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Abstract
De novo drug generation is a challenging task that
aims to generate novel molecules with specific
properties from scratch. Deep learning can ac-
celerate this process by efficiently exploring the
drug-like chemical space. Here, we introduce
LISARDD, a Reinforcement Learning framework
to optimize sampling in the latent space of a
pretrained target-agnostic generative model. We
demonstrate that our approach can generate can-
didate molecules that simultaneously optimize
multiple drug properties, including target-specific
binding affinity, drug-likeness, and synthetic ac-
cessibility. This fully modular framework can
leverage any molecular generative model, binding
affinity scoring model, or optimization algorithm
to identify novel drug candidates for future exper-
imental validation.

1. Introduction
Drug development is a time-consuming and expensive pro-
cess. On average, developing a new drug takes 8.3 years
and $1.3 billion to reach market approval (Wouters et al.,
2020). Deep learning can accelerate this process at various
steps, including de novo drug generation, or the process of
generating novel molecules that bind to a specific target pro-
tein. Several conditional generative models have therefore
been developed to identify candidate molecules (Ragoza
et al., 2022; Peng et al., 2022). However, these approaches
typically involve computationally expensive training to infer
target-specific conditional distributions (Zhang et al., 2024).
Alternatively, de novo drug generation can be framed as a
Reinforcement Learning (RL) problem, in which an agent
learns how to navigate the latent space of a generative model
and identify molecules that satisfy certain properties, such
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as drug-target binding affinity. Here, target specificity is
adapted at training time without retraining the generative
model. Recently, Haddad et al. introduced MOLRL, an RL
framework that uses Proximal Policy Optimization (PPO) to
sample a generative model’s latent space (2025). MOLRL
was able to identify molecules with biological activity for
two target proteins (GSKβ3 and JNK3), where binding affin-
ity was estimated using target-specific scoring models.

Here, we extend the work of Haddad et al. and introduce
Ligand Iterative Sampling for Affinity Refinement and Drug
Discovery (LISARDD)1, an RL framework that optimizes
sampling in the latent space of a pretrained target-agnostic
generative model. Our approach applies a target-agnostic
scoring model to predict drug-target binding affinity and
guide sampling. We demonstrate that LISARDD can gener-
ate candidate molecules that simultaneously optimize mul-
tiple drug properties. By incorporating multiple properties
into the reward function, we can reduce failure rates in sub-
sequent stages of drug development. We emphasize the
modularity of our approach, which can easily implement
any molecular generator, target objective, or optimization
algorithm. Thus, any improvement to an individual module
can be integrated into the overall framework.

2. Methodology
An overview of the LISARDD framework is presented in
Figure 1. Briefly, the generative model is a pretrained, target-
agnostic encoder-decoder, where the decoder converts a la-
tent vector z to a molecule. A reward function then scores
the generated molecule. Here, a scoring model can be ap-
plied to assess binding affinity between a candidate ligand
and a target protein, without retraining the generative model.
Then, the agent perturbs the latent vector z through an ac-
tion a and learns how to navigate the generative model’s
latent space to optimize the reward function.

We evaluated two RL algorithms: REINFORCE and PPO
(Williams, 1992; Schulman et al., 2017). REINFORCE is
a simple and efficient on-policy algorithm, whereas PPO is
more state-of-the-art.

1Code and data are available at https://github.com/
valbad/LISARDD
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Figure 1. LISARDD framework.

2.1. Proximal Policy Optimization

Drawing on the work of Haddad et al. (2025), we reverse-
engineered the PPO approach described in their paper and
applied it to our targeted generation task. Our PPO lever-
ages an actor-critic architecture. Both networks include a
3-layer multilayer perceptron (MLP) entry with ReLU ac-
tivations and batch normalization. The actor head outputs
a deterministic shift µθ(z) and a standard deviation vector
σθ(z), while the critic head outputs a scalar reward estimate
Vϕ(z). The RL agent updates the policy as:

z′ = z + µθ(z) + σθ(z)⊙ ϵ, ϵ ∼ N (0, I) (1)

where a latent vector z is perturbed through an action
a ∼ N

(
µθ(z),Diag(σθ(z))

2
)
. Here, the standard devi-

ation vector that controls the exploration-exploitation trade-
off is learned over time.

At every iteration t, our PPO algorithm aims to minimize a
total loss term, defined as:

Lactor = −Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]

Lcritic = Ez∼N (0,I)[(Reward − Vϕ(z))
2]

Lentropy = −Ez∼N (0,I)

[
Entropy(N (µθ(z),Diag(σθ(z))

2
]

Ltotal = Lactor + 0.5Lcritic + 0.01Lentropy (2)

See Appendix A for more details regarding our implementa-
tion of PPO.

2.2. REINFORCE

REINFORCE aims to minimize the following loss:

LREINFORCE = −Eπθ
[Reward] (3)

where πθ represents a parametric Gaussian policy over the
same continuous action space. Our actor network (defined
similarly as in the previous section) outputs a shift µθ(z)

and standard deviation vector σθ(z). At every training step,
the action a the agent takes is:

a = µθ(z) + σθ(z)⊙ ϵ, ϵ ∼ N (0, I) (4)

Then, we approximate the policy gradient using the REIN-
FORCE trick as:

∇θLREINFORCE ≈ −Ez∼πθ
[Reward ×∇θ log πθ(z)] (5)

See Appendix B for more details regarding our implementa-
tion of REINFORCE.

2.3. Reward Functions

To guide the RL agent toward generating biologically rele-
vant molecules, we implemented a variety of reward func-
tions. First, we started with a function that rewards drug-
likeness. Here, we used quantitative estimation of drug-
likeness (QED), whose values range from 0 to 1, with 1
being the most drug-like (Bickerton et al., 2012).

RQED = QED

Second, we defined a function that rewards synthetic accessi-
bility (SA). SA values range from 1 to 10, where molecules
with higher values are harder to synthesize (Ertl & Schuf-
fenhauer, 2009). Here, we reverse-normalized SA values to
the range [0, 1]:

RSA = 1− 0.1 · SA

Next, we focused on drug-target binding affinity. Given a
candidate ligand and a target protein, the scoring model pre-
dicts a dissociation constant pKd (log scale), where higher
values indicate greater binding affinity.

Raff = pKd

Finally, we constructed a multi-objective reward function
that integrates SA, QED, and drug-target binding affinity.
We binarized binding affinity values to the range [0, 1] by
rewarding high pKd values within a biologically plausible
range [7, 14] (thus discouraging reward hacking and candi-
dates with impossible affinity).

Rbin
aff =

{
1 if 7 ≤ pKd ≤ 14

0 otherwise

In fact, we derived a differentiable version of this score:

Rbin-diff
aff =

1

1 + e−s(pKd−7)
× 1

1 + es(pKd−14)
(6)

where s is a hyperparameter controlling the steepness of the
transitions between 0 and 1. Then, we defined the multi-
objective reward function as:

RMO = w1RSA + w2RQED + (1− w1 − w2)R
bin-diff
aff
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where w1 and w2 are weights that can be adjusted to pri-
oritize different objectives. By default, w1 and w2 were
set to 0.1 to ensure that the binding affinity reward drives
molecular optimization.

2.4. Generative Model

To generate molecules, we used HierVAE, a hierarchical
variational autoencoder that autoregressively aggregates mo-
tifs to emerging molecules (Jin et al., 2020). We chose this
model as it generates molecules with high validity, unique-
ness, and diversity. Here, the HierVAE model was pretrained
on the ChEMBL dataset (Zdrazil et al., 2024), and its latent
space represents each molecule with three 32-dimensional
vector embeddings. We hypothesized that HierVAE can ac-
cess more advanced latent representations of small molecule
ligands compared to the generative models evaluated in Had-
dad et al.

2.5. Scoring Model

To assess drug-target binding affinity between any given
pair of target protein and small molecule ligand, we used
MGraphDTA, a deep multiscale graph neural network
(Yang et al., 2022). Across multiple benchmark datasets,
MGraphDTA outperformed other machine learning models.
In our implementation, we trained the MGraphDTA model
on the Davis dataset (2011). Predicted drug-target binding
affinities from the MGraphDTA model were validated with
the industry standard AutoDock Vina (Trott & Olson, 2010).
To the best of our knowledge, no past work has made use
of RL-driven latent molecular optimization using an affinity
reward as comprehensive as MGraphDTA.

2.6. Target Proteins

We evaluated our framework on two target proteins: human
c-Jun N-terminal kinase 3 (JNK3) and Escherichia coli
DNA gyrase subunit A (gyrA). JNK3 is an enzyme that
regulates apoptosis in neurons and is a thereapeutic target for
Alzheimer’s disease (Solas et al., 2023). On the other hand,
DNA gyrase is an enzyme that modulates DNA supercoiling,
and gyrA mutations are associated with antibiotic resistance
(Weigel et al., 1998). Structural data for JNK3 (PDB ID:
3FI2) is available on RCSB PDB (Habel, 2008; Kamenecka
et al., 2009).

2.7. Framework Evaluation

To assess whether PPO and REINFORCE can learn to ef-
fectively sample the latent space of a generative model,
we reported average batch-level reward trajectories across
epochs. In addition, we recorded the top 100 highest re-
ward molecules that were generated during RL optimization
and calculated the following metrics: QED, SA, drug-target

binding affinity, and Tanimoto similarity (TS), where TS
reflects the structural novelty of the generated molecules
(Bajusz et al., 2015). Lastly, we sampled 100 shared la-
tent vectors and applied each trained policy (PPO or REIN-
FORCE) to independently perturb them. The resulting latent
vectors were decoded into molecules, and their predicted
binding affinities were evaluated using a shared scoring
function. Then, we performed a paired t-test to determine
statistical significance.

3. Results
3.1. Single-Objective Reward Optimization

We first applied PPO and REINFORCE to optimize single-
objective reward functions that reflect physicochemical prop-
erties. We demonstrate that both PPO and REINFORCE
were able to generate molecules with strong QED or SA
profiles (Figure 2).

Next, we evaluated whether PPO and REINFORCE can
learn to identify candidate molecules with high biologi-
cal activity for a given target protein. Here, REINFORCE
outperformed PPO in optimizing binding affinity to JNK3
(Figure 3). However, the molecules generated by both PPO
and REINFORCE exhibited poor QED and SA profiles (Fig-
ure 4, Table 1). For gyrA, PPO and REINFORCE achieved
similar performance in binding affinity optimization.

Figure 2. Comparison of reward trajectories across epochs between
REINFORCE and PPO. Here, the reward function is QED (top) or
SA (bottom).
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JNK3 gyrA

Figure 3. Comparison of reward trajectories across epochs between REINFORCE and PPO. The single-objective function (top left)
rewards binding affinity to JNK3 (p = 4.00× 10−5), whereas the multi-objective function (bottom left) rewards binding affinity to JNK3,
drug-likeness, and synthetic accessibility (p = 5.74× 10−5). The single-objective function (top right) rewards binding affinity to gyrA
(p = 0.65), whereas the multi-objective function (bottom right) rewards binding affinity to gyrA, drug-likeness, and synthetic accessibility
(p = 3.04× 10−8).

-8.228 -8.118 -6.876

Multi-Objective

Binding Affinity

-5.966-8.680 -7.547

Figure 4. Lead molecules generated by REINFORCE for different
reward functions given target protein JNK3. AutoDock Vina scores
(kcal/mol) are shown for each molecule.

3.2. Multi-Objective Reward Optimization

Finally, we assessed whether PPO and REINFORCE can
simultaneously optimize a multi-objective reward function
that integrates drug-target binding affinity, QED, and SA.
Again, REINFORCE outperformed PPO (Figure 3). Both
methods successfully identified molecules with high binding
affinity to JNK3 while simultaneously improving QED and
SA (Figure 4, Table 1). Similar results were observed for
gyrA.

4. Discussion
Our work demonstrates that RL frameworks can effectively
explore the latent space of a molecular generator to optimize
physicochemical properties, and more specifically, reward
schemes based on binding affinity estimation. We observed
a broad upward trend in all reward trajectories for both PPO
and REINFORCE, which suggests that training for more
epochs could lead to greater policy improvements. To the
best of our knowledge, no previous work has incorporated a
generalizable deep learning model for binding affinity pre-
diction as a reward function within reinforcement learning.

From a drug discovery perspective, the most promising re-
ward strategy is the multi-objective function that jointly op-
timizes drug-target binding affinity, QED, and SA. This ap-
proach generated lead candidates that were not only strong
predicted binders but also structurally and synthetically rea-
sonable, even when the weights associated with these terms
were relatively small (respectively 10% each). External vali-
dation with AutoDock Vina further supported the biological
plausibility of these candidates, offering a complementary
docking-based signal aligned with predicted pKd (Figure
4). These results suggest that reward composition and con-
straint tuning are critical in generative molecular optimiza-
tion, especially when the scoring model is approximate.
Additionally, the relatively low pairwise similarity among
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Table 1. Summary statistics of the top 100 molecules generated by REINFORCE or PPO during RL optimization for different reward
functions. Mean values are shown for drug-likeness (QED), synthetic accessibility (SA), binding affinity to JNK3 or gyrA (pKD), and
Tanimoto similarity (TS).

REWARD ALGORITHM TARGET QED ↑ SA ↓ PKD ↑ TS ↓
BINDING AFFINITY REINFORCE JNK3 0.15 5.47 13.91 0.13
MULTI-OBJECTIVE REINFORCE JNK3 0.59 3.29 9.16 0.21

BINDING AFFINITY PPO JNK3 0.34 4.05 9.84 0.15
MULTI-OBJECTIVE PPO JNK3 0.52 3.69 9.29 0.19

BINDING AFFINITY REINFORCE GYRA 0.29 4.36 7.91 0.10
MULTI-OBJECTIVE REINFORCE GYRA 0.60 2.95 9.23 0.27

BINDING AFFINITY PPO GYRA 0.23 4.01 9.72 0.17
MULTI-OBJECTIVE PPO GYRA 0.56 4.59 9.35 0.16

the top 100 molecules suggests that both REINFORCE and
PPO can identify structurally diverse high-performing candi-
dates, supporting their potential for discovering novel small
molecules.

We were surprised to observe that REINFORCE often out-
performed PPO, a more advanced RL algorithm. This result
contrasts with prior findings, such as those reported by Had-
dad et al. Our results show that both methods can hold very
similar optimization trajectories, specifically when optimiz-
ing single rewards (Figure 2). On the other hand, complex
multi-objective targets seem to be more difficult for PPO
to optimize (Figures 3). A plausible explanation to this
phenomenon could be that our generator’s latent space is
efficiently organized, allowing for rapid REINFORCE op-
timization. In the meantime, the cautious, clipped PPO
updates may impose an upper boundary on the speed at
which the model improves.

Extending our work to other molecular generators may allow
us to explore this last hypothesis. More broadly, each com-
ponent of our pipeline - including the learning algorithm,
the molecular generator, and the reward function - can be
replaced in a modular way, allowing for maximum flexibil-
ity. Our results demonstrate that the proposed approach can
generate realistic small-molecule ligands targeting arbitrary
protein sequences, while supporting a variety of reinforce-
ment learning algorithms in non-differentiable optimization
scenarios. Finally, our current validation pipeline can be
further improved through experimental assays or ADMET
profiling.

5. Conclusion
In this work, we introduce LISARDD, a novel approach for
de novo drug generation that applies RL algorithms to effi-
ciently navigate the latent space of a target-agnostic genera-
tive model. We demonstrate that our framework can identify
small molecules with enhanced drug-target binding affinity,
drug-likeness, and synthetic accessibility. Importantly, our

approach is fully modular and can easily implement other
generative models, scoring models, and optimization algo-
rithms. Potential future directions therefore include explor-
ing alternative generative or scoring models that may utilize
different representations for proteins and small molecule
ligands. Overall, our study provides a flexible framework
for targeted molecular generation with multi-objective opti-
mization to support drug development.
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A. Proximal Policy Optimization
Here, we provide more details on the PPO training process,
drawing on previous work (Haddad et al., 2025):

1. Sample Latent Vectors: Initialize latent vectors z ∼
N (0, I).

2. Sample Actions: Compute a deterministic shift µθ(z)
and standard deviation vector σθ(z), and sample an
action a ∼ N

(
µθ(z),Diag(σθ(z))

2
)
.

3. Decode Molecules: Update latent vectors z′ = z + a
and convert them into SMILES using the generative
model’s decoder. Invalid decoded SMILES are penal-
ized with a constant penalty (set to −1 in our imple-
mentation).

4. Compute Rewards: Evaluate decoded SMILES using
a reward function and compute the estimated reward
Vϕ(z).

5. Policy Update: The policy is updated with the clipped
surrogate and critic losses over 1 time step and 6 up-
date steps. We use a Generalized Advantage Estima-
tion scheme (more precisely GAE(γ, 0)) to estimate
the advantage At, with a discount factor γ = 0.95
(Schulman et al., 2015):

At = Reward(z) + γVϕ(z
′)− Vϕ(z) (7)

To stabilize training, rewards are normalized to zero
mean and unit variance prior to policy updates. Then,
we compute the clipped surrogate loss:

Lactor = −E[min(rt(θ)At, clip(rt(θ), 1−ϵ, 1+ϵ)At)]

where rt(θ) is the probability ratio of the action be-
tween the old and updated policies and ϵ is the clipping
hyperparameter. Next, we compute the critic loss:

Lcritic = Ez∼N (0,I)[(Reward − Vϕ(z))
2]

Since the standard deviation vector σθ(z) is set learn-
able, it is common place to consider the following
entropy loss:

Lentropy = −Ez∼N (0,I)

[
Entropy

(
N (µθ(z),Diag(σθ(z))

2
)]

Then the final loss is defined as:

LPPO = Lactor +
1

2
Lcritic + 0.01Lentropy (8)

Our model discovers new high-scoring ligands through 2
distinct mechanisms:

• While training the model, we store the top-100 best
hits ever encountered. This first approach produces a
set of high-quality candidates (however at the cost of
diversity).

• Once the model is trained, we can also sample random
latent vectors in the generator latent space, and im-
prove them using the trained actor (generating diverse
candidates, with usually lower scores than the previous
method).

Algorithm 1 PPO for latent molecular optimization
Input: Actor parameters θ, Critic parameters ϕ, Reward
scheme, nepochs, nPPO, nbatch size, T = 1, ϵ = 0.2, γ =
0.95
for t = 1 to nepochs do

Sample nbatch size random latent vectors z ∼ N (0, I)
Compute policy parameters (µθ(zt), σθ(zt))
Sample actions a ∼ N (µθ(z),Diag(σθ(z))

2)
Update latent vectors z′ = z + a
Compute associated rewards and critic estimates
Compute Advantages At

for j = 1 to nepochs do
Take new set of actions a′

Compute corresponding new states z′′

Compute likelihood ratios rt(θ)
Compute average Lactor
Compute new critic estimates Vϕ(z)
Compute average Lcritic
Compute average Lentropy
Compute Ltotal and update θ and ϕ parameters.

end for
end for

B. REINFORCE Optimization
Here, we provide some more details on our implementation
of the REINFORCE algorithm (see Algorithm 2).

Algorithm 2 REINFORCE for latent molecular optimiza-
tion

Input: Actor parameters θ, Reward scheme, nepochs,
nbatch size
for t = 1 to nepochs do

Sample nbatch size random latent vectors z ∼ N (0, I)
Take actions a ∼ πθ = N

(
µθ(z),Diag(σθ(z))

2
)

Compute the corresponding rewards
Compute average loss −Ez∼πθ

(Reward · log(πθ(z))
Update actor parameters θ.

end for
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