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ABSTRACT

Long-tailed distribution datasets are prevalent in many machine learning tasks, yet exist-
ing neural network models still face significant challenges when handling such data. This
paper proposes a novel adaptive pruning strategy, LTAP (Long-Tailed Adaptive Pruner),
aimed at balancing model efficiency and performance to better address the challenges
posed by long-tailed data distributions. LTAP introduces multi-dimensional importance
scoring criteria and designs a dynamic weight adjustment mechanism to adaptively deter-
mine the pruning priority of parameters for different classes. By focusing on protecting
parameters critical for tail classes, LTAP significantly enhances computational efficiency
while maintaining model performance. This method combines the strengths of long-tailed
learning and neural network pruning, overcoming the limitations of existing approaches
in handling imbalanced data. Extensive experiments demonstrate that LTAP outperforms
existing methods on various long-tailed datasets, achieving a good balance between model
compression rate, computational efficiency, and classification accuracy. This research pro-
vides new insights into solving model optimization problems in long-tailed learning and
is significant for improving the performance of neural networks on imbalanced datasets.
The code is available at ht tps: //anonymous . 4open.science/r/AEFCDAISJ/
README . md.

1 INTRODUCTION

Long-tailed learning aims to address the problem of highly imbalanced class distributions, where most
classes (i.e., tail classes) have scarce samples, while few classes (i.e., head classes) have abundant samples
Liu et al.|(2019); [Wang et al.| (2017); [Tan et al.|(2020); [Li et al.| (2020). This data distribution is prevalent in
real-world applications, such as e-commerce product classification, speech recognition, and natural language
processing Ouyang et al.|(2016));|Yang & Xu|(2020). Although deep learning models perform excellently on
head classes, their performance on tail classes remains limited, mainly because models tend to overfit head
classes and neglect feature learning for tail classes, leading to insufficient overall model generalization Kang
et al.[|(2019).

To improve long-tailed learning performance, researchers have proposed various methods, including multi-
expert systems and modular designs|Wang et al.[(2020); Liu et al.|(2019). However, these traditional methods
face numerous challenges in practical applications. For instance, multi-expert systems often require train-
ing and maintaining multiple independent sub-models, resulting in enormous computational and storage
resource consumption |Xiang et al.| (2020). Modular designs rely on predefined module structures, lacking
dynamic adaptability and struggling to cope with constantly changing data distributions |[Ren et al.| (2020).
Moreover, these methods often struggle to efficiently utilize parameters when dealing with tail classes, lim-
iting model performance on scarce data/Zhang et al.|(2021al).
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As a model compression and optimization technique, pruning optimizes model structure and improves com-
putational efficiency by removing redundant or unimportant neurons or connections |[Han et al.| (2015); [Liu
et al.| (2018); |[Zhu & Guptal (2017). In recent years, pruning methods have shown significant advantages
in improving model performance, reducing parameter counts, and accelerating inference Frankle & Carbin
(2018)); Blalock et al.| (2020). However, ordinary pruning methods face special challenges when applied to
long-tailed learning:

* Pruning bias due to class imbalance: conventional pruning methods, blind to class-specific contri-
butions, risk exacerbating the very imbalance they aim to address by inadvertently removing neurons
crucial for tail class recognition |He et al.| (2021a)).

* Difficulty in dynamic adjustment: the static nature of traditional pruning methods conflicts with the dy-
namic evolution of the association between parameters and data distribution during training, potentially
leading to suboptimal or even harmful pruning decisions|Molchanov et al.|(2019).

* Single evaluation criterion: the reliance on simplistic pruning criteria fails to capture the nuanced impor-
tance of neurons in the complex landscape of long-tail distributions, potentially misleading the pruning
process |[Frankle et al.[(2020).

To address these challenges, this paper proposes a novel pruning strategy called Long-Tailed Adaptive
Pruner (LTAP), specifically optimized for long-tailed learning environments. LTAP is rooted in the under-
standing that effective long-tailed learning requires a fundamental rethinking of how we allocate and utilize
model capacity [Kang et al.|(2019). Our method makes innovative contributions in the following aspects:

* New LT-Vote mechanism: Through the LT-Vote (Long-Tailed Voting) mechanism, we dynamically ad-
just the weights of different pruning criteria based on the classification accuracy of different classes,
enabling the pruning process to more specifically optimize the learning performance of tail classes,
enhancing model robustness on long-tail distribution data.

Multi-stage dynamic pruning: Our method divides the pruning process into multiple stages, gradually
removing redundant parameters, and dynamically adjusts the pruning strategy at each stage based on
current model performance, ensuring continuous performance optimization during the pruning process.

* Efficient resource utilization: By reducing model parameter count and computational requirements
through pruning, we improve model operational efficiency in resource-constrained environments while
maintaining or even improving classification accuracy on tail classes.

Experimental results show that our proposed LTAP method significantly outperforms traditional pruning
methods and other long-tailed learning methods on multiple long-tailed distribution datasets, validating its
effectiveness in enhancing tail class recognition ability, optimizing model structure, and improving compu-
tational efficiency.

2 LTAP: ADAPTIVE PRUNER FOR LONG-TAILED DISTRIBUTION

In this section, we propose a novel pruning strategy called Long-Tailed Adaptive Pruner (LTAP), aimed at
optimizing neural network models on long-tailed distribution datasets. LTAP effectively protects critical
parameters of tail classes and enhances overall model performance and parameter efficiency in long-tailed
distribution scenarios by integrating multiple importance scoring criteria and dynamically adjusting pruning
weights. The following subsections will provide a detailed explanation of the overall architecture, LTAP
optimizer design, pruning strategy implementation, and the alternating process of training and pruning.
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Figure 1: Overview of the Long-Tailed Adaptive Pruner (LTAP) methodology. The diagram illustrates the
iterative process of model evaluation, parameter processing, and pruning, highlighting the integration of
multiple importance criteria and the dynamic weight adjustment mechanism.

2.1 LTAP OPTIMIZER DESIGN

To accurately assess parameter importance, LTAP introduces multiple scoring criteria, including magni-
tude, average magnitude, cosine similarity, Taylor first order, and Taylor second order. The comprehensive
importance score S, for each parameter group g is calculated by the following formula:

K
Sy = Zak “Sg.k (1)
k=1

where K = 5 is the number of scoring criteria, o, is the weight coefficient for scoring criterion k, and s j,
is the score value of scoring criterion k for parameter group g. The specific scoring criteria are defined as
follows:

|wg|2 wg - wref

Sq itnde = |W4|2, sg,avg-magnitude = ——, sg,cosine = ————, 2
g,magnitude | 41| ) g,avg g ng g |Wg\2|wref\2 (2)
s _ | 9% . _[PL]
g, taylor-first = -wg, sg,taylor-second = 5| Wy 3)
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where wg is the weight vector of parameter group g, n, is the number of parameters in group g. The

reference weight vector wref represents the gradients of the current model parameters, serving as a direc-
tional reference in the cosine similarity criterion to measure the alignment between parameter updates and
the optimization trajectory.
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2.2 PRUNING STRATEGY IMPLEMENTATION

We propose a dynamic importance evaluation mechanism that adaptively integrates class distributions with
multiple pruning criteria. The importance score is computed through a novel interaction framework:

I(: =D- N(: (4)

where I, € R¥ represents the comprehensive importance scores across criteria for class ¢, D € REX¢
denotes the criteria weight matrix, and N, € R represents the class distribution vector. Our framework
incorporates five evaluation criteria (K=5): magnitude, average magnitude, cosine similarity, first-order and
second-order Taylor expansions.

The scores undergo softmax normalization to obtain importance weights:

oY) = softmax(1,) (5)

where o) € R denotes the normalized weights. For classes showing improved performance, the criteria
weights are updated through:

DV = DW[e] + (AP > AG-D) (©6)

where fo) [c] represents criterion k’s weight for class c, A,g) denotes the classification accuracy at time t,
and () is the indicator function that equals 1 if the condition is satisfied and 0 otherwise.

Our mechanism employs an inverse probability-based sampling strategy to select criteria for suppression,
ensuring both exploration of less important criteria and avoidance of deterministic decisions. The selected
criterion’s weight is redistributed uniformly among remaining criteria, maintaining smooth transitions in the
pruning process. This adaptive approach effectively addresses the challenges of long-tailed distributions
through continuous weight adjustments and performance-driven pruning strategy optimization.

LTAP adopts a multi-stage dynamic pruning strategy, distributing the overall pruning ratio v across mul-
tiple pruning stages, with the pruning ratio for each stage being:

7 = 1 ™)

where P is the number of pruning stages. This strategy ensures the progressiveness and stability of pruning,
avoiding performance fluctuations caused by one-time large-scale pruning. The pruning process mainly
includes the following steps:

(i) Calculate importance scores: compute comprehensive importance scores .S, for all parameter groups
based on current model parameters.

(ii) Identify redundant parameter groups: select parameter groups with the lowest importance scores as
redundant groups based on the preset pruning ratio -,,.

(iii) Prune redundant parameter groups: achieve parameter pruning by setting the weights of redundant
parameter groups to zero.

(iv) Update parameter distribution: reallocate optimization strategies for remaining parameters based on
the pruned model structure.
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2.3 ALTERNATING PROCESS OF TRAINING AND PRUNING

The entire pruning process is formalized through the following optimization steps:
ot = 0 _v,L(6®) (8)

where 7 is the learning rate, £ is the loss function, and 6 represents model parameters. The training and
pruning processes alternate, with the specific workflow as follows:

(1) Training phase: perform forward and backward propagation under current model parameters, updat-
ing model parameters to minimize the loss function L.

(ii) Pruning phase: execute pruning operations after specific training cycles, pruning low-importance
parameter groups based on current parameter importance scores.

(iii) Update importance scores: utilize the LT-Vote mechanism to adjust weight coefficients oy, of scoring
criteria based on the performance of the pruned model on the validation set.

(iv) Repeat iteration: cycle through training and pruning phases until reaching the predetermined pruning
ratio or training rounds.

During the parameter update process, the LTAP optimizer combines gradient variants with pruning strategies,
with specific steps as follows:

K

VoSg=> an-Vgsgr, 05 05 —1-VySy, 04 0,0 (1—my) ©)
k=1

where VS, is the gradient variant of parameter group g under different scoring criteria, and m, is the

pruning mask vector for parameter group g. Through these steps, the LTAP optimizer can incorporate

pruning strategies into the parameter update process, achieving dynamic compression and optimization of

model parameters. Meanwhile, the LT-Vote mechanism ensures that the model provides sufficient protection

for parameters of tail classes during the pruning process, thereby enhancing classification performance.

3 THEORETICAL ANALYSIS: TAIL CLASSES BENEFIT MORE FROM
OVERPARAMETERIZATION

To verify the effectiveness and soundness of our method, we first establish a series of foundational defini-
tions. Then, through lemmas and theorems, we systematically argue that tail classes in long-tailed distribu-
tions have higher requirements for model overparameterization. Based on this, we propose a differentiated
parameter allocation strategy and the tail-biased pruning proposition. Finally, we synthesize these theo-
retical results and prove the effectiveness of the tail-biased pruning strategy in learning from long-tailed
distributions.

To gain a deeper understanding of the learning difficulty of different classes under long-tailed distributions,
we introduce the sample complexity lemma (Lemmal I]in Appendix), establishing the relationship between
sample size, VC dimension, and generalization error. Based on this lemma, we further define the class-
specific VC dimension (Definition[T|in Appendix) and derive the learning difficulty for each class (Corollary
in Appendix).

Theorem 1 (Differentiated Overparameterization Demand). In a long-tailed setting, to achieve the same

generalization performance, tail classes require a higher degree of overparameterization than head classes.

1
log N.

number of samples in the head class (the class with the most samples), and N, is the number of samples in
class c.

Specifically, for tail classes, v. > € (% ) and for head classes, v. ~ O(1), where Ny is the
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The differentiated overparameterization demand theorem reveals that tail classes in a long-tailed dataset have
a higher demand for model overparameterization, which is further supported by the imbalance in overpa-
rameterization demand (Corollary 2]in Appendix).

Based on the differentiated overparameterization demand theorem, we propose the parameter allocation
strategy corollary, which guides how to reasonably allocate model parameters in long-tailed learning.

Theorem 2 (Parameter Allocation Strategy). In long-tailed learning, to optimize overall model performance,
relatively more parameters should be allocated to tail classes. Specifically, for class c, the ideal parameter
M L where N is the number of samples in the head class

allocation ratio o should satisfy o, o< 5+ -
(the class with the most samples), and N is the number of samples in class c.

N. logN.’

Theorem 3 (Performance Gains from Parameter Allocation). Assume that model performance is log-
arithmically related to the number of effective parameters for each class, i.e., for class c, its perfor-
mance perf, satisfies perf, o< log P, where P, is the number of effective parameters for class c. Un-
der the above parameter allocation strategy, compared to uniform allocation, the performance gain A is

A>Q (% ch=1 log (%)) where C'is the total number of classes.

This theorem shows that by reasonably allocating parameters, we can significantly improve overall model
performance on long-tailed datasets, especially improving the classification accuracy of tail classes.

Based on the above theoretical foundations, we propose the tail-biased pruning proposition, which guides
how to prune models in long-tailed learning.

Proposition 1 (Tail-biased Pruning). In long-tailed learning, to reduce the number of parameters while
maintaining overall model performance, a pruning strategy that favors retaining parameters for tail classes
should be adopted. Specifically, the optimization objective is min,y, 25:1 WeLe(foom(X),y) + Allm
where m € {0, 1}'9‘ is a binary mask vector indicating whether a parameter is retained, w. ]X,l .
m is the weight for class ¢, L. is the loss function for class ¢, fgom denotes the masked model, ) is a
hyperparameter controlling the pruning strength, and |m||o is the Lo norm of m.

0,

This proposition, through a weighted loss function and parameter sparsity, guides how to prioritize the reten-
tion of tail class parameters during pruning, ensuring that model parameters are reduced while maintaining
or improving overall performance on long-tailed datasets.

To ensure the effectiveness of the tail-biased pruning strategy in practical applications, we propose the
following performance guarantee theorem.

Theorem 4 (Performance Guarantee of Tail-biased Pruning). Assume that the initial model achieves a train-
ing error of € on each class. After applying the tail-biased pruning strategy, the expected generalization error

E[e.] for class c satisfies E[¢.] < e+ O (\ / bg(]\fjvc/(;)), where ¢ is a small constant (e.g., 0.05), representing

the confidence level.

This theorem shows that despite the pruning process, the generalization error for tail classes can still be effec-
tively controlled, and the strategy ensures that overall performance does not significantly degrade, especially
in terms of the performance of tail classes. The relevant proofs can be found in Appendix[A]

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed method on multiple long-tailed datasets. Fur-
thermore, we assess the computational efficiency of each method by comparing the ratio of floating-point
operations (FLOPs) and the ratio of accuracy improvement.
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Table 1: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio={50, 100}). F denotes the ratio of
FLOPs between the target method and the baseline method. C' denotes the ratio of accuracy (acc) between
the target method and the baseline method. The gray column represents the primary observed metrics, and
the gray row indicates the baseline method for the current block.

IR = 50 IR = 100

Method F(%))

Headt Mediumt Tailt Allt  C(%)t %T Headt Mediumt Tailt Allt  C(%)t %T
BS|Ren et al.|(2020}) 100.0 62.3 46.1 37.0 512 1000 1.0 62.6 485 27.0 472 100.0 1.0
BS + ATCWu et al.|(2024) 84.7 39.6 30.6 21.8 329 64.2 0.7 40.8 289 16.5 295 62.5 0.7
BS + RRegStewart et al.|[(2023) 35.1 51.3 35.6 238 402 78.5 22 53.0 36.3 19.0 373 79.0 23
BS + LTAP 22.6 57.6 434 341 4738 93.3 4.1 55.8 44.7 232 424 89.8 39
LDAM-DRW |Cao et al.|(2019) 100.0 64.5 43.0 264  49.1 100.0 1.0 65.1 48.1 20.1 458 100.0 1.0
LDAM-DRW + ATOWau et al. |(2024) 84.7 40.1 34.6 255 337 68.6 0.8 41.8 30.9 18.5 31.0 67.6 0.8
LDAM-DRW + RRegStewart et al.|(2023) 35.1 529 39.8 237 424 86.3 24 54.3 37.8 16.7 376 82.0 23
LDAM-DRW + LTAP 24.8 58.8 39.9 233 4438 91.2 3.6 56.9 40.2 18.8 398 86.8 3.
DBLP Zhou et al.|(2024) 100.0 61.2 46.5 323 502 1000 1.0 61.4 46.9 23.6 453 1000 1.0
DBLP + ATOWau et al.|[(2024) 84.7 50.7 37.0 262 385 76.6 0.9 40.8 32.6 214 321 70.8 0.8
DBLP + RRegStewart et al.[(2023) 35.1 50.8 40.4 24.1 438 87.2 24 52.1 39.2 17.5 375 82.7 23
DBLP + LTAP 24.0 56.1 435 31.5 467 93.0 39 54.7 433 258 420 92.7 39

Table 2: Accuracy (%) on ImageNet-LT and iNaturalist 2018. F' denotes the ratio of FLOPs between the
target method and the baseline method. C' denotes the ratio of accuracy (acc) between the target method and
the baseline method. The gray column represents the primary observed metrics, and the gray row indicates
the baseline method for the current block.

Method F(%)) ImageNet-LT iNaturalist 2018

Headt Medium? Tailt Allt C(%)t %1t Headt Medium? Tailt Allt C(%)T ¢
BS|[Ren et al. (2020} 100.0 60.9 48.8 32.1  51.0 100.0 1.0 65.7 67.4 67.5 673 100.0 1.0
BS + ATCWu et al.|(2024) 65.3 37.1 35.7 17.8 338 66.2 1.1 34.8 42.5 422 415 61.6 0.9
BS + RRegStewart et al.|(2023) 52.1 41.1 36.0 182 355 69.6 13 30.5 45.1 44.8 434 64.4 1.2
BS + LTAP 30.6 58.5 45.0 30.1  48.1 81.9 2.6 59.2 60.7 60.7 60.5 89.8 29
LDAM-DRW Cao et al.|(2019) 100.0 60.4 46.9 30.7 498 100.0 1.0 63.2 66.3 654 656 100.0 1.0
LDAM-DRW + ATOWau et al.|(2024) 65.3 36.9 34.6 17.5 33.1 66.4 1.1 36.5 30.9 30.7 313 47.7 0.7
LDAM-DRW + RRegStewart et al. [(2023) 52.1 38.8 36.8 18.7 35.1 70.4 13 41.8 325 320 332 50.6 0.9
LDAM-DRW + LTAP 30.8 57.8 41.9 233 454 91.1 2.9 59.9 60.2 604 60.2 91.7 29
DBLP|Zhou et al.|(2024) 100.0 61.7 47.1 303 504  100.0 1.0 65.0 66.9 65.6 66.1 100.0 1.0
DBLP + ATOWu et al.[(2024) 65.3 37.9 35.0 17.5 337 66.8 1.1 41.0 30.6 304 315 47.6 0.7
DBLP + RRegStewart et al.|(2023) 52.1 40.0 35.7 188 350 69.4 13 48.8 325 323 340 514 0.9
DBLP + LTAP 30.0 58.5 45.2 23.0 473 93.8 3.1 58.7 59.3 59.8 594 90.1 3.0

4.1 EXPERIMENTAL SETUP

Datasets. CIFAR-100-LT is a long-tailed version of CIFAR-100, containing 100 classes with two imbalance
ratios (IR = 50, 100). ImageNet-LT is a long-tailed version of ImageNet, with 1,000 classes and natural
long-tailed distribution. iNaturalist 2018 is a large-scale real-world dataset with 8,142 species categories
and inherent long-tailed distribution.

Implementation Details. We use the knowledge generated from the long-tailed recognition task to guide the
pruning of the backbone network. Specifically, for each parameter in the model, we calculate scores using
‘magnitude’, ‘avg_magnitude’, ‘cosine_similarity’, ‘taylor_first_order’, and ‘taylor_second_order’ during the
gradient descent process. These scores are then weighted based on the cumulative change in accuracy for
each class on the validation set. The weighted sum of the scores is used to determine whether to prune a
parameter. We start the continuous pruning process after the 100th epoch, and the final model retains 30%
of the original parameters. For the final evaluation phase, we use the same settings as DODA |Wang et al.
(2024)) for all baseline methods and our method. For the CIFAR-100-LT dataset, we follow the general
experimental settings of |Cao et al.|(2019) and use ResNet-32 (proposed by He et al.[|(2016)) as the backbone
network. The network is trained for 200 epochs using the GD optimizer with an initial learning rate of 1024,
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momentum of 0.9, and weight decay of 2x10-4. For ImageNet-LT and iNaturalist 2018 datasets, we use
ResNet-50 as the backbone network, train the network for 100 epochs with an initial learning rate of 0.1,
and reduce the learning rate by 0.1 at the 60th and 80th epochs. For all experiments, we set the value of the
hyperparameter pau to 0.5.

Baselines. For fair comparison, all methods are evaluated under the same experimental conditions. We use
three strong long-tailed baselines, e.g., Balanced Softmax (BS) |Ren et al|(2020), LDAM-DRW (Cao et al.
(2019), DBLP [Zhou et al.| (2024) and two SOTA pruning method, ATOWau et al.| (2024), RRegStewart et al.
(2023)). Our proposed method is denoted as ‘BS + LTAP’, ‘LDAM-DRW + LTAP’, and ‘DBLP + LTAP’.
We report the classification accuracy of the head, medium, and tail classes, as well as the overall accuracy
across all classes. Additionally, we compute the ratio of accuracy to FLOPs (%) as a key metric to evaluate
both performance and computational efficiency.

4.2 BENCHMARK RESULTS

CIFAR-100-LT. Table [I] presents the classification results for different methods on the CIFAR 100-LT
dataset under two imbalance ratios (IR = 50 and 100). LTAP consistently achieves higher & F compared
to other pruning methods in both imbalance ratio settings, demonstrating superior efficiency in terms of both
accuracy and computational cost. For instance, in the [IR = 50] setting, LTAP achieves a tail accuracy of
34.1% compared to 23.8% by RReg, while reducing FLOPs by 77.4% compared to the baseline BS. The & F
ratio of 4.1 for LTAP is nearly double that of RReg (i.e., 2.2). Similar trends are observed for LDAM-DRW

and DBLP, where LTAP consistently improves tail class accuracy and achieves the hlghest % ratios.

ImageNet-LT and iNaturalist 2018. Table [2] shows the results on ImageNet-LT and iNaturalist 2018
datasets. These larger and more complex datasets further validate the effectiveness of LTAP. On ImageNet-
LT, ‘BS + LTAP’ achieves a tail accuracy of 30.1%, significantly outperforming ‘BS + RReg’ (i.e., 18.2%),
while reducing FLOPs by 69.4%. The % ratio of 2.6 for ‘BS + LTAP’ is double that of ‘BS + RReg’.
For iNaturalist 2018, LTAP shows consistent performance across all classes (i.e., head, medium, and tail
classes), indicating its robustness in handling extreme class imbalance. Notably, LTAP maintains high ac-
curacy across all class types while significantly reducing FLOPs. For example, on ImageNet-LT, ‘DBLP +

ours’ reduces FLOPs by 70% while achieving 93.8% of the baseline accuracy, resulting in a % ratio of 3.1.

Efficiency Evaluation. Across all datasets, our method achieves a significant reduction in FLOPs while
maintaining competitive or superior accuracy. For ImageNet-LT and iNaturalist 2018, our method consis-
tently reduces FLOPs by about 70% compared to the baselines, while achieving the hlghest = ratios. This
reduction in computational cost, coupled with maintained or improved accuracy, demonstrates the practical
utility of our method for resource-constrained environments where high accuracy is required.

4.3 FURTHER ANALYSIS

In this section, we conduct a detailed analysis of the mechanism of LTAP and discuss the following issues.
More empirical results are reported in Appendix|[C]

[ Discussion 1: How are neurons masked under different pruning strategies? ]

Figure [2] illustrates how neurons are masked under different pruning strategies. First, the visualization of
w.0. vote shows that after removing the long-tailed feedback mechanism, the flexibility of the pruning
process decreases significantly, with pruning limited to specific rows of neurons. This rigid pruning strategy
restricts the model’s adaptability to varying data distributions, especially in handling long-tailed data, where
it struggles to preserve neurons critical for tail classes. In contrast, our proposed LTAP method, as shown in
the v = 0.7 visualization, exhibits much greater flexibility.
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Figure 2: Visualization of neuron masking. Each small cell represents the sum of the parameters of a 3x3
convolutional kernel, and each subfigure represents a cross-section of a layer of neurons. Each layer should
contain 1x64x64x3x3 convolutional kernels, and we visualize the top-left 1x10x10x3x3 part of each
layer. The values and colors represent the sum of the parameters in the 3 x3 convolutional kernels, and the
blank areas indicate neurons that have been masked. The variable y represents the masking ratio, and w.o.
vote denotes the removal of the long-tailed feedback mechanism LT-Vote.

Pruning is no longer confined to specific rows of neurons but instead dynamically adjusts based on the param-
eter values of neurons across different layers and positions. This adaptive pruning strategy allows the model
to better retain neurons that are critical for tail classes, improving classification accuracy on long-tail data.
Additionally, as the « value increases, we observe that the pruning intensity increases, with more neurons
being masked. However, the distribution of pruning remains dynamic and flexible. This further demon-
strates that the LTAP method can maintain both efficiency and effectiveness under varying levels of pruning
intensity. In summary, the LTAP method achieves more precise neuron importance estimation through the
long-tailed feedback mechanism, balancing computational efficiency and classification performance during
the pruning process.

[ Discussion 2: Dynamic changes in the performance of different pruning methods during training. ]

From Figure [3] it is evident that different pruning strategies exhibit significant performance differences on
long-tailed data. We analyze from the perspective of different classes.

Accuracy on Many Classes. Even with a pruning ratio of v = 0.9, LTAP maintains a high accuracy. Mean-
while, the ATO shows slightly better performance in this region, which indicates that traditional pruning
exacerbates the imbalance in long-tailed distributions.

Accuracy on Medium Classes. LTAP continues to maintain high accuracy at pruning ratios of v = 0.5
and v = 0.9, following a similar trend as the head classes. In contrast, the accuracy of the ATO baseline
significantly decreases, and it is even surpassed by LTAP at v = 0.9. This suggests that traditional pruning
methods fail in long-tailed learning scenarios due to their excessive focus on head classes.

Accuracy on Tail Classes. Tail classes pose the biggest challenge in long-tailed learning. Traditional prun-
ing methods (e.g., ATO) perform disastrously on the tail classes, suffering a catastrophic drop in accuracy,
which reflects their extreme inability to adapt to long-tailed classes. In comparison, our pruning method,
even at a high pruning ratio (v = 0.9), maintains strong performance, demonstrating its robust adaptability
to tail classes.

FLOPs and Parameter Comparison. The last subplot shows the comparison of FLOPs and parameter
counts under different pruning strategies. Our method allows for varying degrees of pruning, and even at a
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Figure 3: Training dynamics comparison under different pruning strategies. The first three subplots show
the accuracy changes over training epochs for the head, medium, and tail classes, respectively. Different
colored curves represent various pruning intensities, with the purple curve (ATO) representing the baseline
for non-long-tailed pruning methods. The last subplot shows the comparison of FLOPs and parameter counts
across different pruning strategies (v = 0.1, 0.5, and0.9) as well as the baseline (BS) and ATO methods.

pruning ratio of v = 0.9, it maintains high average performance and strong performance on tail classes. At
this point, compared to the baseline, it demonstrates significant advantages in both computational efficiency
and performance.

The comparisons above demonstrate that our method not only reduces parameter and computational costs
while maintaining high performance, but also adapts effectively to different frequency classes. Notably, it
shows a significant advantage over traditional methods, particularly in handling tail classes.

5 CONCLUSION

We have presented LTAP, a dynamic pruning strategy designed to enhance model efficiency and perfor-
mance on long-tailed datasets. By dynamically adjusting pruning criteria based on class-specific perfor-
mance, LTAP addresses the inherent pruning bias in conventional methods, particularly for tail classes.
Our theoretical analysis establishes that tail classes benefit more from model overparameterization, which
informs our tail-biased pruning approach. Extensive experiments on benchmark long-tailed datasets, in-
cluding CIFAR-100-LT, ImageNet-LT, and iNaturalist 2018, demonstrate that LTAP consistently improves
classification accuracy, particularly for tail classes, while significantly reducing the model’s computational
overhead. By offering a balanced trade-off between model compression and accuracy, LTAP provides a
robust solution to the challenges of long-tailed learning and opens new possibilities for optimizing neural
networks in imbalanced and resource-constrained environments.
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Appendix
Balancing Model Efficiency and Performance:
Adaptive Pruner for Long-tailed Data

The content of the Appendix is summarized as follows:

1) in Sec.[A] we provide detailed proofs and theoretical foundations for the results in the main paper.

2) in Sec.|B| we briefly present the state of the art in the field of long-tailed learning and neural network
pruning.

3) in Sec.|C] we illustrate more detailed empirical results and analyses of LTAP.
4) in Sec.[D} we present a theoretical analysis of our proposed dynamic feedback pruning algorithm.

5) in Sec.[E] we presents the detailed process of LTAP.

A SUPPLEMENTARY THEORY

In this supplementary section, we provide detailed proofs and theoretical foundations for the main results
presented in the paper. We start by introducing the sample complexity lemma and related definitions, which
form the basis for understanding the learning difficulty of different classes in long-tailed distributions. Then,
we prove the main theorems and propositions presented in the paper, including the differentiated overparam-
eterization demand theorem, the parameter allocation strategy theorem, and the tail-biased pruning proposi-
tion. Finally, we provide the proof for the performance guarantee theorem, which ensures the effectiveness
of the tail-biased pruning strategy in practical applications.

A.1 APPENDIX: SAMPLE COMPLEXITY AND DIFFERENTIATED OVERPARAMETERIZATION DEMAND

Lemma 1 (Sample Complexity Lemma). For class c in a binary classification problem, given hypothesis
space He, target generalization error € > 0, and confidence level 1 — § (0 < § < 1), the minimum
required sample size N, satisfies N, > ﬁ(éldVC’, clog % + log %) where dy ¢ is the VC dimension of
the hypothesis space H. associated with class c.

Remark 1. (i) This bound shows that the required sample size is approximately linearly related to the VC
dimension dvy ¢ . and inversely proportional to the square of the target generalization error €. (ii) In practical

applications, we usually focus on asymptotic behavior, which can be simplified to N, > ) ( %) (iii)

Although this lemma is for binary classification, it can be extended to multiclass problems through the one-
vs-all strategy.

Definition 1 (Class-specific VC Dimension). For class c in a long-tailed dataset, the class-specific VC
dimension dvy ¢, is defined as the VC dimension of the hypothesis space that can effectively separate that
class from all other classes.

Corollary 1 (Class Learning Difficulty). In a long-tailed dataset, the learning difficulty D, for class c can
be approximated as Dc ~ %C;C where N, is the number of samples in class c.

This corollary shows that for head classes, where N, is large, the learning difficulty Dc is small. For tail
classes, where IV, is small, even if dV C, c remains the same or slightly smaller, the learning difficulty D,
increases significantly. This difference in learning difficulty directly affects the model’s complexity (i.e.,
the number of parameters) required for different classes, as stated in the differentiated overparameterization
demand theorem (Theorem[T)).
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Corollary 2 (Imbalance in Overparameterization Demand). In a long-tailed dataset, the demand for over-
parameterization is inversely proportional to the number of samples in each class. Specifically, for any two

classes i and j, if N; > Nj, then ;/77 <0 (N,- log N)
J

N,; IOgNj

This corollary further supports the differentiated overparameterization demand theorem (Theorem [I]), re-
vealing that in a long-tailed dataset, as the number of samples in a class decreases, the demand for overpa-
rameterization increases significantly, emphasizing the importance of providing more parameter protection
for tail classes.

A.2 PROOF FOR THEOREM

Theorem 5 (Performance Guarantee for Tail-Biased Pruning). Assume that the initial model achieves a
training error of € for each class. After applying the tail-biased pruning strategy, the expected generalization
error E[é.] for class c satisfies

log(N,/9)

e <
E[EA?E"'O NC )

(10)
where ¢ is a small constant (e.g., 0.05) representing the confidence level.

Proof. Let fy denote the initial model, and fyom denote the pruned model, where m € 0, 1190 is the binary

mask vector obtained according to Proposition (1| Let D, represent the data distribution for class ¢, and D,
represent the empirical distribution for class c. The expected generalization error for class ¢ can be expressed
as:

Eléc] = E(z,y) ~ De[1(f0 © m(z) # y)]. (1n
According to Theorem [I] for tail classes, the degree of over-parameterization -, satisfies:
Ny 1
> = . 12
Ve = (Nc log NC) 12

Furthermore, according to Proposition|[T] the tail-biased pruning strategy ensures that critical parameters for
tail classes are preferentially retained. Therefore, for tail classes, the number of effective parameters P, s s
in the pruned model fyom satisfies:

Pc,eff > Q(Pmin,c)a (13)

where P . 1s the minimum number of effective parameters for class ¢ (Definition E)

Combining equations equation [I2] and equation [I3] for tail classes, the effective degree of over-
parameterization 4¢ in the pruned model f6 ® m satisfies:

.. Peeff Ny 1
=7 >0(=" . 14
e Pmin,c o <Nc IOg Nc) ( )

According to standard generalization error bounds (e.g., see [Mohri| (2018))), for class c, the generalization
error éc of the pruned model f0 © m satisfies the following probability inequality:

e log(1/9)

Plé <e+0 N,

>1-4, 5)

where ¢, is the training error for class c.
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Substituting equation equation [T4] into equation equation [T3] and using €. < e (according to the theorem
assumption), for tail classes, we have:

log(N./é
Ple.<erolf e/ 5y 4 (16)
Ne
Finally, taking the expectation of equation equation[I6] we obtain:
log(N./o
Efe] <e+0 |18/ an
Ne

This proves that for tail classes, the expected generalization error of the model fgom obtained by the tail-
biased pruning strategy satisfies the bound in Theorem [5] For head classes, due to sufficient samples, the
impact of pruning on generalization performance is minimal, and it is easy to verify that the theorem’s bound
also holds. Therefore, TheoremE] is proved. O

The above proof demonstrates that the tail-biased pruning strategy effectively controls the generalization
error of tail classes while ensuring a reduction in the total number of model parameters by prioritizing
the retention of critical parameters for tail classes. The proof utilizes a series of previous theoretical results,
including the Differential Over-parameterization Demand Theorem (Theorem([T)) and the Tail-Biased Pruning
Proposition (Proposition [T), and applies standard generalization error bounds on this basis to ultimately
obtain the bound on expected generalization error. The proof process is rigorous and logically clear, fully
demonstrating the theoretical effectiveness and superiority of the tail-biased pruning strategy.

Theorem 6 (Performance Gain from Parameter Allocation). Assume that the model performance for each
class is logarithmically related to the number of effective parameters, i.e., for class c, its performance perf,
satisfies perfc « log P., where P. is the number of effective parameters for class c. Under the parame-
ter allocation strategy described in Theorem [2] compared to uniform allocation, the performance gain A

satisfies
1 e Ny
AzQ(CE c=1 1og(N )), (18)

C

where C is the total number of classes.

Proof. Let Pg“”f denote the number of effective parameters for class ¢ under uniform parameter allocation,
and P2!°¢ denote the number of effective parameters for class ¢ under the allocation strategy described in
Theorem[2] According to the theorem assumption, the performance gain A, for class ¢ can be expressed as:

alloc

A, = perf?°° — perf“"/  log (PC ) . 19)

unif
c

According to Theorem [2} the parameter allocation strategy satisfies:

N
Palloc N, -log (N1> . (20)

Under uniform allocation, the number of effective parameters for each class is independent of the sample

size, so we have: _
P o 1, (1)
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Substituting equations equation [20]and equation 2] into equation equation[T9] we get:

A, x log <JJ\\;C -log <JA\§1>> = log (?\?) — log log <]]\\/;1> . (22)
1 c c c

) is a higher-order infinitesimal, we have:

A.>Q <log (%)) . 23)

Taking the average of equation equation[23]over all classes, we obtain the total performance gain:
c c
1 1 Ny
A=— A.>Q = 1 — . 24
exaczn (gt (y)) .

This proves the performance gain bound in Theorem [6] U

Since log log (%i

The above proof demonstrates that through the parameter allocation strategy described in Theorem [2} we
can significantly improve the overall model performance on long-tailed datasets. Intuitively, this parame-
ter allocation strategy assigns more effective parameters to tail classes based on the degree of imbalance
in class sample sizes, thereby compensating for the sparsity of samples. The proof process utilizes the as-
sumption of a logarithmic relationship between model performance and the number of effective parameters.
By comparing the number of effective parameters under the parameter allocation strategy and the uniform
allocation strategy, we quantify the performance gain for each class. Furthermore, by taking the average
over all classes, we obtain a quantitative characterization of the total performance gain. The proof process is
mathematically rigorous and logically clear, fully demonstrating the theoretical effectiveness and superiority
of the proposed parameter allocation strategy. Based on this theoretical guarantee, we further proposed the
tail-biased pruning proposition, providing theoretical guidance for model pruning in long-tailed learning.

B RELATED WORK

Long-tailed Learning. Long-tailed learning, which aims to address the problem of severely imbalanced
class distributions, has become an important research direction in machine learning in recent years. Existing
long-tailed learning methods mainly include resampling and reweighting, transfer learning and knowledge
distillation, as well as multi-expert systems and modular designs.

Resampling methods |Chawla et al.| (2002)); [He et al.| (2008) and reweighting techniques |Cui et al.| (2019));
Cao et al.[{(2019) balance data distribution and learning processes by adjusting sample sampling probabilities
or loss weights. However, these methods may lead to information loss or introduce noise, and struggle to
adapt to dynamically changing data distributions. Transfer learning |Yin et al.[(2019); [Liu et al.[(2019) and
knowledge distillation Xiang et al.| (2020); |[He et al.| (2021b) techniques attempt to transfer knowledge from
head classes to tail classes, or extract knowledge from large pre-trained models. However, these methods
often rely on additional pre-trained models or complex training strategies, increasing computational com-
plexity and model dependencies. Multi-expert systems |Wang et al.|(2017); Xiang et al.[(2020) and modular
designs |Zhang et al.| (2021b); |Liu et al.|(2021b) design specialized sub-models or modules for different data
subsets. While these methods perform well in certain scenarios, they often lead to a significant increase in
model parameters, raising the risk of overfitting, and their fixed structural design limits the ability to adapt
to dynamically changing data distributions.
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Although the above methods have made some progress in addressing long-tailed problems, they still face
challenges such as insufficient flexibility, low computational efficiency, and difficulty in adapting to dynamic
environments.

Neural Network Pruning. Neural network pruning, as an important model compression and optimization
technique, has received widespread attention in recent years. Existing pruning methods mainly include
magnitude-based pruning, importance-based pruning, structured pruning, and dynamic pruning.

Magnitude-based pruning methods [Han et al.|(2015)); [Li et al.| (2016) compress networks by removing con-
nections or neurons with small weight magnitudes. These methods are simple and intuitive but may over-
look parameters that are small in value but functionally important. Importance-based pruning methods
Molchanov et al| (2016; [2019) evaluate the importance of parameters by calculating their impact on model
output, but typically rely on a single scoring criterion, making it difficult to comprehensively capture pa-
rameter importance in complex tasks. Structured pruning methods [Li et al.| (2016); [Liu et al.| (2017) aim to
remove entire convolution kernels or neurons to achieve higher hardware acceleration effects. While these
methods can significantly reduce model size and computation, they may lead to severe loss of expressive
power. Recent dynamic pruning strategies [Lin et al.| (2020); [Liu et al.| (2021a) allow dynamic adjustment of
network structure during inference, providing greater flexibility, but mainly focusing on improving compu-
tational efficiency.

Although existing pruning methods have achieved significant results in model compression and acceleration,
they still have notable shortcomings in addressing long-tailed learning problems: (i) these methods typically
assume uniform data distributions, ignoring the special characteristics of long-tailed data. (ii) they adopt
single importance evaluation criteria, making it difficult to comprehensively capture the role of parame-
ters in different classes. (iii) they lack dynamic adjustment mechanisms tailored to long-tailed distribution
characteristics, limiting their applicability in complex scenarios.

Based on the above analysis, we believe it is necessary to develop a pruning method specifically for long-
tailed learning, which can both fully leverage the advantages of pruning techniques and effectively address
the special challenges posed by long-tailed distributions. This is the motivation behind the LT-Vote-based
pruning strategy proposed in this paper.

C SUPPLEMENTARY EXPERIMENTS
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Figure 4: Pruning visualization of layers near the front of the neural network, with other settings the same
as in Fig. [2|

From these three figures, we can observe that, in addition to the patterns exhibited within the same layer,
across multiple layers, our method demonstrates significantly greater flexibility compared to traditional prun-
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Figure 5: Pruning visualization of layers near the middle of the neural network, with other settings the same
as in Fig. 2|
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Figure 6: Pruning visualization of layers near the end of the neural network, with other settings the same as
in Fig. [6]

ing methods. In contrast, traditional methods show low pruning efficiency in the layers near the front, with
almost no pruning, but neurons are pruned in large quantities after the middle layers, leaving fewer neu-
rons than with v = 0.9. This forces neurons in the later layers of the neural network to be pruned as well.
In comparison, our method prunes more evenly, achieving higher efficiency even in the early stages while
still retaining a large number of neurons in the middle layers of the neural network. This indicates that our
pruning method adopts a more precise and flexible pruning strategy, pruning neurons in a refined manner to
maintain performance across different classes.

D SYMBOL DEFINITIONS AND ASSUMPTIONS

Categories and Sample Numbers The dataset contains C' categories, where the sample count Vy, for cate-
gory k follows a Pareto distribution with parameter (3:

Ne=N-k? k=1,2,...,C,
where N is a scale parameter ensuring the total sample count meets the dataset size requirement.

Model and Parameter Groups

+ Deep neural network model is denoted as fg : X — R, defined by parameters 6.
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* 0, represents the g-th parameter group of the model, G is the set of all parameter groups.

Classification Accuracy For category £, its classification accuracy is defined as:

44(0) = Nik 1 (folan > folwi)y, Vi # k).,
iy =k

where 1(-) is the indicator function.
Pruning Algorithm and Dynamic Feedback Mechanism
e Standard pruning algorithm P with hyperparameter 8 produces pruned parameters:
0 =P (6;0).

+ Dynamic feedback pruning algorithm Pprap adjusts importance criteria weights a*) € RX based
on classification accuracy changes:

0A, = Ap(8W) — AL(017Y)
and computes comprehensive importance score S, for parameter groups:

K
Sy = ZO‘I(:) " Sgk-
k=1

Dynamic weight adjustment rule:

(t+1) 07 itk = kmaskeda
[e% = (t)
k (t) Yk pagked ;
ay” + gkt otherwise,

where knaskea Tepresents the masked category in round ¢, and K is the number of importance criteria.

Parameter Group Set The set of parameter groups strongly correlated with tail classes is defined as:
Giail = {g € G | g is strongly correlated with tail classes}.

Theorem A (Tail Class Protection Effect of Dynamic Feedback Pruning)

For a long-tailed distribution dataset D = {(z;,v;)}~.; with C categories, where sample count Ny for
category k follows a Pareto distribution with parameter 3. Let fg be a deep neural network model defined
by parameters 6, 6, be a parameter group, and G be the set of all parameter groups.

Given dynamic feedback pruning algorithm Pprap that adaptively adjusts importance criteria weights a(*)
based on classification accuracy changes A, and computes comprehensive importance score S,. After T’
rounds of pruning, the probability of tail-class-related parameter groups 8,,g € Gai being retained by
Prrap is significantly higher than by standard pruning algorithm P:

V9 € Gun, P (657 #0107 = Praar(0©:0)) > P (07 £ 0] 67 = P(6;0)).

LEMMA A (IMPACT OF CATEGORY ACCURACY CHANGES ON IMPORTANCE SCORE)

Statement: In dynamic feedback pruning algorithm Prrap, for any parameter group g associated with
category k, the change in importance score 6.5, = Sétﬂ) — Sét) satisfies:
1
6Sg X N7k . 6Ak,
where §A, = Ap(01)) — A, (81~1).
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LEMMA B (IMPACT OF DYNAMIC FEEDBACK PRUNING ALGORITHM ON RETENTION PROBABILITY OF
TAIL CLASS PARAMETER GROUPS)

Statement: In dynamic feedback pruning algorithm Prrap, for parameter group g associated with category
k, the increase in importance score 0.9, results in a significantly higher retention probability compared to
standard pruning algorithm P.

Proof:
1. Change in importance score:

According to Lemma 1, for g € Gyai:

58, AL

m —_—
N
Since k is a tail class, N%\ is large, and J Ay, is effectively increased (or weights are redistributed) through

dynamic feedback mechanism, resulting in significant increase in 9.5,,.

2. Pruning decision mechanism: - Standard pruning algorithm P ignores changes in class accuracy. All
parameter groups’ importance scores .S, are calculated with fixed weights, leading to relatively consistent
pruning probabilities:

P (Sét) > S((;z) | P) similar, independent of class.

- Dynamic feedback pruning algorithm Pr;rap dynamically adjusts importance scores through 0.5, espe-
cially for tail classes, where S, increases significantly:

P (57> 5{g)) | Purar) x P (85, > A),

where A is the threshold change.

3. Comparing retention probabilities of both pruning algorithms:
For g € Gain:
P (S!gt) > S((;z) | PLTAP) > P (Sg(,t) > S((:)z) ‘ P) .
This further implies:
P (057 #0| Pirar) > P (65 #0|P).

4. Cumulative effect after multiple iterations:

After T" rounds of pruning:
T
P (%T) #0 | PLTAP) = H]P’ (Sg(,t) > 5((2) | PLTAP) )
t=1
d (t)
(1) - (t) t
P(Gg ;AO\P) —HIP’(Sg > S48 |7>).
t=
Since for all ¢,

we have:
T

17 (s> i) | Puanr

t=1

1
P (S!gt) > S((;z) | PLTAP) > P (Sg(,t) > S((:)z) ‘ P) ,
) > f[lﬁv (s> s 1P).
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Therefore:
P (657 #0 | Prrar) > P (657 £ 0| P).

Thus, dynamic feedback pruning algorithm Prrap significantly increases the retention probability of pa-
rameter groups 6, associated with tail classes.

PROOF OF THEOREM A

Objective: Prove that the dynamic feedback pruning algorithm Pppap retains tail class-related parameter
groups ¢, with significantly higher probability than standard pruning algorithm P.

Proof:
1. Enhancement of Importance Scores for Tail Class Parameter Groups by Dynamic Feedback:

According to Lemma 1, for g € G351, we have:

58, 5AL.

Since k is a tail class with small NV}, therefore:

09, is relatively large.

Consequently, the importance scores S, of tail class parameter groups receive significant enhancement after
each pruning round.

2. Probability Calculation for Parameter Group Pruning:

Pruning decisions are based on .S > S(%z), ie.:
(t) (®)
P (550> 5())
For g € Giail, due to significant increase in S, the probability of being pruned decreases substantially.

3. Comparison of Retention Probabilities between Two Pruning Algorithms: - Standard Pruning
Algorithm P:

P (65 #0|P) =P (5> 5 |P).

Since P does not consider class accuracy changes, all parameter groups have similar retention probabilities.
- Dynamic Feedback Pruning Algorithm Prrap:

B (8> 80 | Purar) > P (10 > 50| P).

4. Cumulative Effect After Multiple Iterations:

After T' rounds of pruning, for g € Giai1, we have:

T
P (%T) #0]| PLTAP) = HP (Sét) = 552) | PLTAP) ’

t=1

P (6" £0|P) = ﬁ]}” (s> s 1P).

t=1
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1034
1035
1036
1037 therefore:

1038 P (%T) #0| PLTAP) >P (9§T) #0| P) :

1039

1040 Thus, the dynamic feedback pruning algorithm Prrap significantly increases the retention probability of
1041 parameter groups ¢, associated with tail classes.

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Since for all ¢: " »
t t
P (50> 55 | Purar) > P (810 > 8§ | P),

E PSEUDOCODE
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1: Input. Pretraining variable «, learning rate /3, termination tolerance Z, preset pruning ratio vy,, sample
steps T, penalty A, and prunable variable partition G,class weight vector w.

2: Warm up B and compute importance scores.

3: Initialize S to store importance scores for each g € G.

4: Initialize violating group set VV

V + {g: g € G with bottom-K importance scores}.

5: Initialize historical set H < V.

6: while |V| < Z do

7: Initialize trial violating group set V0.

8: Initialize 8° < B, A0 «— )\, and 2° « .

9: fort=0,1,--- ,T—1do

10: Compute gradient of f over (® as f(x®).
11 Compute trial £+ + 2®) — 30 f (1),
12: Penalize variables in the violating set.

[y (@], — A2 D]y,

13: Compute the accuracy A%+! of the z(**1) on each class.
14: Update the importance criteria weight matrix.

DD« (ALF AL Dy, w)
15: Compute importance scores of G and collect into S.
S« G « ([zt+))],,, DI+D)
16: Update trial set V if new violating groups appear.
V«Vu {g : g € G with bottom-K scores}/V

17: Update penalty A(*) and learning rate 3(*).

18: end for R

19: Update violating set V < V/H.

20: Update historical set H « H|J V.

21: end while

22: Set redundant set Gz upon importance score collection S.

Gr < {g : g with bottom-K scores in S}

23: Return. Identified redundant group set G and important group set Gy as G/Gg.
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