assisted
stitching for offline hierarchical reinforcement learning. arXiv preprint arXiv:2506.07744, 2025.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with
imagined subgoals. In International conference on machine learning, pp. 1430–1440. PMLR,
2021.

Yuanlin Duan, Guofeng Cui, and He Zhu. Exploring the edges of latent state clusters for goal-
conditioned reinforcement learning. In Advances in Neural Information Processing Systems,
2024.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline RL via supervised learning? In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=S874XAIpkR-.

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learning
as goal-conditioned reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/e7663e974c4ee7a2b475a4775201ce1f-Paper-Conference.pdf.

Kuan Fang, Patrick Yin, Ashvin Nair, Homer Rich Walke, Gengchen Yan, and Sergey Levine.
Generalization with lossy affordances: Leveraging broad offline data for learning visuomotor tasks.
In Conference on Robot Learning, pp. 106–117. PMLR, 2023.

Diego Gomez, Michael Bowling, and Marlos C Machado. Proper laplacian representation learning.
arXiv preprint arXiv:2310.10833, 2023.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies, 2023.

10

https://arxiv.org/abs/2211.15657
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=S874XAIpkR-
https://proceedings.neurips.cc/paper_files/paper/2022/file/e7663e974c4ee7a2b475a4775201ce1f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e7663e974c4ee7a2b475a4775201ce1f-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=wgeK563QgSw.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 9902–9915. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/janner22a.html.

Junsu Kim, Younggyo Seo, Sungsoo Ahn, Kyunghwan Son, and Jinwoo Shin. Imitating graph-based
planning with goal-conditioned policies. arXiv preprint arXiv:2303.11166, 2023.

Martin Klissarov and Marlos C Machado. Deep laplacian-based options for temporally-extended
exploration. arXiv preprint arXiv:2301.11181, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021. URL https://arxiv.org/abs/2110.
06169.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–
10223, 2022.

Corey Lynch, Mohi Khansari, George Toderici, Pierre Sermanet, Sergey Levine, and Pierre Sermanet.
Learning latent plans from play. In Proceedings of the Conference on Robot Learning (CoRL),
volume 100 of Proceedings of Machine Learning Research, pp. 1113–1132, 2020. URL https:
//proceedings.mlr.press/v100/lynch20a/lynch20a.pdf.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. Journal of Machine Learning Research,
8(10), 2007.

Jaehyun Park, Yunho Kim, Sejin Kim, Byung-Jun Lee, and Sundong Kim. Diar: Diffusion-model-
guided implicit q-learning with adaptive revaluation. arXiv preprint arXiv:2410.11338, 2024a.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline goal-
conditioned RL with latent states as actions. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=cLQCCtVDuW.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
offline goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024b. URL https://arxiv.
org/abs/2410.20092.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with Hilbert representa-
tions. In Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 39737–39761. PMLR, 2024c.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, and Jiashi Feng. Towards better
laplacian representation in reinforcement learning with generalized graph drawing. In Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 10747–10757. PMLR, 2021a. URL https://proceedings.mlr.
press/v139/wang21ae.html.

Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, and Jiashi Feng. Towards better
laplacian representation in reinforcement learning with generalized graph drawing. In International
Conference on Machine Learning, pp. 11003–11012. PMLR, 2021b.

11

https://openreview.net/forum?id=wgeK563QgSw
https://openreview.net/forum?id=wgeK563QgSw
https://proceedings.mlr.press/v162/janner22a.html
https://arxiv.org/abs/2110.06169
https://arxiv.org/abs/2110.06169
https://proceedings.mlr.press/v100/lynch20a/lynch20a.pdf
https://proceedings.mlr.press/v100/lynch20a/lynch20a.pdf
https://openreview.net/forum?id=cLQCCtVDuW
https://arxiv.org/abs/2410.20092
https://arxiv.org/abs/2410.20092
https://proceedings.mlr.press/v139/wang21ae.html
https://proceedings.mlr.press/v139/wang21ae.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
ment learning via quasimetric learning. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 36411–36430.
PMLR, 2023a.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
ment learning via quasimetric learning. In Proceedings of the 40th International Conference on
Machine Learning (ICML), volume 202 of Proceedings of Machine Learning Research, 2023b.
URL https://proceedings.mlr.press/v202/wang23al.html.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023c. URL https://openreview.net/forum?id=AHvFDPi-FA.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJlNpoA5YQ.

Zeyu Zeng, Yifei Zeng, Ruida Liu, et al. Goal-conditioned predictive coding for offline re-
inforcement learning. In Advances in Neural Information Processing Systems (NeurIPS),
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/51053d7b8473df7d5a2165b2a8ee9629-Paper-Conference.pdf.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 33:21579–21590, 2020.

Yaocheng Zhang, Yuanheng Zhu, Yuqian Fu, Songjun Tu, and Dongbin Zhao. Offline goal-
conditioned reinforcement learning with elastic-subgoal diffused policy learning. In Proceedings of
the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025),
pp. 2336–2344, Detroit, Michigan, USA, May 2025. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS). URL https://dl.acm.org/doi/10.5555/
3709347.3743874.

12

https://proceedings.mlr.press/v202/wang23al.html
https://openreview.net/forum?id=AHvFDPi-FA
https://openreview.net/forum?id=HJlNpoA5YQ
https://proceedings.neurips.cc/paper_files/paper/2023/file/51053d7b8473df7d5a2165b2a8ee9629-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/51053d7b8473df7d5a2165b2a8ee9629-Paper-Conference.pdf
https://dl.acm.org/doi/10.5555/3709347.3743874
https://dl.acm.org/doi/10.5555/3709347.3743874

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Bottleneck keypoint discovery

Require: Offline dataset Doff = {hi}, number of clusters K, boundary persistence τ
Ensure: Keypoint set KPs

1: // Laplacian representation and spectral clustering
2: Train a Laplacian encoder ϕ on states {s | (s, ·) ∈ Doff} and obtain embeddings z = ϕ(s).
3: Run K-means with K clusters on {z}; let c(s) ∈ {1, . . . ,K} be the cluster label of state s.
4: // Collect boundary samples between clusters
5: Initialize boundary buffer B ← ∅.
6: for each trajectory h = (s0, . . . , sT) in Doff do
7: for t = 0, . . . , T − τb − 1 do
8: if c(st) ̸= c(st+1) and c(st+1) = · · · = c(st+τb) then
9: Append st+1 to B ▷ candidate boundary state

10: end if
11: end for
12: end for
13: // Compress boundary samples into keypoints
14: Initialize keypoint set KPs← ∅.
15: Group boundary samples in B into small neighborhoods of nearby states and compute a represen-

tative center µℓ for each group.
16: for each center µℓ do
17: Construct a keypoint KPℓ = (I∆, v∆) from µℓ as described in Sec. 4.2.
18: Add KPℓ to KPs.
19: end for
20: return KPs

A PSEUDO-CODE FOR BOTTLENECK DISCOVERY

B ABLATION OF THE NUMBER OF CLUSTERS K

Table 6: The performance of our method with different numbers of clusters on antmaze-giant-stitch
and pointmaze-giant-stitch

keypoints 30 32 34 36 38 40 42 44

46 48 50 52 54 56 58

antmaze- 0.0 ± 0.0 13.3 ± 2.3 20.0 ± 7.0 11.3 ± 3.1 40.0 ± 8.0 53.3 ± 3.1 40.7 ± 4.2 60.0 ± 9.2
giant-stitch 62.0 ± 6.0 68.0 ± 3.5 71.3 ± 7.0 63.3 ± 2.3 66.7 ± 2.3 66.7 ± 5.0 61.3 ± 3.1

pointmaze- 92.0 ± 2.0 84.7 ± 1.2 80.7 ± 3.1 86.7 ± 3.1 90.0 ± 5.3 81.3 ± 1.2 78.7 ± 4.2 84.7 ± 5.1
giant-stitch 80.0 ± 3.5 88.7 ± 2.3 85.3 ± 3.1 83.3 ± 6.1 85.3 ± 6.1 88.7 ± 6.1 84.7 ± 3.1

C TRAJECTORY VISUALIZATION AND COMPARISON WITH EXPERT
HAND-ANNOTATED TRAJECTORIES

D IMPLEMENTATION DETAILS OF THE LAPLACIAN LOSS

In our framework, the Laplacian representation is learned by minimizing a loss function that creates
a feature space reflecting the temporal connectivity of the state space. In this representation space,
states that require many transitions to connect (i.e., have long transition durations) are far apart, while
states that are easily reachable (i.e., with short transition periods) are embedded close together. Such
a design not only naturally measures transition difficulty but also highlights bottlenecks and regions
where rapid changes in the learned representation indicate potential sub-task boundaries. These
boundaries manifest as clustering limits where keypoints are more likely to occur.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 7: The performance of our method with different numbers of clusters on antmaze-large-play
and pointmaze-large-stitch.

keypoints 10 15 20 22 24 26 28

30 32 34 36 38 40 42

44 46 48 50

antmaze-large-play 32.0 ± 4.0 15.3 ± 7.0 96.0 ± 1.6 93.3 ± 3.1 94.7 ± 3.1 98.0 ± 2.0 91.3 ± 3.1
91.3 ± 1.2 95.3 ± 1.9 98.0 ± 0.0 92.0 ± 1.6 96.7 ± 0.9 90.7 ± 3.4 87.3 ± 5.0
94.0 ± 3.3 89.3 ± 8.1 90.0 ± 3.3 79.3 ± 4.1

pointmaze-large-stitch 98.0 ± 1.6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.3 ± 0.9 100.0 ± 0.0 100.0 ± 0.0
98.0 ± 3.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.0 ± 2.0 100.0 ± 0.0 100.0 ± 0.0

100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 96.7 ± 1.2

Table 8: Average evaluation steps for HIQL and our method across different environments.

Dataset HIQL Steps BASS (ours) Steps
antmaze-giant-stitch-v0 997.50 864.17
antmaze-large-stitch-v0 640.87 547.28
pointmaze-large-stitch-v0 905.04 265.33
humanoidmaze-large-navigate-v0 1667.65 1652.34
humanoidmaze-large-stitch-v0 1808.40 1717.22
humanoidmaze-giant-navigate-v0 3900.32 3287.94
humanoidmaze-giant-stitch-v0 3978.45 3319.76

Our implementation fully adheres to (Gomez et al., 2023), which training proceeds through four
high-level stages:

D.1 DATA SAMPLING

• Graph-Drawing (Primal) Pairs: From the replay buffer or trajectory dataset, randomly
sample state-transition pairs (st, st+n). These capture the temporal difficulty of moving
from st to st+n over a fixed (or randomly chosen) horizon n, exactly as in the classical
Laplacian spectral objective.

• Orthogonality (Constraint) Batches: Independently sample two small batches of states
{s1i } and {s2i }. These are not paired but serve to enforce near-orthogonality between
different embedding dimensions, consistent with the proper Laplacian constraint.

D.2 REPRESENTATION ENCODING

A single encoder network ϕθ maps each sampled state into a d-dimensional embedding:

u = ϕθ(s) ∈ Rd.

• ϕθ(st) and ϕθ(st+k) are used to compute the graph-drawing loss, matching the ⟨u, Lu⟩
term of the proper Laplacian.

• ϕθ(s1i) and ϕθ(s2i) are used to compute the orthogonality error matrix, implementing the
uTu = I constraint softly.

D.3 LOSS CONSTRUCTION

We combine three terms into a single augmented Lagrangian that exactly mirrors the proper Laplacian
objective:

Ltotal = Lgraph + Ldual + Lbarrier.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: Comparison between our trajectories and oracle trajectories.

• Graph-Drawing Term:

Lgraph =

d∑
i=1

(uit − uit+k)2 × coeffi,

which exactly implements the ⟨u, Lu⟩ spectral penalty.
• Linear Lagrangian (Dual) Term:

Ldual =
∑
j≥k

βjk ⟨uj , stopgrad(uk)⟩,

with dual variables βjk enforcing the orthogonality constraints in the augmented Lagrangian
sense.

• Quadratic Barrier Penalty:

Lbarrier = b
∑
j≥k

(⟨uj , stopgrad(uk)⟩ − δjk)2,

softly enforcing uTu = I , consistent with the proper Laplacian spectral formulation.

D.4 JOINT OPTIMIZATION WITH ALTERNATING UPDATES

1. Encoder Update: With β and b fixed, minimize Ltotal w.r.t. θ, exactly following the proper
spectral embedding procedure.

2. Dual Variables Update: With θ fixed, perform a projected gradient ascent step on β using
current orthogonality errors, corresponding to the update of Lagrange multipliers.

3. Barrier Scheduling: Increase b over training—on a schedule or when constraint violations
persist—to maintain the strength of the barrier term, as in augmented Lagrangian methods.

D.5 SUMMARY

By strictly following the classical Laplacian spectral graph objective and its augmented Lagrangian
relaxation—combining

1. a graph-drawing term preserving transition difficulty,
2. a linear Lagrangian term enforcing orthonormality,
3. a quadratic barrier penalty for soft constraints,

and by alternating minimization for the encoder with maximization for the duals, we obtain a proper
Laplacian embedding that faithfully preserves temporal connectivity and yields disentangled, stable
representations for downstream keypoint detection and hierarchical control.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E RESIDUAL-STATE BFS FOR KP ROUTING

In the main text (§4.2), we represent a keypoint (KP) as

KP = (I∆, v∆), I∆ ⊆ {1, . . . , D}, v∆ ∈ R|I∆|,

which deterministically sets the coordinates in I∆ to v∆. Given a start–goal pair (s0, g), we plan
only over coordinates that differ from the goal:

R0 = { i : s0[i] ̸= g[i] }, q = |R0|.
For each KP, we keep only its goal-aligned footprint

F (KP; g) = { i ∈ I∆ : v∆[i] = g[i]}.

Routing. We perform breadth-first search only over KPs that can change at least one currently
unsatisfied coordinate (i.e., F (KP; g) ∩ R ̸= ∅), and apply light pruning: skip no-op KPs (no
residual coverage), de-duplicate visited residual sets, and optionally prioritize candidates by |F ∩R|
to reduce expansions while preserving shortest-path optimality.

Complexity and scale. Let d denote the average number of KPs whose footprints intersect the
current residual (average branching factor). In the worst case, the number of residual sets visited is
bounded by 2q , and each expansion considers O(d) candidates:

O(d · 2 q) time, O(2 q) space.
In our OGCRL settings, both quantities are very small in practice (empirically d < 5, q < 10),
making runtime acceptable.

F LOW-LEVEL STRATEGY (PLUGGABLE)

Our low level is modular and exposes a unified interface
at = LOWLEVEL(st, g̃t; η),

where g̃t is the high-level keypoint–guided mid-goal and η are backend hyperparameters. We run in a
receding horizon: compute at from (st, g̃t), step the env to get st+1, and repeat.

F.1 KEYPOINT-CONDITIONED k-STEP STATE PREDICTION

Because time-to-reach a keypoint is uncertain while planners often assume a fixed horizon k, we first
predict a k-step target state st+k conditioned on the current state and the selected keypoint:

st+k = πω
(
st, ki

)
,

where ki is the keypoint selected by the high level. Concretely:

• Inputs. (st, ki).
• Objective. A value model Vϕ(s, k) provides HIQL-style supervision to train πω so that the

predicted st+k maximizes the expected keypoint-conditioned return over k steps.
• Output. st+k, which anchors a short-horizon plan.

This k-step target is then consumed by one of two interchangeable backends.

F.2 BACKEND A: SHORT-HORIZON DIFFUSION PLANNER (DECISION DIFFUSER)

Conditioning. Generate a k-step local plan from st to the target st+k by conditional diffusion, using
(st, st+k) (or (st, g̃t) if planning in action space) as conditioning signals.

Sampling. A time-indexed network ϵθ(·, t) approximates the reverse score to produce a smooth
trajectory {st, . . . , st+k} with a small number of reverse steps.

State→Action. If planning in state space, actions are recovered via a lightweight inverse-dynamics
MLP Iζ :

at = Iζ
(
st, st+1

)
,

trained with MSE on offline transitions. If planning directly in action space, Iζ is not used.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameters

Hyperparameter Value & Specifics
d (embedding dim.) 21 = 1 zero-eigenvector + 20 low-frequency eigenvectors
other Laplacian representation params follow Gómez et al. (2023) settings
k (intermediate horizon) 5 for AntMaze, 25 for Kitchen
T (diffusion steps) 5 for AntMaze, 50 for Kitchen
Diffusion model DiT with hidden dim=384, nhead=8, layers=3
Optimizer (diffusion) AdamW with lr=2× 10−4

Optimizer (ivdm) weight decay=1× 10−5

Inverse dynamics (hidden size) MLP hidden size=256, optimizer Adam lr=2× 10−4

F.3 BACKEND B: GOAL-CONDITIONED REACTIVE CONTROLLER (GC-MLP)

Inputs. Concatenate the current state and subgoal: xt = [st, g̃t] (or [st, st+k]). A small MLP fψ
outputs at = fψ(xt).

Training: IQL Objective. We train the GC-MLP with the IQL loss, together with a value network
Vϕ and a critic Qθ:

LQ(θ) = E(s,a,r,s′)∼D

[(
Qθ(s, a)−

(
r + γ Vϕ(s

′)
))2]

, (1)

LV (ϕ) = E(s,a)∼D

[
ρτ
(
Qθ(s, a)− Vϕ(s)

)]
, ρτ (δ) = |τ − ⊮{δ < 0}| δ2, (2)

Lπ(ψ) = E(s,a)∼D

[
exp

(Qθ(s,a)−Vϕ(s)
β

)
∥a− fψ([s, g̃])∥22

]
, (3)

where τ is the expectile level and β is the temperature. At test time we condition fψ on either g̃t or
st+k depending on the configuration.

F.4 SUMMARY

• Unified pipeline. (1) Predict a keypoint-conditioned k-step target st+k; (2) realize control with
either (A) a diffusion planner (with optional inverse dynamics) or (B) a GC-MLP trained with the
IQL objective.

• Pluggability. Both backends implement the same interface at = LOWLEVEL(st, g̃t; η) and can
be swapped without changing the high level.

• Effect. Bottleneck-guided subgoals provide reliable waypoints, so the low level only needs to
execute short, simple transitions between keypoints.

G HYPERPARAMETERS

We summarize the hyperparameters in Tab. 9. In all experiments we follow the ALLO configuration
of Gómez et al. (2023) for the Laplacian encoder, except that we increase the embedding dimension
from 11 to 21 to accommodate the more complex geometries. And we fix the cluster-crossing
persistence threshold to τ = 20 in all experiments. We observed that performance is insensitive to τ
over a broad range, so we treat it as a fixed constant and do not tune it per environment.

H LAPLACIAN REPRESENTATION

In this section, we present a series of visualizations of the Laplacian representation in various antmaze
environments. The figures illustrate both the learned eigenvectors and the results of spectral clustering.

I PROOFS AND TECHNICAL DETAILS FOR THEORIES

This appendix expands the statements in Section 3, provides self-contained proofs under standard
assumptions, and aligns the notation with the main text. Throughout we work on a weighted,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

x
y

Eigenvector 0

x

y

Eigenvector 1

x

y

Eigenvector 2

x

y

Eigenvector 3

x

y

Eigenvector 4

x

y

Eigenvector 5

x

y

Eigenvector 6

x

y

Eigenvector 7

x

y

Eigenvector 8

x

y

Eigenvector 9

x

y

Eigenvector 10

x

y

Eigenvector 11

x

y

Eigenvector 12

x

y

Eigenvector 13

x

y

Eigenvector 14

x

y

Eigenvector 15

x

y

Eigenvector 16

x

y

Eigenvector 17

x

y

Eigenvector 18

x

y

Eigenvector 19

x

y

Eigenvector 20

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

Figure 5: Learned eigenvectors for antmaze-medium-play

Figure 6: Spectral clustering results for antmaze-medium-play

x

y

Eigenvector 0

x

y

Eigenvector 1

x

y

Eigenvector 2

x

y

Eigenvector 3

x

y

Eigenvector 4

x

y

Eigenvector 5

x

y

Eigenvector 6

x

y

Eigenvector 7

x

y

Eigenvector 8

x

y

Eigenvector 9

x

y

Eigenvector 10

x

y

Eigenvector 11

x

y

Eigenvector 12

x

y

Eigenvector 13

x

y

Eigenvector 14

x

y

Eigenvector 15

x

y

Eigenvector 16

x

y

Eigenvector 17

x

y

Eigenvector 18

x

y

Eigenvector 19

x

y

Eigenvector 20

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

0.2

0.0

0.2

Figure 7: Learned eigenvectors for antmaze-medium-diverse

Figure 8: Spectral clustering results for antmaze-medium-diverse

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

x
y

Eigenvector 0

x

y

Eigenvector 1

x

y

Eigenvector 2

x

y

Eigenvector 3

x

y

Eigenvector 4

x

y

Eigenvector 5

x

y

Eigenvector 6

x

y

Eigenvector 7

x

y

Eigenvector 8

x

y

Eigenvector 9

x

y

Eigenvector 10

x

y

Eigenvector 11

x

y

Eigenvector 12

x

y

Eigenvector 13

x

y

Eigenvector 14

x

y

Eigenvector 15

x

y

Eigenvector 16

x

y

Eigenvector 17

x

y

Eigenvector 18

x

y

Eigenvector 19

x

y

Eigenvector 20

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

0.1

0.0

0.1

Figure 9: Learned eigenvectors for antmaze-large-play

Figure 10: Spectral clustering results for antmaze-large-play

x

y

Eigenvector 0

x

y

Eigenvector 1

x

y

Eigenvector 2

x

y

Eigenvector 3

x

y

Eigenvector 4

x

y

Eigenvector 5

x

y

Eigenvector 6

x

y

Eigenvector 7

x

y

Eigenvector 8

x

y

Eigenvector 9

x

y

Eigenvector 10

x

y

Eigenvector 11

x

y

Eigenvector 12

x

y

Eigenvector 13

x

y

Eigenvector 14

x

y

Eigenvector 15

x

y

Eigenvector 16

x

y

Eigenvector 17

x

y

Eigenvector 18

x

y

Eigenvector 19

x

y

Eigenvector 20

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.1

0.0

0.1

Figure 11: Learned eigenvectors for antmaze-large-diverse

Figure 12: Spectral clustering results for antmaze-large-diverse

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

x
y

Eigenvector 0

x

y

Eigenvector 1

x

y

Eigenvector 2

x

y

Eigenvector 3

x

y

Eigenvector 4

x

y

Eigenvector 5

x

y

Eigenvector 6

x

y

Eigenvector 7

x

y

Eigenvector 8

x

y

Eigenvector 9

x

y

Eigenvector 10

x

y

Eigenvector 11

x

y

Eigenvector 12

x

y

Eigenvector 13

x

y

Eigenvector 14

x

y

Eigenvector 15

x

y

Eigenvector 16

x

y

Eigenvector 17

x

y

Eigenvector 18

x

y

Eigenvector 19

x

y

Eigenvector 20

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

Figure 13: Learned eigenvectors for antmaze-ultra-play

Figure 14: Spectral clustering results for antmaze-ultra-play

x

y

Eigenvector 0

x

y

Eigenvector 1

x

y

Eigenvector 2

x

y

Eigenvector 3

x

y

Eigenvector 4

x

y

Eigenvector 5

x

y

Eigenvector 6

x

y

Eigenvector 7

x

y

Eigenvector 8

x

y

Eigenvector 9

x

y

Eigenvector 10

x

y

Eigenvector 11

x

y

Eigenvector 12

x

y

Eigenvector 13

x

y

Eigenvector 14

x

y

Eigenvector 15

x

y

Eigenvector 16

x

y

Eigenvector 17

x

y

Eigenvector 18

x

y

Eigenvector 19

x

y

Eigenvector 20

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

0.05

0.00

0.05

0.10

Figure 15: Learned eigenvector for antmaze-ultra-diverse

Figure 16: Spectral clustering results for antmaze-ultra-diverse

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

undirected state-transition graph = (V,W) built from offline data, with degree D = diag(W1),
random-walk kernel P = D−1W , and random-walk Laplacian L = I − P . The (unique) stationary
distribution is µ⊤P = µ⊤,

∑
v∈V µ(v) = 1. Eigenvalues of L satisfy 0 = λ1 ≤ λ2 ≤ · · · , and the

k-way eigengap is γ = λk+1 − λk > 0. For measurable S, T ⊆ V define the inter-set flow

Q(S, T) =
∑

u∈S,v∈T
µ(u)P (u, v),

the (outer) conductance Φ(S) = Q(S, Sc)/µ(S), and, for a region R, the internal conductance of the
reflected chain PR (with stationary law µR),

Φin(R) = inf
∅̸=A⊆R, µR(A)≤ 1

2

QR(A,R\A)
µR(A)

.

For A ⊆ V , write ∂A = {v ∈ V : P (v,A) > 0 and P (v,Ac) > 0} and A = A ∪ ∂A. For any
B ⊆ V and ε > 0, Nε(B) denotes the ε-neighborhood in the shortest-path (graph) metric. We use
the following metastability condition (inner-strong / outer-weak):

∃R⋆ = {R⋆1, . . . , R⋆k}with µ(R⋆i) ∈ [η, 1−η], Φin(R
⋆
i) ≥ α, Φ(R⋆i → R⋆j) ≤ β ≪ α (i ̸= j).

(4)
Let L̂ be the Laplacian estimated from offline data and δ = ∥L̂− L∥ its operator-norm deviation.

Hitting times and mixing. For A ⊆ V , let τA = inf{t ≥ 0 : Xt ∈ A} be the hitting time, and
define T (x→ A) = Ex[τA]. For a regionR, let tmix(R) be the least t such that maxx∈R ∥P tR(x, ·)−
µR∥TV ≤ 1/4; we write tmix for tmix(R

⋆
cur) when context is clear.

A. BOTTLENECK-GUIDED SUBGOAL OPTIMALITY (FULL VERSION OF THM. ??)

Theorem 3 (Bottleneck-first optimality). Fix a start s ∈ R⋆cur and a goal setG ⊆ V \R⋆cur. Consider
the one-step high-level objective

J (g) := T (s→g) + T (g→G), g ∈ V.

Let ⋆ denote a next mandatory cross-section for any s→G path (e.g., an s–G minimum-capacity cut
intersected with ∂R⋆cur), and let ξ ∼ FirstHit(s,⋆) be the first-hit distribution on ⋆. Then there exists
g⋆ ∈ ⋆ such that

inf
g∈V

J (g) = T (s→⋆) + Eξ[T (ξ→G)] ± C · tmix,

where C > 0 is an absolute constant depending only on the chosen total-variation threshold in the
definition of tmix.

Proof sketch. (Decomposition at the bottleneck) By the strong Markov property at τ⋆ ,

T (s→g) = T (s→⋆) + Eξ
[
T (ξ→g)

]
,

hence
J (g) = T (s→⋆) + Eξ

[
T (ξ→g) + T (g→G)

]
.

(Lower bound) By the triangle inequality for hitting times, T (ξ→g) + T (g→G) ≥ T (ξ→G) for
any g, yielding

J (g) ≥ T (s→⋆) + Eξ[T (ξ→G)].

(Achievability up to mixing) Pick g ∈ ⋆. Inside R⋆cur, the reflected chain mixes to µR⋆
cur

in tmix steps,
so the distance from the first-hit ξ to g is controlled by O(tmix); likewise T (g→G) = Eξ[T (ξ→
G)]±O(tmix). Combining with the decomposition gives the claim.

Design implication (restated). Placing the next bottleneck as the one-step subgoal is near-optimal
up to an O(tmix) gap whenever movement inside a region is fast compared with crossing the
bottleneck.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B. SPECTRAL CLUSTERING COVERAGE OF BOTTLENECKS (FULL VERSION OF THM. ??)

Let U ∈ R|V |×k collect the first k nontrivial eigenvectors of L, and Z be its row-normalization (each
row scaled to unit ℓ2 norm). Likewise obtain Û , Ẑ from L̂. Running k-means on the rows of Ẑ
returns a partition R̂ = {R̂1, . . . , R̂k}. Define the misclustered volume (up to permutation π) and the
ε-thick bottleneck overlap:

MisVol = min
π∈Sk

k∑
i=1

µ
(
R̂π(i)△R⋆i

)
, Overlapε = 1−

µ
(
Nε(∂R̂)△Nε(∂R⋆)

)
µ(V)

.

Theorem 4 (High-overlap bottleneck recovery). Under metastability equation 4 with eigengap γ =

λk+1 − λk > 0 and empirical deviation δ = ∥L̂−L∥, there exist absolute constants C1, C2, C3 > 0
such that

MisVol ≤ C1
β

α
+ C2

δ

γ
, Overlapε ≥ 1 − C3 MisVol − µ

(
Nε(∂R⋆)

)
. (5)

Consequently, when β/α and δ/γ are small and the true bottleneck tube vanishes as ε ↓ 0, the
spectral partition achieves near-unity overlap with the true low-conductance bottlenecks.

Proof sketch. (i) Population embedding is region-constant up to O(β/α). Write L = L0 + E
with L0 = blkdiag(LR⋆

1
, . . . , LR⋆

k
) and ∥E∥ ≲ β; each block has spectral gap λ2(LR⋆

i
) ≳ α.

By Davis–Kahan/Weyl, the span of the first k eigenvectors of L deviates by O(β/α) from the
ideal piecewise-constant subspace that is indicator-like on {R⋆i }. Row-normalization maps the k
regions near the vertices of a regular simplex on Sk−1, with separation bounded below by a constant
depending on (k, η).

(ii) Empirical subspace stability is O(δ/γ). With ∆ = L̂−L, Davis–Kahan yields ∥ sinΘ(Û , U)∥ ≤
C δ/γ. Thus each empirical row (of Ẑ) lies within ε⋆ = C(β/α+ δ/γ) of its ideal center on the unit
sphere.

(iii) k-means stability implies a misvolume bound. Standard perturbation arguments for spherical
k-means convert ε⋆ and center separation to MisVol ≤ C ′ε⋆ (up to constants depending on (k, η)),
establishing the first inequality in equation 5.

(iv) From misclustered volume to boundary overlap. Misclustered points concentrate in a thin tube
around the true inter-region boundaries; thickening by ε absorbs local ambiguities and yields the
overlap lower bound with a linear penalty in MisVol.

Design implication (restated). Learn a Laplacian embedding and cluster it. When within-region
mixing is strong and cross-region transitions are rare (small β/α), and the learned Laplacian is
accurate relative to its eigengap (small δ/γ), spectral clustering recovers bottlenecks with small error.

C. ADDITIONAL REMARKS AND CONSTANTS

Choice of Laplacian. All results extend to the symmetric normalized Laplacian Lsym = I −
D−1/2WD−1/2 with the usual row/length normalizations; constants change by absolute factors.

Estimating δ. In practice, δ is reduced by symmetrization, lazy random walks, density-regularized
graphs, and sufficient offline coverage.

Multiple comparable bottlenecks. If several bottlenecks are comparable, λ2, . . . , λk may be
clustered; Theorem 4 still provides high overlap with their union. Our high-level planner then selects
the next bottleneck along the cheapest s→G route (cf. Theorem 3).

Mixing constant in Theorem 3. The O(tmix) term is with respect to the total-variation threshold
1/4; other constants follow by standard monotonicity of total-variation mixing times.

Summary. The next bottleneck is the near-optimal one-step subgoal up to a small, interpretable
mixing-time gap; and spectral clustering on a learned Laplacian recovers those bottlenecks with error
controlled by the inner/outer conductance contrast and the Laplacian estimation error.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

J USE OF LLMS.

We used large language models solely for language polishing (grammar, wording, and clarity). They
were not used to design experiments, generate or analyze data, write code, or substantively shape
results or claims. All LLM-assisted edits were reviewed and verified by the authors.

23

	Introduction
	Preliminaries
	Theory in a Nutshell: From Laplacian Spectral Clustering to Optimal Subgoals
	Result I: Bottleneck-guided subgoal optimality
	Result II: Spectral clustering coverage of bottlenecks

	Method
	Discover bottlenecks
	KP semantics and routing
	Pluggable low-level controllers

	Experiments
	Setup
	Main Results
	Generalization Across Environments
	Ablation Studies
	Visualization

	Related Work
	Conclusions
	Pseudo-code for Bottleneck Discovery
	Ablation of the Number of Clusters K
	Trajectory visualization and comparison with expert hand-annotated trajectories
	Implementation Details of the Laplacian Loss
	Data Sampling
	Representation Encoding
	Loss Construction
	Joint Optimization with Alternating Updates
	Summary

	Residual-state BFS for KP routing
	Low-Level Strategy (Pluggable)
	Keypoint-Conditioned k-Step State Prediction
	Backend A: Short-Horizon Diffusion Planner (Decision Diffuser)
	Backend B: Goal-Conditioned Reactive Controller (GC-MLP)
	Summary

	Hyperparameters
	Laplacian Representation
	Proofs and Technical Details for Theories
	Use of LLMs.

