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ABSTRACT

Reliable estimation of treatment effects from observational data is important in
many disciplines such as medicine. However, estimation is challenging when
unconfoundedness as a standard assumption in the causal inference literature
is violated. In this work, we leverage arbitrary (potentially high-dimensional)
instruments to estimate bounds on the conditional average treatment effect (CATE).
Our contributions are three-fold: (1) We propose a novel approach for partial
identification through a mapping of instruments to a discrete representation space
so that we yield valid bounds on the CATE. This is crucial for reliable decision-
making in real-world applications. (2) We derive a two-step procedure that learns
tight bounds using a tailored neural partitioning of the latent instrument space. As
a result, we avoid instability issues due to numerical approximations or adversarial
training. Furthermore, our procedure aims to reduce the estimation variance in
finite-sample settings to yield more reliable estimates. (3) We show theoretically
that our procedure obtains valid bounds while reducing estimation variance. We
further perform extensive experiments to demonstrate the effectiveness across
various settings. Overall, our procedure offers a novel path for practitioners
to make use of potentially high-dimensional instruments (e.g., as in Mendelian
randomization).

1 INTRODUCTION

Estimating the conditional average treatment effect (CATE) from observational data is crucial for
personalized medicine (Feuerriegel et al., 2024). For example, assessing the impact of alcohol
consumption on cardiovascular diseases (Holmes et al., 2014) often relies on real-world data such as
electronic health records. Reliable CATE estimation typically assumes unconfoundedness (Rubin,
1974); i.e., no unobserved confounders exist between treatment A and outcome Y . When this
assumption is violated, instrumental variables (IVs) Z, which affect A but not Y except through A,
are employed (as in randomized studies with non-compliance (Imbens & Angrist, 1994)).

Figure 1: IV setting with complex in-
struments Z, observed confounders X ,
unobserved confounders U , binary treat-
ment A, and outcome Y .

Motivational example: Mendelian randomization. In
Mendelian randomization, genetic instruments Z are used
to estimate the effect of exposures (e.g., alcohol consump-
tion) on outcomes (e.g., cardiovascular diseases) (Pierce
et al., 2018). However, genetic instruments are high-
dimensional and relate non-linearly to treatment, chal-
lenging existing IV methods that assume linearity, or other
parametric or structural forms (Hartford et al., 2017; Singh
et al., 2019; Xu et al., 2021). A promising alternative is
partial identification of the CATE by estimating upper
and lower bounds (Manski, 1990). Early works derived
bounds for discrete IV settings (Balke & Pearl, 1997),
while methods for continuous instruments typically re-
quire unstable optimization such as adversarial training (Kilbertus et al., 2020; Padh et al., 2023).

Related work. Existing machine learning approaches for CATE estimation with IVs largely focus on
point identification. Some extend two-stage least-squares to non-linear settings (Singh et al., 2019; Xu
et al., 2021) or employ deep conditional density estimation (Hartford et al., 2017), and others develop
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Figure 2: Mapping complex instruments Z to a discrete representation ϕ(Z) yields tight bounds on
the CATE.

doubly/multiply robust methods (Kennedy et al., 2019; Ogburn et al., 2015; Semenova & Cher-
nozhukov, 2021; Syrgkanis et al., 2019; Frauen & Feuerriegel, 2023). Recent efforts in Mendelian
randomization also target point identification but impose strict assumptions such as linearity or
homogeneity (Legault et al., 2024; Malina et al., 2022). In contrast, the partial identification literature
seeks to bound causal effects when point identification is unattainable. Early work derived bounds for
bounded outcomes (Robins, 1989; Manski, 1990) and later extended these ideas to discrete IVs and
treatments (Balke & Pearl, 1994; 1997; Swanson et al., 2018). For continuous instruments, existing
methods either impose strong assumptions on treatment responses or require unstable adversarial
training (Gunsilius, 2020; Hu et al., 2021; Kilbertus et al., 2020; Padh et al., 2023) and are not tailored
for binary treatments.

Research gap and contributions. Reliable machine learning methods for partial identification of the
CATE with complex, high-dimensional instruments remain underexplored. Our work fills this gap by
leveraging high-dimensional instruments, avoiding strict parametric assumptions, and sidestepping
unstable optimization procedures. We propose an IV method for partial identification of the CATE
with complex instruments. Our approach maps complex instruments to a discrete representation (see
Fig. 2) and employs a two-step neural partitioning procedure that reduces estimation variance. We
validate our method both theoretically and empirically.

2 PROBLEM SETUP

Setting: We focus on the standard IV setting (Angrist et al., 1996; Wooldridge, 2013) with complex
instruments Z ∈ Z ⊆ Rd (e.g., gene data, text, images) that may be continuous and high-dimensional.
We assume an i.i.d. observational dataset D = {zi, xi, ai, yi}ni=1 sampled from (Z,X,A, Y ) ∼ P,
where X ∈ X ⊆ Rp, A ∈ A ⊆ {0, 1}, and Y ∈ Y ⊆ [s1, s2]. Unobserved confounders U between
A and Y are allowed. We assume the causal structure in Fig. 1: Z affects A but has no direct effect
on Y , and Z is independent of X . An extended discussion is provided in Appendix B.

Notation: The response function is defined as µa(x, z) := E[Y |X = x,A = a, Z = z], and the
propensity score as π(x, z) := P(A = 1|X = x, Z = z).

CATE: Using the potential outcomes framework (Rubin, 1974) with Y (a) as the potential outcome
under A = a, the CATE is defined as τ(x) = E[Y (1)− Y (0)|X = x].

Identifiability: We make the standard assumptions in partial identification with IVs (Angrist et al.,
1996): Assumption 1 (Consistency): Y (A) = Y , Assumption 2 (Exclusion): Z ⊥⊥ Y (A) |
(X,A,U), and Assumption 3 (Independence): Z ⊥⊥ (U,X). However, these do not suffice for
identifying τ(x) (Gunsilius, 2020) without additional (and often unrealistic) assumptions (e.g.,
linearity or additive noise). This motivates our focus on partial identification.

Objective: Our goal is to estimate valid bounds (b−(x), b+(x)) for τ(x) such that b−(x) ≤ τ(x) ≤
b+(x), ∀x ∈ X , while minimizing the expected width EX [b+(X)− b−(X)]. Formally, we solve

b−∗ , b
+
∗ ∈ argmin

b−,b+
EX [b+(X)− b−(X)] s.t. b−(x) ≤ τ(x) ≤ b+(x) ∀x ∈ X . (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review for LMRL Workshop at ICLR 2025

3 PARTIAL IDENTIFICATION OF THE CATE WITH COMPLEX INSTRUMENTS

3.1 OVERVIEW

We now present our proposed method to solve the partial identification problem from Eq. (1). Solving
Eq. (1) directly is infeasible because it involves the unknown CATE τ(x). Hence, we propose the
following approach:

Outline: 1 We learn a discretized representation (also called partitioning) ϕ(Z) of the instru-
mental variable Z. 2 We then derive closed-form bounds given the discrete representation ϕ.
3 We transform the closed-form bounds back to our original bounding problem and, in particular,

express all quantities involved as quantities that can be estimated from observational data.

Below, we first explain why existing closed-form bounds are not directly applicable and why deriving
such bounds is non-trivial. We then proceed by providing the corresponding theory for the above
method. Specifically, we first take a population view to show theoretically that our bounds are valid
(Sec. 3.2). Then, we take a finite-sample view and present an estimator (Sec. 3.3).

Limitations of existing bounds: There exist different approaches for bounding treatment effects using
continuous instruments, yet these either require additional assumptions or can easily become unstable,
especially for high-dimensional Z. Furthermore, these bounds consider continuous treatments but
are not tailored for binary treatments (e.g., whether a drug is administered). Hence, we derive custom
bounds for our setting.

Why is the derivation non-trivial? For binary treatments, it turns out that there exist closed-form
solutions for bounds whenever the instrument Z is discrete. That is, the existing bounds for the
average treatment effect (ATE) with continuous bounded outcome proposed in (Manski, 1990) can
be extended to non-parametric closed-form bounds for the CATE (Schweisthal et al., 2024). While
these bounds are useful in a setting with discrete instruments Z, they are not directly applicable to
continuous or even high-dimensional Z due to two main reasons: (1) The bounds need to be evaluated
for all combinations l,m ∈ Z2 ⊆ Rd×Rd, which is intractable. (2) Evaluating the bounds only on a
random subset of combinations l,m can result in arbitrary high estimation variance for regions with a
low joint density of p(X = x, Z = l) or p(X = x, Z = m). Hence, we must derive a novel method
for estimating bounds based on complex instruments (that are, e.g., continuous or high-dimensional),
yet this is a highly non-trivial task.

3.2 POPULATION VIEW

In the following theorem, we provide a novel theoretical result of how to obtain valid bounds based
on discrete representations ϕ(Z) of the instrument Z.

Theorem 1 (Bounds for arbitrary instrument discretizations). Let ϕ : Z −→ {0, 1, . . . , k} be an
arbitrary mapping from the high-dimensional instrument Z to a discrete representation. We define

µa
ϕ(x, ℓ) =

∫
Z

µa(x, z)P(ϕ(Z) = ℓ|Z = z)

P(A = a, ϕ(Z) = ℓ)
(2)

P(A = a|Z = z)P(Z = z) dz and

πϕ(x, ℓ) =

∫
Z

π(x, z)P(ϕ(Z) = ℓ|Z = z)

P(ϕ(Z) = ℓ)
P(Z = z) dz. (3)

Then, under Assumptions 1, 2, and 3, the CATE τ(x) is bounded by

b−ϕ (x) ≤ τ(x) ≤ b+ϕ (x), (4)

with
b+ϕ (x) = min

l,m
b+ϕ;l,m(x) and b−ϕ (x) = max

l,m
b−ϕ;l,m(x) (5)

where

b+ϕ;l,m(x) =πϕ(x, l)µ
1
ϕ(x, l) + (1− πϕ(x, l))s2 (6)

− (1− πϕ(x,m))µ0
ϕ(x,m)− πϕ(x,m)s1,

3
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b−ϕ;l,m(x) =πϕ(x, l)µ
1
ϕ(x, l) + (1− πϕ(x, l))s1 (7)

− (1− πϕ(x,m))µ0
ϕ(x,m)− πϕ(x,m)s2.

Proof. See Appendix A.

Theorem 1 states that, in population, we yield valid closed-form bounds for τ(x) for arbitrary
representations ϕ. In particular, we can relax the optimization problem from Eq. (1) and obtain valid
bounds bϕ∗+(X) ≥ b+∗ (X) and bϕ∗−(X) ≤ b−∗ (X) by solving

ϕ∗ ∈ argmin
ϕ∈Φ

EX [bϕ
+(X)− bϕ

−(X)]. (8)

Here, we highlight the dependence of variables on the representation ϕ in green to show the dif-
ferences to Eq. (1). Note the following differences: In contrast to Eq. (1), we do not impose any
validity constraints in Eq. (8) because Theorem 1 automatically ensures the validity of our bounds.
Furthermore, in contrast to Eq. (1), the objective from Eq. (8) only depends on identifiable quantities
that can be estimated from observational data.

Implications of Theorem 1: A naïve implementation minimizing the bounds following Eq. (8)
would require alternating learning. The reason is that, after every update step of ϕ(z), the quantities
µa
ϕ(x, l) and πa

ϕ(x, l) are not valid for the updated ϕ anymore and would need to be retrained to
ensure valid bounds. This is computationally highly expensive and causes unstable training as well as
convergence problems. However, our method circumvents these issues: by using Theorem 1, we show
that, while training ϕ(z), the quantities µa

ϕ(x, ℓ) and πϕ(x, ℓ) can be directly calculated. For that,
we can simply evaluate the nuisance functions, which only need to be trained once in the first stage.
This holds because in our derivation of closed-form bounds for arbitrary discrete representations of
complex Z, the bounds only depend on (i) discrete probabilities, (ii) quantities that are independent
of ϕ and thus do not change for different ϕ, and (iii) the discrete representation mapping to be learned
itself. As a result, we circumvent the need for adversarial or alternating training, which results in
more robust estimation.

3.3 FINITE-SAMPLE VIEW

In practice, we have to estimate the bounds from Theorem 1 from finite observational data. For this
purpose, we start with arbitrary initial estimators: π̂(x, z) is the estimator of the propensity score
π(x, z), µ̂a(x, z) of the response function µa(x, z), and η̂(z) of η(z) = P(A = 1 | Z = z).

Once the initial estimators are obtained, we can estimate our second-stage nuisance functions defined
in Eq. (23) and (24) via

µ̂a
ϕ(x, ℓ) =

1∑n
j=1 1{ϕ(zj) = ℓ, aj = a}

n∑
j=1

[
µ̂a(x, zj)1{ϕ(zj) = ℓ}(aη̂(zj) + (1− a)(1− η̂(zj)))

]
,

(9)

π̂ϕ(x, ℓ) =
1∑n

j=1 1{ϕ(zj) = ℓ}

n∑
j

π̂(x, zj)1{ϕ(zj) = ℓ}. (10)

Finally, we can directly ‘plug in’ these estimators into Eq. (5) to compute estimates of the upper and
lower bound b̂−ϕ (x), b̂

+
ϕ (x).

A naïve approach would now directly use (b̂−ϕ (x), b̂
+
ϕ (x)) to solve the optimization in Eq. (8).

However, for finite samples, it turns out this is infeasible without restricting the complexity of the
representation function. The reason is outlined in the following theoretical results.

Lemma 1 (Tightness-bias-variance trade-off). Let En and Varn denote the expectation and variance
with respect to the observational data (of size n). Then, it holds

En

[ (
b+∗ (x)− b̂+ϕ (x)

)2 ]
≤ 2

((
b+∗ (x)− b+ϕ (x)

)2

︸ ︷︷ ︸
(i) Population tightness

+En

[
b+ϕ∗(x)− b̂+ϕ (x)

]2
︸ ︷︷ ︸

(ii) Estimation bias

+ Varn(b̂+ϕ (x))︸ ︷︷ ︸
(iii) Estimation variance

)
.

(11)
Proof. See Appendix A.
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Interpretation of Lemma 1: Lemma 1 shows that the mean squared error (MSE) between the
estimated representation-based bound b̂+ϕ (x) and the ground-truth optimal bound b+∗ (x) can be
decomposed into the following three components: (i) population tightness, (ii) estimation bias, and
(iii) estimation variance. •Term (i) describes the discrepancy between the representation-based
bound in population b+ϕ (x) and the ground-truth optimal bound b+∗ (x). It will decrease if we allow
for more complex representations Φ, for example by increasing the number of partitions k. •Term (ii)
describes the estimation bias due to using finite-sample estimators for estimating the bounds. It will
generally depend on the type of estimators we employ for π̂(x, z), µ̂a(x, z), and η̂(z). • Finally, term
(iii) characterizes the variance due to using finite-sample estimators. In contrast to term (i), it will
increase when we allow the representation to be more complex.

To make point (iii) more explicit, we derive the asymptotic distributions of the estimators from Eq. (9)
and Eq. (10) that are used during training of ϕ to estimate the final bounds.
Theorem 2 (Asymptotic distributions of estimators). It holds that

√
nµ̂a

ϕ(x, ℓ)
d−→N

(
µa
ϕ(x, ℓ,

1

pℓ,ϕ

(
Var(g(Z) | ϕ(Z) = ℓ)

c
+ d

))
, (12)

√
nπ̂ϕ(x, ℓ)

d−→N
(
πϕ(x, ℓ),

1

pℓ,ϕ
Var(h(Z) | ϕ(Z) = ℓ)

)
(13)

for c = q2ℓ,ϕ, d =
θ2ℓ (1−pℓ,ϕqℓ,ϕ)

q3
ℓ,ϕ

, such that c, d > 0 and where pℓ,ϕ = P(ϕ(Z) = ℓ), qℓ,ϕ = P(A = a |
ϕ(Z) = ℓ), g(Z) = µ̂a(x, Z)(aη̂(Z)+(1−a)(1− η̂(Z)), h(Z) = π̂(x, Z), and θℓ,ϕ = E[g(Z) | ϕ(Z) = ℓ].

Proof. See Appendix A.

We observe that the variance of the estimators (and, thus, of the estimated bounds) explodes for
small values of pℓ,ϕ = P(ϕ(Z) = ℓ). Hence, to reduce the estimation variance, we aim to learn a
representation ϕ that avoids low pℓ,ϕ for some ℓ, e.g., by limiting the number of partitions k. ⇒
Altogether, as a consequence of Lemma 1 and Theorem 2, we obtain an inherent trade-off between
tightness of the bounds in population and estimation variance in finite-samples.1

Learning objective for the representation ϕ: Due to the inherent trade-off between tightness of
the bounds and estimation variance, the aim for learning the representation ϕ is two-fold. On the
one hand, we (a) aim to learn tight bounds, which is given in the objective in Eq. (8). On the other
hand, we (b) also have to account for controlling the variance in finite-sample settings, especially for
high-dimensional Z. Motivated by Theorem 2, we ensure p̂ℓ,ϕ > ε for some ε > 0, where p̂ℓ,ϕ is an
estimator of pℓ,ϕ = P(ϕ(Z) = ℓ). Combining both (a) and (b) yields the following objective:

ϕ∗ ∈ argmin
ϕ∈Φ

EX [b̂+ϕ (X)− b̂−ϕ (X)] s.t. p̂ℓ,ϕ > ε, (14)

for some ε > 0 and all ℓ ∈ {1, . . . , k}. We next present a neural method to learn tight bounds using
the above objective.

4 NEURAL METHOD FOR LEARNING CATE BOUNDS WITH COMPLEX
INSTRUMENTS

In this section, we propose a neural method for our objective to learn tight and valid bounds. Our
method consists of two separate stages (see Algorithm 1): 1 we learn initial estimators of the three
nuisance functions, and 2 we learn an optimal representation ϕ∗, so that the width of the bounds is
minimized. Note that our method is completely model-agnostic. Hence, arbitrary machine learning
models can be used in the first and second stages in order to account for the properties of the data.
For example, for instruments with gene data, one could use pre-trained encoders to further optimize
the downstream performance. We give an overview of the workflow of our method in Fig. 3 (see
Algorithm 1 in Appendix H for pseudocode).

1Importantly, Lemma 1 and Theorem 2 hold for arbitrary ϕ and its bound estimators b̂+ϕ (x), enabling more
stable updates by reducing estimation variance during training. Consequently, these results also apply to the
finally learned or optimal ϕ∗, leading to lower variance in final estimates.
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trainable parameters

Complex
instrument 

Representation
network 

2nd stage
nuisance calculation Bounds on CATE

pre-trained 1st stage
nuisance functions 

fixed parameters

Figure 3: Workflow of the second stage of our method for calculating bounds on the CATE: The
representation network ϕθ learns discrete latent representations of the complex Z (e.g., continuous or
high-dimensional). By employing the pre-trained µ̂, π̂, and η̂, we can directly calculate the nuisance
estimates conditional on the latent representation ϕ(z) by using Eq. (9) and Eq. (10) to yield the
bounds.

1 Initial nuisance estimation: In the first stage, we can use arbitrary machine learning models
(e.g., feed-forward neural network) to learn the first-stage nuisance functions µ̂a(x, z) = Ê[Y | X =

x,A = a, Z = z] , π̂(x, z) = P̂(A = 1 | X = x, Z = z), and η̂(z) = P̂(A = 1 | Z = z).

Recall that we consider Z and X , which are both potentially high-dimensional. Hence, for µ̂a(x, z)
and π̂(x, z), we use network architectures that have (i) different encoding layers for X and Z, so that
we capture structured information within the variables and (ii) shared layers on top of the encoding to
learn common structures. Further, for µ̂a(x, z), we use two outcome heads for both treatment options
A ∈ {0, 1} to ensure that the influence of the treatment on the outcome prediction does not ‘get lost’
in the high-dimensional space of X and Z (Shalit et al., 2017).

2 Representation learning: In the second stage, we train a neural network to learn discrete
representations of the instruments with the objective of obtaining tight bounds but with constraints
on the estimation variance. To learn the function ϕ(z), we use a neural network ϕθ with trainable
parameters θ. Then, on top of the final layer of the encoder, we leverage the Gumbel-softmax trick
(Jang et al., 2017), which allows us to learn k discrete representations of the latent space of the
instruments, where k can be flexibly chosen as a hyperparameter.

Custom loss function: We further transform our objective into a loss function to train the network
ϕθ. For that, we design a compositional loss consisting of three terms:

1 A bound-width minimization loss that aims at our objective in Eq. (14), defined via

Lb(θ) =
1

n

n∑
i=1

b̂+ϕθ
(xi)− b̂−ϕθ

(xi) (15)

2 A regularization loss to enforce the constraints in Eq. (14), i.e., enforcing that p̂ℓ,ϕ = P̂(ϕθ(Z) =
ℓ) > ε, ∀ℓ ∈ 1, . . . , k, for some ε > 0. For that, we aim to penalize the negative log-likelihood
−
∑k

j=1 log(P(ϕθ(Z) = j)), which we can estimate via

Lreg(θ)=−
k∑

j=1

log
( 1

n

n∑
i=1

1{ϕθ(zi) = j}
)
. (16)

3 An auxiliary guidance loss Laux(θ), which enforces more heterogeneity between P(Z | ϕθ(Z) = l)
and P(Z | ϕθ(Z) = m), for all l,m. To achieve this, we add an additional linear classification
head pζ with weights ζ on top of the last hidden layer of ϕθ before the discretization. The auxiliary
guidance loss is explicitly defined as the cross-entropy loss via

Laux(θ) = − 1

n

n∑
i=1

k∑
j=1

1{ϕθ(zi) = j} log (pζ(zi)) , (17)

where pζ(zi) is the predicted probability of assigning zi to discrete representation j by the additional
classification head. While Laux(θ) is not strictly necessary for our objective, we empirically observed

6
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Metric Dataset 1 Dataset 2
Naïve Ours Rel. Improvement Naïve Ours Rel. Improvement

Coverage[↑] 1.00± 0.00 1.00± 0.00 0.00% 1.00± 0.00 1.00± 0.00 0.00%
Width[↓] 1.22± 0.05 1.05 ± 0.01 13.9% 1.31± 0.16 1.14 ± 0.16 13.0%
MSD[↓] 0.28± 0.06 0.03 ± 0.03 89.3% 0.09± 0.06 0.06 ± 0.06 33.3%

Table 1: Datasets 1 and 2: Comparison of NAÏVE vs. Ours regarding coverage, width, and MSD.
Relative improvements in green.

that it helps stabilize training by avoiding convergence to non-informative local minima. Hence, we
yield our final training loss

L(θ) = Lb(θ) + λLreg(θ) + γLaux(θ), (18)

with hyperparameters λ and γ. Here, λ controls the trade-off between bound tightness and estimation
variance, and can thus be tailored depending on the application. The hyperparameter γ can be simply
tuned as usual.

The key advantage of our method is its efficiency and robustness compared to alternatives like
alternating learning or adversarial training. In the second stage, only the discretization network ϕθ is
updated to minimize Lθ, while first-stage nuisance estimators remain fixed and are merely evaluated.
This enables reusing trained first-stage networks across different second-stage training settings (e.g.,
varying k), which makes the training procedure more computationally efficient and robust.

5 EXPERIMENTS

Metric Naïve Ours Rel. Improve
coverage*[↑] 0.96± 0.09 0.99 ± 0.01 3.4%
Width*[↓] 1.88± 0.04 1.85 ± 0.04 1.8%
MSE*[↓] 0.12± 0.01 0.11 ± 0.01 9.2%
MSD[↓] 0.10± 0.10 0.03 ± 0.02 70.3%

Table 2: Dataset 3: Comparison regarding coverage
with oracle bounds, width, and MSD.

Baselines: Existing methods focus on (a)
point identification with strong assump-
tions, (b) partial identification with contin-
uous treatments, or (c) discrete instruments.
We focus on complex instruments with bi-
nary treatments. Hence, a fair comparison
is precluded. Instead, we demonstrate the
validity and tightness of our bounds. For comparison, we propose a NAÏVE baseline that first dis-
cretizes the instruments via k-means clustering and then learns the nuisance functions with respect to
the discretized instruments to apply the existing discrete bounds from Lemma 2.2
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Figure 4: Datasets 1 and 2: Estimated bounds on the CATE
over 5 runs for different k. Left: simple π(x, z). Right:
complex π(x, z).

Data: We simulate data mimicking
Mendelian Randomization, so that the
ground-truth CATE is known for eval-
uation. In Datasets 1 and 2 a one-
dimensional continuous instrument
(polygenic risk score, (Pierce et al.,
2018)) is simulated, with Dataset 1
modeling π(x, z) as a simple func-
tion and Dataset 2 as a complex func-
tion. Dataset 3 uses high-dimensional
instruments (SNPs, (Burgess et al.,
2020)) to test our method in an even
more complex setting. In all datasets, the CATE is heterogeneous in X (see Appendix D).

Performance metrics: We report coverage: frequency that the true CATE lies within the estimated
bounds; width: average bound width (lower is better); and MSD: mean squared difference of predicted
bounds over different k, reflecting robustness. For Dataset 3, we model π(x, z) to be dependent on
some latent discrete representation of the observed Z, such that we can approximate oracle bounds.
Thus, we can evaluate the coverage wrt. to the oracle bounds (denoted as coverage*) and the MSE
to the bounds. Further, for reliable decision-making, we would like to obtain tight bounds but only
under the constraint that they yield valid coverage. We thus propose two new metrics, which we call
width* and MSE*, which denote the corresponding metrics but where we filter for runs with coverage
≥ 95%. This allows us to properly compare the ability to learn tight bounds without distortions due
to falsely overconfident predictions.

2We provide additional comparisons in Appendix E.
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Implementation details: For our method, we use MLPs for the first-stage nuisance estimation and an
MLP with Gumbel-softmax discretization for learning ϕθ. For the NAÏVE baseline, we use k-means
clustering to discretize Z and then identical MLP architectures for the nuisance functions. 3
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Figure 5: Dataset 3: Sensitivity analysis showing width*
(left) and coverage* (right) over 5 runs for different k.

Results: Tables 1 and 2 compare our
method with the NAÏVE baseline over
multiple runs and different choices
of k. We observe that: (i) Both
methods reach nearly perfect coverage
for the true CATE; for Dataset 3 our
method achieves better coverage with
respect to the oracle bounds. (ii) Our
method learns tighter bounds (lower
width, width*, and MSE*) compared
to NAÏVE. (iii) Our method is robust
across different k values, as shown by a low MSD and stable performance in Figs. 4 and 5.

Sensitivity over k: Our method shows robust performance (stable width* and near-optimal coverage*)
while the NAÏVE baseline varies widely and loses coverage for higher k. This demonstrates that our
learned representation ϕ is the key source of performance gain.

To better understand the robustness as well as the source of performance gain of our method, we
analyze the behavior of the methods for different parameters k. For that, for Datasets 1 and 2, Fig. 4
shows estimated bounds for varying k. For high dimensional Dataset 3, we display the width* and
coverage* over varying k in Fig. 5. Overall, we observe robust behavior of our method but unstable
behavior of the NAÏVE baseline wrt. k. The latter is also clearly visible by the large differences in
the learned bounds in Fig. 4 on the left, and the higher variation in width* and coverage* in Fig. 5,
with rapidly declining coverage* of the naive method for higher k. In contrast, our method performs
robust, with close to optimal coverage* even for higher k. Further, in Fig. 5, we observe lower width*
for our method for all k, demonstrating strong improvements in learning tighter but still reliable
bounds of the CATE.

Limitations: Although our approach relaxes many assumptions needed for point identification, it
still relies on standard IV assumptions, which are often met by design or expert knowledge (e.g., in
Mendelian randomization). Extended discussion is in Appendix B.

Conclusion: We propose a novel method for learning tight bounds on treatment effects using
complex instruments (i.e., continuous, high-dimensional instruments with non-trivial relationships
to treatment). The experimental results demonstrate the validity, tightness, and robustness of our
bounds.

MEANINGFULNESS STATEMENT

In our view, a meaningful representation of life is one that supports impactful downstream tasks, such
as reliable causal inference. Focusing on genetic mutations central to Mendelian randomization, we
map high-dimensional instruments into a discrete clustering, and thus interpretable, representation.
This mapping yields valid partial identification of treatment effects by addressing unobserved con-
founding while reducing estimation variance. Our work contributes a robust, practical representation
that empowers sound, data-driven decision-making in medicine and related fields.

3Further details are in Appendix C.
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A PROOFS

A.1 PROOF OF THEOREM 1

We begin by stating a result from the literature that obtains valid bounds for discrete instruments.

Lemma 2 ((Swanson et al., 2018; Schweisthal et al., 2024)). Under Assumptions 1 and 2, the CATE
is bounded via

b−(x) ≤ τ(x) ≤ b+(x), (19)

with

b+(x) = min
l,m

b+l,m(x) and b−(x) = max
l,m

b−l,m(x) (20)

where

b+l,m(x) = π(x, l)µ1(x, l) + (1− π(x, l))s2 − (1− π(x,m))µ0(x,m)− π(x,m)s1, (21)

b−l,m(x) = π(x, l)µ1(x, l) + (1− π(x, l))s1 − (1− π(x,m))µ0(x,m)− π(x,m)s2. (22)

Proof of Theorem 1. First, note that, for a given representation ϕ, the representation ϕ(Z) is still a
valid (discrete) instrument that satisfies Assumptions 1 and 2. Hence, we can apply Lemma 2 using
ϕ(Z) as an instrument and immediately obtain the bounds from Theorem 1, but with representation-
induced nuisance functions µa

ϕ(x, ℓ) = E[Y |X = x,A = a, ϕ(Z) = ℓ] and πϕ(x, ℓ) = P(A =

1|X = x, ϕ(Z) = ℓ) for ℓ ∈ {0, . . . , k}.

We can write the representation-induced response function as

E[Y |X = x,A = a, ϕ(Z) = ℓ]
Z⊥⊥X
=

∫
Z

E[Y |X = x,A = a, Z = z]P(Z = z|A = a, ϕ(Z) = ℓ) dz

=

∫
Z

E[Y |X = x,A = a, Z = z]
P(ϕ(Z) = ℓ|A = a, Z = z)P(A = a|Z = z)P(Z = z)

P(A = a|ϕ(Z) = ℓ)P(ϕ(Z) = ℓ)
dz

=
1

P(A = a|ϕ(Z) = ℓ)P(ϕ(Z) = ℓ)∫
Z

E[Y |X = x,A = a, Z = z]P(ϕ(Z) = ℓ|A = a, Z = z)P(A = a|Z = z)P(Z = z) dz

=
1

P(A = a|ϕ(Z) = ℓ)P(ϕ(Z) = ℓ)∫
Z

E[Y |X = x,A = a, Z = z]P(ϕ(Z) = ℓ|Z = z)P(A = a|Z = z)P(Z = z) dz

(23)
and the representation-induced propensity score as

P(A = 1|X = x, ϕ(Z) = ℓ)
Z⊥⊥X
=

∫
Z

P(A = 1|X = x, Z = z)P(Z = z|ϕ(Z) = ℓ) dz

=

∫
Z

P(A = 1|X = x, Z = z)P(ϕ(Z) = ℓ|Z = z)
P(Z = z)

P(ϕ(Z) = ℓ)
dz

=
1

P(ϕ(Z) = ℓ)

∫
Z

P(A = 1|X = x, Z = z)P(ϕ(Z) = ℓ|Z = z)P(Z = z) dz,

(24)

which completes the proof.
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A.2 PROOF OF LEMMA 1

Proof. The result follows from

En

[(
b+∗ (x)− b̂+ϕ (x)

)2
]
= En

[(
b+∗ (x)− b+ϕ∗(x) + b+ϕ∗(x)− b̂+ϕ (x)

)2
]

(25)

≤ 2

((
b+∗ (x)− b̂+ϕ (x)

)2

+ En

[(
b+ϕ∗(x)− b̂+ϕ (x)

)2
])

(26)

(∗)
(=)2

((
b+∗ (x)− b̂+ϕ (x)

)2

+ En

[
b+ϕ∗(x)− b̂+ϕ (x)

]2
+ Varn(b̂+ϕ (x))

)
,

(27)

where we used the bias-variance decomposition for the MSE for (∗).

A.3 PROOF OF THEOREM 2

Proof. We derive the asymptotic distributions of the estimators µ̂a
ϕ(x, ℓ) from Eq. (9) and π̂ϕ(x, ℓ)

from Eq. (10). We proceed by analyzing the numerator and denominator of each estimator. First, we
show that both are asymptotically normal and then we apply the delta method to obtain the asymptotic
distribution of the ratios.

Distribution of µ̂a
ϕ(x, ℓ): Recall from Equation (9) that we can write µ̂a

ϕ(x, ℓ) as

µ̂a
ϕ(x, ℓ) =

Sn

Nn
, (28)

where

Sn =
1

n

n∑
j=1

Wj , with Wj = µ̂a(x, zj)1{ϕ(zj) = ℓ}[aη̂(zj) + (1− a)(1− η̂(zj))], (29)

Nn =
1

n

n∑
j=1

Dj , with Dj = 1{ϕ(zj) = ℓ, aj = a}. (30)

We define the moments

µW = E[W ] = pℓθℓ (31)

σ2
W = Var(W ) = pℓ(γℓ − pℓθ

2
ℓ ) (32)

µD = E[D] = pℓqℓ (33)

σ2
D = Var(D) = pℓqℓ(1− pℓqℓ) (34)

cWD = Cov(W,D) = pℓqℓθℓ(1− pℓ), (35)

where pℓ = P(ϕ(Z) = ℓ), qℓ = P(A = a | ϕ(Z) = ℓ), θℓ = E[g(Z) | ϕ(Z) = ℓ], and
γℓ = E[g(Z)2 | ϕ(Z) = ℓ], with g(Z) = µ̂a(x, Z)(aη̂(Z)+ (1−a)(1− η̂(Z)). Note that, for better
readability, in this proof we avoid the double indexing showing the dependency on ϕ which we used
in the theorem in the main paper.

By the central limit theorem, we know that

√
n

(
Sn

Nn

)
d−→ N2

(
µ =

(
µW

µD

)
,Σ =

(
σ2
W cWD

cWD σ2
D

))
. (36)

Let f(s, n) = s
n . We are interested in the asymptotic distribution of the ratio µ̂a

ϕ(x, ℓ) = f(Sn, Nn).
The delta method states that

√
nf(Sn, Nn)

d−→ N2

(
f(µW , µD),∇f⊤(µW , µD)Σ∇f(µW , µD)

)
(37)
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Using that the gradient is ∇f⊤(µW , µD) =

(
1

µD
,−µW

µ2
D

)
, we can obtain the asymptotic variance

via

∇f⊤(µW , µD)Σ∇f(µW , µD) =
σ2
W

µ2
D

− 2
µW cWD

µ3
D

+
µ2
Wσ2

D

µ4
D

(38)

=
1

pℓ

(
(γℓ − θ2ℓ )

q2ℓ
+

θ2ℓ (1− pℓqℓ)

q3ℓ

)
(39)

=
1

pℓ

(
Var(g(Z) | ϕ(Z) = ℓ)

q2ℓ
+

θ2ℓ (1− pℓqℓ)

q3ℓ

)
. (40)

Distribution of π̂ϕ(x, ℓ): Recall from Equation (10) that we can write π̂ϕ(x, ℓ) as

π̂ϕ(x, ℓ) =
Sn

Nn
, (41)

where

Sn =
1

n

n∑
j=1

Wj , with Wj = π̂(x, zj)1{ϕ(zj) = l}, (42)

Nn =
1

n

n∑
j=1

Dj , with Dj = 1{ϕ(zj) = l}. (43)

We define the moments

µW = E[W ] = pℓθℓ (44)

σ2
W = Var(W ) = pℓ(γℓ − pℓθ

2
ℓ ) (45)

µD = E[D] = pℓ (46)

σ2
D = Var(D) = pℓ(1− pℓ) (47)

cWD = Cov(W,D) = pℓθℓ(1− pℓ), (48)

where pℓ = P(ϕ(Z) = ℓ), θℓ = E[h(Z) | ϕ(Z) = ℓ], and γℓ = E[h(Z)2 | ϕ(Z) = ℓ], with
h(Z) = π̂(x, Z).

By the central limit theorem, we know that

√
n

(
Sn

Nn

)
d−→ N2

(
µ =

(
µW

µD

)
,Σ =

(
σ2
W cWD

cWD σ2
D

))
. (49)

We can then calculate the asymptotic variance using the delta method as above and obtain

∇f⊤(µW , µD)Σ∇f(µW , µD) =
σ2
W

µ2
D

− 2
µW cWD

µ3
D

+
µ2
Wσ2

D

µ4
D

(50)

=
1

pℓ
(γℓ − θ2ℓ ) (51)

=
1

pℓ
Var(h(Z) | ϕ(Z) = ℓ). (52)
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B REAL-WORLD RELEVANCE AND VALIDITY OF ASSUMPTIONS

In this section, we elaborate on the real-world relevance of our considered setting and show that our
assumptions often hold and are even weaker than the ones of existing approaches. For that, we draw
upon two real-world settings.

B.1 MENDELIAN RANDOMIZATION

Mendelian randomization (MR; the main motivational example from our paper) is a widely used
method from biostatistics to estimate the causal effect of some treatment or exposure (such as alcohol
consumption) on some outcome (such as cardiovascular diseases). We refer to Pierce et al. (2018)
for an introduction to MR, which also shows that MR is widely used in medicine. For that, genetic
variants (such as different single nucleotide polymorphisms, SNPs) are used as instruments where it
is known that they only influence the exposure but not directly the outcome. Our method for partial
identification with complex instruments is perfectly suited for this common real-world application.
Depending on the use case, either a predefined genetic risk score (Burgess et al., 2020) as a continuous
variable, or up to hundreds of SNPs are used simultaneously as IVs to strengthen the power of the
analysis, resulting in high-dimensional instruments (Pierce et al., 2018).

Validity of assumptions: The IV assumptions used in our paper such as the exclusion and inde-
pendence assumptions can be ensured by expert knowledge (e.g., given some observed confounder
age (X), genetic variations (Z) do not affect age) or, in some cases, they can be even directly tested
for (Glymour et al., 2012). In contrast, as explained in Sec. ??, existing methods for MR rely on
additional hard assumptions on top such as the knowledge about the parametric form of the underly-
ing data-generating process. Especially with such high-dimensional IVs, misspecification of these
models may result in significantly biased effect estimates. In contrast, our method does not rely on
any parametric assumption and also no additional assumptions compared to previous methods, thus
enabling more reliable causal inferences in the real-world application of MR by using strictly weaker
assumptions than existing work.

B.2 INDIRECT EXPERIMENTS

With indirect experiments (IEs), we show that, in principle, our method is not constrained to medical
applications but is also highly useful in various other domains. IEs are widely applied in various
areas such as social sciences or public health to estimate causal effects in settings with non-adherence,
i.e., where people cannot be forced to take treatments but rather be encouraged by some nudge (Pearl,
1995). For instance, researchers might be interested in estimating the effect of some treatment such as
participating in a healthcare program (T ) on some health outcome Y by randomly assigning nudges Z
(IVs) in the form of different text messages on social media promoting participation. Here, common
nudges (IVs) are in the form of, for instance, text or even image data and thus high-dimensional,
showing the necessity of a method capable of handling complex IVs such as ours.

In principle, our method can be applied to every setting with continuous or multi-dimensional IVs
where one wants to avoid making the hard untestable assumptions necessary for point identification
such as linearity or additivity (e.g., Hartford et al. (2017)). Specific examples for applications with
high-dimensional IVs are text-based nudges for encouraging vaccinations (Milkman et al., 2021),
or various kinds of experiments where text nudges are generated by different strategies such as for
political microtargeting (Hackenburg & Margetts, 2024) or for personalized persuasion in general
(Matz et al., 2024).

Another important application area is online marketing. Concrete use cases involve extended A/B
testing for evaluating the benefits of new features, e.g., when one is interested in the effect of a new
version of an app on user engagement. Here, users with features such as age, gender, and content
preferences (X) can be nudged by emails or push notifications (Z) to test a new feature such as using
a new version of an app (A) to estimate its effect on engagement metrics such as screen time (Y ).
Further, our method could also be extended to improve current methods for optimizing instrument
designs for indirect experiments that for now assume identifiability is possible (e.g., Chandak et al.
(2023)).
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Validity of assumptions: As a major benefit of IEs, the IV assumptions are ensured per design as
the IVs are randomly assigned, and, thus they always hold. Hence, our method provides a promising
tool for evaluating the effects of IEs.
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C IMPLEMENTATION AND TRAINING DETAILS

Model architecture: For all our models, we use MLPs with ReLU activation function. For µ̂a
ϕ, we

use 2 layers to encode X and 3 layers to encode Z. Then, we concatenate the outputs and add 2
additional shared layers. Finally, we calculate the outputs by a separate treatment head for A = 0
and A = 1 to ensure the expressiveness of A for predicting Y . For π̂, we use the same architecture.
For η̂, we use 3 layers. For ϕθ, we also use 3 layers and apply discretization on top of the K outputs
(Jang et al., 2017). For the nuisance parameters of the k-means baseline, we use the same models as
for µ̂a

ϕ and π̂ for a fair comparison. We use a neuron size of 10 for all hidden layers.

Training details: For training our nuisance functions, we use an MSE loss for the functions learning
the continuous outcome Y and a cross-entropy loss for functions learning the binary treatment A.
For all models, we use the Adam optimizer with a learning rate of 0.03. We train our models for a
maximum of 100 epochs and apply early stopping. For our method, we fixed λ = 1 and performed
random search to tune for [0, 1] for γ. We use PyTorch Lightning for implementation. Each training
run of the experiments could be performed on a CPU with 8 cores in under 15 minutes.
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D DATA DESCRIPTION

Dataset 1: We simulate an observed confounder X ∼ Uniform[−1, 1] and an unobserved confounder
U ∼ Uniform[−1, 1].

The instrument Z is defined as

Z ∼ Mixture
(
1

2
Uniform[−1, 1] +

1

4
Beta(2, 2) +

1

4
(−Beta(2, 2))

)
. (53)

We define ρ as

ρ =
1

1 + exp (− ((2|Z| −max(Z)) +X + 0.5 · U))
. (54)

Then, the propensity score is given by

π = (ρ− 0.5) · 0.9 + 0.5. (55)

We then sample our treatment assignments from the propensity scores as

A ∼ Bernoulli(π). (56)

The conditional average treatment effect (CATE) is defined as

τ(X) = − (2.5X)4 + 12 sin(6X) + 0.5 cos(X)

80
+ 0.5. (57)

The outcome Y is then generated by

Y = (X + 0.5U + 0.1 · Laplace(0, 1)) · 0.25 + τ(X) ·A. (58)

Dataset 2: We keep the other properties but change the propensity score to be more complex, which
results in harder-to-learn optimal representations of Z for tightening the bounds. The propensity
score is given by

π = sin(2.5Z +X + U) · 0.48 + 0.48 +
0.04

1 + exp(−3|Z|)
. (59)

Dataset 3: We simulate X and U as above. Then, we sample a d-dimensional Z ∈ {0, 1}d with
d = 20 as

Z ∼ Binomial(d, 0.5). (60)
Thus, our modeling is here inspired by using multiple SNPs (appearances of genetic variations) as
instruments (Burgess et al., 2020), where we simulate potential variations for 20 genes.

Then, we define

ρ =

d∑
j=1

[1{j ≤ 5}Zj ] (61)

and the propensity score, inspired by the more complex setting of Dataset 2, as

π = 0.48 sin(10ρ+X + U) + 0.48 +
0.04

1 + exp(−3|5ρ|)
. (62)

Then, we define the CATE as

τ(X) = −−(1.6X + 0.5)4 + 12 sin(4X + 1.5) + cos(X)

80
+ 0.5. (63)

and the outcome dependent on τ , X and U analogously as for Datasets 1 and 2.

Dataset 4: To test our method even in higher-dimensional settings, we consider a 4th dataset with
100-dimensional IVs. For that, we adapt the DGP from dataset 3 but set d = 100. Then we adjust
the latent discrete IV score as

ρ =

d∑
j=1

[1{j ≤ 25}Zj ]. (64)
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By Eq. (61) and Eq. (64), we ensure that some of the modeled SNPs are irrelevant for π and thus do
not affect the treatment or exposure A. Thereby, we focus on realistic settings in practice, where the
relevance of instruments cannot always be ensured which imposes challenges especially for existing
methods for point identification, but not for our approach. Further, we ensure that the latent score ρ
can only take 5 discrete levels for dataset 3 and 25 discrete levels for dataset 4. This allows us to
approximate oracle bounds using the discrete bounds on top of ρ by leveraging Lemma 2 such that
we can evaluate our method and the baseline in comparison to oracle bounds.

To create the simulated data used in Sec. 5, we sample n = 2000 from the data-generating process
above. We then split the data into train (40%), val (20%), and test (40%) sets such that the bounds
and deviation can be calculated on the same amount of data for training and testing.
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Dataset Method k Coverage[↑] Width[↓]

Dataset 1

Naïve 2 1.00± 0.00 1.62± 0.06
3 1.00± 0.00 0.83± 0.16

Ours 2 1.00± 0.00 1.01± 0.05
3 1.00± 0.00 1.09± 0.04

Dataset 2

Naïve 2 1.00± 0.00 1.34± 0.19
3 1.00± 0.00 1.28± 0.20

Ours 2 1.00± 0.00 1.13± 0.19
3 1.00± 0.00 1.15± 0.31

Table 3: Datasets 1 and 2: Sensitivity over k.

E ADDITIONAL RESULTS

E.1 ADDITIONAL RESULTS FOR SENSITIVITY OVER k

E.2 ADDITIONAL BASELINES

As mentioned in the main paper, existing methods are not designed for our considered setting of
continuous or high-dimensional IVs with binary treatments. However, to further show the advantages
and necessity of our tailored method, we compare with two additional baselines that were not
developed for our task but which we adapted for our task, namely, one from uncertainty quantification
for point estimates and one from the discrete instruments setting:

(i) DeepIV with bootstrapped confidence intervals. DeepIV (Hartford et al., 2017) is a neural method
tailored for high-dimensional instruments when point identification can be ensured. This requires the
additional assumption of additivity of the unobserved confounding, which usually cannot be ensured
and is not necessary for our method. For DeepIV, we can approximate confidence intervals using
bootstrapping. Here, we approximate confidence intervals with a confidence level of 95%, indicating
an expected coverage of 95% if assumptions were not violated. However, note that these intervals
can only adjust for statistical uncertainty, but not for identifiability uncertainty due to the violation of
causal assumptions. Thus, this baseline acts as an additional motivation for why bound estimators
such as our method are important.

(ii) Discretized IVs: As a further additional baseline, we proceed by directly discretizing the high-
dimensional IVs and then estimating the existing bounds for discrete IVs. Hence, one loses infor-
mation from the IV due to the discretization. Our implementation here is the same as for the naïve
baseline, however, the k partitions are not learned by k-means clustering but instead defined by a
simple grouping rule. To ensure a fair comparison, we average the results of experiments conducted
with the same number of partitions k for all methods.

Metric DeepIV (CI) Discretized Naïve Ours Rel. Improvement
Coverage[↑] 0.52± 0.29 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.0%
Coverage*[↑] 0.00± 0.00 0.99± 0.01 0.96± 0.09 0.99 ± 0.01 0.0%
Width*[↓] — 1.91± 0.04 1.88± 0.04 1.85 ± 0.04 1.8%
MSE*[↓] — 0.13± 0.01 0.12± 0.01 0.11 ± 0.01 9.2%
MSD[↓] — 0.08± 0.03 0.10± 0.10 0.03 ± 0.02 70.3%

Table 4: Dataset 3: Comparison of methods (Naïve vs Ours) on coverage and width metrics with
relative performance improvement. Note: “—” means that there are no reliable runs for which the
corresponding performance metrics could be calculated.

Results: We report our results for Dataset 3 in Table 4. We observe that the DeepIV method, as
expected, gives falsely overconfident bounds with only about 53% coverage of the true CATE and no
coverage of the oracle bounds. Thus, there are no reliable runs for which the other metrics could be
calculated (denoted by “—” in the tables). This emphasizes the necessity for using bound estimators.
Further, we observe that the discretized baseline gives more conservative and wider bounds under
similar coverage (higher Width* and MSE*) and performs less robustly with regard to k (higher
MSD). In sum, the results confirm the strong performance of our method.

E.3 HIGH-DIMENSIONAL DATASET

To show the validity of our method in even more high-dimensional settings, we added additional
experiments with 100-dimensional IVs. For that, we introduced our Dataset 4 (see Appendix D).
We report the results for our method and the same baselines as in the previous section. Further, for
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Metric DeepIV (CI) Discretized Naïve Ours Rel. Improvement
Coverage[↑] 0.01± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.0%
Coverage*[↑] 0.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.0%
Width*[↓] — 1.90± 0.06 1.82± 0.13 1.75 ± 0.08 3.7%
MSE*[↓] — 0.26± 0.03 0.23± 0.05 0.21 ± 0.03 10.9%
MSD[↓] — 0.05± 0.03 0.10± 0.04 0.05 ± 0.01 48.2%

Table 5: Dataset 4 (100-dimensional IVs): Comparison of methods (Naïve vs Ours) on coverage and
width metrics with relative performance improvement. Note: “—” means that there are no reliable
runs for which the corresponding performance metrics could be calculated.

the higher-dimensional setting, we varied the hyperparameter k over [2, 5, 7, 10, 20] for all bound
estimation methods. We observe similar patterns as for our other dataset. In particular, the DeepIV
baseline fails entirely to provide reliable bounds. In summary, our method shows robust performance
by providing tighter and more reliable bounds than the baseline, even in high-dimensional settings.
This emphasizes the applicability of our bounds in even more complex settings.

E.4 ABLATION STUDYS

To further examine the robustness of our method in non-standard settings, we perform two additional
ablation studies, one for varying the DGP and one for varying the selected nuisance models.

Linear DGP: To analyze if our flexible method also performs robustly in simple settings, we evaluate
our method which uses neural networks at every stage on a simple linear DGP. For that we adapt our
Dataset 3 and use linear functions for the dependencies between the variables. We report the results in
Table 6. As expected, our method performs also robustly in the simpler linear setting and outperforms
the baseline by a clear margin again. Summarized, our method shows strong performance which
emphasizes its applicability to datasets of various complexity levels.

Metric Naïve Ours Rel. Improve
Coverage[↑] 1.00± 0.00 1.00 ± 0.00 0.0
Coverage*[↑] 0.92± 0.18 1.00 ± 0.00 8.6%
Width*[↓] 2.07± 0.04 1.99 ± 0.05 3.9%
MSE*[↓] 0.10± 0.01 0.08 ± 0.01 20.0%
MSD[↓] 0.08± 0.08 0.04 ± 0.03 50.0%

Table 6: Linear DGP: Comparison of methods across key metrics. Relative performance improve-
ments in green.

Non-linear DGP with linear models: In our method, we leverage neural networks at all stages to
allow for consistent and flexible estimation of all properties. However, since our method is model-
agnostic in principle, we analyze the behavior of our method when using non-flexible (mis-specified)
models. For that, we implement our method and the baseline by using linear models for the nuisance
estimates and evaluate the performance on our non-linear Dataset 3 (i.e., the nuisances and the bounds
are misspecified). We report the results in Table 7. As expected, because of the misspecification of
the nuisance models, full coverage of the bounds cannot be guaranteed. However, our method still
outperforms the naive baseline evidently with respect to coverage and MSD while yielding similar
bound tightness. Further, with coverage to the oracle bounds over 90% and low MSD, our method
still predicts close to valid bounds robustly over different runs which is unlike the naive baseline.
This shows that our method is also robust against misspecification of the nuisance models as when
using linear models for non-linear datasets.

Metric Naïve Ours Rel. Improve
Coverage[↑] 0.96± 0.06 1.00 ± 0.00 4.1%
Coverage*[↑] 0.59± 0.28 0.91 ± 0.04 54.2%
Width*[↓] 1.91± 0.02 1.91 ± 0.03 0.0%
MSE*[↓] 0.14± 0.04 0.14 ± 0.02 0.0%
MSD[↓] 0.20± 0.11 0.02 ± 0.01 90.0%

Table 7: Non-linear DGP with linear nuisance models: Comparison of methods across key metrics.
Relative performance improvements in green.
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F ROLE OF NUMBER OF PARTITIONS k

F.1 WHY OUR METHOD IS ROBUST TO DIFFERENT CHOICE OF k

One major advantage of our method is that it is clearly less sensitive to the hyperparameter k than, for
example, the naïve baseline. Empirically, we demonstrate this in our experiments by lower variance
and stable behavior over varying k, especially visible in the low values of MSD. This is due to the
combination of learning flexible representations tailored to minimize bound width (allowing us to
estimate tight bounds already for low k) while ensuring reliable estimates of the nuisance functions
in the second stage by using our regularization loss in Eq. (16) (ensuring robust behavior also for
higher k).

Note that the robustness of our method is especially beneficial when applying our method to real-
world settings in causal inference. In real-world settings from causal inference, hyperparameter
tuning and model evaluation are not directly possible because oracle CATE or oracle bounds are not
known. Thus, the robustness against suboptimal selection of hyperparameters such as k is crucial.
In the following, we provide further high-level theoretical insights into the role of k and propose
practical recommendations for selecting k in real-world applications.

Estimation error for different k: The hyperparameter λ controls the regularization loss in Eq. (16),
i.e., it tries to maximize p̂ℓ,ϕ = P̂(ϕθ(Z) = ℓ) > ε for all ℓ ∈ 1, . . . , k. Thus, if we choose λ
high enough, then we enforce that p̂ℓ,ϕ = 1/k for all ℓ ∈ 1, . . . , k. Plugged into Theorem 12, the

asymptotic variances for the nuisance estimators are k
(

Var(g(Z)|ϕ(Z)=ℓ)
c + d

)
for µ̂a

ϕ(x, ℓ), and
k (Var(h(Z) | ϕ(Z) = ℓ)) for π̂ϕ(x, ℓ), respectively. Thus, for large enough λ, the variance of the
nuisance estimators (and, thus, also likely of the final bounds) will increase for increasing k. However,
as an interesting side note, for a fixed (not too large) λ, the penalization term in Eq. (16) will also
grow with growing k due to the same reason, which yields an automated stabilization for higher k.
This is also shown in our experiments where higher values of k do not necessarily result in a higher
variance.

Bound tightness for different k: On a population level, the bounds get tighter with growing
k. This follows straightforwardly from Theorem 1, since using more k increases the flexibility
of ϕ. While the exact bound width is highly non-trivial, we can use results from Schweisthal
et al. (2024) about bounds for the CATE with discrete instruments to give some intuition.
Specifically, in our setting, for some x, the bound width is bounded by b+ϕ (x) − b−ϕ (x) ≤
minl,m {(s2 − s1)(2− πϕ(x, ℓ)− (1− πϕ(x,m)))} with ℓ,m ∈ {1, . . . , k}. This has two ma-
jor implications. First, if for some x, ϕ is learned such that ϕ(x, ℓ) is close to 1 for some l and
πϕ(x,m) is close to 0 for some m, the bound width is close to zero (“point identification”). Second,
if the optimal partitioning function ϕ is the same for all x (implying b(x) = b), then setting k = 3
can be sufficient to yield the tightest bounds. This is because, by using a flexible network for ϕ, the
partitions can be learned such that partition 1 yields propensity scores as close as possible to zero (as
the data allows), partition 2 yields propensity scores as close as possible to 1, and partition 3 contains
all z resulting in propensity scores between those values. Note, however, that this is only valid in
population but can result in highly unreliable estimation in finite sample data.

F.2 PRACTICAL GUIDELINES FOR SELECTING k

Although we showed that our method is designed to be robust against different selections of k, we
provide two potential guidelines for how to choose k in real-world settings where ground-truth CATE
or bounds are not available for model selection.

Approach 1: Expert-informed approach. In some medical applications, physicians might already
know or make an educated guess about a number of underlying clusters of patient characteristics
such as genetic variants. For instance, this is a common assumption in subgroup identification or
latent class analysis in medicine where patient groups are characterized by having similar responses
to treatments or showing similar associations with diseases (Kongsted & Nielsen, 2017). Thus, no
data-driven approach is necessary here but one can integrate existing domain knowledge.

Approach 2: Data-driven for hypothesis confirmation. Often, physicians are interested in whether
some treatment or exposure has a positive or negative effect (i.e., lower bound > 0 or upper bound
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< 0) for at least some observations x. Thus, k can be selected by increasing k until such an effect
can be observed while holding the variance minimal. Then, the variance can be approximated (e.g.,
by bootstrapping to test for the reliability of the corresponding bound model and its effect). Thus,
this approach can be used when our method is used as a support tool for hypothesis confirmation.

Last, straightforwardly, from an exploratory perspective, all hyperparameters (k, λ, γ) can be altered
together to examine the behavior of bound width and estimation variance to post-hoc find a suitable
hyperparameter configuration for a dataset that fulfills the subjective preferences of the practitioner.
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G SENSITIVITY ANALYSIS

We perform a sensitivity analysis over the hyperparameters in our custom loss function. We report
the results in Fig. 6 and Fig. 7 for dataset 3 and for k = 3. We observe that γ does not affect the
bound size but can be optimized to reduce estimation variance, as mentioned in the motivation of
our auxiliary guidance loss. Thus, λ demonstrates the trade-off between tightness and variance and
shows the importance of our regularization loss. Here, λ can be increased to reduce the variance. In
our experiments, the optimal trade-off between reduced variance and bound tightness also results in
optimal oracle coverage, showing the practicability of our regularization.
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Figure 6: Sensitivity over λ. Left: Average bound width. Right: Oracle coverage. Averaged over 5
runs ± sd.
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Figure 7: Sensitivity over γ. Left: Average bound width. Right: Oracle coverage. Averaged over 5
runs ± sd.
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H TRAINING PROCEDURE

Algorithm 1: Two-stage learner for estimating bounds with complex instruments
Input :observational data sampled from (Z,X,A, Y ), epochs e, batch size nb, neural network ϕθ with parameters θ, learning rate δ

Output :bounds b̂−ϕθ
(x), b̂+ϕθ

(x)

// First stage (nuisance estimation)

µ̂a(x, z)← Ê[Y | X = x,A = a, Z = z]

π̂(x, z)← P̂(A = 1 | X = x, Z = z)

η̂(z)← P̂(A = 1 | Z = z)
// Second-stage (partition learning and bound calculation)
for ϵ ∈ {1, . . . , e} in batches do

for ℓ ∈ {1, . . . , k} do
µ̂a
ϕθ

(x, ℓ) = 1∑nb
j

1{ϕθ(zj)=ℓ,A=a)}

∑nb
j µ̂a(x, zj)1{ϕθ(zj) = ℓ}(aη̂(zj) + (1− a)(1− η̂(zj)))

π̂ϕθ
(x, ℓ) = 1∑nb

j
1{ϕθ(zj)=ℓ}

∑nb
j π̂(x, zj)1{ϕθ(zj) = ℓ})

end
b̂+ϕθ

(x) = minl,m b̂+ϕθ ;l,m(x), b̂−ϕθ
(x) = maxl,m b̂−ϕθ ;l,m(x) for l,m ∈ {1, . . . , K}

L(θ)← Lb(θ) + λLreg(θ) + γLaux(θ) as per Sec. 4
θ ← θ − δ∇θL(θ)

end
// Final bounds

return b̂−ϕθ
(x), b̂+ϕθ

(x)
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