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ABSTRACT

Model evolution and constant available data are two common phenomenon in
large-scale real-world machine learning application, e.g. ads and recommendation
system. To adapt, real-world system typically operates both retraining with all
available data and online-learning with recent data to update models periodically
with the goal of better serving performance for future data. However, if model and
data evolution results in a vastly different training manner, it may induce negative
impact on online A/B platform. In this paper, we propose a novel framework,
named Confidence Ranking, to design optimization objective as a ranking function
with two different models. Our confidence ranking loss allows directly optimizing
the logits output for different convex surrogate function of metrics, e.g. AUC and
Accuracy depending on the target tasks and datasets. Armed with our proposed
methods, our experiments show that the confidence ranking loss can outperform
for test-set performance on CTR prediction and model compression with various
setting against the knowledge distillation baselines.

1 INTRODUCTION

To alleviate the discrepancy between delayed training and test distribution, typically, the real-world
ads and recommendation system widely operate machine learning pipeline as follows: (1) collect
user-clicks periodical data (every ∆ = 24 hours for daily data and ∆ < 10 minutes for online data);
(2) train the model on collected data then deploy the model for serving until next new retrained
model is produced. Due to the non-stationary data distribution and constant model evolution, the
periodic retraining methodology motivate fast adaption and better generalization for approximating
the recent decision boundary. Although retraining with new or all data does make the online model
more current and new model more powerful, the improvement only originates from the alleviation
of train-test discrepancy or promotion of model capability. We investigate if modeling previous
prediction distribution can improve the performance even further. For short, as we train the model at
a time t with data Dt, we only know that the model will be optimized by ERM in this period while
ignoring how the data are produced and influenced by the base model. Our goal in this paper is to
improve test-set performance of retrained model when deployed in the next period.

Machine learning Pipeline in Real-World System. We take the click-through rate (CTR) prediction
task in real-world commodity ranking system as example and consider it over an input space X
and ground truth space Y where the joint distribution is P(X ,Y) that always evolve with time. It
means the hypothesis space of data is not fixed but evolving. Thus, given a prediction model, it
should be trained conditioned on each time split, i.e. minimize the ℓ(y|x, t). During training, all
of the given data are collected from T time snapshots t1 ≤ t2 · · · ≤ tT . Collect these data as
Dold ≜

{
D1,D2, · · · ,DT

}
, we train our base model for deploying on next time interval in the

future denoted as tT+1. Problem Statement. Due to the expectation of maximizing the performance
on tT+1, the machine learning pipeline mostly follow practical online learning setup by iterative
collecting data followed by training and deploying models which is different from the original setting
of online learning for minimizing the total regret. Though we only care about the performance on
next time interval, real-world production system typically releases model through an interactive im-
provement process by launching new models via collecting additional data and proposing empirically
beneficial candidate model to replace the model of old deployed version(Jiang et al., 2021). In other,
long-standing model training by empirical risk minimization (ERM) may not guarantee the online
performance due to the over-fitting problem. These problematical issues make the continual training
mode in real-world system much more complex than time-series prediction and classification, since
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the unknown data distribution and model discrepancy. Despite our ultimate goal to improve the
performance of online deployment stage, it can be split into two fold: improve retraining (with almost
all of data) and online learning (with recently produced data) stage. Thus, an important question
remains open regarding machine learning pipeline of real-world system:

How can we train a model better than the deployed in retraining and online-learning stage?

In this paper, we provide an affirmative answer to this question. Our solution is to optimize a novel
framework of loss function for machine learning application (MLA) instead of ERM (e.g. optimize
cross-entropy loss for classification). In particular, we choose to maximize the ranking score between
base model and retrained model for MLA. There are several benefits of maximizing the ranking score
over minimizing the cross-entropy loss. First, maximizing the ranking score is naturally suitable for
classification task in real-world application (i.e. image recognition, ctr prediction and etc) where
train-test distribution is nearly identically independent distributed. Directly maximizing the ranking
score of different models can approximate improving the model performance relatively. Second,
this framework is more suitable for handling various model complexity since maximizing ranking
score aims to learn better decision boundary compared to baseline. The foremost challenge in this
paper is to determine the surrogate loss for this setting. In our study, a naive approach of exploiting
ranking-based pair-wise surrogate loss can be efficiently optimized in various tasks with different
backbone networks. Our works is related to knowledge distillation(Hinton et al., 2015) that usually
distill the output of teacher model to the students. This technique has been proved to be successful
in deep learning combined with other standard ERM. Despite its success, KD and it’s successor
follow the same principle of aligning the student with the teacher differing to the purpose we want.
Additional to the comparison with standard ERM loss, we also experiment with knowledge distillation
methods in ctr prediction on real-world system and model compression for image recognition. In
this paper, we show that our proposed method is not only suitable for real-world application but also
beneficial on the model compression. For better understanding the diversity, we provide mathematical
comparison for knowledge distillation and confidence ranking. In this paper, our contribution are
summarized as follows:

• We highlight that in the real-world MLA retrained with all data and new arriving data can make
model more current and capable while it keeps unknown of the performance of the retrained
candidate model compared to the deployed baseline. To address it, we propose a novel loss
framework for ranking the retrained model with the deployed one, namely confidence ranking. The
novel loss only need the logit output of the deployed model which is efficient for real-world setting.
Beyond ranking for point-wise logit output, we apply the framework to rank the bipartite distance
in CTR prediction and the class margin in model compression for multi-class classification.

• Despite our real-world engineering setting, knowledge distillation can still achieve great success
induced by lower logit variance of the teacher (Menon et al., 2021). Our confidence ranking ap-
proach is very different to this series of loss function. We present both theoretical and experimental
results showing the superiority over distillation on supervised learning and model compression.

2 METHODS

2.1 PRELIMINARIES

Formally, as demonstrated in section 1, a CTR prediction pipeline in real-world system can be split
to three parts: (1) Offline training: given old dataset Dold that consists of continuous T days data
with corresponding input sample x ad ground truth labels y, we build a machine learning model f
with parameters θ for the aim to optimize in a sequential manner. We note the output logits with
z ≜ h(x; θ) and the corresponding probability with f(x; θ) ≜ sigmoid(h(x; θ)). The goal of first
part is to optimize f on the Dold where standard pipeline follows the ERM optimization:

argmin
θ

Lold, where Lold ≜ E(x,y)∼Dold
[ℓ(y, f(x; θ))] (1)

(2) Online serving: after the loss Lold converge smaller than δ, where δ is specified by cross-validation
on Dold, we deploy the machine learning model fθ on the real-world system for the aim to serve
the new arriving dataset Dnew where the ground truth ynew is unknown until the user clicks the
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item or leave the browser. Until now, we have demonstrate the pipeline of real world deployment
applications. (3) Online learning: As we get new arriving data, we retrain previous deployed model
fold to overcome the challenge of inconsistency between Dold and Dnew, Benefited from mitigation
on distributional drift, the strategy of online learning with recent data can efficiently improve the
generalization on the next serving stage. Despite effectiveness of the pipeline, this strategy does
not take previous model’s outputs as auxiliary information which covers the underlying relationship
between prediction and ground truth.

The goal in this paper is to modify the training target of retrained and online-learning model with the
online deployed one’s outputs so that our training strategy can be more effective on improving test-
time generalization. The main intuition behind our model is to learn better classifier and representation
that encode the paired information between retrained model and the deployed model. A natural idea
is to induce the past experience by knowledge distillation (Hinton et al., 2015; Buzzega et al., 2020)
together with cross entropy loss. One of the challenge of distillation-based methods is that the past
experience is not always right and only gets marginal improvement through its dark knowledge. The
online deployed model’s prediction may give over-estimated and under-estimated confidence due to
the uncertainty of users’ evolving interest. The dark knowledge of wrong response achieves great
success for distilling big model to a small model but at the same time constrain the potential ability
that the student can perform better than teacher(Dao et al., 2021). The failure mode of vanilla KD
has two fold. Assume our teacher is trained insufficiently or restrictively leading to under-fitting,
since the vanilla KD only exploits the strategy that student learns from the teacher without access
to the original labels, we could expect the student to be inaccurate due to the teacher under-fitting
even the student and teacher belong to same complexity model classes. Second, if the complexity of
teacher model has a large critical radius(Wainwright, 2019), error bound of the student suffers due to
potential teacher over-fitting. These reasons suggest directly optimizing KL-divergence of retrained
model and previous deployed model may not be optimal for the purpose of better performance on
test data. When learning the past experience we instead follow a simple idea motivated by AUC loss
(Freund et al., 2003; Mohri et al., 2018) that maximize the difference of a random selected congruent
pairs {y+, y−} so that y+ is scored closed to ground truth y than y−. The functional form of AUC
risk is defined as: Rauc(f) ≜ E{x+,x−}∼P+,P−

[
1{y+>y−}

]
.

2.2 CONFIDENCE RANKING

In this paper, we devise confidence-ranking loss to directly utilize previous learned or served ex-
periences (knowledge). Motivated by AUC loss, we borrow the idea of optimizing the ranking
performance for maximizing the expectation of how often current model produces more confident
results than previous model. This expectation only need comparison between congruent pairs thus
we can use point-wise convex surrogate loss function ϕ(ŷ, yold) = ϕ(f(x; θ̂)− f(x; θold)) with the
aim to minimize confidence-ranking ϕ-risk:

Rp(f) ≜ E{ŷ,yold}∼P(x)

[
y(ϕ(f(x; θ̂)− f(x; θold)))

]
(2)

The common approach to optimize the bayes risk of the score function is adopting possible surrogate
function (e.g. square loss, hinge loss, exponential loss, and logistic loss).

Relational Confidence Ranking (RCR): The point-wise loss ranking the output of current model
with old deployed one ensures the network gradually perform better. To further improve the bipartite
ranking performance of binary classification, we follow (Freund et al., 2003) in optimizing bipartite
ranking performance. In short, we aim to maximize the pos/neg distance of current model taking old
generated prediction as margin. The similar idea can be extended into maximizing the similarity of
samples from same classes. Thus, we define two relational confidence ranking ϕ-risk in total:

Rre(f) ≜

{
E{x+,x−}∼{P+,P−} [ϕ(df (x

+, x−)− dfold(x
+, x−))]

EPc∼{P+,P−}E{xi,x−i}∼Pc

[
ϕ(dfold(x

i, x−i)− df (x
i, x−i))

] (3)

where function df (x, z) = f(x) − f(z) performs calculating distance of different samples from
various classes and same class, respectively. And we random select congruent pairs{xi, x−i} from
same distribution(class) Pc for maximizing similarity. Empirically, we find maximize the pos/neg
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distance works well for binary classification (e.g. CTR prediction in ads and recommendation system)
while maximize the similarity of samples from same classes fails on imbalanced datasets and slow
down the training speed with large batch size. When we try to pull closer for samples of same classes,
this loss doesn’t guarantee the decision boundary between positive and negative classes gets more
separate. Thus, we only construct relational confidence ranking loss for samples from various classes.

Margin-based Relational Confidence Ranking (MRCR): The proposed relational confidence
ranking function is devised for maximizing the bipartite ranking performance in essence. However, in
multi-class classification, maximizing this objective often leads to unstable optimization. Instead, we
propose a margin-based confidence ranking loss for maximizing the distance of the logit output from
different classes. Given a label space [l] = {1, · · · , l}, we define margin-based relational confidence
ranking ϕ-risk as:

Rm_re ≜ EPc∼P[l]
Ex∼PcEi∼[l] [ϕ(sf,c,i(x)− sfold,c,i(x))] (4)

where function sf,c,i(x) = logit(f(x))c − logit(f(x))i performs calculating difference of logit
outputs of class c and i. In this way, we aim to maximize the sample-wise class margin(Elsayed et al.,
2018; Koltchinskii & Panchenko, 2002) for obtaining better inter-class separability.

2.3 APPLICATIONS

CTR prediction in real-world MLA: Our architecture comprises of two parts: (1) collect outputs
yold of f(x; θold) as a online deployed prediction probability which directly decides which item will
be exposed and (2) impose a ranking-based loss to encourage the network to learn better than the
online deployed one. We make the network pctr-sensitive by both taking prediction as an additional
input concatenated with x. Similar to some prior distillation-based work (Tang & Wang, 2018; Cai
et al., 2022; Hinton et al., 2015; Buzzega et al., 2020), we want our surrogate loss to be general as
vanilla loss (e.g. cross-entropy loss and mean square loss) which can be trained end-to-end. Until
now, we have stated how we propose to learn against old deployed models. In this paper, we suggest
that margin-based square loss and logistic loss can effectively exploited for our proposed methods.
Formally, the point-wise confidence ranking loss for ctr prediction is defined as:

ℓp-se(f) ≜ Ey∼P(x)

[
y(m− (f(x)− fold(x)))

2 + (1− y)(m− (fold(x)− f(x)))2
]

(5)

As known to literature of knowledge distillation, the optimization of KL divergence can be equivalent
to minimizing the Euclidean distance between the corresponding logits under mild assumptions. The
proposed margin-based square loss can be opt for match logits closed to the one-hot label. Another
popular selection is to adopt logistic loss which is defined as:

ℓp-log(f) ≜ Ey∼P(x) [−ylog [σ(f(x)− fold(x))]− (1− y)log [1− σ(f(x)− fold(x))]] (6)

where σ is the sigmoid function. These two convex surrogate function can be easily extended to rank
relational performance. The final loss function for ctr prediction is defined as:

ℓctr = α · ℓce + β1 · ℓp + β2 · ℓre (7)

where α, β1 and β2 are the hyper-parameter controlling the CE, CR and RCR weight. Note that our
proposed method only use logistic loss function without specified.

Supervised Model Compression for image classification: Model Compression can be seen as
the retraining stage mentioned in above where the teacher is the online deployed baseline and the
student is the new retrained model. In this setting, we directly follow the implementation of original
KD(Hinton et al., 2015) without extra memory buffer for recording the teacher logit. Our point-wise
confidence ranking loss is the same as the loss for ctr prediction except that σ is softmax function. We
further apply logistic surrogate loss function to maximize the sample-wise class margin. Empirically,
we define combination of overall loss functions as :

ℓmc = α · ℓce + β1 · ℓp + β2 · ℓm_re (8)

The combination of point-wise and relational loss is not necessary for all applications and heavily
depends on datasets and metrics. In Section 4, we conduct experiments on CR and MRCR respectively.
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(a) CR vs KD with ResNet8 as student (b) CR vs KD with ResNet56 as student

Figure 1: Illustration of the test-set probability of students for vanilla knowledge distillation and
confidence ranking of various depths. For Cifar100, We train teachers that are ResNets of various
depths and the student is fixed depth of 8 and 56 respectively. We only use the logistic loss function
for confidence ranking. Note that CR always outperform the baseline results while vanilla KD fails
when discrepancy of teacher-student model complexity is large. The results are averaged over 3 runs.

3 BIAS-VARIANCE PERSPECTIVE FOR CONFIDENCE RANKING

Previous work(Menon et al., 2021) gives a statistical perspective of the success of knowledge
distillation. In their theoritical analysis, a bayes-distilled loss can improve generalization over
population loss by producing lower variance outputs. However, a teacher’s prediction results is
usually seen as an imperfect estimate of the true bayes label in realistic setting. They answer the
success of imperfect teacher by inducing a fundamental bias-variance bound 9 which shows that
trade-off complexity of the teacher can have a low MSE with Bayes probability p∗ leading to better
student’s generalization error.
Proposition 1 (Bias-Variance bound for knowledge distillation) Pick any bounded loss ℓ.
Suppose we have a teacher model pt with corresponding distilled empirical risk R̃(f) =
1

N

∑
n∈N pt(xn)ℓ(f(xn)) and population risk R(f) = Ex [p

∗(x)ℓ(f(x))] where pt(xn) is the

teacher output confidence. For any predictor f : X → RL,

E
[
(R̃(f)−R(f))2

]
≤ 1

N
· V

[
pt(x)ℓ(f(x))

]
+O(E

[
∥pt(x)− p∗(x)∥2

]
)2 (9)

In practice, we expect the distilled risk to generalize better than classification risk for knowledge
distillation tasks, i.e. for R̃(f) to be smaller than R(f). This is because the classification risk is
computed on "hard" labels which can be seen as over-confident teacher. whereas the distilled risk
is computed on "soft" labels from the base model or teacher model. This view impose that even
imperfect teacher(base) model may aid in better generalization of the student(retrained) model and
accurate teacher may lead to worse generalization due to large variance. To this end, we apply this
loose bias-variance bound to the confidence ranking risk.
Proposition 2 (Bias-Variance bound for point-wise confidence ranking) Pick any convex loss
ℓ. Suppose we have a teacher model pt with corresponding empirical confidence ranking risk

R̂(f) =
1

N

∑
n∈N y(xn)ℓ(f(xn)− ft(xn))) and population risk R(f) = Ex [p

∗(x)ℓ(f(x))] where

ft(xn) is the teacher output. For any predictor f : X → RL,

E
[
(R̂(f)−R(f))2

]
≤ E

[
(R(ft))

2
]

(10)

Different to knowledge distillation, the fidelity of the confidence-ranking risk only depends one on
factor: how well the teacher model estimates approximates the true p∗ in a logistic sense. Since
p∗ = P(y|x) is a constant, 10 implies that confidence-ranking risk performs better when teacher(base)
model is over-confident. We have stated a statistical perspective on confidence ranking, resting on the
observation that confidence ranking offers a bound which always approximating Bayes probabilities
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Table 1: AUC(%) of test-set performance on Avito, Avazu and Industrial datasets with various
backbone and training strategy. We conduct KD, RKDl, SC, CR, RCR and both with same DeepFM.
* denotes one-pass learning. The results are averaged over 3 runs. Std ≤ 0.1%.

Dataset DNN DCN PNN DeepFM KD RKDl SC CR RCR Both

Avazu 75.05 74.99 75.06 75.24 75.41 75.34 75.36 75.63 75.59 75.66
Avito 77.71 77.66 77.80 77.73 78.01 77.83 77.78 78.33 78.59 78.62

Avazu* 74.32 74.30 74.49 74.69 74.83 74.90 74.85 74.98 75.05 75.14
Avito* 77.50 77.58 77.57 77.50 77.54 77.58 77.53 77.70 77.73 77.70

Industrial* 75.92 76.02 n/a n/a 76.18 76.10 76.14 76.25 76.20 76.32

(a) Sample Margin (b) Negative Mean (c) Positive Mean

Figure 2: Sample margin, prediction mean of negative and positive samples on Avazu in one-pass
setting. We use the data of first 4 days to train the base model. And then, imitate online-learning in a
cycle serving-and-training process with constant daily data.

based on the performance of teacher model. However, this bound is not well qualified on deep
learning architecture and may be loose and unstable for real-world application especially for the
logistic confidence ranking loss. We note the comprehensive bound of confidence ranking requires
specifying necessary conditions. Nonetheless, this qualitative bound can still hold majority conditions
in practice. For example, Figure1 illustrates that distillation suffers from the large discrepancy of
teacher-student model complexity while confidence ranking still yields satisfactory results. However,
our proposed confidence ranking is not always better than KD. As shown in Figure 1a, KD achieve
best accuracy when student is ResNet20 better than CR. As shown in Figure 1b, when teacher
gets closer to student, the performance of KD improves as well as CR. This result shows KD may
potentially benefit CR by carefully designed combination. We leave it into future study.

4 EXPERIMENTS

Here we experimentally show our proposed learning objective can flexibly leverage the knowledge
from previous models. We first evaluate our methods on Industrial, Avazu and Avito datasets with
various controllable setting on CTR prediction. To additionally demonstrate the advantage of CR, we
also include experiments on a well-studied task: supervised model compression. Our core algorithm
is easy to implement with various machine learning platform. For industrial datasets, we develop it
with TensorFlow while we release our code with PyTorch implementation for public dataset. All of
our experiments are conducted on one P40 GPU for public datasets and 8 A100 GPUs for industrial
dataset. Please refer to the Appendix for additional details.

4.1 CTR PREDICTION

Datasets. We perform our experiments on three datasets with two training setting. Industrial search
ads dataset contains 59 numerical and categorical feature fields. All of the fields data are discretized
and transformed into sparse anonymous features. This dataset has more than ten billion instances
range over one month with hundreds millions of active users and items. For speeding up offline
experiments, we sample half of it for evaluating our method. Avazu is display recommendation
dataset released on Kaggle that contain 40428967 samples with 22 feature fields. Avito is also
released as ads click datasets on Kaggle containing 190107687 samples but only 16 feature fields. We
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Table 2: Top-1 test accuracy(%) of student networks on CIFAR-100 with variaous distillation
networks. Our methods are denoted by CR and MRCR. (↑) denotes outperformance over KD and (↓)
denotes underperformance. Note that CR always outperform KD as well as the other baseline other
than CRD. Our proposed CR outperforms CRD in 3 out of 6 benchmarks. Combined with vanilla
KD, we show that our proposed method is compatible with KD. The results is averaged over 5 runs.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 vgg8

Teacher 75.61 75.61 72.34 74.31 74.31 74.64
Student 73.26 71.98 69.06 69.06 71.14 70.36

KD 74.92 73.54 70.66 70.67 73.08 72.98
FitNet 73.58(↓) 72.24 (↓) 69.21(↓) 68.99(↓) 71.06(↓) 71.02(↓)
AT 74.08(↓) 72.77(↓) 70.55(↓) 70.22(↓) 72.31(↓) 72.68(↓)
SP 73.83(↓) 72.43(↓) 69.67(↓) 70.04(↓) 72.69(↓) 72.68(↓)
CC 73,56(↓) 72.21(↓) 69.63(↓) 69.48(↓) 71.48(↓) 70.71(↓)
VID 74.11(↓) 73.30(↓) 70.38(↓) 70.16(↓) 72.61(↓) 71.23(↓)
RKD 73.35(↓) 72.22(↓) 69.61(↓) 69.25(↓) 71.82(↓) 71.48(↓)
PKT 74.54(↓) 73.45(↓) 70.34(↓) 70.25(↓) 72.61(↓) 72.88(↓)
AB 72.50(↓) 72.38(↓) 69.47(↓) 69.53(↓) 70.98(↓) 70.94(↓)
FT 73.25(↓) 71.59(↓) 69.84(↓) 70.22(↓) 72.37(↓) 70.94(↓)
FSP 72.91(↓) n/a 69.95(↓) 70.11(↓) 71.89(↓) 70.23(↓)
NST 73.68(↓) 72.24(↓) 69.60(↓) 69.53(↓) 71.96(↓) 71.53(↓)
CRD 75.48(↑) 74.14(↑) 71.16(↑) 71.46(↑) 73.48(↑) 73.94(↑)

MRCR 74.65(↓) 73.07(↓) 70.01(↓) 69.41(↓) 72.15(↓) 72.24(↓)
CR 75.79(↑) 74.53(↑) 71.59(↑) 71.32(↑) 73.44(↑) 73.62(↑)

CR+KD 75.67(↑) 74.10(↑) 71.93(↑) 70.81(↑) 73.66(↑) 74.03(↑)
MRCR+KD 75.63(↑) 74.14(↑) 71.82(↑) 71.34(↑) 73.23(↑) 73.56(↑)

Table 3: Top-1 test accuracy(%) of student networks on CIFAR-100 with various distillation teahcer-
student architecture. CR outperforms KD and all other methods except CRD. Our proposed CR
outperforms CRD on 5 out of 6 benchmarks. However, MRCR is not always better than KD. It’s
because the ranking objective is not directly corresponding to the accuracy. Average over 3 runs.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5

KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14(↓) 63.16 (↓) 70.69(↓) 73.59(↓) 73.54(↓) 73.73(↓)
AT 59.40(↓) 58.58(↓) 71.84(↓) 71.73(↓) 72.73(↓) 73.32(↓)
SP 66.30(↓) 68.08(↑) 73.34(↓) 73.48(↓) 74.56(↑) 74.52(↓)
CC 64.86(↓) 65.43(↓) 70.25(↓) 71.14(↓) 71.29(↓) 71.38(↓)
VID 65.56(↓) 67.57(↑) 70.30(↓) 73.38(↓) 73.40(↓) 73.61(↓)
RKD 64.52(↓) 64.43(↓) 71.50(↓) 74.10(↑) 73.21(↓) 72.21(↓)
PKT 67.13(↓) 66.52(↓) 73.01(↓) 73.55(↓) 74.69(↑) 73.89(↓)
AB 66.06(↓) 67.20(↓) 70.65(↓) 71.75(↓) 74.31(↓) 73.34(↓)
FT 61.78(↓) 60.99(↓) 70.29(↓) 74.12(↓) 72.50(↓) 72.03(↓)
NST 58.16(↓) 64.96(↓) 71.28(↓) 75.11(↓) 74.68(↑) 74.89(↑)
CRD 69.73(↑) 69.11(↑) 74.30(↑) 75.11(↑) 75.65(↑) 76.05(↑)

MRCR 68.30(↑) 68.34(↑) 72.32(↓) 72.98(↓) 75.31(↑) 73.35(↓)
CR 68.50(↑) 69.38(↑) 74.58(↑) 75.28(↑) 76.11(↑) 76.45(↑)

CR+KD 69.06(↑) 69.33(↑) 74.10(↑) 75.07(↑) 76.09(↑) 75.88(↑)
MRCR+KD 68.62(↑) 69.04(↑) 73.55(↑) 74.98(↑) 75.40(↑) 75.64(↑)

construct public datasets by split into training/validation/test set by timestamp where the samples of
last day is set for testing and penultimate day’s data is set for validation and others are set for training.
To split industrial dataset, we use traffic samples of previous 15 days as training set and the last day
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as test set. All these datasets is constructed to predict click through rate which can be seen as binary
classification. We summarize statistic of datasets in Table 4 .

Experiments setup. In real-world application, the prediction naturally influence the impression of
items (i.e. items that have high confidence are more prone to be exposed to users.) and multiples
times for training will cause severe over-fitting issues and much more computation cost. Thus we
adopt two various settings for evaluate our methods. The details of configuration are summarized
as follows. One-Pass Setting: we adopt one-pass training strategy for avoid over-fitting that each
sample is only accessed once. For industrial dataset, it’s common setting for evaluating performance
of our methods. However, for public dataset, all of them only contain item and user features without
any information of the deployed model. To overcome, we first train a one-pass model on training set
and record its prediction on validation set followed by training with our method. In this setting, the
only difference between ERM and CR is the confidence of validation set because our training set
contains validation set. We denote our experiments on industrial dataset only adopt one-pass training
strategy. Standard Setting: standard supervised learning. In this sense, all of our experiments first
train on training set and early stop according to validation results. We use the outputs of previous
round as input of our proposed method.

Baselines. Though our main motivation of our work is to utilze the confidence of online deployed
model on target items, we still include several baselines under standard supervised learning and
one-pass learning in order to benchmark state-of-the-art results. The simplest approach is (1) ERM:
we train our networks with binary cross-entropy loss under two various settings. For majority of real-
world recommendation and ads system, ctr prediction models are preferred to be trained with ERM;
(2) various commonly adopted CTR prediction network architectures designed for recommendation
and ads system, DNN, PNN(Qu et al., 2016), DCN(Wang et al., 2017), DeepFM(Guo et al., 2017);
(3) SC(Cai et al., 2022) integrates self-correction module into CTR prediction networks. Together
training with ERM, it achieves state-of-the-art results on multiple CTR prediction datasets with
minimal computation cost. (4) Knowledge distillation methods: since dark knowledge can induce
useful gradients for model compression, we also adapt KD(Hinton et al., 2015) and RKD(Park et al.,
2019) to our experimental setting. In this paper, we modify the feature-based RKD to logit-based
method for aligning inter-sample distance of the logits output of the base model and current model.

Main Results. Table 1 compare the test-set AUC of our method on Click-Through-Rate prediction
task. On Table 1, we first investigate the improvement brought by different feature interaction methods.
We observe that PNN achieve best performance with marginal improvement on standard supervised
learning setting but fails compared to DeepFM and DCN on one-pass setting. For convenience,
we adopt DeepFM as backbone for our experiments. We can observe that the propose method CR
outperforms all baselines no matter which setting is adopted. For standard supervised learning, it
is also striking to see that on Avazu and Avito, our proposed CR and RCR both can outperform
baselines by a large margin after trained with multiple epochs. We denote 0.1% improvement of AUC
on Avazu and Avito is significant. For one-pass learning, we still observe that our proposed methods
outperforms the backbone model but the margin is smaller than standard setting. It’s because one-pass
learning may not completely fit on the two public datasets. For industrial dataset, we carefully tune
our proposed method with DCN due to its succinct implementation. Not surprisingly, it works as
well. Compared to vanilla distillation, our methods improve 0.25/0.61/0.25/0.26/0.14% of the AUC
respectively. Additional to offline experiments, we conduct online experiments on A/B platform. We
observe over 5% improvement on CTR and apply it to serve main traffic in our system.

Inter-class margin Visualization. In Figure 2, we show how sample margin, prediction mean value
of positive and negative samples vary along time. The relational confidence ranking loss outperforms
all the other method by a large margin. We can observe RCR both decrease the negative mean and
increase the positive mean in Figure 2b and 2c leading to best bipartite ranking performance among
all baseline methods in Table 1. We find CR both decreases negative and positive mean resulting in
marginal improvement on sample margin. We demonstrate it’s because CTR prediction dataset is
usually dominated by negative samples and our loss function tends to depress the negative prediction.
In Figure 2, we find KD and RKDl give more smooth curve compared to our methods which may
constrain the model’s learning ability.
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4.2 MODEL COMPRESSION FOR IMAGE CLASSIFICATION

Setup. Knowledge distillation is widely used for model compression. In this setting, we conduct our
experiments on CIFAR-100(Krizhevsky et al., 2009) with various teacher-student architectures (e.g.
ResNets(He et al., 2016), Wide-ResNets(Zagoruyko & Komodakis, 2016b) and etc). Different to
knowledge distillation, our proposed loss is used for learning better than teacher which is prone to
suffer over-fitting. To overcome, we simply combine our point-wise confidence ranking loss with
cross-entropy loss. Experimentally, we follow the implementation of CRD(Tian et al., 2019) and our
code is available on the supplementary materials.

Results on CIFAR-100. Table 2 and Table 3 compare top-1 accuracy of our method on model
compression on CIFAR-100. We first investigate that students and teachers are both the same
architectural style. We observe that our proposed CR consistently outperforms KD and other logit-
based distillation, yet CR is on par with CRD in some situation. However, our proposed CR is far
different from the feature-based contrastive learning distillation methods (e.g CRD) which shows
potential improvement combined with these methods. Surprisingly, we find when trained together
with KD, CR can still get marginal improvement for some combinations. This might because that the
discrepancy of train-test distribution need a fine-grained balance ratio between CR and KD while
we set same ratio for all experiments. Compared to CR, we observe that the loss function MRCR is
not on par with KD while outperforms KD once trained together with KD. It may demonstrate our
proposed framework can be further improved by distillation-based methods.

5 RELATED WORK

Our work mainly focus on two engineering stages: retraining and online-learning in real-world
machine learning system which covers multiple sub-areas of machine learning.

Retraining. The motivation to retrain a model has many folds (e.g model evolution, data noisy and
shift) where it needs to validate a new candidate model through online A/B tests. Recent deep learning
techniques achieve great success on various applications by superior model architectures(Dosovitskiy
et al., 2021; Devlin et al., 2018), data augmentation methods(Zhang et al., 2017; Cubuk et al., 2019),
effective loss function(Elsayed et al., 2018; Khosla et al., 2020; Musgrave et al., 2020) and etc.
However, most methods techniques only build upon learning from scratch but ignore the difference
among trained models. The most related work to retraining is supervised model compression for
which knowledge distillation (KD) has attracted tremendous attention in various areas (Tang & Wang,
2018; Kang et al., 2021; Liu et al., 2020; Hinton et al., 2015; Park et al., 2019; Furlanello et al., 2018;
Tian et al., 2019; Li, 2018; Romero et al., 2014; Bagherinezhad et al., 2018). The goal of KD is to
produce better student model than trained directly for model compression. Typically, they assume the
capacity and complexity of student model is weaker than the teacher’s under the resource constraints.

Online learning. Online learning in real-world system is similar to continuous domain generaliza-
tion(Wang et al., 2020) and continual learning(Parisi et al., 2019). The methods of continuous domain
generalization aim to generalize to target domain given T-shot unordered domain data. CIDA(Wang
et al., 2020) simply takes time as input for building time-invariant feature vector followed by same
classifier. They build two-party adversarial training framework which is challenging in large-scale
application. Another related field is continual learning which aims to address the issues of catastrophic
forgetting. However, in real-world system, online learning cares more on the future’s performance.

6 CONCLUSION

Starting from view of real-world application, we identify the problem of learning model for better
generalization when online deployed on retraining and online-learning stage. For this aim, we
propose a confidence ranking based method which is agnostic of the network architecture and
further extend it to relational and margin-based structure for maximizing the bipartite distance and
sample-wise class margin. Furthermore, we give a comprehensive theoretical understanding of CR
and knowledge distillation. Our extensive experiments on CTR prediction and model compression
demonstrate the superiority of CR. We hope this paper can contribute to more applications and
researches.
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Table 4: The statistic of CTR prediction datasets

Datasets Users Items Fields Feature size Instances Pos Ratio

Avazu1 N/A N/A 22 2018012 40428967 17%
Avito2 3163597 28529 16 3419165 190107687 0.5%
Industrial N/A N/A 59 N/A 12 Billion 8%

A PROOFS OF THEORY

Proposition 1 (Bias-Variance bound for knowledge distillation) Pick any bounded loss ℓ.
Suppose we have a teacher model pt with corresponding distilled empirical risk R̃(f) =
1

N

∑
n∈N pt(xn)ℓ(f(xn)) and population risk R(f) = Ex [p

∗(x)ℓ(f(x))] where pt(xn) is the

teacher output confidence. For any predictor f : X → RL,

E
[
(R̃(f)−R(f))2

]
≤ 1

N
· V

[
pt(x)ℓ(f(x))

]
+O(E

[
∥pt(x)− p∗(x)∥2

]
)2

Proof. See Proposition 3 of (Menon et al., 2021) .

Proposition 2 (Bias-Variance bound for point-wise confidence ranking) Pick any convex loss
ℓ. Suppose we have a teacher model pt with corresponding empirical confidence ranking risk

R̂(f) =
1

N

∑
n∈N y(xn)ℓ(f(xn)− ft(xn))) and population risk R(f) = Ex [p

∗(x)ℓ(f(x))] where

ft(xn) is the teacher output. For any predictor f : X → RL,

E
[
(R̂(f)−R(f))2

]
≤ E

[
(R(ft))

2
]

Proof. According to the definition of (Menon et al., 2021), the confidence rank risk can be derived
as R̂(f) = Ex [p

∗(x)ℓ(f(x)− ft(x))]. Since our surrogate loss function is convex, using Jensen’s
inequality, we have

ℓ(f(x)− ft(x)) ≤ ℓ(f(x))− ℓ(ft(x))

then we have R̂(f)−R(f) ≤ Ex [−p∗(x)ℓ(ft(x))]. Thus, we further have

E
[
(R̂(f)−R(f))2

]
≤ E(Ex [p

∗(x)ℓ(ft(x))] · Ex [p
∗(x)ℓ(ft(x))])

= E
[
(R(ft))

2
]

B TRAINING DETAILS OF CTR PREDICTION

B.1 ALGORITHM

We list our algorithm 1 and 2 for standard supervised setting and one-pass learning respectively.

B.2 BASELINE TRAINING METHODS

: We compare the following training methods:

• ERM (Mohri et al., 2018): optimize the network by convex loss function e.g. cross-
entropy loss, mean square loss function. We use binary sigmoid cross entropy loss for all
experiments.

• KD (Hinton et al., 2015): optimize the retrained(online-learning) model by knowledge
distillation with base model
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Algorithm 1 Algorithm for our proposed retraining strategy on standing supervised setting

Input: Feature extractor fθ, training and validation dataset Dtra, Dval. loss ratio α and β
Training Phrase 1:
for t=1 to T do

sample mini-batch Dm from Dtra

ℓ(θ)= 1
m

∑
(x,y)∈Dm

[ℓ(y, f(x; θ))]

update θ with optimization algorithm
collect f(x; θ) as yold

end for
Training Phrase 2:
for t= T + 1 to T +N do

sample mini-batch Dm from Dtra

ℓ(θ)= 1
m

∑
(x,y)∈Dm

[αℓ(y, f(x; θ)) + βℓcr(yold, f(x; θ))]

update θ with optimization algorithm
collect f(x; θ) as yold

end for
Prediction Phrase: y = f(x; θ), x ∈ Dval

Algorithm 2 Algorithm for our proposed retraining strategy on one-pass(online-learning) setting

Input: Feature extractor fθ, dataset D ≜
{
D1,D2, · · · ,DT+1

}
. loss ratio α and β

Pretraining Phrase: We firstly use T̂ days data to train base model
for t=1 to T̂ do

while there exists data of Dt is not visited do
sample mini-batch Dm from Dt

ℓ(θ)= 1
m

∑
(x,y)∈Dm

[ℓ(y, f(x; θ))]

update θ with optimization algorithm
end while

end for
Online learning Phrase: We serve next-day data followed by training
for t= T̂ + 1 to T do

Serve f on Dt, Collect yt as yold
Online training:
while there exists data of Dt is not visited do

sample mini-batch Dm from Dt

ℓ(θ)= 1
m

∑
(x,y)∈Dm

[αℓ(y, f(x; θ)) + βℓcr(yold, f(x; θ))]

update θ with optimization algorithm
end while

end for
Prediction Phrase: y = f(x; θ), x ∈ DT+1

• RKD (Park et al., 2019): Original RKD propose to use feature-wise aligning strategy.
However, this strategy is very expensive on one-pass setting and standard supervised learning
setting for recommendation system. We follow the idea to modify it to align the base model
and the retrained model by directly match the square of confidence difference of pos/neg
pairs. It is defined as:

RKDℓ = (df (x
+, x−)− dfold(x

+, x−))2

• CR: we propose to rank the output of retrained model with the output of base model. It’s the
counterpart of KD

• RCR: we propose to rank the pos/neg difference of retrained model with the difference of
base model. It’s the counterpart of RKDℓ

B.3 NETWORK ARCHITECTURE

We compare the following networks :
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(a) one-pass setting (b) standard supervised setting

Figure 3: Hyperparameter selection on β of point-wise confidence ranking. Average over 5 runs.

(a) hinge loss (b) square loss

Figure 4: Hyperparameter selection on m for hinge loss and square loss on standard supervised
setting. Average over 5 runs.

• DNN (Covington et al., 2016): An embedding + Deep neural network framework for
recommendation system

• PNN (Qu et al., 2016): PNN uses product cross embedding followed by a DNN

• DCN (Wang et al., 2017): a parallel framework for combining cross network and deep
neural network

• DeepFM (Guo et al., 2017): a parallel framework for combine factorization machine and
deep neural network

B.4 IMPLEMENTATION DETAILS

All of our experiments are evaluated with Adam(Kingma & Ba, 2014).

For avazu and avito, we initialize the learning rate as 0.001 and rate of weight decay as 0.00001. We
don’t use learning rate decay. For deep neural network part, we use 1024-512-256 for avazu and
512-256 for avito. We set embedding rank as 40 and 10 for avazu and avito respectively. We set batch
size as 4096 and 10000 for avazu and avito respectively. Our optimization objective is defined as:

ℓ = αℓce + βℓcr (11)

We set α as 1 for all experiments while search the best β for all methods.

B.5 ABLATION STUDY

Hyper-parameters search for β. We provide ablation studies on the β for various convex loss
function of point-wise confidence ranking. For one-pass setting, We observe that the logistic
loss function outperform all other losses. However, when we apply this loss function into model
compression for image classification in Table 6 , it shows square loss outperforms other losses. For
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standard supervised setting, we observe the square loss function also outperform all other losses. This
interesting finding may reveal the benefit of ad-hoc loss function.

Hyper-parameters search for m. We provide ablation studies on the m for hinge and square loss
function of point-wise confidence ranking. In Table 4, we observe that the best m is 0.5 and 0.2
respectively.

C TRAINING DETAILS OF SUPERVISED MODEL COMPRESSION

We follow the implementation of CRD(Tian et al., 2019):

C.1 BASELINE METHODS

We compare the following state-of-the-art baseline KD methods:

• Knowledge Distillation (KD) (Hinton et al., 2015)
• Fitnets: Hints for thin deep nets (Romero et al., 2014)
• Attention Transfer (AT) (Zagoruyko & Komodakis, 2016a)
• Similarity-Preserving Knowledge Distillation (SP) (Tung & Mori, 2019)
• Correlation Congruence (CC) (Peng et al., 2019)
• Variational information distillation for knowledge transfer (VID) (Ahn et al., 2019)
• Relational Knowledge Distillation (RKD) (Park et al., 2019)
• Learning deep representations with probabilistic knowledge transfer (PKT) (Passalis &

Tefas, 2018)
• Knowledge transfer via distillation of activation boundaries formed by hidden neurons (AB)

(Heo et al., 2019)
• Paraphrasing complex network: Network compression via factor transfer (FT) (Kim et al.,

2018)
• A gift from knowledge distillation: Fast optimization, network minimization and transfer

learning (FSP) (Yim et al., 2017)
• Like what you like: Knowledge distill via neuron selectivity transfer (NST) (Huang & Wang,

2017)
• Contrastive representation distillation (CRD) (Tian et al., 2019)

C.2 NETWORK ARCHITECTURE

• Wide Residual Network (WRN) (Zagoruyko & Komodakis, 2016b) WRN-d-w represnets
wide resnet with depth d and width factor w.

• ResNet (He et al., 2016) We use resnet-d to represent cifar-style resnet with 3 groups of
basic blocks, each with 16, 32, and 64 channels respectively. In our experiments, resnet8 x4
and resnet32 x4 indicate a 4 times wider network (namely, with 64, 128, and 256 channels
for each of the block)

• MobileNetV2 (Sandler et al., 2018) In our experiments, we use a width multiplier of 0.5.
• vgg (Simonyan & Zisserman, 2014) the vgg net used in our experiments are adapted from

its original ImageNet counterpart.
• ShuffleNetV1 (Zhang et al., 2018) and ShuffleNetV2 (Tan et al., 2019) .ShuffleNets are

proposed for efficient training and we adapt them to input of size 32x32.

C.3 IMPLEMENTATION DETAILS

All methods evaluated in our experiments use SGD.

For CIFAR-100, we initialize the learning rate as 0.05, and decay it by 0.1 every 30 epochs after the
first 150 epochs until the last 240 epoch. For MobileNetV2, ShuffleNetV1 and ShuffleNetV2, we use
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Table 5: Abalation study of different activation function on point-wise confidence ranking. Average
over 3 runs.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 vgg8

softmax 73.34 71.73 69.72 69.54 71.68 70.61
sigmoid 73.24 72.13 69.97 69.29 72.04 70.95

Table 6: Abalation study of different convex loss function on point-wise confidence ranking. Average
over 3 runs.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 vgg13
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 vgg8

square 75.68 74.36 70.94 70.95 73.44 74.16
logistic 73.24 72.13 69.97 69.29 72.04 70.95
both 75.79 74.53 71.59 71.32 73.44 73.62

a learning rate of 0.01 as this learning rate is optimal for these models in a grid search, while 0.05 is
optimal for other models. Batch size is 64 for CIFAR-100.

The student is trained by a combination of cross-entropy classification objective and a knowledge
distillation objective, shown as follows:

ℓ = αℓce + βℓdistill (12)

For our proposed confidence ranking objection, we share the same combination as:

ℓ = αℓce + βℓcr (13)

where ℓcr is combination of point-wise confidence ranking loss and margin-based confidence ranking
loss.

For the weight balance factor β, we directly use the optimal value from the original paper if it is
specified, or do a grid search with teacher WRN-40-2 and student WRN-16-2. This results in the
following list of β used for different objectives:

• KD: α = 0.1; β = 0.9 and T = 4

• Fitnets: α = 1; β = 100

• SP: α = 1; β = 3000

• CC: α = 1; β = 0.02

• VID: α = 1; β = 1

• RKD: α = 1; β1 = 25 for distance and β2 for angle. For this loss, we combine both term
following the original paper

• PKT: α = 1; β = 30000

• AB: α = 1; β = 0, distillation happens in a separate pre-training stage where only distillation
objective applies.

• FT: α = 1; β = 500

• FSP: α = 1; β = 0, distillation happens in a separate pre-training stage where only distillation
objective applies.

• NST: α = 1; β = 50

• CRD: α = 1; β = 0.8

• CR: α = 1; β1 = 1, β2 = 0, we only use point-wise confidence ranking loss

• MRCR: α = 1; β1 = 0, β2 = 1, we only use margin-based confidence ranking loss
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C.4 ABLATION STUDY

Sigmoid v.s. Softmax for Logistic loss In Eq(6), the confidence ranking loss is implemented by
logistic rank function. However, in multi-class setting, we can both use sigmoid and softmax as
activation function. We provide ablation studies on the choice of the activation function on the
supervised model compression. In Table 5, we observe sigmoid perform slightly better than softmax.

Square loss v.s. Logistic loss In this paper, we can use different surrogate convex loss function for
confidence ranking. We provide ablation studies of square loss and logistic loss on model compression.
We observe that using square loss outperforms logistic loss by a large margin. However, we find the
combination of two losses can get further improvement.
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