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Abstract

Graph coarsening is a dimensionality reduction
technique that aims to learn a smaller-tractable
graph while preserving the properties of the orig-
inal input graph. However, many real-world
graphs also have features or contexts associated
with each node. The existing graph coarsening
methods do not consider the node features and
rely solely on a graph matrix(e.g., adjacency and
Laplacian) to coarsen graphs. However, some re-
cent deep learning-based graph coarsening meth-
ods are designed for specific tasks considering
both node features and graph matrix. In this
paper, we introduce a novel optimization-based
framework for graph coarsening that takes both
the graph matrix and the node features as the in-
put and jointly learns the coarsened graph matrix
and the coarsened feature matrix while ensuring
desired properties. To the best of our knowl-
edge, this is the first work that guarantees that
the learned coarsened graph is ϵ ∈ [0, 1) simi-
lar to the original graph. Extensive experiments
with both real and synthetic benchmark datasets
elucidate the proposed framework’s efficacy and
applicability for numerous graph-based applica-
tions, including graph clustering, node classifica-
tion, stochastic block model identification, and
graph summarization.

1. Introduction
Graph-based approaches with big data and machine learn-
ing are one of the strongest driving forces of the current
research frontiers, creating new possibilities in various do-
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mains, from social networks to drug discovery and from
finance to material science studies. Large-scale graphs are
becoming increasingly common, which is exciting since
more data implies more knowledge and more training sets
for learning algorithms. However, the graph data size is the
real bottleneck; handling large graph data involves consider-
able computational hurdles to process, extract, and analyze.
Therefore, graph dimensionality reduction techniques are
needed.

Graph coarsening or graph summarization is a promising
direction for scaling up graph-based machine-learning ap-
proaches by simplifying large graphs. Coarsening aims to
summarize a very large graph into a smaller and tractable
graph while preserving the properties of the originally given
graph. The core idea of coarsening comes from the algebraic
multi-grid literature (Ruge & Stüben, 1987). Coarsening
methods have been applied in various applications like graph
partitioning (Hendrickson et al., 1995; Karypis & Kumar,
1998; Kushnir et al., 2006; Dhillon et al., 2007), graph sum-
marization (Liu et al., 2018), machine learning (Lafon &
Lee, 2006; Gavish et al., 2010; Shuman et al., 2015), and
scientific computing(Chen et al., 2022; Hackbusch, 2013;
Ruge & Stüben, 1987; Briggs et al., 2000). The recent work
in (Loukas, 2019) developed a set of frameworks for graph
matrix coarsening, preserving spectral and cut guarantees,
but do not take node features into account. There are some
recent deep learning-based approaches that do take node
features into account (Cai et al., 2021; Ying et al., 2018; Ma
& Chen, 2020).

Furthermore, many real-world graphs also have features
associated with each graph, e.g., node feature or edge fea-
ture (Kipf & Welling, 2017; Zügner & Günnemann, 2019;
Wang et al., 2019). Existing graph coarsening methods are
not designed to consider features of nodes and rely solely
on structural information e.g., adjacency matrix to simplify
graphs that may not be suitable for downstream tasks that
require node features. Furthermore, these methods also lack
a formal guarantee on the properties of the original graph
and features being preserved in the coarsened graph and
coarsened features. However, there are some recent deep
learning-based graph coarsening technique that considers
feature matrix and Laplacian matrix both designed for a
particular task only, e.g., optimal transport coarsening(Ma
& Chen, 2021) for graph classification, GCOND (Jin et al.,
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2021), SCAL (Huang et al., 2021) for node classification,
DosCond(Jin et al., 2022) for node and graph classification
both.
We introduce a novel optimization-based framework lying
at the unification of graph learning (Kumar et al., 2020;
2019) and dimensionality reduction (Qiu et al., 2017; Zhu
et al., 2017) for coarsening graph data, named as featured
graph coarsening (FGC). It takes both the graph matrix
and the node features as the input and learns the coarsened
graph matrix and the coarsened feature matrix jointly while
ensuring desired properties. The proposed optimization for-
mulation is a multi-block non-convex optimization problem,
which is solved efficiently by leveraging block majorization-
minimization, log determinant, Dirichlet energy, and regu-
larization frameworks. The developed algorithm is provably
convergent and enforces the desired properties in the learned
coarsened graph. To the best of our knowledge, the proposed
method is the first coarsening method that guarantees that
the original graph and coarsened graph are ϵ-similar for
ϵ ∈ [0, 1). Extensive experiments elucidate the efficacy of
the proposed framework for real-world applications.
Furthermore, we have also performed the downstream task
i.e. node classification on small and large datasets both to
elucidate the efficacy of graph coarsening. We have trained
graph neural network (GNN) using the coarsened graph
and assign the label of original graph. We have compared
the node classification accuracy and computational time re-
quired to perform coarsening and classification against the
most recent state of the art methods like GCOND (Jin et al.,
2021), SCAL (Huang et al., 2021).
Remark: It is important here to highlight the distinction
between (i) Clustering (Ng et al., 2001; Dhillon et al.,
2007) (ii) Community detection (Fortunato, 2010), and
(iii) Graph Coarsening methods (Loukas & Vandergheynst,
2018). Given a set of data points, the clustering and com-
munity detection algorithm aim to segregate groups with
similar traits and assign them into clusters. For community
detection, the data points are nodes of a given network. But
these methods do not answer how these groups are related to
each other. On the other hand coarsening segregates groups
with similar traits and assigns them into supernodes, in addi-
tion, it also establishes how these supernodes are related to
each other. It learns the graph of the supernodes, the edge
weights, and finally the effective feature of each supernode.
The scope of coarsening is wider than the aforementioned
methods.
Notation In terms of notation, lower case (bold) letters de-
note scalars (vectors) and upper case letters denote matrices.
The (i, j)-th entry of a matrix X is denoted by Xij . X†

and X⊤ denote the pseudo inverse and transpose of matrix
X , respectively. Xi and [XT ]j denote the i-th column and
j-th row of matrix X. ⟨Xi, Xj⟩ = XT

i Xj denotes the inner
product of two vectors. The all-zero and all-one vectors or
matrices of appropriate sizes are denoted by 0 and 1, re-

spectively. The ∥X∥1, ∥X∥F , ∥X∥1,2 denote the ℓ1-norm,
Frobenius norm and ℓ1,2-norm of X , respectively. det(X) is
defined as the generalized determinant of a positive definite
matrix X .

2. Background
In this section, we review the basics of graph and graph
coarsening, the spectral similarity of the graph matrices,
and the ϵ-similarity of graph matrices and feature matrices.

2.1. Graph

A graph with features is denoted by G = (V,E,W,X)
where V = {v1, v2, ..., vp} is the vertex set, E ⊆ V × V
is the edge set and W is the adjacency (weight) matrix.
We consider a simple undirected graph without self-loop:
Wij > 0, if (i, j) ∈ E and Wij = 0, if (i, j) /∈ E. Fi-
nally, X ∈ Rp×n = [x1,x2, . . . ,xp]

⊤ is the feature matrix,
where each row vector xi ∈ Rn is the feature vector associ-
ated with one of p nodes of the graph G. Thus, each of the
n columns of X can be seen as a signal on the same graph.
Graphs are conveniently represented by some matrix, such
as Laplacian and adjacency graph matrices, whose positive
entries correspond to edges in the graph.
A matrix L ∈ Rp×p is a combinatorial graph Laplacian
matrix if it belongs to the following set:

SL = {Lij = Lji ≤ 0 for i ̸= j;Lii = −
∑
j ̸=i

Lij}. (1)

The W and the L are related as follows: Wij =
−Lij for i ̸= j and Wij = 0 for i = j. Both L and
W represent the same graph, however, they have very dif-
ferent mathematical properties. The Laplacian matrix L
is a symmetric, positive semidefinite matrix with zero row
sum. The non-zero entries of the matrix encode positive
edge weights as −Lij and Lij = 0 implies no connectiv-
ity between vertices i and j. The importance of the graph
Laplacian matrix has been well recognized as a tool for
embedding, manifold learning, spectral sparsification, clus-
tering, and semi-supervised learning. Owing to these prop-
erties, Laplacian matrix representation is more desirable for
building graph-based algorithms.

2.2. Graph Coarsening

Given an original graph G = (V,E,W,X) with p nodes,
the goal of graph coarsening is to construct an appropriate
"smaller" or coarsened graph Gc = (Ṽ , Ẽ, W̃ , X̃) with
k << p nodes, such that Gc and G are similar in some sense.
Every node ṽj ∈ Ṽ , where j = 1, 2, ...k, of the smaller
graph with reference to the nodes of the larger graph is
termed as a "super-node". In coarsening, we define a linear
mapping π : V → Ṽ that maps a set of nodes in G having
similar properties to a super-node in Gc i.e. for any super-
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node ṽ ∈ Ṽ , all nodes π−1(ṽ) ⊂ V have similar properties.
Furthermore, the features of the super-node, ṽ, should be
based on the features of nodes π−1(ṽ) ⊂ V in G, and the
edge weights of the coarse graph, W̃ , should depend on the
original graph’s weights as well as the coarsened graph’s
features.
Let P ∈ Rk×p

+ be the coarsening matrix which is a linear
map from π : V → Ṽ such that X̃ = PX. Each non-zero
entry of P i.e. [P ]ij , indicate the j-th node of G is mapped
to i-th super node of Gc. For example, non-zero elements
of j-th row, i.e., pj corresponds to the following nodes set
π−1(ṽj) ∈ V . The rows of P will be pairwise orthogonal
if any node in V is mapped to only a single super-node in
Ṽc. This means that the grouping via super-node is disjoint.
Let the Laplacian matrices of G and Gc be L ∈ Rp×p and
Lc ∈ Rk×k, respectively. The Laplacian matrices L, Lc,
feature matrices X , X̃ and the coarsening matrix P together
satisfy the following properties(Loukas, 2019):

Lc = CTLC, X̃ = PX, X = P †X̃ = CX̃ (2)

where C ∈ Rp×k is the tall matrix which is the pseudo
inverse of P and known as the loading matrix. The non-zero
elements of C, i.e., Cij > 0 implies that the i-th node of G
is mapped to the j-th supernode of Gc. The loading matrix
C ∈ Rp×k

+ belongs to the following set:

C =
{
C ≥ 0| ⟨Ci, Cj⟩ = 0 ∀ i ̸= j, ⟨Ci, Ci⟩ = di, (3)

∥Ci∥0 ≥ 1 and
∥∥[CT ]i

∥∥
0
= 1

}
where Ci and Cj represent i-th and j-th column of loading
matrix C and they are orthogonal to each other, [CT ]i repre-
sents the i-th row of loading matrix C, and di’s are positive
quantities. The C matrix has k columns and p rows. Also, in
each row of the loading matrix C, there is only one non-zero
entry and that entry is 1 which implies that C · 1k = 1p,
where 1k and 1p are vectors having all entry 1 and having
the size of k and p respectively. This implies that CTC will
be a diagonal matrix with di as the ith diagonal element.

(a) Original graph G (b) Coarsened graph Gc

Figure 1: Toy example: Featured graph coarsening.
In the toy example, nodes (v1, v2, v3) of G are mapped into
super-node ṽ1 of Gc. The coarsening matrix P and the
loading matrix C are

P =

 1
3

1
3

1
3 0 0

0 0 0 1 0
0 0 0 0 1

 and C = P † =


1 0 0
1 0 0
1 0 0
0 1 0
0 0 1



From the coarsened dimension of k × k one can go back
to the original dimension, i.e., p × p by computing the
lifted Laplacian matrix defined as Ll = PTLcP (Loukas &
Vandergheynst, 2018).

2.3. Preserving properties of G in Gc

The coarsened graph Gc(Lc, X̃) should be learned such that
the properties of G and Gc are similar. Some widely used
notions of similarities are :
Definition 1. Spectral similarity(Loukas & Vandergheynst,
2018; Loukas, 2019) The spectral similarity is shown by
calculating relative eigen error (REE), defined as REE =
1
m

∑m
i=1

|λ̃i−λi|
λi

, where λi and λ̃i are the top m eigenvalues
corresponding to the original graph Laplacian matrix L and
coarsened graph Laplacian matrix Lc respectively and m is
the count of eigen value.
Definition 2. Let L be original Laplacian matrix and Ll

be the lifted Laplacian matrix,then the reconstruction er-
ror(RE) (Liu et al., 2018) is defined as RE = ∥L− Ll∥2F .
Definition 3. Hyperbolic Error(HE) (Bravo Hermsdorff &
Gunderson, 2019) The hyperbolic error between original
Laplacian matrix L and lifted Laplacian matrix Ll is defined
as HE = arccosh(1 + ∥(L−Ll)X∥2

F ∥X∥2
F

2tr(XTLX)tr(XTLlX)
).

The REE value indicates that how well the eigen properties
of the original graph G is preserved in the coarsened graph
Gc. The RE and HE values indicate how well we can recover
the original graph from the coarsened graph. For a good
coarsening algorithm lower values of these quantities are
desired.

3. Featured Graph Coarsening (FGC)
The existing graph coarsening or summarization methods
are not designed to consider the node features and solely rely
on the graph matrix for learning a simpler graph (Loukas
& Vandergheynst, 2018; Loukas, 2019; Bravo Hermsdorff
& Gunderson, 2019; Purohit et al., 2014; Chen et al., 2022;
Hajiabadi et al., 2021; Riondato et al., 2017; Kang et al.,
2022; Ko et al., 2020), and thus, not suitable for graph ma-
chine learning applications. For example, many real-world
graph data satisfy certain properties, e.g., homophily as-
sumption and smoothness (Wang et al., 2021; Kalofolias,
2016), that if two nodes are connected with stronger weights,
then the features corresponding to these nodes should be
similar. Thus, if the original graph satisfies any property,
then that property should translate to the coarsened graph
data. Current methods can only ensure spectral properties
which satisfy the property of the graph matrix but not the
features (Loukas & Vandergheynst, 2018; Loukas, 2019;
Chen et al., 2022).
The aforementioned discussion suggests the following graph
coarsening method (i) should consider jointly both the graph
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matrix L and the node feature X of the original graph and
(ii) to ensure the desired specific properties on coarsened
graph data, such as smoothness and homophily, the Lc and
X̃ should be learned jointly depending on each other. We
approach this problem at the unification of dimensionality
reduction (Qiu et al., 2017; Zhu et al., 2017) and graph
learning (Kumar et al., 2020; 2019), where we solve these
problems jointly, first we reduce the dimensionality and then
learn a suitable graph on the reduced dimensional data. We
propose a unique optimization-based framework that uses
both the features X and Laplacian matrix L of the original
graph to learn loading matrix C and coarsened graph’s fea-
tures X̃ , jointly. Next we briefly discuss how to learn graphs
with features, and then we propose our formulation.

3.1. Graph learning from data

Let X = [x1, ...,xp]
T , where xi is n−dimensional feature

vector associated with i−th node of an undirected graph. In
the context of modeling signals or features with graphs, the
widely used assumption is that the signal residing on the
graph changes smoothly between connected nodes (Kalofo-
lias, 2016). The Dirichlet energy (DE) is used for quanti-
fying the smoothness of the graph signals which is defined
by using graph Laplacian matrix L ∈ SL matrix and the
feature vector as follows:

DE(L,X) = tr(XTLX) = −
∑

Lij ∥xi − xj∥2 . (4)

The lower value of Dirichlet energy indicates a more desir-
able configuration (Wang et al., 2021). Smooth graph signal
methods are an extremely popular family of approaches for
a variety of applications in machine learning and related
domains (Dong et al., 2016). When only the feature matrix
X = [x1, ...,xp]

T , associated with an undirected graph is
given then a suitable graph satisfying the smoothness prop-
erty can be obtained by solving the following optimization
problem:

min
L∈SL

−γ log(det(L+ J)) + tr(XTLX) + αh(L) (5)

where L ∈ Rp×p denotes the desired graph matrix, SL is the
set of Laplacian matrix (1), h(·) is the regularization term,
and α > 0 is the regularization parameter, and J = 1

p1p×p

is a constant matrix whose each element is equal to 1
p . The

rank of L is p − 1 for connected graph matrix having p
nodes(Chung & Graham, 1997), adding J to L makes L+J
a full rank matrix without altering the row and column space
of the matrix L(Kumar et al., 2020; Kalofolias, 2016).

When the data is Gaussian distributed X ∼ N (0, L†), op-
timization in (5) also corresponds to the penalized maxi-
mum likelihood estimation of the inverse covariance (preci-
sion) matrix also known as Gaussian Markov random field
(GMRF) for γ = 1 (Ying et al., 2020). The graph G in-
ferred from L and the random vector X follows the Markov

property, meaning Lij ̸= 0 ⇐⇒ {i, j} ∈ E ∀i ̸= j
implies xi and xj are conditionally dependent given the rest.
Furthermore, in a more general setting with non-Gaussian
distribution, (5) can be related to the log-determinant Breg-
man divergence regularized optimization problem, which
ensures nice properties on the learned graph matrix, e.g.,
connectedness and full rankness.

3.2. Proposed Featured Graph Coarsening Formulation

The proposed formulation of FGC is

min
Lc,X̃,C

−γ log(det(Lc + J)) + tr(X̃TLcX̃) (6)

+βh(Lc) +
λ

2
g(C)

s.t. C ≥ 0, Lc = CTLC, X = CX̃, Lc ∈ SL,

where L and X are the given Laplacian and feature matrix
of a large connected graph, and X̃ ∈ Rk×n and Lc ∈
Rk×k are the feature matrix and the Laplacian matrix of
the learned coarsened graph, respectively, C ∈ Rp×k is the
loading matrix, h(·) and g(·) are the regularization functions
for Lc and the loading matrix C, while β > 0 and λ >
0 are the regularization parameters. Fundamentally, the
proposed formulation (6) aims to learn the coarsened graph
matrix Lc, the loading matrix C, and the feature matrix
X̃ , jointly. This constraint X = CX̃ coarsens the feature
matrix of larger graph X ∈ Rp×n to a smaller graph’s
feature matrix X̃ ∈ Rk×n. Next, the first two-term of the
objective function is the graph learning term, where the
log det(·) term ensures the coarsened graph is connected
while the second term imposes the smoothness property on
the coarsened graph, and finally third and fourth term act
as a regularizer. The regularizer g(C) ensures the mapping
such that one node vi ∈ V does not get mapped to two
different super-nodes ṽj , ṽk ∈ Ṽ and mapping of nodes
to super-nodes be balanced such that not all or majority
of nodes get mapped to the same super-node. This simply
implies that only one element of each row of C be non-
zero and the columns of C be sparse. An ℓ1,2-based group
penalty is suggested to enforce such structure (Yuan & Lin,
2006; Ming et al., 2019).

3.3. Featured Graph Coarsening (FGC) Algorithm

Next by using Lc = CTLC and introducing a quadratic
penalty for X = CX̃ we aim to solve the following opti-
mization problem:

min
X̃,C
−γlog det(CTLC + J) + tr(X̃TCTLCX̃) (7)

+
α

2
||CX̃ −X||2F+

λ

2
∥CT ∥21,2

s.t. SC =
{
C ≥ 0| ∥[CT ]i∥22≤ 1 ∀ i = 1, .., p

}
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where ∥CT ∥21,2=
p∑

i=1

∥[CT ]i∥21=
∑p

i=1 (
∑k

j=1 Cij)
2 is the

ℓ1,2 norm of CT which ensures group sparsity in the resul-
tant C matrix and [CT ]i is the i-th row of matrix C. For
a high value of λ, the loading matrix is observed to be or-
thogonal, more details are given in remark 2. The quadratic
relaxation α

2 ||CX̃ −X||2F keeps CX̃ close to X instead of
solving the constraint. Note that this relaxation can be made
tight by using sufficiently large or iteratively increasing α.

3.3.1. SOME PROPERTIES OF CTLC MATRIX

Before we proceed with the algorithm development, some of
the properties and intermediary Lemmas regarding CTLC
are presented below.

Lemma 1. If L is the Laplacian matrix for a connected
graph with p nodes, and C is the loading matrix such that
C ∈ Rp×k

+ and C ∈ C as in (3), then the coarsened graph
matrix Lc = CTLC is a connected graph Laplacian matrix
with k nodes.

Lemma 2. If L be the Laplacian matrix for a connected
graph with p nodes, C ∈ C be the loading matrix, and
J = 1

k1k×k is a constant matrix whose each element is
equal to 1

k . The function f(C) = −γlog det(CTLC + J)
is a convex function with respect to the loading matrix C.

We provide the sketches of the proofs of Lemma 1 and
Lemma 2 here. Please refer to the appendix A.1 and A.2 for
detailed proof.

Proof sketch of Lemma 1. Using Cholesky decomposition
and (3), we have proved that Lc = CTLC is the symmetric
positive semi-definite matrix. Also, C · uk = up if and only
if uk = t1k and up = t1p and C · uk ̸= up ∀ uk ̸= t1k and
up ̸= t1p where t ∈ R which implies that C ·uk = up holds
only for a constant vector uk. And thus, CTLC · uk = 0k,
for constant vector uk. This concludes that the constant
vector is the only eigenvector spanning the nullspace of Lc,
concluding that the rank of CTLC is k − 1.

Proof sketch of Lemma 2. Since CTLC+J is a symmetric
positive definite matrix and using Cholesky decomposition
it can be written as CTLC = Y TY where we establish that
Y = L

1
2C + 1√

pk
1p×k. And −γlog det(Y TY ) is a convex

function in Y . Furthermore, C is an affine transformation
of Y implying −γlog det(CTLC + J) is also a convex
function in C.

3.4. BSUM Framework

The resulting optimization problem in (7) is a multi-block
non-convex. We develop efficient optimization methods
based on the block Majorization Minimization framework.
Suppose we have the following optimization problem

minimize
x

f(x) subject to x ∈ X , (8)

where x = (x1,x2), with xi ∈ Xi, X =
∏

i=1,2 Xi is a
closed convex set, and f : X → R is a continuous function.
At the t-th iteration, block x1 is updated in a cyclic order by
solving:

minimize
x1

g1

(
x1|x(t)

2

)
subject to x1 ∈ X1,

where a continuous function g1

(
x1|x(t)

2

)
is a majorization

function of f(x1) at x(t)
2 satisfying

g1

(
x
(t)
1 |x

(t)
2

)
= f

(
x
(t)
1 ,x

(t)
2 ) (9a)

g1

(
x1|x(t)

2

)
≥ f

(
x1,x

(t)
2

)
, ∀ x1 ∈ X1, (9b)

∇g1
(
x1;d1|x(t)

2

)
|
x1=x

(t)
1
= ∇f

(
x
(t)
1 ,x

(t)
2 ;d

)
, (9c)

such that x(t)
1 + d1 ∈ X1,

where ∇f(x,d) stands for the directional derivative at x
along d = (d1, 0) (Razaviyayn et al., 2012; Sun et al., 2017).
Similarly we can find the surrogate function g2

(
x2|x(t)

1

)
at the t-th iteration. If the surrogate functions gi is properly
chosen, then the solution to (9a) could be easier to obtain
than solving (8) directly.
Collecting the variables as (C ∈ Rp×k

+ , X̃ ∈ Rk×n), we
develop a block MM-based algorithm which updates one
variable at a time while keeping the other fixed.

3.5. Update of C

Treating C as a variable and fixing X̃ , we obtain the follow-
ing sub-problem for C:

min
C∈Sc

f(C) = −γlog det(CTLC + J) +
λ

2
∥CT ∥21,2 (10)

+
α

2
∥CX̃ −X∥2F+tr(X̃TCTLCX̃)

The function f(C) in (10) is a strictly convex function. This
can be established from Lemmas 1 and 2 and using the
property of norm, and trace operators, see the appendix A.5
for detailed proof. The set SC is a closed and convex set,
thus (10) is a strongly convex optimization problem, but
there does not exist a closed-form solution to it. To get
closed-form updates we will use the MM framework (Beck
& Pan, 2018; Razaviyayn et al., 2012; Sun et al., 2017).

By using the first-order Taylor series approximation, a ma-
jorized function for f(C) at C(t) can be obtained as:

g(C|C(t)) = f(C(t))+(C−C(t))∇f(C(t))+
L

2
||C−C(t)||2

(11)
where f(C) is L−Lipschitz continuous gradient function
L = max(L1, L2, L3, L4) with L1, L2, L3, L4 the Lips-
chitz constants of−γlog det(CTLC+J), tr(X̃TCTLCX̃),
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∥CX̃ − X∥2F , ∥CT ∥21,2respectively. More details are
deferred to the appendix A.4. The majorised function
g(C|C(t)) satisfies all the required properties listed in (9)
(a)-(c). After ignoring the constant term, the majorised
problem of (10) is

minimize
C∈Sc

1

2
CTC − CTA (12)

where A = C(t) − 1
L∇f(C

(t)) and ∇f(C(t)) =

−2γLC(t)(C(t)TLC(t) + J)−1 + α
(
C(t)X̃ −X

)
X̃T +

2LC(t)X̃X̃T + λC(t)111 where 111 is all ones matrix of di-
mension k × k. Note that since C ≥ 0, it implies that
|Cij |= Cij hence ∥CT ∥21,2 is differentiable.

Lemma 3. By using KKT optimality condition we can ob-
tain the optimal solution of (12) as

C(t+1) =

(
C(t) − 1

L
∇f

(
C(t)

))+

(13)

where (Xij)
+ = max(

Xij

∥[XT ]i∥2
, 0) and [XT ]i is the i-th

row of matrix X .

Proof: The proof is deferred to the appendix A.3.

Remark The update rule above will be able to learn a
balanced mapping, i.e., the loading matrix C belongs
to the set (3). Let us begin by expanding ∥CT ∥21,2 as
∥CT ∥21,2=

∑p
i=1 (

∑k
j=1 Cij)

2
= ∥C∥2F+

∑
i̸=j⟨Ci, Cj⟩

for i, j = 1, 2, ...k, and analyze the possible solutions under
the constraints and the objective of the given problem (10).
The trivial solution of all zero C = 0p×k and any C with
zero column vector i.e. Ci = 0 ∀i = 1, 2, . . . p will make
the term (CTLC+J) rank deficient and the log det(·) term
become infeasible and thus ruled out. Moreover, the mini-
mization of ∥CX̃ −X∥2F=

∑p
i=1([C

T ]iX̃ −Xi)
2 ensures

that no row of C matrix will be zero. Also, as C ≥ 0,
C ̸= 0p×k, and from the property of Frobenius norm it im-
plies that ∥C∥2F ̸= 0, thus the only possibility to minimize
(10) is to get C ≥ 0 such that

∑
i ̸=j⟨Ci, Cj⟩ = 0. This

implies that columns of the loading matrix C are orthog-
onal to each other. Finally, the orthogonality of columns
combined with C ≥ 0 implies that in each row there is only
one non-zero entry. Thus, the learned C matrix belongs to
the set (3), and a more detailed discussion is provided in
(Kumar et al., 2023).

3.6. Update of X̃̃X̃X

Fixing C, we obtain the following problem for X̃:

min
X̃

f(X̃) = tr(X̃TCTLCX̃) +
α

2
∥CX̃ −X∥2F (14)

As CTLC and CTC are the positive semi-definite and
definite matrices, respectively, the Hessian of f(X̃) i.e.,

∇2f(X̃) = 2CTLC + αCTC is a positive definite matrix.
That implies that (14) is a strongly convex optimization prob-
lem. For this, we can easily get the closed-form solution by
setting the gradient to zero, i.e., 2CTLCX̃ + αCT (CX̃ −
X) = 0, we get

X̃t+1 =

(
2

α
CTLC + CTC

)−1

CTX (15)

Algorithm 1 FGC Algorithm
Input: G(X,L), α, γ, λ

1 t← 0;
while stopping criteria not met do

2 Update Ct+1 and X̃t+1 as in (13) and (15) respectively.
t← t+ 1;

3 end
Output: C, Lc, and X̃

Algorithm 1 summarizes the implementation of the featured
graph coarsening (FGC) method. The worst-case compu-
tational complexity is O(p2k) which is due to the matrix
multiplication in the gradient of f(C).

Theorem 1. The sequence {C(t), X̃(t)} generated by Algo-
rithm 1 converges to the set of Karush–Kuhn–Tucker (KKT)
points of Problem (7).

Proof: The proof is deferred to the appendix A.6.

3.6.1. SIMILARITY GUARANTEE

Lemma 4. Consider X̃∗ be the minimizer of problem (14),
L and Lc be the graph matrix of original and coarsened
graph respectively, X is the feature matrix of the original
graph then the two norms ∥X̃∗∥Lc

and ∥X∥L with respect
to Lc and L satisfy the following inequality:

∥X∥L≥ ∥X̃∗∥Lc
(16)

where ∥X∥2L= tr(XTLX) and ∥X̃∗∥2Lc
= tr(X̃∗TLcX̃

∗)
Proof: The proof is deferred to the appendix A.7.

Theorem 3.1. ϵ-similarity The coarsened graph data
Gc(Lc, X̃) is ϵ similar to the original graph data G(L,X),
i.e., there exist an 0 ≤ ϵ < 1 such that

(1− ϵ)∥X∥L≤ ∥X̃∥Lc
≤ (1 + ϵ)∥X∥L

Proof: The proof is deferred to the appendix A.8.

4. Experiments
In this section, we demonstrate the effectiveness of the
proposed algorithm through a comprehensive set of exper-
iments conducted on both real and synthetic graph data
sets. We compare the proposed Featured Graph Coarsening
(FGC) method by benchmarking against the state-of-the-art
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methods, Local Variation Edges (LVE), Local Variation
Neighbourhood (LVN), proposed in (Loukas, 2019), and
GOREN (Cai et al., 2021). Throughout all the experiments,
the FGC has shown superior performance.
Datasets: Real and synthetic datasets, dataset(p,m, n)
where p is the number of nodes, m is the number
of edges and n is the number of features, used in
our experiments are: (i) Cora (2708,5278,1433),
(ii) Citeseer (3312,4536,3703), (iii) Polblogs
(1490,16715,5000), (iv) ACM (3025,13128,1870),
(v) Erdos Renyi (ER) (1000, 25010, 5000), (vi) Watts
Strogatz (WS) (1000, 5000, 5000), (vii) Barabasi Albert
(BA) (1000, 9800, 5000), (viii) Random Geometric
Graph (RGG) (1000, 7265, 5000), (ix) Minnesota
(2642, 3304, 5000), (x) Yeast (2361, 13292, 5000),
(xi) Airfoil (4253, 12289, 5000) and (xii) Bunny
(2503, 78292, 5000) (xiii) Pubmed(19717,88648,500)
(34493, 247962, 8, 415) (xiv) Coauthor Physics(Co-phy)
(34493, 247962, 8, 415) . The features of Polblogs, ER,
WS, BA, RGG, Yeast, Minnesota, Airfoil and Bunny are
generated as following X ∼ N (0, L†) (5), where L is the
Laplacian matrix of the given graph. Further details of
datasets are in the appendix B.

REE, DE, HE and RE analysis: We use relative eigenerror
(REE), Reconstruction error (RE), Dirichlet energy (DE) of
Gc, and, Hyperbolic error (HE) as the metrics to evaluate
the performance of coarsening algorithms as shown in Table
1. Lower values will indicate that the coarsened graph has
better preserved the properties of the original graph. The
baseline method only uses adjacency matrix information
for performing coarsening. Once the coarsening matrix
P = C† is learned, which establishes the linear mapping of
the nodes to the supernodes. The matrix P is used further
for the coarsening of the feature matrix as X̃ = PX .

Comparison with deep learning based methods: We have
compared FGC (proposed) against the GOREN(Cai et al.,
2021), a deep learning-based graph coarsening approach,
on real datasets. Due to the unavailability of their code,
we compared only REE because it is the only metric they
have computed in their paper among REE, DE, RE, and HE.
Their results of REE are taken directly from their paper. It
is evident in Table 3 that FGC outperforms GOREN.

REE Minnesota Airfoil Yeast Bunny
G.(LVN/LVE) 0.38/0.45 0.36/0.33 0.13/0.39 0.16/0.05
FGC 0.08 0.10 0.01 0.04

Table 3: REE values of FGC (proposed) and GOREN (Cai
et al., 2021) for r = 0.5. More results on r = 0.3, 0.7 are
in the appendix B.1. It is evident that FGC outperforms
GOREN.
ϵ-Similarity and Spectral Similarity: Here we evaluate
the FGC algorithm for ϵ-similarity as discussed in Theo-
rem (3.1) and spectral similarity. The spectral similarity
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Figure 2: Figure (a), the ϵ values lying between [0, 1) indi-
cates that the coarsened graph Gc learned by FGC (proposed)
and G are similar in terms of Drichlet energy as in Theorem
3.1. The top 100 eigenvalues of L and Lc obtained by FGC,
LVN, and LVE are plotted in Figure (b) Cora dataset and
Figure (c) Citeseer dataset. This indicates that the FGC
better preserves the spectral properties than the existing
state-of-the-art methods. Results with more datasets are
provided in the appendix B.2.

plots in Figure 2 are obtained for three coarsening methods
FGC (proposed), LVE and LVN, and the coarsening ratio
is chosen as r = 0.3. Experiments on other datasets and
coarsening ratios are shown in the appendix B.1.

Clustering: The input is a social network of a university
Karate club consisting of 34 nodes, the goal is to classify the
nodes into two groups, see Figure 3. For the FGC algorithm
feature matrix, X of size 34× n is generated by sampling
from X ∼ N (0, L†), where L is the Laplacian matrix of
the given network. The result here is shown for n = 600,
however, an n of the order of 5 ∗ 34 has been observed to
perform well. The FGC result also demonstrates that the
features may help in improving the graph-based task, and
for some cases like the one presented here the features can
also be artificially generated governed by the smoothness
and homophily properties.

Figure 3: This figure evaluates the clustering performance
of the FGC algorithm on the classic Zachary’s karate
club dataset (Zachary, 1977): (a) Ground truth, (b) Gra-
clus(Dhillon et al., 2007), (c) spectral clustering ratio cut(Ng
et al., 2001) (d) spectral clustering normalized cut(Ng et al.,
2001) (e) LVN, and (f) FGC (Proposed). Orange nodes
indicate misclassified points, FGC demonstrates a better
performance, it resulted in 1 misclassified point, while the
number of misclassified points for (b), (c), (d) and (e) are
11, 7, 2 and 5, respectively. The clustering experiments on
Polblogs dataset are in the appendix B.5.
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Dataset r=k
p

REE(L,Lc, 100) DE in 104 HE RE in log(·)
FGC LVN/LVE FGC LVN/LVE FGC LVN/LVE FGC LVN/LVE

Cora
0.7
0.5
0.3

0.04
0.051
0.058

0.33/0.29
0.51/0.53
0.65/0.71

0.75
0.69
0.66

10/9.9
6.1/5.81
3.2/2.8

0.72
1.18
1.71

1.39/1.42
2.29/2.37
2.94/3.08

1.91
2.78
3.28

2.92/2.95
3.63/3.67
3.77/3.79

Citeseer
0.7
0.5
0.3

0.012
0.04
0.05

0.32/0.29
0.54/0.55
0.72/0.76

0.71
0.69
0.59

13/14
7.5/7.1
3.1/2.9

0.85
1.05
1.80

1.68/1.63
2.43/2.40
3.25/3.41

1.32
1.61
2.41

2.56/2.51
2.87/2.90
3.04/3.04

Poblogs
0.7
0.5
0.3

0.001
0.007
0.01

0.50/0.35
0.73/0.67
0.86/0.96

3.2
3.0
2.6

607/656
506/468
302/115

1.73
2.70
2.89

2.33/2.39
2.73/2.58
3.07/3.69

5.1
6.2
6.3

7.27/7.11
7.42/7.42
7.50/7.51

ACM
0.7
0.5
0.3

0.002
0.034
0.036

0.38/0.14
0.66/0.42
0.92/0.88

1.7
1.5
0.5

72/93.4
30/43
5.7/7.5

0.45
0.98
1.86

2.13/1.63
3.10/2.55
4.867/4.43

2.42
3.78
4.77

5.05/4.66
5.35/5.18
5.44/5.42

Table 1: This table summarizes the REE, DE, HE and RE values obtained by FGC (proposed), LVN and LVE on different
coarsening ratios (r) for real graph datasets. It is evident that FGC (proposed) outperforms state-of-the-art methods
significantly. Experiments on other benchmark algorithms are in the appendix B.1.

Dataset r GCN GAT APPNP
Cora 0.3 85.79±0.2 85.62±0.2 87.25±0.3
Citeseer 0.3 74.64±1.3 74.81±0.8 74.36±0.4
Co-Phy 0.3 94.27±0.2 94.98±0.6 94.23±0.3
Pubmed 0.3 80.73±0.4 81.02±0.7 80.65±0.5

Table 2: The table summarizes the node classification per-
formance of the FGC with different GNN architectures. It is
evident that the proposed FGC algorithm is compatible with
different GNN architectures and shows similar performance.

4.1. Visualization of sparse coarsened graph

Given a sparse original graph, we can learn a sparse coars-
ened graph by adding the following regularizer h(Lc) =
∥CTLC∥2F in the objective function (7). The regularizer
is differentiable and convex in C. The update rule of load-
ing matrix C is modified by adding 2LC(t)(C(t)TLC(t))
in ∇f(C(t)), while update rule of X̃ remains the same.
Next, a visualization for 100 nodes stochastic block model
graph coarsened into a 30 nodes graph using i) FGC without
sparsity and ii) FGC with sparsity regularizer (FGCS) as
h(Lc) = ||CTLC||2F is provided in the Figure 4.
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Figure 4: This figure shows the visualization of 100 nodes
stochastic block model graph and coarsened graphs obtained
using FGC with and without sparsity regularizer for a coars-
ening ratio of 0.3.

4.2. Node classification using FGC

In this section, we perform node classification using GNN,
in which the goal is to predict a label for unlabelled nodes of
a graph. The GNN is trained using the coarsened graph, and
the trained model is used to assign labels to the unlabelled
nodes of the original graph. The steps to perform node classi-
fication are (i) we learn a coarsen graph Gc = (Ṽ , Ẽ, W̃ , X̃)
using FGC algorithm with sparsity regularizer having super-
node labels Ỹ . The labels for super-nodes can be selected
using Ỹ = argmax(PY ) (Huang et al., 2021) where P is
the coarsening matrix. (ii) Graph neural network (GNN) is
trained using coarsened graph data Gc. (iii) We assign labels
to each node of the original graph using the trained GNN
model. The learning rate and decay rate used in the node
classification experiments are 0.01 and 0.0001, respectively.
All the results are calculated using 10-fold cross-validation.
It is evident in table Table 4 that FGC outperforms state-of-
the-art graph coarsening algorithms.

Next, we used different GNN architectures like GCN (Kipf
& Welling, 2016), GAT (Velivcković et al., 2017), and
APPNP (Gasteiger et al., 2018) to train our GNN and per-
form the node classification task. Table 2 demonstrates that
FGC is compatible with different widely used GNN archi-
tectures, giving almost similar Node Classification accuracy
across all the datasets.

Algorithm 2 Algorithm for node classification
Input: G = (V,E), features X , labels Y

4 Apply a coarsening algorithm to learn P ; P = C†.;
5 Compute feature matrix of a coarsened graph, X ′ = PX;
6 Compute labels of coarsened graph, Y ′ = arg max(PY )
7 Learn W ∗ matrix to minimize ℓ(GCNGc(W

∗), Y ′)
Output: Trained weight matrix W ∗

8
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Dataset r GCOND SCAL FGC

Cora
0.3 81.56± 0.6 79.42±1.71 85.79±0.24
0.1 81.37±0.40 71.38±3.62 81.46±0.79
0.05 79.93±0.44 55.32±7.03 80.01±0.51

Citeseer
0.3 72.43±0.94 68.87±1.37 74.64±1.37
0.1 70.46±0.47 71.38±3.62 73.36±0.53
0.05 64.03±2.4 55.32±7.03 71.02±0.96

Co-phy
0.05 93.05±0.26 73.09±7.41 94.27±0.25
0.03 92.81±0.31 63.65±9.65 94.02±0.20
0.01 92.79±0.4 31.08±2.65 93.08±0.22

Pubmed
0.05 78.16±0.30 72.82±2.62 80.73±0.44
0.03 78.04±0.47 70.24±2.63 79.91±0.30
0.01 77.2±0.20 54.49±10.5 78.42±0.43

Co-CS
0.05 86.29±0.63 34.45±10.0 89.60±0.39
0.03 86.32±0.45 26.06±9.29 88.29±0.79
0.01 84.01±0.02 14.42±8.5 86.37±1.36

Table 4: The table summarizes the node classification accu-
racy on both small and large datasets for the FGC with spar-
sity regularizer, GCOND (Jin et al., 2021), SCAL (Huang
et al., 2021). It is evident that the FGC outperforms state-
of-the-art methods. However, we have compared only with
GCOND and SCAL as these are the most recent technique
for graph node classification using the coarsened graph.

4.3. Time Complexity

Consider the input graph with p nodes, E1 edges, and a
feature vector of size n for each node. If the GCN has l
number of layers, the total time complexity to perform node
classification using GCN is O(lp2n + lpE1n). However,
the time complexity to perform coarsening as well as node
classification is O(p2k + lk2n + lkE2n) where k is the
number of nodes of the coarsened graph and E2 is the num-
ber of edges of the coarsened graph. Since (p >> k) and
E1 >> E2 and if choose k such that k < n, then the time
complexity to perform coarsening and node classification
is very less as compared to performing node classification
using the original graph. It is evident in Table 5 that the pro-
posed FGC algorithm is much faster than baseline methods.

Dataset(τ ) GCOND SCAL FGC GCN(wh.data)
Cora 329.8 27.7 1.66 2.86
Citeseer 331.3 56.2 2.22 5.24
Pubmed 202.0 54.0 30.4 58.8
Co-CS 1600 180 34.4 72.3

Table 5: The table summarizes the time complexity compar-
ison between proposed FGC and baseline algorithms for a
coarsening ratio of r = 0.05, where τ (in sec.) is the time re-
quired to perform coarsening and classification, and wh.data
represents whole dataset. It is evident that the proposed
FGC is much faster than the existing baselines.

Dataset r Prop.FGC GCN(Whole dataset)
Cora 0.3 85.79± 0.24 89.50 ± 1.23
Citeseer 0.3 74.64± 1.37 78.08 ± 1.96
Pubmed 0.05 80.73± 0.44 88.89 ± 0.59
Co-phy 0.05 94.27± 0.25 96.22 ± 0.72

Table 6: The table summarizes the node classification per-
formance comparison of the proposed FGC with the original
Graph (No Coarsening). It is evident that the node classifi-
cation accuracy obtained using the coarsened graph with the
proposed FGC approach is very close to the one obtained
with the full graph that is the original graph.

5. Conclusion
We introduced a novel framework for coarsening graph data
named Featured Graph Coarsening (FGC) which consid-
ers both the graph matrix and feature matrix jointly. The
featured graph coarsening is formulated as a multi-block
non-convex optimization problem for which we developed
an efficient algorithm by bringing in techniques from al-
ternate minimization, majorization-minimization, and log
determinant frameworks. The developed algorithm is prov-
ably convergent and ensures the necessary properties in the
coarsened graph data. Also, the FGC method is the first
coarsening method that guarantees that the original graph
and coarsened graph are ϵ-similar for ϵ ∈ [0, 1). Extensive
experiments with both real and synthetic datasets demon-
strate the superiority of the proposed FGC framework over
existing state-of-the-art methods. The proposed approach
for graph coarsening will be of significant interest to the
graph machine-learning community.
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A. Appendix
A.1. Proof of Lemma 1

The matrix L ∈ Rp×p is the Laplacian matrix of a connected graph having p nodes. From (1) it is implied that L = LT , L
is positive semi-definite matrix with rank(L) = p− 1 and L · t1p = 0p, where t ∈ R and 1p and 0p are the all one and zero
vectors of size p. In addition, we also have L · up ̸= 0p for up ̸= t1p, this means that there is only one zero eigenvalues
possible and the corresponding eigenvector is a constant vector. In order to establish Lc is the connected graph Laplacian
matrix of size k, we need to prove that Lc ∈ (1) and rank(Lc) = k − 1.

We begin by using the Cholesky decomposition of the Laplacian matrix L, as L = STS. Next, we can write CTLC as

Lc = CTLC = CTSTSC (17)

= ZTZ (18)

where Z = SC and CTLC = ZTZ imply that Lc is a symmetric positive semidefinite matrix. Now, using the property
of C, i.e, C · t1k = t1p as in (3). In each row of the loading matrix C, there is only one non zero entry and that entry is
1 which implies that C · 1k = 1p and CTLC · 1k = CTL · 1p = 0k which imply that the row sum of CTLC is zero and
constant vector is the eigenvector corresponding to the zero eigenvalue. Thus Lc is the Laplacian matrix.

Next, we need to prove that Lc is a connected graph Laplacian matrix for that we need to prove that rank(Lc) = k − 1.
Note that, C · uk = up if and only if uk = t1k and up = t1p and C · uk ̸= up ∀ uk ̸= t1k and up ̸= t1p where t ∈ R which
implies that C · uk = up holds only for a constant vector uk. And thus, CTLC · uk = 0k, for constant vector uk. This
concludes that the constant vector is the only eigenvector spanning the nullspace of Lc which concludes that the rank of
CTLC is k − 1 which completes the proof.

A.2. Proof of Lemma 2

We prove the convexity of −γlog det(CTLC + J) using restricting function to line i.e. A function f : Rn → R is convex if
g : R→ R is convex where,

g(t) = f(z + tv), {z ∈ dom(f), t ∈ dom(g), v ∈ Rn} (19)

Since L is the Laplacian of connected original Graph G and Laplacian of coarsened graph Gc is Lc = CTLC which
also represents a connected graph and proof is given in the appendix A.1. Using the property of the connected graph
Laplacian matrix, Lc is a symmetric positive semi-definite matrix and has a rank k − 1. Adding J = 1

k1k×k which is
a rank 1 matrix in Lc increases rank by 1. Lc + J becomes symmetric and positive definite matrix and we can rewrite
Lc + J = CTLC + J = Y TY . Now, we can rewrite −γlog det(CTLC + J) as

f(Y ) = −γlog det(CTLC + J) = −γlog det(Y TY ) (20)

Consider Y=Z+tV and put it in (20). However, Z and V are constant so function in Y becomes function in t i.e. g(t) is

g(t) = −γlog det((Z + tV )T (Z + tV )) (21)

= −γlog det(ZTZ + t(ZTV + V TZ) + t2V TV ) (22)

= −γlog det(ZT (I + t(V Z−1 + (V Z−1)T ) + t2(Z−1)TV TV Z−1)Z) (23)

= −γ(log det(ZTZ) + log det(I + t(P + PT ) + t2PTP )) (24)

12
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g(t) = −γ(log det(ZTZ) + log det(QQT + 2tQΛQT + t2QΛ2QT )) (25)

= −γ(log det(ZTZ) + log det(Q(I + 2tΛ + t2Λ2)QT )) (26)

= −γlog det(ZTZ)− γ

n∑
i=1

log(1 + 2tλi + t2λ2
i ) (27)

On putting V Z−1 = P in (23) to get (24). Using eigenvalue decomposition of P matrix i.e. P = QΛQT and QQT = I
and putting the values of P and I in (24) to get (25). The second derivative of g(t) with respect to t is

g
′′
(t) =

n∑
i=1

2λ2
i (1 + tλi)

2

(1 + 2tλi + t2λ2
i )

2
(28)

It is clearly seen that g
′′
(t) ≥ 0, ∀t ∈ R so it is a convex function in t. Now, using the restricting function to line property if

g(t) is convex in t then f(Y ) is convex in Y . Consider Y = L
1
2C + 1√

kp
1P×k so,

Y TY = (L
1
2C +

1√
kp

1P×k)
T (L

1
2C +

1√
kp

1P×k) (29)

= CTLC +
1

kp
(p1k×k) +

1√
kp

1TP×kL
1
2C +

1√
kp

CT (L
1
2 )T 1P×k (30)

= CTLC +
1

k
1k×k (31)

= CTLC + J (32)

L is a Laplacian matrix so L
1
2 is also Laplacian matrix and using the property of Laplacian matrix i.e. L

1
2 .1p×k = 0p×k

and 1Tp×k.L
1
2 = 0k×p in (30), we get (31). Since Y = L

1
2C + 1√

pk
1p×k and f(Y ) is convex in Y and C is a affine

transformation of Y so −γlog det(CTLC + J) is a convex function in C.

A.3. Proof of Lemma 3

The Lagrangian function of (12) is:

L(C, X̃,µ1) =
1

2
CTC − CTA− µ⊤

1 C + µT
2

[
∥CT

1 ∥22−1, . . . ∥CT
p ∥22−1

]T
(33)

where µ1 is the dual variable. The KKT conditions of (12) is

C −A− µ1 + 2
[
µ21C

T
1 , . . . µ2pC

T
p ]

T = 0, (34)

µT
2

[
∥CT

1 ∥22−1 ∥CT
2 ∥22−1 . . . ∥CT

p ∥22
]T
− 1 = 0, (35)

µ⊤
1 C = 0, (36)
C ≥ 0, (37)
µ1 ≥ 0 (38)

∥[CT ]i∥22≤ 1 (39)
µ2 ≥ 0 (40)

The optimal solution of C that satisfies all KKT conditions (34)-(40) is

Ct+1 =
(A)+

∥[AT ]i∥2
(41)

where A =
(
C(t) − 1

L∇f
(
C(t)

))+
and ∥[AT ]i∥ is the i-th row of matrix A. This concludes the proof.
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A.4. Lipschitz Continuity of Function f(C) in (11)

Consider the function −γlog det(CTLC + J). The Lipschitz constant L1 of the function −γlog det(CTLC + J) is related
to the smallest non zero eigenvalue of coarsened Laplacian matrix CTLC = Lc, which is bounded away from δ

(k−1)2

(Rajawat & Kumar, 2017), where δ is the minimum non zero weight of coarsened graph. However, for practical purposes,
the edges with very small weights can be ignored and set to be zero, and we can assume that the non-zero weights of the
coarsened graph Gc are bounded by some constant δ ≥ 0. On the other hand, we do not need a tight Lipschitz constant L1.
In fact, any L

′

1 ≥ L1 makes the function g(C|C(t)) satisfy (9)(a)-(c).

Now, consider the tr(·) term:∣∣∣tr(X̃TC1TLC1X̃)−tr(X̃TC2TLC2X̃)
∣∣∣ = ∣∣∣tr(X̃TC1TLC1X̃)− tr(X̃TC2TLC1X̃)

+ tr(X̃TC2TLC1X̃)− tr(X̃TC2TLC2X̃)
∣∣∣ (42)

≤
∣∣∣tr(X̃T (C1− C2)TLC1X̃)

∣∣∣+ ∣∣∣tr(X̃TC2TL(C1− C2)X̃
∣∣∣ (43)

≤ ∥tr∥∥X̃T (C1− C2)TLC1X̃∥F+∥tr∥∥X̃TC2TL(C1− C2)X̃∥F (44)

≤ ||tr||||X̃||2F ||L||||C1− C2||F (||C1||F+||C2||F ) (45)
≤ L2||C1− C2||F (46)

We applied the triangle inequality after adding and subtracting tr(X̃TC2TLC1X̃) in (42) to get (43). Using the property

of the norm of the trace operator i.e. ∥tr∥= sup
A̸=0

|tr(A)|
||A||F from Rn×n to R in (43) to get (44). Applying the Frobenius norm

property i.e. ∥AB∥F≤ ∥A∥F ∥B∥F in (44) to get (45). Since, in each row of C is having only one non zero entry i.e. 1 and
rest entries are zero so, ∥C1∥F= ∥C2∥F=

√
p and putting this in (45), we get (46) where, L2 = 2

√
p∥tr∥∥X̃∥2F ||L||F .

Next, consider the function α
2 ∥CX̃ −X∥2F :

α

2
∥CX̃ −X∥2F =

α

2
tr((CX̃ −X)T (CX̃ −X)) (47)

=
α

2
tr(X̃TCTCX̃ −XTCX̃ +XTX − X̃TCTX) (48)

=
α

2
(tr(X̃TCTCX̃)− tr(X̃TCTX)− tr(XTCX̃) + tr(XTX)) (49)

With respect to C, tr(XTX) is a constant and tr(X̃TCTCX̃), tr(X̃TCTX), tr(XTCX̃) are Lipschitz continous function
and proof is very similar to the proof of tr(·) as in (42)-(46), and sum of Lipschitz continuous function is Lipschitz
continuous so α

2 ∥CX̃ −X∥2F is L3 Lipschitz continuous.

Finally, consider the function λ
2 ∥C

T ∥21,2. Note that we have C ≥ 0 means all the elements of C are non-negative,
|C|ij= Cij ≥ 0. With this the ℓ1-norm becomes summation, and we obtain the following:

∥CT ∥21,2 =

p∑
i=1

(

k∑
j=1

Cij)
2 (50)

=

p∑
i=1

([CT ]i1)2 (51)

= ∥C1∥2F (52)

= tr(1TCTC1) (53)

where 1 is a vector having all entry 1, [CT ]i is i-th row of loading matrix C and since each entry of C is Cij ≥ 0. tr(1TCTC1)
is Lipschitz continuous function and proof is similar to proof of tr(·) as in (42)-(46) so ∥CT ∥21,2 is L-4 Lipschitz continuous
function.
Addition of Lipschitz continuous functions is Lipschitz continuous so we can say that f(C) in (10) is L- Lipschitz continuous
function where L = max(L1, L2, L3, L4).
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A.5. f(C) in (10) is strictly convex

log det(·) and trace(·) are convex functions and proof are in Lemma 1 and 2 respectively, also Frobenius and ℓ21,2 norm

are convex functions. Consider the term ∥CT ∥21,2=
p∑

i=1

∥[CT ]i∥21 > 0 which implies that f(C) in (10) is strictly convex

function.

A.6. Proof of Theorem 1

The Lagrangian function of (7) is

L(C, X̃,µ1,µ2) = −γlog det(CTLC + J) +
α

2
||X − CX̃||2F+tr(X̃TCTLCX̃) +

λ

2

p∑
i=1

∥[CT ]i∥21 (54)

−tr(µ⊤
1 C) + µT

2

[
(∥CT

1 ∥22−1), . . . , (∥CT
p ∥22−1)

]T
where µ1(p×k) and µ2(p×1) are the dual variables.
(1) The KKT conditions with respect to C is

(i)−2γLC(CTLC + J)−1 + α
(
CX̃ −X

)
X̃T + 2LCX̃X̃T + λC111k×k − µ1 + 2

[
µ21C

T
1 , . . . µ2pC

T
p ]

T = 0,

(ii)
{
µ2i(∥CT

i ∥22−1) = 0
}p

i=1
, tr(µ⊤

1 C) = 0

(iii) C ≥ 0, ∥[CT ]i∥22≤ 1 ∀ i = 1, 2, . . . , p,
(iv) µ1 ≥ 0, µ2 ≥ 0

where 1k×k is a k × k matrix whose all entry is one. The variable C is derived by using the KKT condition from (13):

C∞ − C∞ +
1

L

(
− 2γLC∞

(
(C∞)TLC∞ + J

)−1

+ α(C∞X̃∞ −X)(X̃∞)T + 2LC∞X̃∞(X̃∞)T + λC∞111k×k

)
= 0

(55)

For µ1 = 0 and µ2i[C
T ]∞i = 0 ∀ i = 1, 2, . . . p, we observe that C∞ satisfies the KKT condition. The KKT condition with

respect to X̃ is
2CTLCX̃ + αCT (CX̃ −X) = 0

The solution of convex optimization problem (14) is

X̃∞ =

(
2

α
(C∞)TLC∞ + CTC

)−1

(C∞)TX∞

which satisfies the KKT condition. This concludes the proof.

A.7. Proof of Lemma 4

Let f1(X̃) = tr(X̃TCTLCX̃) = ∥X̃∥2Lc
and f2(X̃) = α

2 ∥CX̃ − C∥2F . Using the property of convexity, at t−th iteration,
following inequality holds:

f1(X̃
t+1) + f2(X̃

t+1) ≤ f1(X̃
t) + f2(X̃

t) ≤ f1(X̃
0) + f2(X̃

0) (56)

In algorithm 1, we have initialized X̃ as X̃ = C†X , f2(X̃0) = 0 and f1(X̃
0) = ∥X∥2L then following inequality holds

f1(X̃
t+1) + f2(X̃

t+1) ≤ f1(X̃
0)→ f1(X̃

t+1) ≤ f1(X̃
0) = ∥X∥2L (57)

and this will hold for all iterations and we get

f1(X̃
∗) = ∥X̃∗∥2Lc

≤ f1(X̃
0) = ∥X∥2L (58)

Since ∥X̃∗∥Lc and ∥X∥L are positive quantities so,

∥X̃∗∥Lc
≤ ∥X∥L (59)
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A.8. Proof of Theorem 3.1:

We have ∥X∥L=
√

tr(XTLX) and ∥X̃∥Lc
=

√
tr(X̃TLcX̃). Taking the absolute difference between ∥X∥L and ∥X̃∥Lc

and L is a positive semi-definite matrix using Cholesky’s decomposition L = STS we get:∣∣∣∥X∥L−∥X̃∥Lc

∣∣∣ = ∣∣∣∥SX∥F−∥SP †PX∥F
∣∣∣ (60)

≤ ∥SX − SP †PX∥F≤ ϵ∥X∥L (61)

Also using Lemma 4, we get the following inequality∣∣∣∥X∥L−∥X̃∥Lc

∣∣∣
∥X∥L

< 1 (62)

The equation (61) and (62) implies that the range of ϵ ∈ [0, 1). Next, by applying the property of the modulus function in
(61), we obtain the following inequality for all the n samples:

(1− ϵ)∥X∥L≤ ∥X̃∥Lc≤ (1 + ϵ)∥X∥L (63)

where ϵ ∈ [0, 1) and this concludes the proof.

B. ADDITIONAL EXPERIMENTS
In the following experiments, we apply the FGC algorithm on both real and synthetic datasets. For synthetic datasets feature
matrices are generated as X ∼ N (0, L†), where L is the Laplacian matrix of G, and weights in their weight matrices are
generated randomly and uniformly from a range of (1,10). These results show that FGC performs outstandingly on both real
and synthetic datasets. For simplicity, we have chosen lambda to be n

2 and tuned other hyperparameters accordingly.
(1) The additional details of real datasets are as follows:

• Cora. Hyperparameters (γ=500, α=500, λ=716.5) used in FGC algorithms. DE of G is 160963.

• Citeseer. Hyperparameters (γ=500, α=500, λ=1851.5) used in FGC algorithms. DE of G is 238074.

• Polblogs. Hyperparameters (γ=500, α=500, λ=2500) used in FGC algorithms. DE of G is 6113760.

• ACM. Hyperparameters (γ=2000, α=500, λ=935) used in FGC algorithms. DE of G is 1654444.

• Bunny. This dataset consists of p=2503, m=78292, n=5000. Hyperparameters (γ=450, α=500, λ=2500) used in FGC
algorithms. DE of G is 12512526.

• Airfoil. This dataset consists of p=4253, m=12289, n=5000. Hyperparameters (γ=2000, α=600, λ=2500) used in FGC
algorithms. DE of G is 21269451.

• Yeast. This dataset consists of p=2224, m=4416, n=5000. Hyperparameters (γ=350, α=650, λ=2500) used in FGC
algorithms. DE of G is 10697908.

• Minnesota. This dataset consists of p=2642, m=3304, n=5000. Hyperparameters (γ=500, α=550, λ=2500) used in
FGC algorithms. DE of G is 13207844.

(2) The details of synthetic datasets are as follows:

• Erdos Renyi (ER). It is represented as G(n, p), where n = 1000 is the number of nodes and p = 0.1 is probability of
edge creation. Hyperparameters (γ=500, α=500, λ=10) used in FGC algorithms. DE of G is 4995707.

• Barabasi Albert (BA). It is represented as G(n,m), where n = 1000 is the number of nodes and m = 20 edges are
preferentially linked to existing nodes with a higher degree. Hyperparameters(γ=500, α=500, λ=1000) used in FGC
algorithms . DE of G is 4989862.
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• Watts Strogatz (WS). It is represented as G(n, k, p), where n = 1000 is the number of nodes, k = 20 is nearest
neighbors in ring topology connected to each node, p = 0.1 is probability of rewiring edges. Hyperparameters(γ=500,
α=500, λ=1000) used in FGC algorithm. DE of G is 4997509.

• Random Geometric Graph (RGG). It is represented as G(n, radius), where n = 1000 is the number of nodes and
radius = 0.1 is the distance threshold value for an edge to create. Hyperparameters(γ=500, α=500, λ=1000) used in
FGC algorithm. DE of G is 4989722.

B.1. REE and DE analysis

For synthetic datasets also, to measure the spectral similarity and ϵ-similarity of coarsened graph Gc and original graph G,
we evaluate REE(L,Lc, 100), where L and Lc are Laplacian matrices of G and Gc respectively. We also compute DE of Gc
to measure its smoothness.

r = k/p BA WS ER RGG

R
E

E

0.3 0.623 0.202 0.138 0.234
0.5 0.211 0.109 0.076 0.249
0.7 0.084 0.201 0.055 0.252

D
E

0.3 212117 35948 293116 30112
0.5 208352 41889 542051 41215
0.7 201324 44852 534544 36483

Table 7: REE and DE results for synthetic datasets.

We have compared FGC (proposed) algorithm with Kron reduction (Kron) and heavy edge matching (HEM) using REE and
DE. The results are shown in the Table 6.

Dataset r=k
p

REE(L,Lc, 100) DE in 104

FGC Kron HEM FGC Kron HEM

Cora
0.7
0.5
0.3

0.04
0.051
0.058

0.3815
0.579
0.7406

0.3814
0.5804
0.774

0.75
0.69
0.66

9.1
5.5
2.7

9.1
5.4
2.4

Citeseer
0.7
0.5
0.3

0.0124
0.04
0.05

0.3153
0.5411
0.778

0.3153
0.542
0.807

0.71
0.69
0.59

12.9
7.0
2.7

12.9
7.0
2.5

Poblogs
0.7
0.5
0.3

0.001
0.007
0.01

0.4256
0.67
0.9653

0.4474
0.708
0.929

3.2
3.0
2.6

752
513
132

761
373
183

ACM
0.7
0.5
0.3

0.002
0.034
0.036

0.1568
0.400
0.858

0.1568
0.4172
0.935

1.7
1.5
0.5

94.5
49
8.9

94.5
46.1
5.4

Table 8: This table summarizes the REE and DE values obtained by FGC (proposed), Kron and HEM on different
coarsening ratios (r) for standard real graph datasets. It is evident that FGC (proposed) outperforms state-of-the-art methods
significantly.

Experiments on Bunny, Airfoil, Yeast and Minnesota comparing FGC (proposed) with GOREN (FGC), GOREN (LVN) and
GOREN (LVE) using REE are shown below, where G. stands for GOREN in Table 7.
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Dataset r=k
p

REE(L,Lc, 100)
FGC G.HEM G.LVN G.LVE

Bunny
0.7
0.5
0.3

0.0167
0.0392
0.0777

0.258
0.420
0.533

0.082
0.169
0.283

0.007
0.057
0.094

Airfoil
0.7
0.5
0.3

0.103
0.105
0.117

0.279
0.568
1.979

0.184
0.364
0.876

0.102
0.336
0.782

Yeast
0.7
0.5
0.3

0.007
0.011
0.03

0.291
1.080
3.482

0.024
0.133
0.458

0.113
0.398
2.073

Minnesota
0.7
0.5
0.3

0.0577
0.0838
0.0958

0.357
0.996
3.423

0.114
0.382
1.572

0.118
0.457
2.073

Table 9: This table summarizes the REE values obtained by FGC (proposed), GOREN(HEM), GOREN(LVN) and
GOREN(LVE) on different coarsening ratios (r) for real graph datasets. It is evident that FGC (proposed) outperforms
state-of-the-art methods significantly.

B.2. Spectral similarity

We present eigen value plots on different coarsening ratios (r) to visualize the spectral similarity of G and Gc.
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Figure 5: This figure plots top-100 eigen values of Laplacian matrices of original and coarsened graphs for cora (a and b)
and citeseer (c and d).
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Figure 6: This figure plots top-100 eigen values for (a) BA and (b) RGG of original and coarsened graphs.

B.3. Loss Curves

Here we compute the loss curve for 10 iterations and in each iteration, C is updated 100 times having a learning rate 1
k on

real and synthetic datasets to experimentally show the convergence of the proposed FGC algorithm. The figures below for
different coarsening ratios demonstrate that the proposed FGC algorithm is convergent.
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Figure 7: This figure shows loss curves for (a) Cora (b) Citeseer on different coarsening ratios.
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Figure 8: This figure shows loss curves for (a) WS and (b) BA on different coarsening ratios.
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B.4. Effects of Hyperparameters on FGC algorithm:

The FGC algorithm has 3 hyperparameters:(i) γ for ensuring the coarsen graph is connected, (ii) α to learn X̃ correctly (iii)
λ to enforce sparsity and orthogonality on loading matrix C. From Figures 5,6, and 7, it is observed that the algorithm is not
sensitive to the hyperparameters (λ, γ, α) any moderate value of can be used for the FGC algorithm.
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Figure 9: Fig.(a-l) shows the eigen value plot of original graph and coarsened graph obtained by FGC using hyperparameters
α = 500, λ = 1000 and varying γ in between (100-50000). It is evident that for a moderated γ i.e between 200 to 2000, the
REE is almost similar and our algorithm is consistent.
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Figure 10: Fig.(a-l) shows the eigen value plot of original graph and coarsened graph obtained by FGC using hyperparameters
λ = 1000, γ = 600 and varying α in between (100-50000). It is evident that for a moderated α i.e between 100 to 2000, the
REE is almost similar and our algorithm is consistent.
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Figure 11: Fig.(a-l) shows the eigen value plot of original graph and coarsened graph obtained by FGC using hyperparameters
α = 500, γ = 1000 and varying λ in between (100-50000). It is evident that for a moderated λ i.e between 100 to 2000, the
REE is almost similar and our algorithm is consistent.

B.5. Clustering on Polblogs dataset

The input is a political blogs consisting of 1490 nodes, the goal is to classify the nodes into two groups. For the FGC
algorithm, the feature matrix X of size 1490× 5000 is generated by sampling from X ∼ N (0, L†), where L is the
Laplacian matrix of the given network. The FGC algorithm and Graclus correctly classifies 1250 and 829 nodes respectively.
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However, the performance of LVN and spectral clustering are not competent. The FGC algorithm outperperforms and it also
demonstrates that the features may help in improving the graph-based task, and for some cases like the one presented here
the features can also be artificially generated governed by the smoothness and homophily properties.
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