
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

BALANCING MODEL EFFICIENCY AND PERFORMANCE:
ADAPTIVE PRUNER FOR LONG-TAILED DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-tailed distribution datasets are prevalent in many machine learning tasks, yet exist-
ing neural network models still face significant challenges when handling such data. This
paper proposes a novel adaptive pruning strategy, LTAP (Long-Tailed Adaptive Pruner),
aimed at balancing model efficiency and performance to better address the challenges
posed by long-tailed data distributions. LTAP introduces multi-dimensional importance
scoring criteria and designs a dynamic weight adjustment mechanism to adaptively deter-
mine the pruning priority of parameters for different classes. By focusing on protecting
parameters critical for tail classes, LTAP significantly enhances computational efficiency
while maintaining model performance. This method combines the strengths of long-tailed
learning and neural network pruning, overcoming the limitations of existing approaches
in handling imbalanced data. Extensive experiments demonstrate that LTAP outperforms
existing methods on various long-tailed datasets, achieving a good balance between model
compression rate, computational efficiency, and classification accuracy. This research pro-
vides new insights into solving model optimization problems in long-tailed learning and
is significant for improving the performance of neural networks on imbalanced datasets.
The code is available at https://anonymous.4open.science/r/AEFCDAISJ/
README.md.

1 INTRODUCTION

Long-tailed learning aims to address the problem of highly imbalanced class distributions, where most
classes (i.e., tail classes) have scarce samples, while few classes (i.e., head classes) have abundant samples
Liu et al. (2019); Wang et al. (2017); Tan et al. (2020); Li et al. (2020). This data distribution is prevalent in
real-world applications, such as e-commerce product classification, speech recognition, and natural language
processing Ouyang et al. (2016); Yang & Xu (2020). Although deep learning models perform excellently on
head classes, their performance on tail classes remains limited, mainly because models tend to overfit head
classes and neglect feature learning for tail classes, leading to insufficient overall model generalization Kang
et al. (2019).

To improve long-tailed learning performance, researchers have proposed various methods, including multi-
expert systems and modular designs Wang et al. (2020); Liu et al. (2019). However, these traditional methods
face numerous challenges in practical applications. For instance, multi-expert systems often require train-
ing and maintaining multiple independent sub-models, resulting in enormous computational and storage
resource consumption Xiang et al. (2020). Modular designs rely on predefined module structures, lacking
dynamic adaptability and struggling to cope with constantly changing data distributions Ren et al. (2020).
Moreover, these methods often struggle to efficiently utilize parameters when dealing with tail classes, lim-
iting model performance on scarce data Zhang et al. (2021a).

1

https://anonymous.4open.science/r/AEFCDAISJ/README.md
https://anonymous.4open.science/r/AEFCDAISJ/README.md

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

As a model compression and optimization technique, pruning optimizes model structure and improves com-
putational efficiency by removing redundant or unimportant neurons or connections Han et al. (2015); Liu
et al. (2018); Zhu & Gupta (2017). In recent years, pruning methods have shown significant advantages
in improving model performance, reducing parameter counts, and accelerating inference Frankle & Carbin
(2018); Blalock et al. (2020). However, ordinary pruning methods face special challenges when applied to
long-tailed learning:

• Pruning bias due to class imbalance: conventional pruning methods, blind to class-specific contri-
butions, risk exacerbating the very imbalance they aim to address by inadvertently removing neurons
crucial for tail class recognition He et al. (2021a).

• Difficulty in dynamic adjustment: the static nature of traditional pruning methods conflicts with the dy-
namic evolution of the association between parameters and data distribution during training, potentially
leading to suboptimal or even harmful pruning decisions Molchanov et al. (2019).

• Single evaluation criterion: the reliance on simplistic pruning criteria fails to capture the nuanced impor-
tance of neurons in the complex landscape of long-tail distributions, potentially misleading the pruning
process Frankle et al. (2020).

To address these challenges, this paper proposes a novel pruning strategy called Long-Tailed Adaptive
Pruner (LTAP), specifically optimized for long-tailed learning environments. LTAP is rooted in the under-
standing that effective long-tailed learning requires a fundamental rethinking of how we allocate and utilize
model capacity Kang et al. (2019). Our method makes innovative contributions in the following aspects:

• New LT-Vote mechanism: Through the LT-Vote (Long-Tailed Voting) mechanism, we dynamically ad-
just the weights of different pruning criteria based on the classification accuracy of different classes,
enabling the pruning process to more specifically optimize the learning performance of tail classes,
enhancing model robustness on long-tail distribution data.

• Multi-stage dynamic pruning: Our method divides the pruning process into multiple stages, gradually
removing redundant parameters, and dynamically adjusts the pruning strategy at each stage based on
current model performance, ensuring continuous performance optimization during the pruning process.

• Efficient resource utilization: By reducing model parameter count and computational requirements
through pruning, we improve model operational efficiency in resource-constrained environments while
maintaining or even improving classification accuracy on tail classes.

Experimental results show that our proposed LTAP method significantly outperforms traditional pruning
methods and other long-tailed learning methods on multiple long-tailed distribution datasets, validating its
effectiveness in enhancing tail class recognition ability, optimizing model structure, and improving compu-
tational efficiency.

2 LTAP: ADAPTIVE PRUNER FOR LONG-TAILED DISTRIBUTION

In this section, we propose a novel pruning strategy called Long-Tailed Adaptive Pruner (LTAP), aimed at
optimizing neural network models on long-tailed distribution datasets. LTAP effectively protects critical
parameters of tail classes and enhances overall model performance and parameter efficiency in long-tailed
distribution scenarios by integrating multiple importance scoring criteria and dynamically adjusting pruning
weights. The following subsections will provide a detailed explanation of the overall architecture, LTAP
optimizer design, pruning strategy implementation, and the alternating process of training and pruning.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

Model

Evaluating

Model Parameters
Weight Selection

Processing

Updating

Pruning

Neural Networks

Masking target

Magnitude

Avg magnitude

Cosine similarity

Taylor first order

Taylor second order

Result

Parameters‘ Weight

Long-tailed Dataset

𝒇𝜽∗

Val Accuracy

Accuracyt Accuracyt-1

0.63 0.25 0 1.00 0.38

Model
Parameterst

Criteria
Weights

Normalization

0.25

0.25

0

0.25

0.25

Select G
u

id
e

d

A
u

gm
e

n
tatio

n
Mask

Generation

Figure 1: Overview of the Long-Tailed Adaptive Pruner (LTAP) methodology. The diagram illustrates the
iterative process of model evaluation, parameter processing, and pruning, highlighting the integration of
multiple importance criteria and the dynamic weight adjustment mechanism.

2.1 LTAP OPTIMIZER DESIGN

To accurately assess parameter importance, LTAP introduces multiple scoring criteria, including magni-
tude, average magnitude, cosine similarity, Taylor first order, and Taylor second order. The comprehensive
importance score Sg for each parameter group g is calculated by the following formula:

Sg =

K∑
k=1

αk · sg,k (1)

where K = 5 is the number of scoring criteria, αk is the weight coefficient for scoring criterion k, and sg,k
is the score value of scoring criterion k for parameter group g. The specific scoring criteria are defined as
follows:

sg,magnitude = |wg|2, sg, avg-magnitude =
|wg|2
ng

, sg, cosine =
wg ·wref
|wg|2|wref|2

, (2)

sg, taylor-first =
∣∣∣∣ ∂L∂wg

∣∣∣∣ ·wg, sg, taylor-second =

∣∣∣∣ ∂2L
∂w2

g

∣∣∣∣ ·w2
g (3)

where wg is the weight vector of parameter group g, ng is the number of parameters in group g. The
reference weight vector wref represents the gradients of the current model parameters, serving as a direc-
tional reference in the cosine similarity criterion to measure the alignment between parameter updates and
the optimization trajectory.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

2.2 PRUNING STRATEGY IMPLEMENTATION

We propose a dynamic importance evaluation mechanism that adaptively integrates class distributions with
multiple pruning criteria. The importance score is computed through a novel interaction framework:

Ic = D ·Nc (4)

where Ic ∈ RK represents the comprehensive importance scores across criteria for class c, D ∈ RK×C

denotes the criteria weight matrix, and Nc ∈ RC represents the class distribution vector. Our framework
incorporates five evaluation criteria (K=5): magnitude, average magnitude, cosine similarity, first-order and
second-order Taylor expansions.

The scores undergo softmax normalization to obtain importance weights:

α(t) = softmax(Ic) (5)

where α(t) ∈ RK denotes the normalized weights. For classes showing improved performance, the criteria
weights are updated through:

D
(t+1)
k [c] = D

(t)
k [c] + ⊮(A(t)

c > A(t−1)
c) (6)

where D
(t)
k [c] represents criterion k’s weight for class c, A(t)

c denotes the classification accuracy at time t,
and ⊮(·) is the indicator function that equals 1 if the condition is satisfied and 0 otherwise.

Our mechanism employs an inverse probability-based sampling strategy to select criteria for suppression,
ensuring both exploration of less important criteria and avoidance of deterministic decisions. The selected
criterion’s weight is redistributed uniformly among remaining criteria, maintaining smooth transitions in the
pruning process. This adaptive approach effectively addresses the challenges of long-tailed distributions
through continuous weight adjustments and performance-driven pruning strategy optimization.

LTAP adopts a multi-stage dynamic pruning strategy, distributing the overall pruning ratio γtotal across mul-
tiple pruning stages, with the pruning ratio for each stage being:

γp =
γtotal

P
(7)

where P is the number of pruning stages. This strategy ensures the progressiveness and stability of pruning,
avoiding performance fluctuations caused by one-time large-scale pruning. The pruning process mainly
includes the following steps:

(i) Calculate importance scores: compute comprehensive importance scores Sg for all parameter groups
based on current model parameters.

(ii) Identify redundant parameter groups: select parameter groups with the lowest importance scores as
redundant groups based on the preset pruning ratio γp.

(iii) Prune redundant parameter groups: achieve parameter pruning by setting the weights of redundant
parameter groups to zero.

(iv) Update parameter distribution: reallocate optimization strategies for remaining parameters based on
the pruned model structure.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

2.3 ALTERNATING PROCESS OF TRAINING AND PRUNING

The entire pruning process is formalized through the following optimization steps:

θ(t+1) = θ(t) − η∇θL(θ(t)) (8)

where η is the learning rate, L is the loss function, and θ represents model parameters. The training and
pruning processes alternate, with the specific workflow as follows:

(i) Training phase: perform forward and backward propagation under current model parameters, updat-
ing model parameters to minimize the loss function L.

(ii) Pruning phase: execute pruning operations after specific training cycles, pruning low-importance
parameter groups based on current parameter importance scores.

(iii) Update importance scores: utilize the LT-Vote mechanism to adjust weight coefficients αk of scoring
criteria based on the performance of the pruned model on the validation set.

(iv) Repeat iteration: cycle through training and pruning phases until reaching the predetermined pruning
ratio or training rounds.

During the parameter update process, the LTAP optimizer combines gradient variants with pruning strategies,
with specific steps as follows:

∇gSg =

K∑
k=1

αk · ∇gsg,k, θg ← θg − η · ∇gSg, θg ← θg ⊙ (1−mg) (9)

where ∇gSg is the gradient variant of parameter group g under different scoring criteria, and mg is the
pruning mask vector for parameter group g. Through these steps, the LTAP optimizer can incorporate
pruning strategies into the parameter update process, achieving dynamic compression and optimization of
model parameters. Meanwhile, the LT-Vote mechanism ensures that the model provides sufficient protection
for parameters of tail classes during the pruning process, thereby enhancing classification performance.

3 THEORETICAL ANALYSIS: TAIL CLASSES BENEFIT MORE FROM
OVERPARAMETERIZATION

To verify the effectiveness and soundness of our method, we first establish a series of foundational defini-
tions. Then, through lemmas and theorems, we systematically argue that tail classes in long-tailed distribu-
tions have higher requirements for model overparameterization. Based on this, we propose a differentiated
parameter allocation strategy and the tail-biased pruning proposition. Finally, we synthesize these theo-
retical results and prove the effectiveness of the tail-biased pruning strategy in learning from long-tailed
distributions.

To gain a deeper understanding of the learning difficulty of different classes under long-tailed distributions,
we introduce the sample complexity lemma (Lemma 1 in Appendix), establishing the relationship between
sample size, VC dimension, and generalization error. Based on this lemma, we further define the class-
specific VC dimension (Definition 1 in Appendix) and derive the learning difficulty for each class (Corollary
1 in Appendix).
Theorem 1 (Differentiated Overparameterization Demand). In a long-tailed setting, to achieve the same
generalization performance, tail classes require a higher degree of overparameterization than head classes.
Specifically, for tail classes, γc ≥ Ω

(
N1

Nc
· 1
logNc

)
, and for head classes, γc ∼ O(1), where N1 is the

number of samples in the head class (the class with the most samples), and Nc is the number of samples in
class c.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

The differentiated overparameterization demand theorem reveals that tail classes in a long-tailed dataset have
a higher demand for model overparameterization, which is further supported by the imbalance in overpa-
rameterization demand (Corollary 2 in Appendix).

Based on the differentiated overparameterization demand theorem, we propose the parameter allocation
strategy corollary, which guides how to reasonably allocate model parameters in long-tailed learning.
Theorem 2 (Parameter Allocation Strategy). In long-tailed learning, to optimize overall model performance,
relatively more parameters should be allocated to tail classes. Specifically, for class c, the ideal parameter
allocation ratio αc should satisfy αc ∝ N1

Nc
· 1
logNc

, where N1 is the number of samples in the head class
(the class with the most samples), and Nc is the number of samples in class c.
Theorem 3 (Performance Gains from Parameter Allocation). Assume that model performance is log-
arithmically related to the number of effective parameters for each class, i.e., for class c, its perfor-
mance perfc satisfies perfc ∝ logPc, where Pc is the number of effective parameters for class c. Un-
der the above parameter allocation strategy, compared to uniform allocation, the performance gain ∆ is
∆ ≥ Ω

(
1
C

∑C
c=1 log

(
N1

Nc

))
, where C is the total number of classes.

This theorem shows that by reasonably allocating parameters, we can significantly improve overall model
performance on long-tailed datasets, especially improving the classification accuracy of tail classes.

Based on the above theoretical foundations, we propose the tail-biased pruning proposition, which guides
how to prune models in long-tailed learning.
Proposition 1 (Tail-biased Pruning). In long-tailed learning, to reduce the number of parameters while
maintaining overall model performance, a pruning strategy that favors retaining parameters for tail classes
should be adopted. Specifically, the optimization objective is minm

∑C
c=1 wcLc(fθ⊙m(x),y) + λ∥m∥0,

where m ∈ {0, 1}|θ| is a binary mask vector indicating whether a parameter is retained, wc ∝ N1

Nc
·

1
logNc

is the weight for class c, Lc is the loss function for class c, fθ⊙m denotes the masked model, λ is a
hyperparameter controlling the pruning strength, and ∥m∥0 is the L0 norm of m.

This proposition, through a weighted loss function and parameter sparsity, guides how to prioritize the reten-
tion of tail class parameters during pruning, ensuring that model parameters are reduced while maintaining
or improving overall performance on long-tailed datasets.

To ensure the effectiveness of the tail-biased pruning strategy in practical applications, we propose the
following performance guarantee theorem.
Theorem 4 (Performance Guarantee of Tail-biased Pruning). Assume that the initial model achieves a train-
ing error of ϵ on each class. After applying the tail-biased pruning strategy, the expected generalization error

E[ϵ̂c] for class c satisfies E[ϵ̂c] ≤ ϵ+O

(√
log(Nc/δ)

Nc

)
, where δ is a small constant (e.g., 0.05), representing

the confidence level.

This theorem shows that despite the pruning process, the generalization error for tail classes can still be effec-
tively controlled, and the strategy ensures that overall performance does not significantly degrade, especially
in terms of the performance of tail classes. The relevant proofs can be found in Appendix A.

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed method on multiple long-tailed datasets. Fur-
thermore, we assess the computational efficiency of each method by comparing the ratio of floating-point
operations (FLOPs) and the ratio of accuracy improvement.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Table 1: Accuracy (%) on CIFAR-100-LT dataset (Imbalance ratio={50, 100}). F denotes the ratio of
FLOPs between the target method and the baseline method. C denotes the ratio of accuracy (acc) between
the target method and the baseline method. The gray column represents the primary observed metrics, and
the gray row indicates the baseline method for the current block.

Method F (%)↓ IR = 50 IR = 100

Head↑ Medium↑ Tail↑ All↑ C(%)↑ C
F ↑ Head↑ Medium↑ Tail↑ All↑ C(%)↑ C

F ↑
BS Ren et al. (2020) 100.0 62.3 46.1 37.0 51.2 100.0 1.0 62.6 48.5 27.0 47.2 100.0 1.0
BS + ATOWu et al. (2024) 84.7 39.6 30.6 21.8 32.9 64.2 0.7 40.8 28.9 16.5 29.5 62.5 0.7
BS + RRegStewart et al. (2023) 35.1 51.3 35.6 23.8 40.2 78.5 2.2 53.0 36.3 19.0 37.3 79.0 2.3
BS + LTAP 22.6 57.6 43.4 34.1 47.8 93.3 4.1 55.8 44.7 23.2 42.4 89.8 3.9
LDAM-DRW Cao et al. (2019) 100.0 64.5 43.0 26.4 49.1 100.0 1.0 65.1 48.1 20.1 45.8 100.0 1.0
LDAM-DRW + ATOWu et al. (2024) 84.7 40.1 34.6 25.5 33.7 68.6 0.8 41.8 30.9 18.5 31.0 67.6 0.8
LDAM-DRW + RRegStewart et al. (2023) 35.1 52.9 39.8 23.7 42.4 86.3 2.4 54.3 37.8 16.7 37.6 82.0 2.3
LDAM-DRW + LTAP 24.8 58.8 39.9 23.3 44.8 91.2 3.6 56.9 40.2 18.8 39.8 86.8 3.5
DBLP Zhou et al. (2024) 100.0 61.2 46.5 32.3 50.2 100.0 1.0 61.4 46.9 23.6 45.3 100.0 1.0
DBLP + ATOWu et al. (2024) 84.7 50.7 37.0 26.2 38.5 76.6 0.9 40.8 32.6 21.4 32.1 70.8 0.8
DBLP + RRegStewart et al. (2023) 35.1 50.8 40.4 24.1 43.8 87.2 2.4 52.1 39.2 17.5 37.5 82.7 2.3
DBLP + LTAP 24.0 56.1 43.5 31.5 46.7 93.0 3.9 54.7 43.3 25.8 42.0 92.7 3.9

Table 2: Accuracy (%) on ImageNet-LT and iNaturalist 2018. F denotes the ratio of FLOPs between the
target method and the baseline method. C denotes the ratio of accuracy (acc) between the target method and
the baseline method. The gray column represents the primary observed metrics, and the gray row indicates
the baseline method for the current block.

Method F (%)↓ ImageNet-LT iNaturalist 2018

Head↑ Medium↑ Tail↑ All↑ C(%)↑ C
F ↑ Head↑ Medium↑ Tail↑ All↑ C(%)↑ C

F ↑
BS Ren et al. (2020) 100.0 60.9 48.8 32.1 51.0 100.0 1.0 65.7 67.4 67.5 67.3 100.0 1.0
BS + ATOWu et al. (2024) 65.3 37.1 35.7 17.8 33.8 66.2 1.1 34.8 42.5 42.2 41.5 61.6 0.9
BS + RRegStewart et al. (2023) 52.1 41.1 36.0 18.2 35.5 69.6 1.3 30.5 45.1 44.8 43.4 64.4 1.2
BS + LTAP 30.6 58.5 45.0 30.1 48.1 81.9 2.6 59.2 60.7 60.7 60.5 89.8 2.9
LDAM-DRW Cao et al. (2019) 100.0 60.4 46.9 30.7 49.8 100.0 1.0 63.2 66.3 65.4 65.6 100.0 1.0
LDAM-DRW + ATOWu et al. (2024) 65.3 36.9 34.6 17.5 33.1 66.4 1.1 36.5 30.9 30.7 31.3 47.7 0.7
LDAM-DRW + RRegStewart et al. (2023) 52.1 38.8 36.8 18.7 35.1 70.4 1.3 41.8 32.5 32.0 33.2 50.6 0.9
LDAM-DRW + LTAP 30.8 57.8 41.9 23.3 45.4 91.1 2.9 59.9 60.2 60.4 60.2 91.7 2.9
DBLP Zhou et al. (2024) 100.0 61.7 47.1 30.3 50.4 100.0 1.0 65.0 66.9 65.6 66.1 100.0 1.0
DBLP + ATOWu et al. (2024) 65.3 37.9 35.0 17.5 33.7 66.8 1.1 41.0 30.6 30.4 31.5 47.6 0.7
DBLP + RRegStewart et al. (2023) 52.1 40.0 35.7 18.8 35.0 69.4 1.3 48.8 32.5 32.3 34.0 51.4 0.9
DBLP + LTAP 30.0 58.5 45.2 23.0 47.3 93.8 3.1 58.7 59.3 59.8 59.4 90.1 3.0

4.1 EXPERIMENTAL SETUP

Datasets. CIFAR-100-LT is a long-tailed version of CIFAR-100, containing 100 classes with two imbalance
ratios (IR = 50, 100). ImageNet-LT is a long-tailed version of ImageNet, with 1,000 classes and natural
long-tailed distribution. iNaturalist 2018 is a large-scale real-world dataset with 8,142 species categories
and inherent long-tailed distribution.

Implementation Details. We use the knowledge generated from the long-tailed recognition task to guide the
pruning of the backbone network. Specifically, for each parameter in the model, we calculate scores using
‘magnitude’, ‘avg magnitude’, ‘cosine similarity’, ‘taylor first order’, and ‘taylor second order’ during the
gradient descent process. These scores are then weighted based on the cumulative change in accuracy for
each class on the validation set. The weighted sum of the scores is used to determine whether to prune a
parameter. We start the continuous pruning process after the 100th epoch, and the final model retains 30%
of the original parameters. For the final evaluation phase, we use the same settings as DODA Wang et al.
(2024) for all baseline methods and our method. For the CIFAR-100-LT dataset, we follow the general
experimental settings of Cao et al. (2019) and use ResNet-32 (proposed by He et al. (2016)) as the backbone
network. The network is trained for 200 epochs using the GD optimizer with an initial learning rate of 10-̂4,

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

momentum of 0.9, and weight decay of 2×10-̂4. For ImageNet-LT and iNaturalist 2018 datasets, we use
ResNet-50 as the backbone network, train the network for 100 epochs with an initial learning rate of 0.1,
and reduce the learning rate by 0.1 at the 60th and 80th epochs. For all experiments, we set the value of the
hyperparameter pau to 0.5.

Baselines. For fair comparison, all methods are evaluated under the same experimental conditions. We use
three strong long-tailed baselines, e.g., Balanced Softmax (BS) Ren et al. (2020), LDAM-DRW Cao et al.
(2019), DBLP Zhou et al. (2024) and two SOTA pruning method, ATOWu et al. (2024), RRegStewart et al.
(2023). Our proposed method is denoted as ‘BS + LTAP’, ‘LDAM-DRW + LTAP’, and ‘DBLP + LTAP’.
We report the classification accuracy of the head, medium, and tail classes, as well as the overall accuracy
across all classes. Additionally, we compute the ratio of accuracy to FLOPs (CF) as a key metric to evaluate
both performance and computational efficiency.

4.2 BENCHMARK RESULTS

CIFAR-100-LT. Table 1 presents the classification results for different methods on the CIFAR-100-LT
dataset under two imbalance ratios (IR = 50 and 100). LTAP consistently achieves higher C

F compared
to other pruning methods in both imbalance ratio settings, demonstrating superior efficiency in terms of both
accuracy and computational cost. For instance, in the [IR = 50] setting, LTAP achieves a tail accuracy of
34.1% compared to 23.8% by RReg, while reducing FLOPs by 77.4% compared to the baseline BS. The C

F
ratio of 4.1 for LTAP is nearly double that of RReg (i.e., 2.2). Similar trends are observed for LDAM-DRW
and DBLP, where LTAP consistently improves tail class accuracy and achieves the highest C

F ratios.

ImageNet-LT and iNaturalist 2018. Table 2 shows the results on ImageNet-LT and iNaturalist 2018
datasets. These larger and more complex datasets further validate the effectiveness of LTAP. On ImageNet-
LT, ‘BS + LTAP’ achieves a tail accuracy of 30.1%, significantly outperforming ‘BS + RReg’ (i.e., 18.2%),
while reducing FLOPs by 69.4%. The C

F ratio of 2.6 for ‘BS + LTAP’ is double that of ‘BS + RReg’.
For iNaturalist 2018, LTAP shows consistent performance across all classes (i.e., head, medium, and tail
classes), indicating its robustness in handling extreme class imbalance. Notably, LTAP maintains high ac-
curacy across all class types while significantly reducing FLOPs. For example, on ImageNet-LT, ‘DBLP +
ours’ reduces FLOPs by 70% while achieving 93.8% of the baseline accuracy, resulting in a C

F ratio of 3.1.

Efficiency Evaluation. Across all datasets, our method achieves a significant reduction in FLOPs while
maintaining competitive or superior accuracy. For ImageNet-LT and iNaturalist 2018, our method consis-
tently reduces FLOPs by about 70% compared to the baselines, while achieving the highest C

F ratios. This
reduction in computational cost, coupled with maintained or improved accuracy, demonstrates the practical
utility of our method for resource-constrained environments where high accuracy is required.

4.3 FURTHER ANALYSIS

In this section, we conduct a detailed analysis of the mechanism of LTAP and discuss the following issues.
More empirical results are reported in Appendix C.

Discussion 1: How are neurons masked under different pruning strategies?

Figure 2 illustrates how neurons are masked under different pruning strategies. First, the visualization of
w.o. vote shows that after removing the long-tailed feedback mechanism, the flexibility of the pruning
process decreases significantly, with pruning limited to specific rows of neurons. This rigid pruning strategy
restricts the model’s adaptability to varying data distributions, especially in handling long-tailed data, where
it struggles to preserve neurons critical for tail classes. In contrast, our proposed LTAP method, as shown in
the γ = 0.7 visualization, exhibits much greater flexibility.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.07-0.400.04-0.08-0.05-0.300.05 0.00-0.10-0.00

-0.28-0.210.04-0.100.17-0.120.10 0.05-0.09-0.19

0.28-0.120.20-0.16-0.20-0.14-0.160.34 0.10-0.05

-0.02-0.200.05-0.070.47 0.02-0.09-0.030.25-0.16

-0.13-0.21-0.090.13-0.080.25 0.09-0.15-0.14-0.30

-0.37-0.210.07-0.300.49 0.10 0.10 0.26-0.080.27

-0.05-0.19-0.120.18 0.00-0.030.02 0.02-0.06-0.24

0.26-0.090.09-0.24-0.19-0.15-0.12-0.350.22-0.27

-0.19-0.460.28 0.10 0.09 0.19 0.17-0.26-0.05-0.18

-0.020.08-0.12-0.190.01-0.15-0.18-0.09-0.16-0.15

bs

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.620.42-0.121.48 0.10-0.50-0.13-0.59-0.180.30

ours w.o. vote

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.080.17 -0.15 -0.46-0.09-0.09-0.280.18

-0.190.00 -0.00 -0.16-0.19-0.05-0.13-0.11

-0.190.01 0.09 0.05-0.230.35-0.140.05

-0.060.01 0.14 0.09-0.110.06-0.23-0.11

-0.250.05 -0.09 -0.06-0.000.24-0.360.08

-0.130.15 -0.03 -0.05-0.080.00 0.13-0.03

0.20-0.07 -0.13 -0.02-0.01-0.03-0.120.14

-0.08-0.15 0.02 0.21-0.00-0.040.33-0.33

0.15-0.27 0.19 0.11-0.070.06-0.05-0.07

ours = 0.3

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.04-0.010.27 0.21 0.13 0.15 0.14

0.03-0.010.27 -0.33 0.12 0.05-0.22

-0.10-0.11-0.05 0.01 -0.090.27-0.00

ours = 0.7

0.4

0.2

0.0

0.2

0.4

0.5

0.0

0.5

1.0

0.4

0.2

0.0

0.2

0.2

0.0

0.2

Figure 2: Visualization of neuron masking. Each small cell represents the sum of the parameters of a 3×3
convolutional kernel, and each subfigure represents a cross-section of a layer of neurons. Each layer should
contain 1×64×64×3×3 convolutional kernels, and we visualize the top-left 1×10×10×3×3 part of each
layer. The values and colors represent the sum of the parameters in the 3×3 convolutional kernels, and the
blank areas indicate neurons that have been masked. The variable y represents the masking ratio, and w.o.
vote denotes the removal of the long-tailed feedback mechanism LT-Vote.

Pruning is no longer confined to specific rows of neurons but instead dynamically adjusts based on the param-
eter values of neurons across different layers and positions. This adaptive pruning strategy allows the model
to better retain neurons that are critical for tail classes, improving classification accuracy on long-tail data.
Additionally, as the γ value increases, we observe that the pruning intensity increases, with more neurons
being masked. However, the distribution of pruning remains dynamic and flexible. This further demon-
strates that the LTAP method can maintain both efficiency and effectiveness under varying levels of pruning
intensity. In summary, the LTAP method achieves more precise neuron importance estimation through the
long-tailed feedback mechanism, balancing computational efficiency and classification performance during
the pruning process.

Discussion 2: Dynamic changes in the performance of different pruning methods during training.

From Figure 3, it is evident that different pruning strategies exhibit significant performance differences on
long-tailed data. We analyze from the perspective of different classes.

Accuracy on Many Classes. Even with a pruning ratio of γ = 0.9, LTAP maintains a high accuracy. Mean-
while, the ATO shows slightly better performance in this region, which indicates that traditional pruning
exacerbates the imbalance in long-tailed distributions.

Accuracy on Medium Classes. LTAP continues to maintain high accuracy at pruning ratios of γ = 0.5
and γ = 0.9, following a similar trend as the head classes. In contrast, the accuracy of the ATO baseline
significantly decreases, and it is even surpassed by LTAP at γ = 0.9. This suggests that traditional pruning
methods fail in long-tailed learning scenarios due to their excessive focus on head classes.

Accuracy on Tail Classes. Tail classes pose the biggest challenge in long-tailed learning. Traditional prun-
ing methods (e.g., ATO) perform disastrously on the tail classes, suffering a catastrophic drop in accuracy,
which reflects their extreme inability to adapt to long-tailed classes. In comparison, our pruning method,
even at a high pruning ratio (γ = 0.9), maintains strong performance, demonstrating its robust adaptability
to tail classes.

FLOPs and Parameter Comparison. The last subplot shows the comparison of FLOPs and parameter
counts under different pruning strategies. Our method allows for varying degrees of pruning, and even at a

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

0 50 100 150 200
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Many Accuracies

0 50 100 150 200
Epoch

0

10

20

30

40

50

Ac
cu

ra
cy

Medium Accuracies

0 50 100 150 200
Epoch

0

5

10

15

20

25

Ac
cu

ra
cy

Few Accuracies

0 2 4

2G(0.2M)

4G(0.4M)

6G(0.6M)

8G(0.8M)

FL
OP

S(
pa

ra
m

s)

8.0

4.7

0.7

8.8

2.3

4.0

1.7

0.3

4.7

1.0

FLOPS and params

ours . = 0.1 ours . = 0.5 ours . = 0.9 base ATO

Figure 3: Training dynamics comparison under different pruning strategies. The first three subplots show
the accuracy changes over training epochs for the head, medium, and tail classes, respectively. Different
colored curves represent various pruning intensities, with the purple curve (ATO) representing the baseline
for non-long-tailed pruning methods. The last subplot shows the comparison of FLOPs and parameter counts
across different pruning strategies (γ = 0.1, 0.5, and0.9) as well as the baseline (BS) and ATO methods.

pruning ratio of γ = 0.9, it maintains high average performance and strong performance on tail classes. At
this point, compared to the baseline, it demonstrates significant advantages in both computational efficiency
and performance.

The comparisons above demonstrate that our method not only reduces parameter and computational costs
while maintaining high performance, but also adapts effectively to different frequency classes. Notably, it
shows a significant advantage over traditional methods, particularly in handling tail classes.

5 CONCLUSION

We have presented LTAP, a dynamic pruning strategy designed to enhance model efficiency and perfor-
mance on long-tailed datasets. By dynamically adjusting pruning criteria based on class-specific perfor-
mance, LTAP addresses the inherent pruning bias in conventional methods, particularly for tail classes.
Our theoretical analysis establishes that tail classes benefit more from model overparameterization, which
informs our tail-biased pruning approach. Extensive experiments on benchmark long-tailed datasets, in-
cluding CIFAR-100-LT, ImageNet-LT, and iNaturalist 2018, demonstrate that LTAP consistently improves
classification accuracy, particularly for tail classes, while significantly reducing the model’s computational
overhead. By offering a balanced trade-off between model compression and accuracy, LTAP provides a
robust solution to the challenges of long-tailed learning and opens new possibilities for optimizing neural
networks in imbalanced and resource-constrained environments.

REFERENCES

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural
network pruning? arXiv preprint arXiv:2003.03033, 2020.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with
label-distribution-aware margin loss. In Advances in neural information processing systems, volume 32,
2019.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effec-
tive number of samples. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9268–9277, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural net-
works. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. arXiv preprint arXiv:1912.05671, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

Chengjin He, Shengping Wang, Dongmin Zhang, and Ming Zeng. Rethinking class-balanced methods for
long-tailed visual recognition from a domain adaptation perspective. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7610–7619, 2021a.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world
congress on computational intelligence), pp. 1322–1328. IEEE, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Yin-Yin He, Jianxin Wei, Xuming Zhu, Xiaopeng Wang, Zhenguo Feng, and Jianqiang Dong. Distilling
virtual examples for long-tailed recognition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 13173–13182, 2021b.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis Kalan-
tidis. Decoupling representation and classifier for long-tailed recognition. In International Conference on
Learning Representations, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. In arXiv preprint arXiv:1608.08710, 2016.

Yifan Li, Tong Wang, Bingyi Kang, Sheng Tang, Chunfeng Wang, Jintao Li, and Jiashi Feng. Long-tailed
classification by keeping the good and removing the bad momentum causal effect. In Advances in Neural
Information Processing Systems, volume 33, pp. 1513–1524, 2020.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Dynamic neural networks: A survey. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

Jialin Liu, Fuxun Ye, Xinjian Zhang, Hui Xu, and Yu Cheng. Dynamic sparse training: Find efficient
sparse network from scratch with trainable masked layers. In International Conference on Learning
Representations, 2021a.

Yufei Liu, Yao Zhang, Hao Wang, Juanzi Fan, and Zhiqiang Zhang. Learning to learn the future: Modeling
concept drift in continual learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8415–8423, 2021b.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270, 2018.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-scale long-
tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2537–2546, 2019.

Mehryar Mohri. Foundations of machine learning, 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural
networks for resource efficient inference. In International Conference on Learning Representations, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11264–11272, 2019.

Wanli Ouyang, Xiaogang Wang, Cong Zhang, and Xiaokang Yang. Factors in finetuning deep model for
object detection with long-tail distribution. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 864–873, 2016.

Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-tailed visual
recognition. Advances in neural information processing systems, 33:4175–4186, 2020.

James Stewart, Umberto Michieli, and Mete Ozay. Data-free model pruning at initialization via expanders.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2023.

Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie Yan. Equal-
ization loss for long-tailed object recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11662–11671, 2020.

Binwu Wang, Pengkun Wang, Wei Xu, Xu Wang, Yudong Zhang, Kun Wang, and Yang Wang. Kill two birds
with one stone: Rethinking data augmentation for deep long-tailed learning. In The Twelfth International
Conference on Learning Representations, 2024.

Xudong Wang, Ziwei Long, Ling Wang, and Liang Wang. Long-tailed recognition by routing diverse
distribution-aware experts. In International Conference on Learning Representations, 2020.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In Advances in Neural
Information Processing Systems, pp. 7029–7039, 2017.

Xidong Wu, Shangqian Gao, Zeyu Zhang, Zhenzhen Li, Runxue Bao, Yanfu Zhang, Xiaoqian Wang, and
Heng Huang. Auto-train-once: Controller network guided automatic network pruning from scratch. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Li Xiang, Guoqing Ding, and Jungong Han. Learning from multiple experts: Self-paced knowledge distil-
lation for long-tailed classification. In European Conference on Computer Vision, pp. 247–263. Springer,
2020.

Yuzhe Yang and Zhi Xu. Rethinking the value of labels for improving class-imbalanced learning. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 19290–19301, 2020.

Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Manmohan Chandraker. Feature transfer learning for
face recognition with under-represented data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5704–5713, 2019.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. Distribution alignment: A unified
framework for long-tail visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2361–2370, 2021a.

Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed learning: A
survey. In arXiv preprint arXiv:2110.04596, 2021b.

Zhipeng Zhou, Liu Liu, Peilin Zhao, and Wei Gong. Pareto deep long-tailed recognition: A conflict-averse
solution. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
b66P1u0k15.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. In International Conference on Learning Representations, 2017.

13

https://openreview.net/forum?id=b66P1u0k15
https://openreview.net/forum?id=b66P1u0k15

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Appendix
Balancing Model Efficiency and Performance:

Adaptive Pruner for Long-tailed Data
The content of the Appendix is summarized as follows:

1) in Sec. A, we provide detailed proofs and theoretical foundations for the results in the main paper.

2) in Sec. B, we briefly present the state of the art in the field of long-tailed learning and neural network
pruning.

3) in Sec. C, we illustrate more detailed empirical results and analyses of LTAP.

4) in Sec. D, we present a theoretical analysis of our proposed dynamic feedback pruning algorithm.

5) in Sec. E, we presents the detailed process of LTAP.

A SUPPLEMENTARY THEORY

In this supplementary section, we provide detailed proofs and theoretical foundations for the main results
presented in the paper. We start by introducing the sample complexity lemma and related definitions, which
form the basis for understanding the learning difficulty of different classes in long-tailed distributions. Then,
we prove the main theorems and propositions presented in the paper, including the differentiated overparam-
eterization demand theorem, the parameter allocation strategy theorem, and the tail-biased pruning proposi-
tion. Finally, we provide the proof for the performance guarantee theorem, which ensures the effectiveness
of the tail-biased pruning strategy in practical applications.

A.1 APPENDIX: SAMPLE COMPLEXITY AND DIFFERENTIATED OVERPARAMETERIZATION DEMAND

Lemma 1 (Sample Complexity Lemma). For class c in a binary classification problem, given hypothesis
space Hc, target generalization error ϵ > 0, and confidence level 1 − δ (0 < δ < 1), the minimum
required sample size Nc satisfies Nc ≥ 1

2ϵ2 (4dV C, c log 12
ϵ + log 2

δ), where dV C,c is the VC dimension of
the hypothesis spaceHc associated with class c.

Remark 1. (i) This bound shows that the required sample size is approximately linearly related to the VC
dimension dV C,c and inversely proportional to the square of the target generalization error ϵ. (ii) In practical

applications, we usually focus on asymptotic behavior, which can be simplified to Nc ≥ Ω
(

dV C,c

ϵ2

)
. (iii)

Although this lemma is for binary classification, it can be extended to multiclass problems through the one-
vs-all strategy.

Definition 1 (Class-specific VC Dimension). For class c in a long-tailed dataset, the class-specific VC
dimension dV C,c is defined as the VC dimension of the hypothesis space that can effectively separate that
class from all other classes.

Corollary 1 (Class Learning Difficulty). In a long-tailed dataset, the learning difficulty Dc for class c can
be approximated as Dc ≈ dV C,c

Nc
, where Nc is the number of samples in class c.

This corollary shows that for head classes, where Nc is large, the learning difficulty Dc is small. For tail
classes, where Nc is small, even if dV C, c remains the same or slightly smaller, the learning difficulty Dc

increases significantly. This difference in learning difficulty directly affects the model’s complexity (i.e.,
the number of parameters) required for different classes, as stated in the differentiated overparameterization
demand theorem (Theorem 1).

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

Corollary 2 (Imbalance in Overparameterization Demand). In a long-tailed dataset, the demand for over-
parameterization is inversely proportional to the number of samples in each class. Specifically, for any two
classes i and j, if Ni > Nj , then γi

γj
≤ O

(
Nj logNi

Ni logNj

)
.

This corollary further supports the differentiated overparameterization demand theorem (Theorem 1), re-
vealing that in a long-tailed dataset, as the number of samples in a class decreases, the demand for overpa-
rameterization increases significantly, emphasizing the importance of providing more parameter protection
for tail classes.

A.2 PROOF FOR THEOREM

Theorem 5 (Performance Guarantee for Tail-Biased Pruning). Assume that the initial model achieves a
training error of ϵ for each class. After applying the tail-biased pruning strategy, the expected generalization
error E[ϵ̂c] for class c satisfies

E[ϵ̂c] ≤ ϵ+O

√ log(Nc/δ)

Nc

 , (10)

where δ is a small constant (e.g., 0.05) representing the confidence level.

Proof. Let fθ denote the initial model, and fθ⊙m denote the pruned model, where m ∈ 0, 1|θ| is the binary
mask vector obtained according to Proposition 1. Let Dc represent the data distribution for class c, and D̂c

represent the empirical distribution for class c. The expected generalization error for class c can be expressed
as:

E[ϵ̂c] = E(x, y) ∼ Dc[1(fθ ⊙m(x) ̸= y)]. (11)

According to Theorem 1, for tail classes, the degree of over-parameterization γc satisfies:

γc ≥ Ω

(
N1

Nc
· 1

logNc

)
. (12)

Furthermore, according to Proposition 1, the tail-biased pruning strategy ensures that critical parameters for
tail classes are preferentially retained. Therefore, for tail classes, the number of effective parameters Pc,eff

in the pruned model fθ⊙m satisfies:
Pc,eff ≥ Ω(Pmin,c), (13)

where Pmin,c is the minimum number of effective parameters for class c (Definition 1).

Combining equations equation 12 and equation 13, for tail classes, the effective degree of over-
parameterization γ̂c in the pruned model fθ ⊙m satisfies:

γ̂c =
Pc, eff

Pmin,c
≥ Ω

(
N1

Nc
· 1

logNc

)
. (14)

According to standard generalization error bounds (e.g., see Mohri (2018)), for class c, the generalization
error ϵ̂c of the pruned model fθ ⊙m satisfies the following probability inequality:

P

ϵ̂c ≤ ϵc +O

√ γ̂c log(1/δ)

Nc

 ≥ 1− δ, (15)

where ϵc is the training error for class c.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

Substituting equation equation 14 into equation equation 15, and using ϵc ≤ ϵ (according to the theorem
assumption), for tail classes, we have:

P

ϵ̂c ≤ ϵ+O

√ log(Nc/δ)

Nc

 ≥ 1− δ. (16)

Finally, taking the expectation of equation equation 16, we obtain:

E[ϵ̂c] ≤ ϵ+O

√ log(Nc/δ)

Nc

 . (17)

This proves that for tail classes, the expected generalization error of the model fθ⊙m obtained by the tail-
biased pruning strategy satisfies the bound in Theorem 5. For head classes, due to sufficient samples, the
impact of pruning on generalization performance is minimal, and it is easy to verify that the theorem’s bound
also holds. Therefore, Theorem 5 is proved.

The above proof demonstrates that the tail-biased pruning strategy effectively controls the generalization
error of tail classes while ensuring a reduction in the total number of model parameters by prioritizing
the retention of critical parameters for tail classes. The proof utilizes a series of previous theoretical results,
including the Differential Over-parameterization Demand Theorem (Theorem 1) and the Tail-Biased Pruning
Proposition (Proposition 1), and applies standard generalization error bounds on this basis to ultimately
obtain the bound on expected generalization error. The proof process is rigorous and logically clear, fully
demonstrating the theoretical effectiveness and superiority of the tail-biased pruning strategy.
Theorem 6 (Performance Gain from Parameter Allocation). Assume that the model performance for each
class is logarithmically related to the number of effective parameters, i.e., for class c, its performance perfc
satisfies perfc ∝ logPc, where Pc is the number of effective parameters for class c. Under the parame-
ter allocation strategy described in Theorem 2, compared to uniform allocation, the performance gain ∆
satisfies

∆ ≥ Ω

(
1

C

∑
c = 1C log

(
N1

Nc

))
, (18)

where C is the total number of classes.

Proof. Let Punif
c denote the number of effective parameters for class c under uniform parameter allocation,

and P alloc
c denote the number of effective parameters for class c under the allocation strategy described in

Theorem 2. According to the theorem assumption, the performance gain ∆c for class c can be expressed as:

∆c = perfallocc − perfunifc ∝ log

(
P alloc
c

Punif
c

)
. (19)

According to Theorem 2, the parameter allocation strategy satisfies:

P alloc
c ∝ Nc · log

(
N1

Nc

)
. (20)

Under uniform allocation, the number of effective parameters for each class is independent of the sample
size, so we have:

Punif
c ∝ 1. (21)

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

Substituting equations equation 20 and equation 21 into equation equation 19, we get:

∆c ∝ log

(
Nc

N1
· log

(
N1

Nc

))
= log

(
N1

Nc

)
− log log

(
N1

Nc

)
. (22)

Since log log
(

N1

Nc

)
is a higher-order infinitesimal, we have:

∆c ≥ Ω

(
log

(
N1

Nc

))
. (23)

Taking the average of equation equation 23 over all classes, we obtain the total performance gain:

∆ =
1

C

C∑
c=1

∆c ≥ Ω

(
1

C

C∑
c=1

log

(
N1

Nc

))
. (24)

This proves the performance gain bound in Theorem 6.

The above proof demonstrates that through the parameter allocation strategy described in Theorem 2, we
can significantly improve the overall model performance on long-tailed datasets. Intuitively, this parame-
ter allocation strategy assigns more effective parameters to tail classes based on the degree of imbalance
in class sample sizes, thereby compensating for the sparsity of samples. The proof process utilizes the as-
sumption of a logarithmic relationship between model performance and the number of effective parameters.
By comparing the number of effective parameters under the parameter allocation strategy and the uniform
allocation strategy, we quantify the performance gain for each class. Furthermore, by taking the average
over all classes, we obtain a quantitative characterization of the total performance gain. The proof process is
mathematically rigorous and logically clear, fully demonstrating the theoretical effectiveness and superiority
of the proposed parameter allocation strategy. Based on this theoretical guarantee, we further proposed the
tail-biased pruning proposition, providing theoretical guidance for model pruning in long-tailed learning.

B RELATED WORK

Long-tailed Learning. Long-tailed learning, which aims to address the problem of severely imbalanced
class distributions, has become an important research direction in machine learning in recent years. Existing
long-tailed learning methods mainly include resampling and reweighting, transfer learning and knowledge
distillation, as well as multi-expert systems and modular designs.

Resampling methods Chawla et al. (2002); He et al. (2008) and reweighting techniques Cui et al. (2019);
Cao et al. (2019) balance data distribution and learning processes by adjusting sample sampling probabilities
or loss weights. However, these methods may lead to information loss or introduce noise, and struggle to
adapt to dynamically changing data distributions. Transfer learning Yin et al. (2019); Liu et al. (2019) and
knowledge distillation Xiang et al. (2020); He et al. (2021b) techniques attempt to transfer knowledge from
head classes to tail classes, or extract knowledge from large pre-trained models. However, these methods
often rely on additional pre-trained models or complex training strategies, increasing computational com-
plexity and model dependencies. Multi-expert systems Wang et al. (2017); Xiang et al. (2020) and modular
designs Zhang et al. (2021b); Liu et al. (2021b) design specialized sub-models or modules for different data
subsets. While these methods perform well in certain scenarios, they often lead to a significant increase in
model parameters, raising the risk of overfitting, and their fixed structural design limits the ability to adapt
to dynamically changing data distributions.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

Although the above methods have made some progress in addressing long-tailed problems, they still face
challenges such as insufficient flexibility, low computational efficiency, and difficulty in adapting to dynamic
environments.

Neural Network Pruning. Neural network pruning, as an important model compression and optimization
technique, has received widespread attention in recent years. Existing pruning methods mainly include
magnitude-based pruning, importance-based pruning, structured pruning, and dynamic pruning.

Magnitude-based pruning methods Han et al. (2015); Li et al. (2016) compress networks by removing con-
nections or neurons with small weight magnitudes. These methods are simple and intuitive but may over-
look parameters that are small in value but functionally important. Importance-based pruning methods
Molchanov et al. (2016; 2019) evaluate the importance of parameters by calculating their impact on model
output, but typically rely on a single scoring criterion, making it difficult to comprehensively capture pa-
rameter importance in complex tasks. Structured pruning methods Li et al. (2016); Liu et al. (2017) aim to
remove entire convolution kernels or neurons to achieve higher hardware acceleration effects. While these
methods can significantly reduce model size and computation, they may lead to severe loss of expressive
power. Recent dynamic pruning strategies Lin et al. (2020); Liu et al. (2021a) allow dynamic adjustment of
network structure during inference, providing greater flexibility, but mainly focusing on improving compu-
tational efficiency.

Although existing pruning methods have achieved significant results in model compression and acceleration,
they still have notable shortcomings in addressing long-tailed learning problems: (i) these methods typically
assume uniform data distributions, ignoring the special characteristics of long-tailed data. (ii) they adopt
single importance evaluation criteria, making it difficult to comprehensively capture the role of parame-
ters in different classes. (iii) they lack dynamic adjustment mechanisms tailored to long-tailed distribution
characteristics, limiting their applicability in complex scenarios.

Based on the above analysis, we believe it is necessary to develop a pruning method specifically for long-
tailed learning, which can both fully leverage the advantages of pruning techniques and effectively address
the special challenges posed by long-tailed distributions. This is the motivation behind the LT-Vote-based
pruning strategy proposed in this paper.

C SUPPLEMENTARY EXPERIMENTS

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.08-0.320.25-0.25-1.870.77 0.26 0.16 0.27-0.01

-0.48-0.46-0.66-0.06-0.800.85-0.13-0.13-0.38-0.36

-0.330.54 0.25-0.090.21 0.27-0.292.84-0.230.29

-0.840.07-0.04-0.570.10-0.170.33-0.060.71-0.04

0.05 0.31 0.27-1.410.35 0.69-0.49-0.490.70 0.26

-2.24-0.350.27-1.040.92-0.08-0.500.15-0.48-0.41

-0.03-1.01-0.17-0.52-0.060.20 0.28-0.610.29 0.07

-0.62-0.55-0.37-0.640.20 1.91-0.810.33-0.63-0.15

0.62-0.211.41 0.02 0.20-0.771.23-0.29-0.05-0.06

-1.47-0.28-2.03-0.80-0.220.12-0.130.08-0.18-0.82

bs

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

0.70 0.77 0.96-0.29-0.220.51 0.05 0.31 0.23 1.18

-0.201.49 0.14 0.35 0.24-0.831.81 0.54 0.42 0.61

-0.11-0.31-0.190.68-0.700.37-0.040.47-1.182.21

-0.62-2.000.45-0.57-1.150.30-0.340.79-0.00-0.71

-0.670.17-1.47-0.71-0.210.16-0.03-0.32-0.52-1.76

-0.97-0.28-0.66-0.150.62 0.32 0.11-1.270.37-0.60

-0.28-0.59-0.290.19-0.630.02-0.27-0.88-0.30-0.27

-0.520.28 0.83 0.44-0.49-0.70-0.380.10-0.180.95

-0.100.42-0.41-0.280.30 0.57 0.84 0.23-0.51-1.19

-0.370.04 0.48 0.44-1.17-0.140.15-0.14-0.25-0.57

ours w.o. vote

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.57-0.73-1.72-0.05-1.70-2.48-0.111.63 -1.06

-1.25-2.01-1.40-0.21-2.710.34-0.460.10 0.71

-1.070.85 0.56-0.100.49-0.81-0.06-0.78 0.36

-0.080.52 0.92 0.07-0.640.39-0.280.08 -0.63

-0.260.08 0.61 0.14-0.180.51-0.34-0.72 -0.36

-0.170.97 0.41 0.01-0.00-0.34-0.46-0.27 0.25

-0.48-0.26-0.42-0.05-0.060.13-1.05-0.07 -0.43

-0.21-0.080.14-0.150.39-0.19-0.17-0.72 0.43

-1.28-0.390.11-0.15-0.350.63-0.10-0.07 0.74

ours = 0.3

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

0.66-2.05 0.64-0.46-0.191.16 0.08

0.00 0.00 0.00 0.00 0.00 0.00 0.00

-2.571.35 0.64-0.060.76 2.21 0.06

0.15 0.80 -0.02-0.290.08-0.18-0.03

0.13 0.07 0.85 0.21 0.04-0.73-0.04

-0.09-0.69 0.58-0.311.43-0.340.05

-1.810.43 0.76-0.300.28 0.67-0.01

ours = 0.7

2

0

2

1

0

1

2

2

1

0

1

2

1

0

1

2

Figure 4: Pruning visualization of layers near the front of the neural network, with other settings the same
as in Fig. 2.

From these three figures, we can observe that, in addition to the patterns exhibited within the same layer,
across multiple layers, our method demonstrates significantly greater flexibility compared to traditional prun-

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.07-0.400.04-0.08-0.05-0.300.05 0.00-0.10-0.00

-0.28-0.210.04-0.100.17-0.120.10 0.05-0.09-0.19

0.28-0.120.20-0.16-0.20-0.14-0.160.34 0.10-0.05

-0.02-0.200.05-0.070.47 0.02-0.09-0.030.25-0.16

-0.13-0.21-0.090.13-0.080.25 0.09-0.15-0.14-0.30

-0.37-0.210.07-0.300.49 0.10 0.10 0.26-0.080.27

-0.05-0.19-0.120.18 0.00-0.030.02 0.02-0.06-0.24

0.26-0.090.09-0.24-0.19-0.15-0.12-0.350.22-0.27

-0.19-0.460.28 0.10 0.09 0.19 0.17-0.26-0.05-0.18

-0.020.08-0.12-0.190.01-0.15-0.18-0.09-0.16-0.15

bs

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.620.42-0.121.48 0.10-0.50-0.13-0.59-0.180.30

ours w.o. vote

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.080.17 -0.15 -0.46-0.09-0.09-0.280.18

-0.190.00 -0.00 -0.16-0.19-0.05-0.13-0.11

-0.190.01 0.09 0.05-0.230.35-0.140.05

-0.060.01 0.14 0.09-0.110.06-0.23-0.11

-0.250.05 -0.09 -0.06-0.000.24-0.360.08

-0.130.15 -0.03 -0.05-0.080.00 0.13-0.03

0.20-0.07 -0.13 -0.02-0.01-0.03-0.120.14

-0.08-0.15 0.02 0.21-0.00-0.040.33-0.33

0.15-0.27 0.19 0.11-0.070.06-0.05-0.07

ours = 0.3

0 1 2 3 4 5 6 7 8 9
Params index

0
1

2
3

4
5

6
7

8
9

Pa
ra

m
s i

nd
ex

-0.04-0.010.27 0.21 0.13 0.15 0.14

0.03-0.010.27 -0.33 0.12 0.05-0.22

-0.10-0.11-0.05 0.01 -0.090.27-0.00

ours = 0.7

0.4

0.2

0.0

0.2

0.4

0.5

0.0

0.5

1.0

0.4

0.2

0.0

0.2

0.2

0.0

0.2

Figure 5: Pruning visualization of layers near the middle of the neural network, with other settings the same
as in Fig. 2.

0 3 6 9 12 15 18 21 24 27
Params index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
Pa

ra
m

s i
nd

ex

bs

0 3 6 9 12 15 18 21 24 27
Params index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
Pa

ra
m

s i
nd

ex

ours w.o. vote

0 3 6 9 12 15 18 21 24 27
Params index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
Pa

ra
m

s i
nd

ex

ours = 0.3

0 3 6 9 12 15 18 21 24 27
Params index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
Pa

ra
m

s i
nd

ex

ours = 0.7

1

0

1

0.5

0.0

1

0

1

0.6

0.4

0.2

0.0

Figure 6: Pruning visualization of layers near the end of the neural network, with other settings the same as
in Fig. 6.

ing methods. In contrast, traditional methods show low pruning efficiency in the layers near the front, with
almost no pruning, but neurons are pruned in large quantities after the middle layers, leaving fewer neu-
rons than with γ = 0.9. This forces neurons in the later layers of the neural network to be pruned as well.
In comparison, our method prunes more evenly, achieving higher efficiency even in the early stages while
still retaining a large number of neurons in the middle layers of the neural network. This indicates that our
pruning method adopts a more precise and flexible pruning strategy, pruning neurons in a refined manner to
maintain performance across different classes.

D SYMBOL DEFINITIONS AND ASSUMPTIONS

Categories and Sample Numbers The dataset contains C categories, where the sample count Nk for cate-
gory k follows a Pareto distribution with parameter β:

Nk = N · k−β , k = 1, 2, . . . , C,

where N is a scale parameter ensuring the total sample count meets the dataset size requirement.

Model and Parameter Groups

• Deep neural network model is denoted as fθ : X → RC , defined by parameters θ.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

• θg represents the g-th parameter group of the model, G is the set of all parameter groups.

Classification Accuracy For category k, its classification accuracy is defined as:

Ak(θ) =
1

Nk

∑
i:yi=k

1 (fθ(xi)k > fθ(xi)j , ∀j ̸= k) ,

where 1(·) is the indicator function.

Pruning Algorithm and Dynamic Feedback Mechanism

• Standard pruning algorithm P with hyperparameter θ produces pruned parameters:

θ(θ) = P(θ;θ).

• Dynamic feedback pruning algorithm PLTAP adjusts importance criteria weights α(t) ∈ RK based
on classification accuracy changes:

δAk = Ak(θ
(t))−Ak(θ

(t−1))

and computes comprehensive importance score Sg for parameter groups:

Sg =

K∑
k=1

α
(t)
k · sg,k.

Dynamic weight adjustment rule:

α
(t+1)
k =

{
0, if k = kmasked,

α
(t)
k +

α
(t)
kmasked
K−1 , otherwise,

where kmasked represents the masked category in round t, and K is the number of importance criteria.

Parameter Group Set The set of parameter groups strongly correlated with tail classes is defined as:
Gtail = {g ∈ G | g is strongly correlated with tail classes}.

Theorem A (Tail Class Protection Effect of Dynamic Feedback Pruning)

For a long-tailed distribution dataset D = {(xi, yi)}Ni=1 with C categories, where sample count Nk for
category k follows a Pareto distribution with parameter β. Let fθ be a deep neural network model defined
by parameters θ, θg be a parameter group, and G be the set of all parameter groups.

Given dynamic feedback pruning algorithm PLTAP that adaptively adjusts importance criteria weights α(t)

based on classification accuracy changes δAk and computes comprehensive importance score Sg . After T
rounds of pruning, the probability of tail-class-related parameter groups θg, g ∈ Gtail being retained by
PLTAP is significantly higher than by standard pruning algorithm P:

∀g ∈ Gtail, P
(
θ(T)
g ̸= 0 | θ(T) = PLTAP(θ

(0);θ)
)
≫ P

(
θ(T)
g ̸= 0 | θ(T) = P(θ(0);θ)

)
.

LEMMA A (IMPACT OF CATEGORY ACCURACY CHANGES ON IMPORTANCE SCORE)

Statement: In dynamic feedback pruning algorithm PLTAP, for any parameter group g associated with
category k, the change in importance score δSg = S

(t+1)
g − S

(t)
g satisfies:

δSg ∝
1

Nk
· δAk,

where δAk = Ak(θ
(t))−Ak(θ

(t−1)).

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

LEMMA B (IMPACT OF DYNAMIC FEEDBACK PRUNING ALGORITHM ON RETENTION PROBABILITY OF
TAIL CLASS PARAMETER GROUPS)

Statement: In dynamic feedback pruning algorithm PLTAP, for parameter group g associated with category
k, the increase in importance score δSg results in a significantly higher retention probability compared to
standard pruning algorithm P .

Proof:

1. Change in importance score:

According to Lemma 1, for g ∈ Gtail:
δSg ∝

1

Nk
· δAk.

Since k is a tail class, 1
Nk

is large, and δAk is effectively increased (or weights are redistributed) through
dynamic feedback mechanism, resulting in significant increase in δSg .

2. Pruning decision mechanism: - Standard pruning algorithm P ignores changes in class accuracy. All
parameter groups’ importance scores Sg are calculated with fixed weights, leading to relatively consistent
pruning probabilities:

P
(
S(t)
g > S

(t)
(θt)
| P
)

similar, independent of class.

- Dynamic feedback pruning algorithm PLTAP dynamically adjusts importance scores through δSg , espe-
cially for tail classes, where Sg increases significantly:

P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
∝ P (δSg > ∆) ,

where ∆ is the threshold change.

3. Comparing retention probabilities of both pruning algorithms:

For g ∈ Gtail:
P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
≫ P

(
S(t)
g > S

(t)
(θt)
| P
)
.

This further implies:
P
(
θ(t)g ̸= 0 | PLTAP

)
≫ P

(
θ(t)g ̸= 0 | P

)
.

4. Cumulative effect after multiple iterations:

After T rounds of pruning:

P
(
θ(T)
g ̸= 0 | PLTAP

)
=

T∏
t=1

P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
,

P
(
θ(T)
g ̸= 0 | P

)
=

T∏
t=1

P
(
S(t)
g > S

(t)
(θt)
| P
)
.

Since for all t,
P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
≫ P

(
S(t)
g > S

(t)
(θt)
| P
)
,

we have:
T∏

t=1

P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
≫

T∏
t=1

P
(
S(t)
g > S

(t)
(θt)
| P
)
.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2025

Therefore:
P
(
θ(T)
g ̸= 0 | PLTAP

)
≫ P

(
θ(T)
g ̸= 0 | P

)
.

Thus, dynamic feedback pruning algorithm PLTAP significantly increases the retention probability of pa-
rameter groups θg associated with tail classes.

PROOF OF THEOREM A

Objective: Prove that the dynamic feedback pruning algorithm PLTAP retains tail class-related parameter
groups θg with significantly higher probability than standard pruning algorithm P .

Proof:

1. Enhancement of Importance Scores for Tail Class Parameter Groups by Dynamic Feedback:

According to Lemma 1, for g ∈ Gtail, we have:

δSg ∝
1

Nk
· δAk.

Since k is a tail class with small Nk, therefore:

δSg is relatively large.

Consequently, the importance scores Sg of tail class parameter groups receive significant enhancement after
each pruning round.

2. Probability Calculation for Parameter Group Pruning:

Pruning decisions are based on Sg > S
(t)
(θt)

, i.e.:

P
(
S(t)
g > S

(t)
(θt)

)
.

For g ∈ Gtail, due to significant increase in Sg , the probability of being pruned decreases substantially.

3. Comparison of Retention Probabilities between Two Pruning Algorithms: - Standard Pruning
Algorithm P:

P
(
θ(t)g ̸= 0 | P

)
= P

(
S(t)
g > S

(t)
(θt)
| P
)
.

Since P does not consider class accuracy changes, all parameter groups have similar retention probabilities.
- Dynamic Feedback Pruning Algorithm PLTAP:

P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
≫ P

(
S(t)
g > S

(t)
(θt)
| P
)
.

4. Cumulative Effect After Multiple Iterations:

After T rounds of pruning, for g ∈ Gtail, we have:

P
(
θ(T)
g ̸= 0 | PLTAP

)
=

T∏
t=1

P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
.

P
(
θ(T)
g ̸= 0 | P

)
=

T∏
t=1

P
(
S(t)
g > S

(t)
(θt)
| P
)
.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

Since for all t:
P
(
S(t)
g > S

(t)
(θt)
| PLTAP

)
≫ P

(
S(t)
g > S

(t)
(θt)
| P
)
,

therefore:
P
(
θ(T)
g ̸= 0 | PLTAP

)
≫ P

(
θ(T)
g ̸= 0 | P

)
.

Thus, the dynamic feedback pruning algorithm PLTAP significantly increases the retention probability of
parameter groups θg associated with tail classes.

E PSEUDOCODE

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

1: Input. Pretraining variable x, learning rate β, termination tolerance Z , preset pruning ratio γp, sample
steps T , penalty λ, and prunable variable partition G,class weight vector w.

2: Warm up B and compute importance scores.
3: Initialize S to store importance scores for each g ∈ G.
4: Initialize violating group set V

V ← {g : g ∈ G with bottom-K importance scores}.

5: Initialize historical setH ← V .
6: while |V| ≤ Z do
7: Initialize trial violating group set V̂ ← ∅.
8: Initialize β0 ← β, λ0 ← λ, and x0 ← x.
9: for t = 0, 1, · · · , T − 1 do

10: Compute gradient of f over x(t) as f(x(t)).
11: Compute trial x̃(t+1) ← x(t) − β(t)f(x(t)).
12: Penalize variables in the violating set.

[x(t+1)]V ← [x̃(t+1)]V − λt[x
(t)]V

13: Compute the accuracy At+1
c of the x(t+1) on each class.

14: Update the importance criteria weight matrix.

D(t+1) ← (At+1
c , At

c,Dt, w)

15: Compute importance scores of G and collect into S.

S ← G ← ([x(t+1)]V ,D(t+1))

16: Update trial set V̂ if new violating groups appear.

V̂ ← V̂ ∪ {g : g ∈ G with bottom-K scores}/V

17: Update penalty λ(t) and learning rate β(t).
18: end for
19: Update violating set V ← V̂/H.
20: Update historical setH ← H

⋃
V .

21: end while
22: Set redundant set GR upon importance score collection S.

GR ← {g : g with bottom-K scores in S}

23: Return. Identified redundant group set GR and important group set GI as G/GR.

24

	Introduction
	LTAP: Adaptive Pruner for Long-tailed Distribution
	LTAP Optimizer Design
	Pruning Strategy Implementation
	Alternating Process of Training and Pruning

	Theoretical Analysis: Tail Classes Benefit More from Overparameterization
	Experiments
	Experimental Setup
	Benchmark Results
	Further Analysis

	Conclusion
	Supplementary theory
	Appendix: Sample Complexity and Differentiated Overparameterization Demand
	Proof for Theorem

	Related Work
	Supplementary experiments
	Symbol Definitions and Assumptions
	Pseudocode

