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Abstract

Semantic parsing based on large language mod-
els aims to transform natural language ques-
tions into logical forms to support the genera-
tion of answers. Although beam search-based
decoding strategies are widely adopted to en-
sure the golden logical form appears in candi-
date lists, the golden logical form often fails
to rank first, which raises execution time and
answer error rate. To solve this problem, we
propose RankKBQA, a flexible plugin that op-
timizes for speed and effectiveness in KBQA
via a logical-question bidirectional reranking
framework. Specifically, RankKBQA first con-
verts generated logical forms into correspond-
ing questions via a fine-tuned PLM-based tran-
scriber, and then measures question similarity
with the original input, which obtains the sec-
ond logical form sorting list. Finally, we utilize
a bidirectional reranking algorithm to merge the
original sorting with the new sorting. Through
the above steps, the proposed framework raises
the golden logical form ranking list, simulta-
neously improving execution efficiency (most
+42.1 speedup) and QA accuracy (most +2.9
F1) by reducing the candidate search space.
Our code is available at https://anonymous.
4open.science/r/RankkKBQA-F702/.

1 Introduction

Knowledge base question answering (KBQA) (Yih
et al., 2015) has been used to explain and respond
to users’ queries with a large amount of stored
knowledge (Bollacker et al., 2008; Vrandeci¢ and
Krotzsch, 2014) for a long time, which has poten-
tial applications in many fields, and has once be-
come the focus of academic and industrial research.
As one of the core methods of knowledge-based
question answering, semantic parsing aims to ef-
fectively transform natural language questions into
logical forms to support the generation of answers,
and has achieved great results in recent years. The
initial work is to translate the question into an inter-
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Figure 1: Comparison of our proposed method with
existing methods, in brief, our method addresses the
high accuracy and efficiency requirements of KBQA
systems for top-1 results by transcription and reranking.

mediate logical form before execution (Yih et al.,
2015), such as SPARQL or S-expressions.

Recently, large language models (LLMs), such
as Codex (Chen et al., 2021) and GPT-4 (Achiam
et al.,, 2023), have demonstrated powerful in-
context learning capabilities, which can complete
complex reasoning tasks based on target questions
after learning from few-shot pairs of examples
(question, logical form) (Gao et al., 2023; Chen
et al., 2022). The previous methods are usually
divided into two phases, as shown in Figure 1 Top.
First, a list of candidate logical forms is generated
through LL.Ms, and then an executable logical ex-
pression is obtained through entity linking and rela-
tion linking. The self-consistency principle (Wang
et al., 2022) is used in answer selection; that is, the
majority voting strategy is used to determine the
final answer after all candidate expressions are exe-
cuted. Or use the principle of first validity (Ye et al.,
2022; Luo et al., 2024a), which means that candi-
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date expressions are executed sequentially with the
first valid answer as the final answer. The high ac-
curacy of most voting strategies is in exchange for a
large number of unreliable candidates, resulting in
increased runtime, which typically requires query-
ing thousands of SPARQL queries and taking a few
minutes to get an answer. Applications that use a
LLM as a base model cannot afford such a waste
of resources and response speed; Although the first
validity principle reduces the time cost caused by
the self-consistency principle to some extent, it is
inevitable that the golden logical form in the list of
candidate logical forms is not in the first place of
the effective execution list. This reduces the real
power of LLMs to some extent.

In this work, we propose RankKBQA (Figure
1 Bottom), a new plug-in that addresses the high
accuracy and efficiency requirements of KBQA
systems for top-1 results by transcribing gener-
ated logical forms into natural language questions,
serializing structured knowledge, and assisting in
reranking candidate lists. Specifically, RankKBQA
consists of three phases. In the first phase, we
generate a list of candidate logical forms for the
target question. Here we adopt two approaches:
the fine-tuning approach and the in-context learn-
ing (ICL) approach. We generate candidate logical
forms for the target question by fine-tuning the
LLM based on the question and its corresponding
logical forms (i.e., S-expressions) or as example
pairs of LLM for the ICL approach. The results of
the beam search show that more than 70% of the
test questions match gold facts when converted into
logical form. In the second phase, we introduce
the reverse transcription-assisted methods (RTAM),
which use a fine-tuned lightweight pre-trained lan-
guage model (PLM) with the ability to perceive
structured knowledge to generate natural language
questions. Then, a semantic similarity algorithm is
used to rerank the list of candidate logical forms
according to the target question and the list of tran-
scribed natural language questions. Considering
that the preliminary generated list also contributes
a lot, we take it as another clue and adopt the bidi-
rectional reranking algorithm for comprehensive
ranking. Finally, RankKBQA gets an executable
SPARQL query after entity linking and relation
linking. RankKBQA addresses the high-precision
requirement of top-1 results for KBQA systems and
further taps into the faster inference capabilities of
LLM:s.

To evaluate the validity of RankKBQA, we

conducted experiments on two standard KBQA
datasets, WebQSP (Yih et al., 2016) and complex
webquestions (CWQ) (Talmor and Berant, 2018).
The experimental results show that RankKBQA
not only achieves competitive performance in
the KBQA task, but can reduce the run time of
RankKBQA by more than 40% compared to the
most advanced model. These results demonstrate
the reliability and efficiency of our approach.

2 Related Work

2.1 LLM-based Agent method for KBQA

Agents built on the basis of LLMs demonstrate
impressive reasoning abilities in a variety of
downstream tasks. KD-CoT (Wang et al., 2023)
overcomes illusion and error propagation by ver-
ifying and modifying inference trajectories in
CoT through interaction with external knowledge;
Interactive-KBQA (Xiong et al., 2024) develops
three common APIs for the interaction between
LLM and KBs to directly generate logical forms;
QueryAgent (Huang et al., 2024) utilizes rich en-
vironmental feedback in intermediate steps to per-
form selective and differentiated self-correction.

2.2 Fine-tuning method for KBQA

Most state-of-the-art KBQA models are based on
semantic parsing (Lan et al., 2021; Luo et al.,,
2024a), where a question is mapped onto a logical
form over the KB. RNG-KBQA (Ye et al., 2022),
ArcaneQA (Gu and Su, 2022), and DECAF (Yu
et al., 2023) use sequence-to-sequence models to
generate the complete S-expression and provide
various enhancements to the semantic parsing pro-
cess. Uni-Parser (Liu et al., 2022) and FC-KBQA
(Zhang et al., 2023) introduce more fine-grained
primitives to aid in the generation of logical forms;
HGNet (Chen et al., 2023) generates query graphs
by hierarchical autoregressive decoding; ChatK-
BQA (Luo et al., 2024a) uses a fine-tuned LLM to
generate logical forms. RoG (Luo et al., 2024b)
generates a relationship path based on KGs as a
faithful plan.

2.3 Few-shot ICL method for KBQA

LLM has strong generalization ability, which
makes the few-shot ICL method allow LLM to
complete even complex inference tasks while ob-
serving a few labeled data (Cheng et al., 2023). KB-
BINDER (Li et al., 2023) instructs Codex (Chen
et al., 2021) to generate logical forms for the tar-
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Figure 2: TRKBQA framework. Take the few-shot ICL method as an example. Firstly, based on the user’s question,
samples from the KB are provided to the LLM to generate multiple preliminary logical forms for the question. Next,
a PLM transforms the generated logical forms into natural language questions, which are ranked by similarity to
the target question. Finally, we will use the sorted list and the preliminary generated list as the two clues of Borda

Count, and execute Borda Count to rerank.

get question. KB-Coder (Nie et al., 2024) finds
that the LLM is more familiar with generating a
code style than it is with generating structured
queries, so it converts the generation process of
an unfamiliar logical form into the more familiar
code generation process through function calls. To
further alleviate the illusion problem, ToG (Sun
et al., 2024) introduces a novel approach called
thinking on graphs, which guides the LLM to it-
eratively perform a beam search over the KG to
discover the most promising inference paths. In
addition, FlexKBQA (Li et al., 2024) introduces a
lightweight model to further assist the generation
of LLMs.

3 Preliminaries

Knowledge Base (KB). Given a KB K =
{(s,r,0) | s € E,r € R,0 € EU L}, where £
a set of entities, £ a set of literals, and R a set of
binary relations. Each entity e € £ in the entity
set £ has a MID (i.e., machine identifier), which
is unique and has a surface name corresponding to
it. (e.g., “m.08415” corresponds to “Washington

Redskins™). Each relation € R in the set of rela-
tions R consists of multiple levels of labels, (e.g.
r="sports.sports_team.location”). Besides, a literal
[ € L is usually an integer, float, or datetime value.

Logical Form. Logical form is a structured rep-
resentation of a natural language question in a KB.
(e.g., SPARQL, query graph or S-expression). Fol-
lowing (Luo et al., 2024a), we use S-expressions to
represent questions over KB. S-expression uses
functions operating on set-based semantics and
eliminates variable usages as in lambda DCS
(Liang, 2013). This makes S-expression a suit-
able representation for the task of KBQA because
it balances readability and compactness (Gu et al.,
2021).

Program Execution. For the KBQA task, given
a natural language question () and a knowledge
base K, we first convert () to the logical form
LF = SP(Q), where SP(-) is a semantic pars-
ing function.Then, we convert the logical form into
a SPARQL query ¢ = COV(LF) that can be ex-
ecuted on the KB, where COV/(+) is a conversion
function. Finally the set of answers A = Exec(q |



K) is obtained by executing ¢ against X', where
Exec(-) is a query execution function.

4 Methodology

4.1 Overview Of RankKBQA

RankKBQA is a three-stage KBQA framework (2),
first generating, then sorting, and finally retrieving.
Specifically, RankKBQA uses fine-tuning methods
or few-shot ICL methods to generate candidate log-
ical forms for the target question. Meanwhile, the
pre-trained Language Model (PLM) was fine-tuned
to enable it to transcribe logical forms into natural
language questions, and obtain a new ranked list by
semantic similarity matching. Finally, the bidirec-
tional re-ranking algorithm was used to merge the
original ranking and the new ranking. Finally, the
logical form is transformed into a SPARQL query
by knowledge base pattern matching and executed
to obtain the final answer.

4.2 Candidates Generation

We employ two methods: fine-tuning and few-
shot ICL, to generate candidate logical forms. For
fine-tuning, we utilize LoRA (Hu et al., 2022),
which employs low-rank matrix decomposition to
optimize parameter updates, thereby significantly
reducing computational and memory costs. Us-
ing this method, we fine-tune Llama-3-8B (Dubey
et al., 2024) to endow it with natural-language-to-
logical-form translation capabilities.

It is worth noting that the logical form in the
dataset uses MID representation entities such as
"m.08415", which is not conducive to reason-
ing and learning. Therefore, we replace MID
with the surface name of the entity. Further-
more, relation labels are often multi-level (e.g.,
"sport.sports_team.location"), which adds to the
difficulty of generation for LLMs, which we format
as "sport, sport team, location". Finally, we wrap
the entity and relationship in brackets, e.g.,"(join
(R[sport, sport team, location])[Redskins])".

For the few-shot ICL method, we extract
similar top-k questions from the dataset ac-
cording to the target question, in the form of
(question, logical form) pairs. Finally, we use gen-
eration instructions Inst, examples Fx, and target
question 1'q, building Prompt P to guide the LLM
in generating a list of candidate logical forms C' for
the target question. The format is as follows:

C =LLM(P | Inst, Ex,Tq) (1)

When we use beam search, more than 70% of the
candidate logical forms match the golden facts,
and these questions, when converted into SPARQL
queries, can be correctly answered without large-
scale retrieval replacement against the relationship.

4.3 Logical-question Bidirectional Reranking

After obtaining the list of candidate logical forms,
we find that more than 21% of the lists of candi-
date logical forms in which golden logical forms
appear do not appear at the top of the candidate list,
leading to the occurrence of errors. After analyzing
the data, we conclude that the golden logical form
contains specific pattern information about the KB,
and using it as an auxiliary clue may solve our
problem. Based on this, we introduce the reverse
transcription-assisted method (RTAM), which is
based on the (logical form, question) pair in KB to
fine-tune a PLM to have the perception ability from
logical forms to natural language questions. Next,
we use the model to transcribe the logical forms in
the candidate list into natural language questions.
Finally, we use the transcribed natural language
question with the KB pattern information and the
target question to calculate the similarity score s;,
formulated as follows:

s; = Reranker(T'q, d;) 2)

According to the score, rank the candidate list so
that the position of the gold logical form rises. for-
mulated as follows:

Ciorted = argsort ({31, ceySnby desc:True) 3)

In addition, considering that the order in the pre-
liminary candidate list is also of great value, we
propose a logical-question bidirectional reranking
strategy to balance the influence of the preliminary
candidate list and the transcription list on the final
answer. We use the Borda Count algorithm, which
is a rank-based voting mechanism where the rank-
ing in the list expresses the preference order for
each candidate, and then the candidates are scored
from highest to lowest and summed to obtain the
final list of candidates based on the Borda Count
score.

Specifically, as shown in Algorithm 1!, the in-
puts are the preliminary candidate list Pz and the
transcription list T = {(¢;, [ fi, s;)}. First, we
take the total length of the candidate list as the full

"https://en.wikipedia.org/wiki/Borda_count



Algorithm 1 Borda Count

Require: Predicted logical form list Prr; Scored
Transcribed list Trr = {(q;, Lfi, i)}
Ensure: Sorted list LFj,.4, based on Borda
Count scores
Sporda < defaultdict(int)
for lfz € Prr do
rank < index of [ f; in Prp
Shorda [pz} < Shorda [pz] + (‘PLF‘ - rank)
end for
Sorted < sorted(Trp, s;, True)
for (in lfiv 51)} S Sorted do
rank < index of (q;, [ f;, $;) in Sorteq
Svorda[Pi] < Sborda|pi] + (|PLr| — rank)
end for
: LFborda <~ SOI'th(TLF, Sborda [lfz]a True)
: Return LFjy.q,

A A A S i s

—_— = =

score | Pp |, and then we traverse the candidate list
in order to contribute a part of the Borda Count
score Spordqe With |Ppp| minus the index of the
candidate logical formPi - formulated as follows:

k
Syorda(PLr) = > (|Prr| — rank(Pir))  (4)
=1

For the transcription list, we rank it according to
the similarity score s;. We then traverse the sorted
list S,p¢eq in order, and the length of the candidate
list is still used as the full score | Pr,z|, which we
use minus the index of the logical formS? . . to
contribute another part of the Sy,q,. formulated

as follows:

k
Sborda(TLF) - Z (‘PLF‘ - rank( 2rted)) &)

=1

Finally, we sort according to the Spe-q, to Obtain
the final list of candidate logical forms L Fjy,qq.

4.4 Knowledge base pattern matching

Since the generated logical form cannot be exe-
cuted directly, we perform knowledge base schema
matching to align entities and relations.

To determine the accurate MID of entities in the
question, we first extract their surface names from
the candidate logical forms. In KBQA tasks, ELQ
(Li et al., 2020) and FACC1 (Gabrilovich et al.,
2013) are commonly used entity retrieval meth-
ods. We filter all candidate MIDs from FACCI1 that
exceed a certain threshold. If no candidate MID

exceeds the threshold, the first MID from FACC1
is selected as the entity’s MID. Additionally, if mul-
tiple surface names are detected in the candidate
logical forms, all permutations of their combina-
tions are considered.

For relations, if a valid answer can be obtained
after execution, we use it, otherwise, we first obtain
all relations of all entities in the candidate logical
form within 2 hops in the knowledge base, and then
use SimCSE (Gao et al., 2021) to obtain top-k most
likely matching relation entries for each relation
entry in the logical form. Moreover, if more than
one relation term of logical form is detected, all
permutations of their combination are considered.

5 Experiments

5.1 Dataset

We evaluate RankKBQA on two public standard
KBQA datasets as follows:
WebQuestionsSP(WebQSP) (Yih et al., 2016) is a
widely recognized KBQA dataset, containing 4,737
natural language questions. The main objective of
this dataset is to evaluate the generalization capa-
bility in an i.i.d. setting, as the training and testing
data share common entities and relations.
ComplexWebQuestions(CWQ) (Talmor and Be-
rant, 2018) extends WebQSP by incorporating four
types of complex questions: conjunction (Conj),
composition (Compo), comparative (Compa) and
superlative (Super). This dataset is used similarly
to evaluate generalization ability in an i.i.d. setting.

5.2 Baselines

To comprehensively evaluate our approach, we se-
lect a set of state-of-the-art (SOTA) baseline mod-
els comprising three categories: LLM-based agent
method, fine-tuning method, and few-shot ICL
method.

LLM-based agent method include KD-CoT
(Wang et al., 2023), Interactive-KBQA (Xiong
et al., 2024) and Queryagent (Huang et al., 2024).
Fine-tuned method include RnG-KBQA (Ye et al.,
2022), ArcaneQA (Gu and Su, 2022), DECAF(Yu
et al., 2023), Uni-Parser (Liu et al., 2022), FC-
KBQA (Zhang et al., 2023), HGNet (Chen et al.,
2023), ChatKBQA (Luo et al., 2024a) and ROG
(Luo et al., 2024b).

Few shot ICL method include KB-BINDER (Li
et al., 2023), KB-Coder (Nie et al., 2024), TOG
(Sun et al., 2024) and FlexKBQA (Li et al., 2024).



Table 1: Performance Comparison of RankKBQA and Different Baselines on the Two KBQA Datasets

WebQSP CWQ
Type Methods F11 Hits@11t FI11t Hits@17
KD-CoT 52.5 68.8 - 55.7
LLM-based Agent Interactive-KBQA 71.2 - 49.1 -
QueryAgent 69.0 - - -
KB-BINDER 74.4 - - -
KB-Coder 75.6 - - -
Few-shot ICL FlexKBQA 60.6 ; ; ;
ToG - 75.8 - 58.9
Ours w/Llama-3-8b 73.4 76.4 59.7 64.4
Ours w/ChatGPT 78.5 82.0 64.3 69.8
RnG-KBQA 75.6 - - -
ArcaneQA 75.6 - - -
DecAF 78.8 82.1 - 70.4
Fine-tuning Uni-Parser 75.8 - - -
HGNet 76.6 76.9 68.5 68.9
FC-KBQA 76.9 - 56.5 -
ChatKBQA w/Llama-3-8b 78.9 82.7 75.5 79.7
ROG 70.8 85.7 56.2 62.2
Ours w/Llama-3-8b 79.6 83.5 75.9 80.2

5.3 Evaluation Metrics

Consistent with previous work (Chen et al., 2023;
Luo et al., 2024a,b), we use F1 and Hits@1 as
personality measures on WebQSP and CWQ. In
addition, in the ablation study, we also report the
average time cost (ATC) on each dataset.

5.4 Implementation details

For the generation phase, in the fine-tuning method,
we chose Llama-3-8B2, and the beam size was
set to 15 for WebQSP, while it was set to 8 for
CWQ. In this environment, we replicated ChatK-
BQA. Among the few-shot ICL methods, we chose
Llama-3-8B and ChatGPT?, and we set the shot
to 100 for WebQSP and 40 for CWQ. In the tran-
scription stage, we adopt the TS family of models,
and for WebQSP, we use T5-base. For CWQ, we
use T5-large. For computational semantic similar-
ity computation, we use the bge-reranker-v2-m3*
model without fine-tuning. In knowledge base pat-
tern matching, we adopt a threshold to control the
number of candidate entities, as well as K=15 rela-
tions as candidates. See Appendix A.1 for details.

Zhttps://huggingface.co/meta-llama/Meta-Llama-3-8B
*https://openai.com/api
*https://huggingface.co/BAAI/bge-reranker-v2-m3

5.5 Main Result

For the baseline methods, except for ChatKBQA,
where we use the Llama-3-8B recapitulation, the
other baseline methods directly adopt the results
reported in the corresponding original papers. As
shown in TABLE 1, since few-shot ICL method
and LLM-based agents have natural disadvantages
compared to fine-tuning methods. Therefore, in our
comparison process, RankKBQA based on the few-
shot ICL method is not compared with the baseline
based on the fine-tuning method. In addition, after
analyzing the results, we conduct A specific case
analysis in Appendix A.2.

Few-shot ICL method. With the few-shot ICL
method, RankKBQA achieves an F1 of 78.5 using
ChatGPT on WebQSP, surpassing the state of the
art 2.9 (KB-Coder), where KB-Coder employs the
same base model ChatGPT as ours. Even outper-
forming KB-BINDER using Codex and Interactive-
KBQA and QueryAgent using GPT-4. For Hits@1,
RankKBQA (82.0) outperforms ToG using Chat-
GPT 6.2. Among them, ToG uses oracle entity an-
notation, which is obviously better than the FACC1
preference retrieval adopted by RankKBQA. Ex-
citingly, on the CWQ dataset, RankKBQA beats
all baselines, including LLM-based Agent and few-



Table 2: Comparison of F1 and ATC in RankKBQA
with and without RTAM.

Methods WebQSP cWQ
F11 ATC| FI1 ATC|

Few-shot ICL. Method

RankKBQA(LLama) 73.4 40.1 59.7 26.1

w/o RTAM 733 419 59.6 45.1

RankKBQA(ChatGPT) 78.3 10.6 64.4 14.7

w/o RTAM 785 129 643 194

Fine-tuning Method

RankKBQA(LLama) 79.6 11.4 759 18.1

w/o RTAM 789 11.5 755 203

shot ICL for F1 and Hit@]1, achieving 64.3 for F1
and 69.8 for Hit@ 1. It surpasses the state-of-the-art
(Interactive-KBQA) 15.2 and (ToG) 10.9, respec-
tively. Moreover, RankKBQA with Llama-3-8b
achieves the same impressive performance, with an
F1 score (73.4) only 2.2 lower than that of the state
of the art (KB-Coder) on WebQSP, and outperforms
ChatGPT’s ToG by 0.6 on Hit@1. Moreover, on
CWQ, the new SOTA is also implemented, which is
only inferior to RankKBQA, which uses ChatGPT.
This also suggests that a more powerful pedestal
model will bring us more substantial gains.

Fine-tuning method. In addition, RankKBQA
achieves a new F1-score performance (79.6) on We-
bQSP and also obtains a competitive performance
(83.5) on Hit@1, just 2.2 below the state of the art
(RoG). However, on the CWQ dataset, RankKBQA
achieves a brand new performance (75.9, 80.2) for
F1 and Hit@1.

5.6 Ablation Study

We conduct an ablation study to investigate the
impact of RTAM on F1 score and average time
cost (ATC), tested on few-shot ICL and fine-tuning
methods, respectively. Llama and ChatGPT are
selected as the basic models in the experiment. The
performance improvement of RTAM based on the
first validity principle is shown by the gap between
the first hit rate and the overall hit rate. The results
show that the first hit rate, the overall hit rate, and
their difference are significantly improved as the
model’s ability increases (fig 3a). In addition, Table
2 contrasts the enabled/disabled cases of RTAM
and reports the F1 score and ATC score achieved
in each case.

In the few-shot ICL method, RankKBQA using

Llama as the base model, whether it is WebQSP or
CWQ, our method has a certain improvement in F1,
and for ATC, it is increased by 1.8s on WebQSP.
ATC achieved an astonishing improvement of 19
seconds on CWQ, representing a remarkable speed
increase of up to 42.1%. For RankKBQA using
ChatGPT, although the performance decreases by
0.2 on WebQSP, it improves by 2.3 seconds in ATC.
Also it is improved by 4.7s on CWQ. In addition, in
the fine-tuning method, RankKBQA using RTAM
has a certain degree of improvement in F1 and
ATC.

In addition, in order to verify the robustness of
RTAM, we replaced different transcription mod-
els and semantic similarity methods. Due to the
long inference time to complete all test problems,
we randomly selected 200 and 500 from WebQSP
and CWQ, respectively. In addition, we find in
the experiments that in the Borda Count of two
clues, it may occur that two candidates received the
same score, resulting in no change in order, and we
guess that the preliminary generated candidate list
is too weighted; therefore, we consider a kind of
weighted Borda Count. In the following, we will
expand the analysis separately.

Transcription models may have some influence
on the final candidate list order. We chose Flan-T5-
Large, which is more powerful than T5-base and
T5-Large, for question transcription. As shown in
Figure 3b, the more powerful transcription model
does achieve better performance. We analyze that
this is due to the fact that the powerful transcrip-
tion model is able to better capture the relation and
entity patterns in the logical form, thus transcribing
questions that are more consistent with the logical
form. However, the better performance increases
the ATC, we believe analytically that it is caused
during the pattern matching process of the KB. The
performance improvement is not a result of prelim-
inary logical form execution, where RankKBQA
only improves the ranking of candidates that are
closer to the golden fact.

Semantic Similarity Methods may be another
factor affecting the order of the candidate list. Be-
sides bge-reranker-v2-m3, we choose BM25 and
SimCSE dense retrieval, which are more general.
As shown in Figure 3c, different semantic similar-
ity methods can further improve the model perfor-
mance and ensure good ATC. On WebQSP, BM25
and SimCSE achieve the same F1 values and out-
perform bge-reranker-v2-m3, and in ATC, all three
are approximately the same. On CWQ, BM25
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Figure 3: (a) Model Logical Form Hit Comparison. (b) Comparison of Transcription Models. (c) Comparison of
Semantic Similarity Methods. (d) Comparison of Borda Count with Weight.

achieves unexpectedly high F1 scores, but with
some increase in ATC. We believe analytically that
it is caused by pattern matching in the knowledge
base. The performance improvement is not a result
of preliminary logical form execution, RankKBQA
only improves the ranking of candidates that are
closer to the golden fact.

Borda Count with weight is introduced to ad-
dress the issue that may arise in the original Borda
Count method, where two candidates might re-
ceive identical scores, resulting in no change in
their ranking. To verify this, we assign different
weight ratios to the preliminary candidate list and
the sorted candidate list—specifically 5:5, 6:4, and
4:6. As illustrated in Figure 3d, the model yields
nearly identical F1 and ATC performance under the
5:5 and 6:4 settings, which aligns with our expecta-
tions. However, when using a 4:6 weight ratio, the
model shows improved performance on WebQSP,
accompanied by a reduction in ATC. This supports
our hypothesis that assigning a greater weight to
the sorted candidate list improves the ranking of
golden facts on WebQSP. In contrast, on CWQ,

due to the relatively low accuracy of preliminary
candidates and the dependency on knowledge base
pattern matching, RankKBQA promotes the rank-
ing of candidates closer to the golden truth, which
will always lead to the rise of ATC.

6 Conclusion

In conclusion, this paper introduces RankKBQA,
a novel framework that can further optimize the
capabilities of KBQA systems based on LLMs
through a transcribe-then-rank approach. Extensive
experiments on different datasets demonstrate the
effectiveness of RankKBQA, which outperforms
all baseline methods both under the few-shot ICL
method and under the fine-tuning method. And, in
terms of the average time cost, our method can re-
duce the average time cost considerably compared
to other baseline methods. In the era of post-LLMs,
this is sufficient to meet the user requirements of
KBQA systems, both in terms of response speed
and performance.



Limitations

Although RankKBQA has made significant
progress in improving the accuracy and inference
efficiency of KBQA systems, there are still some
limitations. On the one hand, the performance of
RankKBQA depends on the generation quality of
candidate logical forms. If the generation phase
fails to cover the golden logical form, it is difficult
to improve the accuracy of the final answer, even if
the subsequent bidirectional reranking strategy is
excellent. On the other hand, RankKBQA relies on
the transcription process from logical form to natu-
ral language, and its effect is limited by the general-
ization ability of the pre-trained model. Therefore,
future research should consider further optimizing
the generation coverage of logical forms and im-
proving the robustness of transcription quality, so
as to further promote the landing and expansion of
RankKBQA in practical applications.
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A Appendix

A.1 Implementation details

For the generation phase, in the fine-tuning method,
we choose Llama-3-8b as our base LLM, where
batch size is 4, learning rate is 5e-5, other parame-
ters are kept at default values, and training is per-
formed for 10 epochs. In addition, for WebQSP,
the beam size is set to 15 while for CWQ, the beam
size is set to 8. Meanwhile, based on this environ-
ment, we replicate ChatKBQA. In the few-shot ICL
method, we still choose Llama-3-8B as the base
LLM, where the temperature is set to 0.7, top-k
is set to 4, top-p is set to 0.7, and max_token is
set to 8192. In addition, num_return_sequences
is set to 3 (the maximum is limited due to labo-
ratory resources). For WebQSP, we set the shot
to 100, and for CWQ, we set the shot to 40. In
addition, in order to verify that a larger model can
bring more substantial benefits, based on this ex-
perimental environment, we replace Llama-3-8b
and use ChatGPT (gpt-3.5-turbo) under API calls
to conduct experiments. During the transcription
phase, we employ the TS5 family of models as the
PLM for transcription. For WebQSP, due to its
relatively smaller dataset size, we use a base ver-
sion of the TS5 family, i.e., T5-base. For CWQ,
which has more complex and diverse data, we uti-
lize a larger version of the TS5 family, i.e., T5-large,
with a learning rate of 3e-5, a batch size of 8, and
the same beam search decoding strategy, setting
the beam size to 10. The model was trained for
20 epochs. Additionally, for calculating semantic
similarity scores, we used the bge-reranker-v2-m3
model without fine-tuning. In the process of knowl-
edge base schema matching, we adopt a threshold
to control the number of entities to be matched.
For relational schema matching, we use the Sim-
CSE instance unsup-simcse-roberta-large to obtain
a dense representation. We allow K=15 relations to
be matched for each relation entry.

A.2 Case Study

By analyzing the questions where RankKBQA did
not get the correct results, we present several repre-
sentative correct and incorrect cases. We selected
two valid questions and two failed questions from
the WebQSP and CWQ test sets, respectively. For
the cases where RankKBQA works, we label the
correct answer as green, and for the cases where
RankKBQA fails, we label the correct answer as
rose red.
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[ WebQSP

Effective case study
Question: How deep is Lake Merritt Oakland?

Preliminary generation:

e (JOIN(R[location,location,depth])
[Lake Merrittl);

e (JOIN(R[location,location,contains])
[Lake Merritt]);

* (JOIN(R[geography, body of water,depth])
[Lake Merritt]); v

RankKBQA:

¢ (JOIN(R[geography,body of water,depth])
[Lake Merrittl]); v

* (JOIN(R[location,location,contains])
[Lake Merritt]);

e (JOIN(R[location,location,depthl)
[Lake Merritt]);

[ WebQSP

Failed case study
Question: What other books did Charles Dickens write?

Preliminary generation:

e (JOIN(R[book,author,works written])
[Charles Dickens]);

e (JOIN(R[book,author,book editions published])
[Charles Dickens]); v

e (JOIN(R[book,author,written works])
[Charles Dickens]);

RankKBQA:

e (JOIN(R[book,author,works written])
[Charles Dickens]);
e (JOIN(R[book,author,written works])
[Charles Dickens]);
e (JOIN(R[book,author,book editions published])

[Charles Dickens]l); v

\ J

CWQ
Effective case study
Question:Where is the state with the capital of Frankfort
located?

Preliminary Generation:

e (JOIN(R[base,aareas,schema,administrative
area,administrative parent]) (JOIN
[location,us state,capitalllFrankfort]));

* (JOIN(R[location,location,containedby]) (JOIN
[location,us state,capital]l[Frankfort])) v

* (JOIN(R[location,location,administrative
parent]) (JOIN[location,us state,capitall]
[Frankfortl]))

RankKBQA:

* (JOIN(R[location,location,containedby]) (JOIN
[location,us state,capital][Frankfort])) v

e (JOIN(R[base,aareas,schema,administrative
area,administrative parent]) (JOIN
[location,us state,capital][Frankfort]));

e (JOIN(R[location,location,administrative
parent]) (JOIN[location,us state,capitall]

[Frankfortl]))




p
CWQ
Failed case study
Question:What states does the Colorado River run through
in the Mountain Time Zone?

Preliminary Generation:

¢ (AND(JOIN[location,location,time zones][
Mountain Time Zone]) (JOIN(R[location,location
,partially containedby])[Colorado Riverl))

* (AND(JOIN[location,location,time zones][
Mountain Time Zone]) (AND(JOIN[base,biblioness
,bibs location,loc type]”State”)(JOIN(RL
location,location,partially containedby])
[Colorado Riverl))) Vv

* (AND(JOIN[location,location,time zones][
Mountain Time Zone](AND(JOIN[base,biblioness
,bibs location,loc type]”State”)(JOIN(RL
location,location,partially contains])"”
[Colorado Riverl])))

RankKBQA:

¢ (AND(JOIN[location,location,time zones][
Mountain Time Zone](AND(JOIN[base,biblioness
,bibs location,loc type]”State”) (JOIN(RL
location,location,partially contains])”
[Colorado Riverl)))

* (AND(JOIN[location,location,time zones][
Mountain Time Zone]) (AND(JOIN[base,biblioness
,bibs location,loc type]”State”)(JOIN(RL
location,location,partially containedby])
[Colorado Riverl))) v

e (AND(JOIN[location,location,time zones][
Mountain Time Zonel]) (JOIN(R[location,location
,partially containedby])[Colorado River]))

\ J

For the WebQSP dataset, in the valid case, the
difference between the three candidate logical
forms lies in the relation pattern. RankKBQA can
improve the position of the correct relation pattern
by executing RTAM, thereby reducing the execu-
tion time of the first two and even the occurrence of
wrong answers. In the error case, because the pat-
tern relationship in the candidate list is too similar,
the transcribed question and the original question
also have high similarity, so the final ranking re-
sult does not adjust the position of the gold fact to
the first place in the list. For the CWQ dataset, in
the effective case, the relation patterns with rela-
tively large differences in similarity also appear, so
RankKBQA can adjust the position of gold facts
well by RTAM. Similarly, RankKBQA may not
work well in the error case where the relation pat-
tern is too similar. We analyze that more complex
questions and their logical forms contain more in-
formation, which also provides RankKBQA with
more angles to adjust the position of candidate
logical forms, which will give greater play to the
performance of RankKBQA, which is also more in
line with what may really happen in real scenarios.
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