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Abstract
We find that generative models can be great test-
time adapters for discriminative models. We pro-
pose a method to adapt pre-trained classifiers and
large-scale CLIP models to individual unlabelled
images by modulating the text conditioning of a
text-conditional pretrained image diffusion model
and maximizing the image likelihood using end-
to-end backpropagation to the classifier parame-
ters. We improve the classification accuracy of
various pretrained classifiers on various datasets,
including ImageNet and its variants. Further we
show that our approach significantly outperforms
previous test-time adaptation methods. To the
best of our knowledge, this is the first work that
adapts pre-trained large-scale discriminative mod-
els to individual images; all previous works re-
quire co-training under joint discriminative and
self-supervised objectives, to apply at test time,
which prevents them from adapting readily avail-
able models.

1. Introduction
Building predictive models, whether classifiers or regres-
sors, is arguably the most fundamental problem in machine
learning, and yet, whether such models be built in a gener-
ative or discriminative way remains an ever-lasting debate.
Empirically, discriminative approaches have always had an
upper hand in terms of generalization accuracy (He et al.,
2016; Dosovitskiy et al., 2020). In the past few years, there
has been a dramatic resurgence in the field of generative
modeling, primarily fueled by the advent of diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach
et al., 2022; Saharia et al., 2022) and the proliferation of
large-scale datasets (Schuhmann et al., 2022; Sun et al.,
2017). This has rekindled the interest in repurposing gen-
erative models for discriminative tasks. To date, current
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attempts to leverage visual generative models for discrimi-
native tasks can be grouped into two kinds. First, methods
that use Bayes rule to directly optimize the conditional prob-
ability from the joint distribution learned by the generative
model (Grathwohl et al., 2019; Li et al., 2023a; Clark &
Jaini, 2023). Such methods do not need finetuning and oper-
ate in a zero-shot manner. Second, methods that generate
labeled images to augment the training or finetuning of dis-
criminative models (Azizi et al., 2023; Yu et al., 2023; Li
et al., 2022; Zhang et al., 2021). However, despite these
attempts, pure discriminative methods still outperform pure
generative methods across almost all popular benchmarks
but it’s not too surprising since generative models are aiming
to solve a much more difficult problem.

In this paper, we take an alternative perspective. Instead of
considering generative and discriminative models as com-
petitive, we argue that they should be coupled in a way that
leverages the best of both worlds: discriminative models are
good at building powerful conditional density models but
overfit to training distribution, and generative models gener-
alize better but struggle to learn discriminative features. In-
stead of re-purposing generative models, we leverage them
to adapt discriminative models at test time to data samples
that are far from the training distribution.

We find that pre-trained generative diffusion models are
great test-time adapters for pre-trained discriminative mod-
els. We propose to adapt open and closed vocabulary classi-
fiers to individual unlabelled images by using their output to
modulate the text conditioning of an image diffusion model
and maximize the image diffusion likelihood. Our model,
Diffusion-based Test Time Adaptation , is reminiscent of
an encoder-decoder architecture, with a state-of-the-art pre-
trained classifier as the encoder and a state-of-the-art pre-
trained generative model in the decoder. At test time, the
pretrained diffusion model provides guidance on how to up-
date the pretrained classifier. We show that Diffusion-TTA
effectively adapts image classifiers for both in- and out-of-
distribution examples across established benchmarks, in-
cluding ImageNet and its variants.

Generative models have previously been used for test time
adaptation (TTA) of classifiers or segmentors, e.g., TTT-
MAE (Gandelsman et al., 2022), Slot-TTA (Prabhudesai
et al.), etc. However, these methods require the discrimina-
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Figure 1: Architecture of Diffusion-TTA. Our method consists of discriminative and generative modules. The discrimina-
tive classifier uses the clean input image to predict a distribution over labels, which we use for a weighted sum of learnt
class embeddings into a prompt. The generative diffusion model takes as input the noisy image and the prompt, and predicts
the added noise. We update the classifier’s weights to maximize the image likelihood using the diffusion loss.

tive models to be trained jointly with a self-supervised image
generation loss. At test time, the discriminative model is
adapted by finetuning with the generation loss, e.g. the
masked autoencoder loss in TTT-MAE (Gandelsman et al.,
2022), thus enhancing its task performance. While these
models demonstrate substantial performance improvements
upon adaptation, they often stem from the subpar perfor-
mance of their initial feed-forward discriminative model.
This trend can be clearly seen in our TTT-MAE baseline
(Gandelsman et al., 2022), where the before-adaptation re-
sults are significantly lower than the results of a pre-trained
feedforward classifier. In contrast, our approach refrains
from any initial joint training, opting instead to directly
adapt usual pre-trained discriminative models at test time
utilizing pre-trained generative diffusion models.

We test our approach on multiple datasets including Ima-
geNet (Deng et al., 2009), its out-of-distribution variants (C,
R, A, v2), CIFAR100, Food101, FGVC, Oxford Pets, and
Flowers102 and on the adaptation of numerous ImageNet-
trained and CLIP-based classifiers, and under various text
conditioned diffusion models, such as Stable Diffusion
(Rombach et al., 2022) and DiT (Peebles & Xie, 2022).
We show consistent improvements over the initially em-
ployed classifier. We hope our work to stimulate research
on combining feed-forward and generative models, for more
deliberate slow perception to handle images outside of the
training distribution. Our code and trained models will be
publicly available upon publication.

2. Method
In this section, we present Diffusion-TTA. We discuss rel-
evant diffusion model preliminaries in Section 2.1 and de-
scribe our method in Section 2.2. Our Diffusion-TTA model
is shown in Figure 1.

2.1. Diffusion Model Preliminaries

A diffusion model learns to model a probability distribution
p(x) by inverting a process that gradually adds noise to the
image x. The diffusion process is associated with a variance
schedule {βt ∈ (0, 1)}Tt=1, which defines how much noise
is added at each time step. The noisy version of sample x at
time t can then be written xt =

√
ᾱtx +

√
1− ᾱtϵ where

ϵ ∼ N (0,1), is a sample from a Gaussian distribution
(with the same dimensionality as x), αt = 1 − βt, and
ᾱt =

∏t
i=1 αi. One then learns a denoising neural network

ϵ̂ = ϵϕ(xt; t) that takes as input the noisy image xt and the
noise level t and tries to predict the noise component ϵ.

Diffusion models can be easily extended to draw sam-
ples from a distribution p(x|c) conditioned on a prompt
c, where c can be an image category, class index, im-
age caption, image semantic map, etc (Rombach et al.,
2022; Li et al., 2023b; Zhang & Agrawala, 2023). Con-
ditioning on the prompt can be done by adding c as an
additional input of the network ϵϕ. In this work, we fo-
cus on text-conditioned diffusion models. Modern text-
conditioned image diffusion models are trained on large
collections D′ = {(xi, ci)}Ni=1 of images paired with
text prompts by minimizing the loss: Ldiff(ϕ;D′) =
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1
|D′|

∑
xi,ci∈D′ ||ϵϕ(

√
ᾱtx

i +
√
1− ᾱtϵ, ci, t)− ϵ||2.

This loss, which trains the network ϵϕ to predict the noise ϵ
added to an image, corresponds to a reweighted form of the
variational lower bound for log p(x|c) (Ho et al., 2020).

2.2. Test-time Adaptation with Diffusion

Test-time adaptation (TTA) methods (Sun et al., 2020) aim
to adapt a model at test time to account for unforeseen
distribution shifts. We consider image classification as our
task for test-time adaptation. Our core idea is to update
the image classifier using a self-supervised objective–image
likelihood, under the guidance of general representation
encoded in powerful diffusion models.

To do so, we reformulate conditioning prompt c in the diffu-
sion model to be dependent on the classifier’s output. Let
fθ denote the classifier parameterized by θ, which takes
input as image x and outputs classification logits z = fθ(x),
where z = (z1, z2, ..., zL) be the logits predicted by the clas-
sifier, over all the L categories in the dataset. We observe
that most classifiers maintain a high top-K accuracy, while
their top-1 accuracy is significantly lower, this motivates
to only adapt the top-K predictions of the classifier using
the diffusion objective. We subselect the top-K categories
T and do a softmax normalization of the logits z only over
them. The probability of category i ∈ T is:

pi = Softmax(zi) =
ezi∑

j∈T ezj

Given the learnt class or text embeddings of the diffusion
model for the top-K categories {ℓi}i∈T , we write the clas-
sifier conditioned text prompt as ĉ =

∑
i∈T piℓi. As p is

differentiable with respect to the classifier weights, we can
now update the classifier weights θ via gradient descent by
minimizing the following diffusion loss, after replacing c
with ĉ.

L(θ, ϕ) = Et,ϵ∥ϵϕ(
√
ᾱtx+

√
1− ᾱtϵ, ĉ, t)− ϵ∥2.

We minimize this loss over each example in the test-set
independently, while sampling random timesteps t coupled
with random noise variables ϵ.

For further implementation details, please refer to our Ap-
pendix Sections A.2 and A.3.

3. Experiments
We test Diffusion-TTA in adapting CLIP models (Radford
et al., 2021) and ImageNet classifiers (He et al., 2016; Doso-
vitskiy et al., 2020; Liu et al., 2022) across multiple image
classification datasets, at both in-distribution and out-of-
distribution test images. CLIP models are trained across
millions of image-caption pairs using contrastive matching
of the language and image feature embeddings. ImageNet

classifiers are all trained on the ImageNet classification task.
We report the top-1 classification in our experiments. For
further results and ablations of our design choices, please
refer to Section A.1 in Appendix.

3.1. Test-time Adaptation of on Open-Vocabulary CLIP
Classifiers

We test Diffusion-TTA for adapting three different CLIP
models with different backbone sizes: ViT-B/32, ViT-B/16,
and ViT-L/14. We follow (Radford et al., 2021) to per-
form zero-shot classification. We consider a variety of
datasets for TTA of the CLIP classifiers, such as CIFAR-
100 (Krizhevsky et al., 2009), Food101 (Bossard et al.,
2014), Flowers102 (Nilsback & Zisserman, 2008), FGVC
Airplane (Maji et al., 2013), Oxford-IIIT Pets (Parkhi et al.,
2012) and ImageNet (Deng et al., 2009).

Baselines. We compare Diffusion-TTA against the follow-
ing state-of-the-art TTA approaches:

• Diffusion Classifier (Li et al., 2023a) is a generative image
classifier building atop diffusion models. This method
searches over the set of discrete classes and predicts the
class that maximizes the conditional image likelihood. We
directly report the numbers from their paper in our table.

• Synthetic SD Data (Ravuri & Vinyals, 2019; Azizi et al.,
2023) is a baseline reported in Diffusion Classifier. Using
class names as prompts, they generate synthetic class-
image data with the text-to-image capabilities of Stable
Diffusion. Afterwards, they train a ResNet-50 classifier
on the synthetic dataset.

• SD Features is a baseline inspired by Label-DDPM
(Baranchuk et al., 2021) and reported in Diffusion Clas-
sifier, where they use the Stable Diffusion features and
then train a ResNet-50 classifier supervised on top of the
extracted features and ground truth labels.

We show quantitative zero-shot classification results in Ta-
ble 1. We find that our method improves CLIP of dif-
ferent sizes, including the strong backbone of ViT-L/14.
We get consistent improvement over all datasets, including
small-scale (CIFAR-100), large-scale (ImageNet), and fine-
grained (Food101, FGVC, Pets, and Flowers102) datasets.

3.2. Test-time Adaptation on Pre-trained ImageNet
Classifiers

We use Diffusion-TTA to adapt ImageNet classifiers with
different backbones: ResNet18 (He et al., 2016), ViT-
B/32 (Dosovitskiy et al., 2020), and ConvNext-Tiny (Liu
et al., 2022). For our class-conditional generative model,
we use Diffusion Transformer (DiT) (Peebles & Xie, 2022),
which is trained from scratch on ImageNet. This enables a
fair comparison as we do not use extra data.
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Food101 CIFAR-100 FGVC Oxford Pets Flowers102 ImageNet

Synthetic SD Data (Ravuri & Vinyals, 2019; Azizi et al., 2023) 12.6 - 9.4 31.3 22.1 18.9

SD Features 73.0 - 35.2 75.9 70.0 56.6

Diffusion Classifier (Li et al., 2023a) 77.9 - 24.3 85.7 56.8 58.4

CLIP-ViT-B/32 78.4 60.0 18.8 77.8 64.1 56.3

+ Diffusion-TTA (Ours) 80.2 (+1.8) 61.8 (+1.6) 22.2 (+3.4) 81.1 (+3.3) 64.3 (+0.2) 58.1 (+1.8)

CLIP-ViT-B/16 84.7 68.8 21.4 80.5 67.6 60.6

+ Diffusion-TTA (Ours) 85.5 (+0.8) 67.6 22.6 (+1.2) 80.8 (+0.3) 69.2 (+1.6) 61.5 (+0.9)

CLIP-ViT-L/14 91.2 79.6 29.0 89.2 75.2 68.9

+ Diffusion-TTA (Ours) 91.2 (+0.0) 80.6 (+1.0) 30.6 (+1.6) 89.8 (+0.6) 76.1 (+0.9) 69.9 (+1.0)

Table 1: Our method consistently improves open-vocabulary classifiers for zero-shot classification. Our evaluation is
performed across multiple model sizes and a variety of zero-shot datasets.

Datasets We consider the following datasets for TTA
of ImageNet classifiers: ImageNet (Deng et al., 2009)
(in-distribution) and its out-of-distribution variants, whic
indclude ImageNet-C (Hendrycks & Dietterich, 2019),
ImageNet-A (Hendrycks et al., 2021b), ImageNet-
R (Hendrycks et al., 2021a), and ImageNetV2 (Recht et al.,
2019). We report the average accuracy over all these datasets
in ImageNet-OOD column. In Table 4 in Appendix, we de-
tail and provide results for each dataset.

Baselines. TTT-MAE (Gandelsman et al., 2022) is a state-
of-the-art TTA approach. Specifically it is a per-example
test-time adaptaion model that uses masked-autoencoding as
self-supervised loss for test-time adaptation. Before training
for adaptation, TTT-MAE trains a classification head super-
vised on top of a frozen pre-trained MAE model. In contrast,
our method doesn’t require any form of inital supervised
training but directly uses pre-trained classifiers for TTA.
TTT-MAE already showed results on most of the datasets
in their paper. For the remaining ones we use their official
pre-trained weights and code to train for TTA.

In Table 2 we present quantitative classification results on in-
distribution (ImageNet) and out-of-distribution (ImageNet-
OOD) which includes ImageNet-C, R, A, and V2. We
conclude that that our method:

(i) Our method consistently improves classifiers on the
in-distribution (ImageNet) testing images. Without
any effort of introducing hand-crafted augmentations,
our method increases classification accuracy of strong
classifiers (81.9% to 83.1%).

(ii) Our method works well across different types of im-
age classifiers. For all ResNet, ViT, and ConvNext-
Tiny, we observe significant performance gains.

(iii) Our method is robust to different types of out-of-
distribution testing images.

ImageNet ImageNet-OOD

TTT-MAE (Gandelsman et al., 2022): before 82.1 34.4

TTT-MAE: after TTA 82.0 40.1

ResNet18 69.5 23.9

+ Diffusion-TTA (Ours) 77.2 (+7.7) 27.8 (+3.9)

ViT-B/32 75.7 38.7

+ Diffusion-TTA (Ours) 77.6 (+1.9) 40.6 (+1.9)

ConvNext-Tiny 81.9 39.4

+ Diffusion-TTA (Ours) 83.1 (+1.2) 41.9 (+2.5)

Table 2: Our method improves pre-trained image classi-
fiers on both in-distribution and out-of-distribution images.
ResNet18, ViT-B/32, and ConvNext are pre-trained on Im-
ageNet. We also test on ImageNet out-of-distribution vari-
ants. We observe consistent and significant performance
gain across all types of classifiers and distribution drifts.

(iv) TTT-MAE is not as general as our method to dif-
ferent types of data distribution. TTT-MAE excels
at certain types of distribution drifts. However, it
decreases the performance on in-distribution testing
images (−0.1% on ImageNet).

4. Conclusion
We introduced Diffusion-TTA, an effective plug-and-play
method for test time adaptation that uses generative feed-
back from a pre-trained diffusion model to adapt large scale
image classifiers. Test time adaptation is carried out for each
example in the test-set independently by backpropagating
diffusion likelihood gradients to the discriminative model
weights. We have shown that our model outperforms pre-
vious state-of-the-art TTA methods, and that it is effective
across multiple classifier and diffusion model variants.
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A. Appendix
We present Diffusion-TTA, a test-time adaptation approach that modulates the text conditioning of a text conditional pre-
trained image diffusion model to adapt pre-trained image classifiers and large-scale CLIP models to individual unlabelled
images. We show improvements on multiple datasets including ImageNet and its out-of-distribution variants (C, R, A,
and V2), CIFAR-100, Food101, FGVC, Oxford Pets, and Flowers102 over the initially employed classifiers. In the
Supplementary, we include further details on our work:

1. In Section A.1, we show qualitative results and expand Table 2 in the main paper by reporting scores for each dataset
seperately. Further we include additional pseudo-labelling baselines.

2. We provide a detailed analysis of the computational speed of Diffusion-TTA in Section A.2.

3. We detail the hyperparameters and input pre-processing in Section A.3.

4. We provide details of the datasets used for our experiments in Section A.4.

5. We provide details on the baseline methods used in our experiments in Section A.5.

A.1. Additional Results
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Figure 2: Visualizing Diffusion-TTA improvement across adaptation steps. From left to right: We show input image,
predicted class probabilities before and after adaptation (green bars indicate the ground truth category), the diffusion loss as
we optimize over TTA steps, and the classification loss across TTA steps. The cross-entropy loss decreases as we minimize
the diffusion loss, indicating that there is strong correlation between the diffusion and the classification objective. Note that
we only show the cross-entropy loss for this analysis, as we cannot compute it on an unlabeled test image.

A.1.1. ABLATIVE ANALYSIS.

We ablate different choices of our model on ImageNet-A dataset with ConvNext as our pre-trained classifier and DiT as our
diffusion model in Table 3 and Figure 3. If we do test-time adaptation using a single randomly sampled timestep and noise
latent (+diffusion TTA), we find a significant reduction in the classification accuracy (−2.9%). Increasing the batch size
from 1 to 180 by sampling random timesteps from an uniform distribution (+ timestep aug BS=180) gives a significant boost
in accuracy (+4.9%). Further sampling random noise latents per timestep (+ noise aug) gives an added boost of (+0.2%).
Adapting only the top-K predicted classes of the classifier (+ top-K selection) gives further (+0.2%) boost (Figure 3).
Finally adapting the diffusion weights of DiT (+ adapting diffusion weights) in Section 3.2, gives further (+0.7%) boost.
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ImageNet ImageNet-A ImageNet-R ImageNet-C ImageNet-V2

COTTA (Wang et al., 2022) 71.2 0.0 24.2 11 58.0

TENT (Wang et al., 2020) 71.1 0.0 24.3 12 58.1

TTT-MAE (Gandelsman et al., 2022): before 82.1 14.4 33.0 17.5 72.5

TTT-MAE: after TTA 82.0 21.3 39.2 27.5 72.3

ResNet18 69.5 1.4 34.6 2.6 57.1

+ Diffusion-TTA (Ours) 77.2 (+7.7) 3.0 (+1.6) 39.7 (+5.1) 4.5 (+1.9) 63.8 (+6.7)

ViT-B/32 75.7 9.0 45.2 39.5 61.0

+ Diffusion-TTA (Ours) 77.6 (+1.9) 10.0 (+1.0) 46.5 (+1.3) 41.4 (+7.7) 64.4 (+3.4)

ConvNext-Tiny 81.9 22.3 47.8 16.4 70.9

+ Diffusion-TTA (Ours) 83.1 (+1.2) 25.2 (+2.9) 49.7 (+1.9) 21.0 (+4.6) 71.5 (+0.6)

Table 4: Our method improves pre-trained image classifiers on both in-distribution and out-of-distribution images. ResNet18,
ViT-B/32, and ConvNext are pre-trained on ImageNet, where images are in-distribution to the classifiers. We also test on
ImageNet variants where images are out-of-distribution to the classifiers. We report top-1 accuracy of image classification
before and after adaptation. We observe consistent and significant performance gain across all types of classifiers and
distribution drifts.

ImageNet-A

ConvNext-Tiny (Liu et al., 2022) 22.3
+ diffusion loss TTA 19.4 (-2.9)
+ timestep aug 24.1 (+4.9)
+ noise aug 24.3 (+0.2)
+ top-K selection 24.5 (+0.2)
+ adapting diffusion weights 25.2 (+0.7)

Table 3: Ablative analysis of Diffusion-TTA components
for ConvNext classifier and DiT diffusion model.

Figure 3: We report how the number of K predictions
we adapt affects top-1 accuracy on ImageNet-A with
the ConvNext classifier.

A.1.2. DETAILED RESULTS.

In Table 4, we expand Table 2 by reporting results on each dataset in ImageNet-OOD column and including additional
baselines. Further In Figure 2, we visualize intermediate test-time adpatation results following the setting in Section 3.2.

A.2. Analysis of Computation Speed

In this section we detail the computation requirements of Diffusion-TTA. We conduct all our experiments on a single A100
GPU (40 GB RAM), we do 5 test-time adaptation per example, each adaptation step requiring about 1 to 1.38 seconds
dependent on the setting. For instance, the setting with the largest models i.e CLIP L/14 + Stable diffusion takes about
1.45 seconds per TTA step, while our smallest model setting of ResNet-18 + DiT takes about 1 second per TTA step. We
maintain a batch size of 180 for all our experiments. As we can only fit a batch size of 16 and 24 in our GPU memory for
Stable Diffusion and DiT experiments, we use gradient accumulation for 11 and 9 steps respectively. This increases our
per-step adaptation time from 1 seconds to 11 seconds. Therefore given 5 adaptation steps, our total adaptation time per
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example ranges from 55 to 66 seconds dependent on the setting.
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Figure 4: Our method becomes more computationally efficient than Diffusion Classifier (Li et al., 2023a) as the number of
categories in the dataset increases. Diffusion Classifier requires to do a forward pass through the diffusion model for each
category in the dataset and the computation increases linearly with the number of categories. On the other hand, our method
adapts pre-trained classifiers and thus the computation is instead dependent on the throughput of the classifier.

Computation compared to Diffusion Classifier. Diffusion Classifier (Li et al., 2023a) inverts a diffusion model by
performing discrete optimization over categorical text prompts, instead we obtain continuous gradients to search much
more effectively over a pre-trained classifier’s parameter space. This design choice makes significant trade-offs in-terms of
computation costs. For instance, Diffusion Classifier requires to do a forward pass for each category seperately and thus the
computation increases linearly with the number of categories, however for us it’s independent of the number of categories.
We compare the per-example inference speed in Figure 4, across various datasets.

A.3. Hyper-parameters and Input Pre-Processing

For test-time-adaptation of individual images, we randomly sample 180 different pairs of noise ϵ and timestep t for each
adaptation step, composing a mini-batch of size 180. Timestep t is sampled over an uniform distribution from the range 1 to
1000 and epsilon ϵ is sampled from an unit gaussian. We apply 5 test-time adaptation steps for each input image. We adopt
Stochastic Gradient Descent (SGD), and set learning rate, weight decay and momentum to 0.005, 0, and 0.9, respectively.
To isolate the contribution of the improvement due to the diffusion model we do not use any form of data augmentation
during test-time adaptation.

We use Stable Diffusion v1.4 (Rombach et al., 2022) to adapt CLIP models. For the CLIP classifier, we follow their standard
preprocessing step where we resize and center-crop to a resolution of 224× 224 pixels. For Stable Diffusion, we process
the images by resizing them to a resolution of 512× 512 pixels which is the standard image size in Stable Diffusion models.
For the CLIP text encoder in Stable Diffusion and the Classifier we use the text prompt of "a photo of a <class_name>",
where <class_name> is the name of the class label as mentioned in the dataset.

For the adaptation of ImageNet classifiers, we use pre-trained Diffusion Transformers (DiT) (Peebles & Xie, 2022)
specifically their XL/2 model of resolution 256× 256, which is trained on ImageNet1K. For ImageNet classifiers we follow
the standard data pre-processing pipeline where we first resize the image to 232×232 and then do center crop to a resolution
of 224× 224 pixels. For DiT we resize the image to 256× 256, before passing it as input to their model.

For top-K filtering we set the value of K as 5, for all the experiments in our paper. For all experiments, we adjust all the
parameters of the classifier. We freeze the diffusion model parameters for the open-vocabulary experiments in Section 3.1
with CLIP and Stable Diffusion. For our experiments on adapting to ImageNet distribution shift in Section 3.2, we observe a
slight performance boost when we adapt the parameters of both the diffusion model and the classifier. This is likely because
the Diffusion Transformer (Peebles & Xie, 2022) class-conditional generative model was trained only on ImageNet. Thus,
optimizing its parameters at test time helps it adapt to each distribution shift and give better gradient signal to the classifier.
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A.4. Datasets

In the following section, we provide further details on the datasets used in our experiments. We adapt CLIP classifiers to the
following datasets incuding ImageNet: 1) CIFAR-100 (Krizhevsky et al., 2009) is a compact, generic image classification
dataset featuring 100 unique object classes, each with 100 corresponding test images. The resolution of these images is
relatively low, standing at a size of 32× 32 pixels. 2) Food101 (Bossard et al., 2014) is an image dataset for fine-grained
food recognition. The dataset annotates 101 food categories and includes 250 test images for each category. 3) FGVC
Airplane (Maji et al., 2013) is an image dataset for fine-grained categorization containing 100 different aircraft model
variants, each with 33 or 34 test images. 4) Oxford Pets (Parkhi et al., 2012) includes 37 pet categories, each with roughly
100 images for testing. 5) Flower102 (Nilsback & Zisserman, 2008) hosts 6149 test images, annotated in 102 flower
categories commonly found in the United Kingdom. For all of these datasets, we sample 5 images per category for testing.
In Figure 5, we visualize an example from each dataset.

Food101 CIFAR-100 FGVC Oxford Pets Flowers102 ImageNet

Figure 5: Image datasets for zero-shot classification. From left to right: we show an image example obtained from Food101,
CIFAR-100, FGVC, Oxford Pets, Flowers102, and ImageNet dataset. CLIP classifiers are not trained but tested on these
datasets.

We consider ImageNet and its out-of-distribution variants for test-time adaptation as shown in Figure 6. 1) ImageNet (Deng
et al., 2009) is a large-scale generic object classification dataset, featuring 1000 object categories. We test on the validation
set that consists of 50 images for each category. 2) ImageNet-C (Hendrycks & Dietterich, 2019) applies various visual
corruptions to the same validation set as ImageNet. We consider the shift due to gaussian noise (level-5) in our experiments.
3) ImageNet-A(Hendrycks et al., 2021b) consists of real-world image examples that are misclassified by existing classifiers.
The dataset convers 200 categories in ImageNet and 7450 images for testing. 4) ImageNet-R (Hendrycks et al., 2021a) is a
synthetic dataset that renders 200 ImageNet classes in art, cartoons, deviantart, graffiti, embroidery, graphics, origami,
paintings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos, toys, and video game styles. The dataset
consists of 30K test images. 5) ImageNetV2 collects images from the same distribution as ImageNet, composed of 1000
categories, each with 10 test images. For ImageNet and its C, R, and V2 variants except A, we sample 3 images per category,
as these datasets contains a lot more classes than the other datasets. For ImageNet-A we evaluate on it’s whole test-set.

IN IN-C IN-A IN-R INV2

Figure 6: Image distribution drifts cast great challenges for visual recognition. From left to right: we show images of
the puffer category in the ImageNet (IN), ImageNet-C, ImageNet-A, ImageNet-R, and ImageNetV2 dataset. ImageNet-C
applies different corruptions to images (we use Gaussian Noise in this paper). ImageNet-A consists of real-world image
examples that are misclassified by existing classifiers. ImageNet-R renders images in artistic styles, e.g. cartoon, sketch,
graphic, etc. ImageNetV2 attempts to collect images from the same distribution as ImageNet, but still suffers from minor
distribution shift. Though these images all correspond to the same category, they are visually dissimilar and can easily
confuse ImageNet-trained classifiers.
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A.5. Baselines

We describe the baselines used in our experiments. We exactly follow the set up employed in their official codebase.

TTT-MAE consists of a ViT-L/16 as the feature extractor and a ViT-B/16 as the classifier, where each model is pre-trained
for masked image reconstruction and classification on ImageNet, respectively. We follow the default hyper-parameters used
in the released code base1.

TENT (Wang et al., 2020) is a TTA method that adapt only the normalization statistics and model parameters in the
normalization of the classifier. The optimization objective is to minimize the entropy (maximize the confidence) of the
classifier’s predictions. Our method instead optimizes the diffusion loss. We train TENT for test-time adaptation on our
benchmarks using their official codebase.

COTTA (Wang et al., 2022) adopts a teacher-student model distillation strategy to adapt the classifier. COTTA supervises
the student classifier using pseudo labels that are the weight averaged classifications of multiple augmentations predicted by
the teacher model. The teacher classifier is updated via moving average with the student’s weights. In contrast, our approach
updates the classifier simply with gradient descent. We evaluate COTTA on our benchmarks using their official codebase.

1https://github.com/yossigandelsman/test_time_training_mae

https://github.com/yossigandelsman/test_time_training_mae

