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ABSTRACT

Dimensionality reduction is crucial for analyzing large-scale single-cell RNA-seq
data. Gaussian Process Latent Variable Models (GPLVMs) offer an interpretable
dimensionality reduction method, but current scalable models lack effectiveness
in clustering cell types. We introduce an improved model, the amortized stochas-
tic variational Bayesian GPLVM (BGPLVM), tailored for single-cell RNA-seq
with specialized encoder, kernel, and likelihood designs. This model matches the
performance of the leading single-cell variational inference (scVI) approach on
synthetic and real-world COVID datasets and effectively incorporates cell-cycle
and batch information to reveal more interpretable latent structures as we demon-
strate on an innate immunity dataset.

1 INTRODUCTION

Single-cell transcriptomics sequencing (scRNA-seq) has enabled the study of gene expression at
the individual cell level. This high-resolution analysis has helped discover new cell types and cell
states, reveal developmental lineages, and identify cell type-specific gene expression profiles (Mon-
toro et al., 2018; Plasschaert et al., 2018; Luecken & Theis, 2019). This high-level resolution,
however, comes with a cost. scRNA-seq data are often extremely sparse and prone to various tech-
nical and biological noise, such as sequencing depth, batch effects, and cell-cycle phases (Svensson
et al., 2018; Tanay & Regev, 2017; Luecken & Theis, 2019; Hie et al., 2020). Various dimensional-
ity reduction techniques have been developed to leverage intrinsic structures in the data (Heimberg
et al., 2016) to map to a lower-dimensional latent space. These methods help facilitate downstream
tasks like clustering and visualization, while avoiding the curse of dimensionality. Our work empha-
sizes probabilistic dimensionality reduction methods, which, through providing explicit probabilistic
models for the data, allows for more interpretable models and uncertainty measures in the learned
latent space.

In particular, we study a class of latent variable models known as Gaussian Process Latent Variable
Models (GPLVMs) (Lawrence, 2004), which have recently been applied to scRNA-seq data (Camp-
bell & Yau, 2015; Buettner et al., 2015; Ahmed et al., 2019; Verma & Engelhardt, 2020; Lalchand
et al., 2022a). These models, which use Gaussian processes (GPs) to define nonlinear mappings
from the latent space to data space, can incorporate prior information in the GP kernel function, mo-
tivating its use in single-cell transcriptomics data to model known or approximated covariate random
effects, such as batch IDs and cell cycle phases. This approach is made scalable via mini-batching;
however, the resulting Bayesian GPLVM model (BGPLVM) struggles to learn informative latent
spaces for certain datasets (Lalchand et al., 2022a).
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In this work, we present an amortized BGPLVM better fit to scRNA-seq data by leveraging design
choices made in a leading probabilistic dimensionality reduction method called single cell vari-
ational inference (scVI) (Lopez et al., 2018). While scVI has seen impressive performance in a
variety of downstream tasks, it does not easily allow for interpretable incorporation of prior domain
knowledge.

In Sections 2 and 3, we describe this model, providing a concise background on BGPLVMs and
highlighting the model modifications. Section 4 then discusses (1) an ablation study demonstrating
each components contribution to the model’s performance via a synthetic dataset; (2) comparable
performance to scVI for both the synthetic dataset and a real-world COVID-19 dataset (Stephen-
son et al., 2021); and (3) promising results for interpretably incorporating prior domain knowledge
about cell-cycle phases in an innate immunity dataset (Kumasaka et al., 2021). Our work shines
a light on key considerations in developing a scalable, interpretable, and informative probabilistic
dimensionality method for scRNA-seq data.

2 BACKGROUND

This section provides a concise introduction to existing BGPLVM models from the literature.

2.1 AMORTIZED STOCHASTIC VARIATIONAL BAYESIAN GPLVM

Given a training set comprised of N D-dimensional observations Y = [y1 . . .yN ]T ∈ RN×D, we
seek to represent our data with Q-dimensional embeddings X = [x1 . . .xN ]T ∈ RN×Q which are
latent and stochastic and Q ≪ D provides the dimensionality reduction. The probabilistic model
describing the data can be written as follows:

Latent prior: p(X) =

N∏
n=1

N (xn|0, IQ) GP Prior: p(F|X, θ) =

D∏
d=1

N (fd|0,KNN ), (1)

Likelihood: p(Y|F, σ2
y) =

D∏
d=1

N (yd|fd,σ2
yIN ) =

N∏
n=1

D∏
d=1

N (ynd|fd(xn), σ
2
y), (2)

F ≡ {fd}Dd=1 denotes the collection of latent functions where fd is associated with yd (the dth

column of Y). KNN is the covariance matrix corresponding to a user chosen positive-definite kernel
function k(x,x′) evaluated on latent points {xn}Nn=1 and parameterized by hyperparameters θ. The
kernel hyperparameters are shared across all dimensions D.

Moreover, to speed up computation and allow for mini-batching, we use inducing variables U =
{um ∈ RQ}Mm=1 also distributed with a GP prior ud|Z ∼ N (0,KMM ), where KMM is the kernel
evaluated at inducing locations Z ∈ RM×Q as in Hensman et al. (2013); Lalchand et al. (2022b).
The introduction of inducing variables gives us the following sparse GP prior:

p(F|U,X) =

D∏
d=1

N (fd|KNMK−1
MMud,KNN −KNMK−1

MMKMN ). (3)

The joint posterior over all unknowns p(F,U,X|Y) is intractable, but admits a tractable lower
bound to the marginal likelihood p(Y|θ) under the variational formulation,

q(F,X,U) =
[ D∏
d=1

p(fd|ud,X)q(ud)
]
q(X), (4)

where the variational distributions are:

q(X) =

N∏
n=1

N (xn|Hϕ1(yn), diag(Hϕ2(yn)), q(U) =

D∏
d=1

q(ud) =

D∏
d=1

N (ud|md,Sd), (5)

where {md,Sd}Dd=1 denotes the variational parameters. The mean and variance of the variational
Gaussian distributions are parameterized as outputs of individual neural networks Hϕ1 and Hϕ2 ,
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which act as encoders. The network weights are amortized and shared across all the data points
enabling extension to very large scale datasets as the amortized model side-steps the need to learn
the latent variational means and covariances per data point, i.e. q(xn), and once trained, allows for
constant-time O(N) inference. The resulting stochastic variational lower bound (Lalchand et al.,
2022b), which factorizes across N and D, permitting mini-batching, is given by:

L(q(·)) =
∑
n,d

Eq(xn)Ep(fd|ud,xn)q(ud)

[
logN (ynd|fd(xn), σ

2
y)
]
−

N∑
n=1

KL (q(xn)||p(xn)) (6)

−
D∑

d=1

KL (q(ud)||p(ud|Z)) .

2.2 ENCODING DOMAIN KNOWLEDGE THROUGH KERNELS

A key benefit of using GPLVMs is that we can encode prior information into the generative model,
especially through the kernel design, allowing for more interpretable latent spaces and less training
data. Here, we highlight kernels tailored to scRNA-seq data that correct for batch and cell-cycle
nuisance factors as introduced by Lalchand et al. (2022a).

Batch correction kernel formulation In order to correct for confounding batch effects through
the GP formulation, Lalchand et al. (2022a) proposed the following kernel structure with an additive
linear kernel term to capture random effects:

f̃d ∼ N (µfIN +Φζd,KNN + νΦΦT )︸ ︷︷ ︸
K̃NN

, (7)

which implicitly represents the relation Y = F+ΦB+ ε where Φ ∈ RN×Dcovar is the design matrix
where each row represents the known covariates for each cell; B ∈ RDcovar×Dgene is a random variable
[. . . , Bd, . . .] (Bd denotes a column) representing the random effect of each known covariate on gene
expression Bd ∼ N (ζd, νIDcovar

), ζd ∈ RDcovar , ν ∈ R, ε ∈ RN×Dgene represents the noise model
and µf ∈ R is a constant mean for the latent functions. For most of this work, we use an SE-ARD
kernel with additive linear kernel, henceforth denoted as SE-ARD+Linear.

Cell-cycle phase kernel When certain genes strongly reflect cell-cycle phase effects, obscuring
key biological factors, a kernel designed to explicitly address a cell-cycle latent variable can effec-
tively mitigate these effects. This motivates the use of adding a periodic kernel to the above kernel
formulation. In particular, we specify the first latent dimension as a proxy for cell-cycle information
and model our kernel as:

kf̃ (x,x
′) = σ2

f exp

(
−2 sin2(|x1 − x′

1|/2)
l21

)
× exp

(
−

Q∑
q=1

(xq − x′
q)

2

2l2q

)
+ νΦΦT (8)

= kper × kse-ard + klin, (9)

where θ =
{
σ2
f , {l}

Q
q=1, ν, µf , ζd

}
are the hyperparameters of the BGPLVM. In particular, the

periodic kernel helps capture the effects of the cell-cycle phases. We will refer to this kernel as
PerSE-ARD+Linear, which will be used in our study of the innate immunity dataset discussed in
Section 4.

3 OUR MODEL

In the sections below, we discuss a set of modifications to the baseline model presented above,
which form the main contributions of this work. In particular, we show that row (library) nor-
malizing the data, using an appropriate likelihood, incorporating batch and cell-cycle information
via SE-ARD+Linear and PerSE-ARD+Linear (Section 2.2) and implementing a modified encoder
significantly improves the BGPLVM’s performance. We present the schematic of the modified BG-
PLVM in Figure 1.
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3.1 PRE-PROCESSING AND LIKELIHOOD

Raw scRNA-seq data are discrete and must be pre-processed to better align with the Gaussian like-
lihood in the probabilistic model of the baseline discussed above, which we call OBGPLVM (short
for Original Bayesian GPLVM). However, the assumption that this pre-processed data are normally
distributed is not necessarily justified. Instead of adjusting the data to fit our model, we aim to better
adapt our likelihood to the data. In particular, we only normalize the total counts per cell (i.e. library
size) to account for technical factors (Lun et al., 2016) and adopt a negative binomial likelihood like
that in scVI (detailed in Appendix A.1).

In particular, we use a negative binomial with fixed scaling factor ℓ = 5000 and r = 106. This is
the simplest likelihood function and approximates a Poisson distribution. To account for sequencing
depth differences, the likelihood requires the raw count data to be library size normalized to 5000
first. We call this likelihood ApproxPoisson. 1

ynd ∼ Negative Binomial
(
5000× softmax(f̃d(xn)), 10

6
)
. (10)

In our initial experiments, we found that the more complex the likelihood function was (in terms
of parameters to be learned), the worse the resulting BGPLVM-learned latent space was. While
one may expect the more complex and expressive likelihoods to perform better, this opposite trend
may be because the model is non-identifiable. That is, especially since the loss function does not
explicitly optimize for latent space representations, the extra parameters may overfit and cause the
model to fail to learn important biological signals. One such ablation study is presented in Appendix
B.3.2. Due to this observation, we focus on the simplest (and best performing) negative binomial-
based likelihood, ApproxPoisson.

3.2 ENCODER

In the encoder analysis, we compare a simple encoder comprised of linear layers followed by soft-
plus activations (Simple NN) with the scVI’s more complex encoder (scVI NN). scVI NN incor-
porates batch information as input to the nonlinear mapping, so incorporating this encoder into the
BGPLVM may help address batch effects observed in the raw count data. Additionally, the scVI en-
coder architecture includes batch normalizations, contributing to a more stable optimization process,
which we leverage for our GPLVM implementation.

Figure 1: Overview of Modified BGPLVM Model

4 RESULTS AND DISCUSSION

We present results for three experiments on an simulated dataset and two real-world datasets, which
are detailed in Appendix B.1. Full experiment details and results with latent space metrics are also
presented in Appendix B and D.

1The scVI negative binomial distribution’s parameterization is equivalent to the generative model, y|w ∼
Poisson(w) with w ∼ Γ(θ, θ/µ). Note that w θ→∞∼ N (µ, µ/θ) → δ(µ), and thus y

approx.∼ Poisson(µ).
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4.1 EACH COMPONENT IS CRUCIAL TO MODIFIED MODEL PERFORMANCE

To better understand how each component affects our model performance, we conducted an ablation
study with a synthetic scRNA-seq dataset distributed according to a true negative binomial likelihood
simulated by Splatter (Zappia et al., 2017). In particular, we reverted each component to a more
standard BGPLVM component to evaluate its importance to the model’s overall performance. The
results for this experiment are detailed in Figure 2 for the simulated dataset. Changing the pre-
processing step and likelihood to match a Gaussian distribution as is done in standard GPLVMs
completely removes any perceivable cell type separation and results in separated batches (Fig. 2(b)).
These observations support our hypothesis that the likelihoods were misaligned with the underlying
distribution, at least for the simulated single-cell dataset.

If the SE-ARD+Linear kernel is changed to a fully linear kernel (detailed in Appendix B.3.1), the
batches separate while the cell-types begin to mix but are still slightly differentiable, albeit within
the separated batches (Fig. 2(c)). These changes may be attributed to the fact that linear kernel is not
expressive enough to capture the cell-type information while the nonlinearity of the SE-ARD+Linear
kernel permits extra flexibility.

In this reverse ablation study, the encoder exhibits the least impact on the latent space representation,
as evidenced by the clear separation of cell types and well-mixed batches in Fig. 2(d). This behavior
can be attributed to the encoder playing a smaller role in defining the generative model as it primarily
functions as a means of regularization for mappings from the data space to the latent space.

Figure 2: Ablation study with the simulated dataset on the proposed BGPLVM model where we
change one component at a time (labeled in subfigures) and visualize the resulting UMAPs. The top
row is colored by cell-type and the bottom row by batch.

4.2 MODIFIED MODEL ACHIEVES SIGNIFICANT IMPROVEMENTS OVER STANDARD BAYESIAN
GPLVM AND IS COMPARABLE TO SCVI

We compare our proposed model with three benchmark models: OBGPLVM, the current state-of-
the-art scVI (Lopez et al., 2018) (Appendix A.1), and a simplified scVI model with a linear decoder
(LDVAE) (Svensson et al., 2020) (Appendix A.2) on the synthetic dataset and a real-world COVID-
19 dataset (Stephenson et al., 2021). The UMAP plots for the COVID dataset are presented in Figure
3 and the detailed latent space metrics and UMAP plots are given in Appendix D.

Based on the UMAP visualizations, we observe that for both the simulated and COVID datasets,
the modified BGPLVM achieves more visually separated cell types and mixed batches compared to
the standard Bayesian GPLVM. The model also achieves visually comparable visualizations to scVI
and LDVAE (Figures 7 and 3). While the modified model may not achieve better performance when
compared to scVI and LDVAE, the GPLVM offers a more intuitive way to encode prior domain
knowledge, and exploring such kernels and likelihoods more tailored to specific datasets are left for
future work.
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Figure 3: UMAPs generated from the latent spaces of four models: an implementation of the original
BGPLVM, the modified BGPLVM for scRNA-seq data, scVI, and a linear decoder scVI (LDVAE)
for the COVID data set. The top row is color/shaded by cell type and the bottom by batch.

4.3 CONSISTENCY OF LATENT SPACE WITH BIOLOGICAL FACTORS

An advantage of our model is the ability to incorporate biologically interpretable data to boost latent
space interpretability and overall performance. In particular, we compared our learned latent space
with previous expert-labelled inferences on the innate immunity dataset in Kumasaka et al. (2021).
Pretraining on well-initialized latents and finetuning our model with a PerSE-ARD+Linear kernel
allowed us to recover latents consistent with those inferred and biologically motivated in Kotliar
et al. (2019) (Figure 4 (top row)) while also separating cells by their treatment conditions (Figure
4 (bottom row)). Moreover, as indicated by the color gradations in the right two UMAP plots in
the bottom row, the model’s learned latent space is able to distinguish immune response pseudotime
directions. This shows how initializations can be done on the amortized BGPLVM encoder-decoder
models.

Figure 4: (Top row) Plots of log means and log variances (both parametrized by the same GP)
versus learned cell-cycle pseudotime dimension for three specific genes (UBE2C, CDC6, FN1).
The squares depict log variances and the circles depict log means of the library normalized data,
both colored by the phases annotated in Kumasaka et al. (2021). We see that our model’s learned
cell-cycle phases correspond roughly to the phases labelled in Kumasaka et al. (2021). (Bottom
row) UMAP plots of our model’s learned latent space excluding directions identified with hidden
technical effects (e.g. batch and plate border effects). Cells are colored by treatment condition (left),
primary (middle) and secondary (right) pseudotime directions.
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5 CONCLUSION

This paper identifies a misalignment in the generative model of current GPLVMs used in single-cell
data and proposes an amortized BGPLVM better adapted to the scRNA-seq dimensionality reduc-
tion setting. In particular, by drawing insight from commonly used single-cell-specific methods, in-
cluding scVI, LDVAE, and Splatter single-cell simulations, our proposed model tackles three main
aspects of single-cell data by (1) accounting for count data with an approximate Poisson likelihood,
(2) incorporating batch effect modelling in both the encoder and GP kernel, and (3) normalizing
the library size in the data via a pre-processing step. We demonstrate the importance of aligning
modelling choices to domain-specific knowledge as the model achieves comparable performance to
scVI on both a simulated dataset and real-world COVID dataset in both UMAP visualizations and
commonly used latent space metrics.
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A BASELINE MODELS

A.1 SCVI

Proposed in 2019 by Lopez et al. (2018), single-cell variational inference (scVI) is a variational
autoencoder that is tuned for single-cell data and has been shown to match current state of the art
methods in a variety of downstream tasks, including clustering and differential expression (Lopez
et al., 2018; Luecken et al., 2022). Furthermore, due to its neural network structure, the model is
scalable to large datasets. An overview of the model is presented in Figure 5.

Figure 5: Overview of the scVI architecture adapted from Lopez et al. (2018).

We highlight several key components of the model that target phenomena commonly seen in single-
cell data: (1) count data, (2) batch effect, and (3) library size normalization.

Count Data. As scRNA-seq raw count data are discrete, scVI adopts various discrete likelihoods,
such as the negative binomial likelihood, for its models. This allows the model to learn a latent space
directly from the raw expression data without any conventional pre-processing pipelines. Note that
the original paper uses the zero-inflated negative binomial likelihood for the main model to account
for dropouts, where gene expressions for a cell are not detected due to technical artifacts (Lopez
et al., 2018; Luecken & Theis, 2019).

Accounting for Batch Effects. scVI also models for any effects from different sampling batches
by incorporating batch ID information for each cell in both the encoding and decoding portions of
the VAE model. While batch information is incorporated as input to the neural network encoder and
decoders, it is unclear how exactly the batch effects are modelled.

Library Size Normalization. The third component scVI accounts for is the differences in total
gene expression count per cell, or library size, of the data. In the raw count data, each cell has
different total gene counts, which may affect comparisons between cells and impact downstream
analysis (Hie et al., 2020). As this difference in library size, or sequencing depth, may be a result
of technical noise, scVI chooses to model a scaling factor ℓ stand-in for library size. This latent
variable is modelled as a log normal as done in Zappia et al. (2017) mappings from the raw counts
and batch information to the mean and variance learned by the neural network encoder. To avoid
conflating the effects of the scaling factor and of biological effects in the data, a softmax is applied

9



Machine Learning for Genomics Explorations workshop at ICLR 2024

to the output of the decoder before being multiplied by the scaling factor to determine the negative
binomial likelihood mean.

With these three key components in mind, scVI’s generative model for a given data point yn as
follows:

Prior on latents: p(xn) = N (xn|0, IQ) (11)
Prior on scaling factor: p(ℓn) = LogNormal(ℓn|ℓµ, ℓσ2) (12)
Likelihood: p(yn|xn, ℓn,ϕn) = NegativeBinomial (yn|ℓnsoftmax (fW (xn,ϕn)) , r) , (13)

where ϕn represents the batch information of cell n, fW (xn,ϕn) is a neural network decoder in-
corporating batch information, and ℓµ and ℓσ2 are given by the empirical mean and variance of the
log library size in the batch containing data point n. Here, the negative binomial is parameterized
by the mean and inverse dispersion, so that the model has mean ℓnsoftmax (fW (xn,ϕn)) and shape
r. In this parameterization, when r → ∞, this distribution approaches a Poisson distribution with
mean equivalent to ℓnsoftmax (fW (xn,ϕn)).

The corresponding loss term for each data point is given by

L(q(x, ℓ)) = Eq(x,ℓ|y,ϕ) [log p(y|x, ℓ,ϕ)]− KL(q(x|y,ϕ)||p(x))− KL(q(ℓ|y,ϕ)||p(ℓ)), (14)

where the parameters to be optimized are the weights of the neural network encoders and decoders
as well as the inverse dispersion factor r of the negative binomial likelihood. The way in which the
loss can be decomposed into terms for datapoint allows the model to be trained with mini-batching
(Hoffman et al., 2013).

While scVI has been shown to perform well in a variety of downstream tasks (Lopez et al., 2018;
Luecken et al., 2022), its complex architecture (as seen in Figure 5) and opaque incorporation of
known nuisance variables like batch effects make the model and its inferences difficult to interpret.

A.2 LDVAE

In response to this lack of interpretability in the original scVI, Svensson et al. (2020) proposed a
linear version of scVI, where the neural network decoder is replaced with a linear mapping. In
particular the LDVAE model is defined in the generative way as follows:

Prior on the latent variables: p(xn) = N (xn|0, IQ), (15)
Prior on scaling factor: p(ℓn) = LogNormal(ℓn|ℓµ, ℓσ2), (16)

Likelihood: p(yn|xn, ℓn) = NegativeBinomial
(
yn|ℓnsoftmax

(
xnW

T
)
, r
)
, (17)

where W represents the linear mapping. Note that the mapping from latent space to data space is
not completely linear as a nonlinearity is introduced in the softmax function. Moreover, Svensson et
al. explored applying a BatchNorm layer to the linearly decoded parameters and found it matched
or improved model performance in reconstruction error and learning the latent space in a mouse
embryo development dataset (Svensson et al., 2020; Cao et al., 2019). This BatchNorm layer is
thus adopted in the LDVAE model, which further obscures a straightforward interpretation of the
mapping defined by the decoder.

Thus, while the LDVAE model allows for a more interpretable mapping from the latent space to the
dimension space when compared to scVI, the use of a library size surrogate and a not clearly defined
incorporation of batch information through NNs make both models less interpretable.

B EXPERIMENT DETAILS

B.1 DATA

We evaluate these models with two datasets: (1) a simulated dataset using the single-cell simulation
framework Splatter (Zappia et al., 2017) and (2) a COVID-19 dataset (Stephenson et al., 2021).

Simulated Data. As the focus of our work is to dissect the assumptions made in single-cell data, we
build our model based on a synthetic scRNA-seq dataset generated by the Splatter Splat scRNA-seq
simulation (Zappia et al., 2017). The data are modelled off of a negative binomial distribution based
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on a hierarchical Gamma-Poisson model, where the parameters are drawn from the dataset (Kotliar
et al., 2019). The data are simulated with seven cell types and two batches, with 10000 cells in each
batch and 10000 genes per cell. We then remove cells with fewer than 200 total gene expression
counts and genes that are expressed in three or fewer cells. This results in a synthetic dataset having
16016 cells and 8819 genes.

COVID-19 Data. The COVID-19 dataset (Stephenson et al., 2021) is a real world dataset comprised
of gene expression counts obtained from peripheral blood mononuclear cells. This dataset includes
samples from 107 patients exhibiting different degrees of COVID-19 severity, as well as samples
from 23 healthy individuals. There are three main sampling locations – Sanger, Cambridge, and
Newcastle – and the dataset also includes sample ID (143 batches total), where the sample IDs
have unique codes for the sampling locations. There are 143 such sample IDs and 18 cell types
considered. For this project, we take a subsample of this dataset that takes 100 000 cells and 5000
most variable genes as determined by Scanpy (Wolf et al., 2018).

Innate Immunity Data. The innate immunity dataset of Kumasaka et al. (2021) is comprised of
22,188 primary dermal fibroblasts from 68 donors who were either in the control group or were
exposed to two stimulants to mimic innate immune response: (1) dsRNA Poly(I:C) for primary
antiviral and inflammatory responses and (2) IFN-beta for secondary antiviral response. There were
a total of 4999 genes and 7 latent dimensions (including cell-cycle latents).

B.2 EXPERIMENTAL SET-UP

For each of the experiments, we train the model with batch size 300, learning rate 0.05, and three
different seeds: 0, 42, and 123. For the synthetic dataset, we train with 50 epochs and for the
COVID-19 dataset, we use 15 epochs, which is sufficient for convergence for the corresponding
datasets. The latent space dimension is set to Q = 10 for all models. For evaluation, we use seed
1 for all UMAP visualizations, and the latent metrics are reported with the average and standard
deviation (each up to two decimal digits) over the three training runs for each model. We use the
CSD3 high-performance computers for model training.

B.3 EXTRA MODIFICATIONS AND EXPERIMENTS

B.3.1 LINEAR KERNEL

For the ablation study, we also consider a linear kernel that models the augmented latent space
information

klinear(x̃, x̃
′) = νx̃x̃′T , (18)

where x̃ = [xT ϕT ]T ∈ RQ+Dcovar is the augmented latent variable that includes covariate informa-
tion ϕ. ν is a variance parameter.

The corresponding augmented GP with linear mean and linear kernel is given by:

p(f̃d|X̃) = N (f̃d|µf1N + X̃wd, K̃NN ), (19)

where 1N ∈ RN is a vector of 1s, wd ∈ RQ defines the linear mean, X̃ ∈ RN×(Q×Dcovar) is the
matrix of latent variables X̃ augmented by the known covariates Φ, and K̃NN = klinear(X̃, X̃).

B.3.2 LIKELIHOODS

In our ablation studies, more complex likelihoods (for example, a negative binomial likelihood
where the library size of each row was learned) were observed to perform poorly, and likelihood
simplifications like using the approximate Poisson likelihood led to improved performance (see Fig.
6). This phenomenon could be explained by an issue with the identifiability of the model. The extra
parameters in the model allow more flexibility in these likelihoods, but may also be learning and ab-
stracting away pertinent cell-type information from the latent space variables. When the library size
parameter is learned slowly, the model may be biased towards high-count cells, potentially disre-
garding the rest of the data and attributing latent space factors to technical noise rather than relevant
biological differences. By constraining our likelihoods to slightly misaligned models, we may be
encouraging the BGPLVM model to learn the 0s and smaller count values extremely well.
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Figure 6: UMAP plots for an extended ablation study on the proposed model’s likelihood. When
library size is learned, the cell types become fully mixed (left) and the batches become separated
(right).

C LATENT SPACE METRICS

In this work, we compare these latent spaces both qualitatively and quantitatively. For qualitative
measurements, we refer to UMAP 2-D visualizations (McInnes et al., 2018). However, since UMAP
is a stochastic mapping and the visualized distances between datapoints are not reflective of the
true distances in the latent space (McInnes et al., 2018), we also turn to quantitative latent space
measurements pertinent to single-cell data. In particular, we focus on five quantitative metrics used
in single-cell integration benchmarking that measure how well the latent space clusters cell types
and how well the latent space mixes samples by batch (Luecken et al., 2022). The measurements
for cell-type separation in latent space are detailed in Bio Conservation Metrics (Section C.1) and
measurements for batch mixing are detailed in Batch Correction Metrics (C.2).

In our experiments, following convention in Luecken et al. (2022), we average the batch variables
to obtain an average batch metric score, and we average the bio-conservation metrics to obtain an
average bio metric score. While Luecken et al. (2022) propose an overall latent space score obtained
through a weighted average of these two metrics, we deviate from this approach. We observed that
models that failed to learn meaningful information could still yield high batch mixing scores (due
to indiscriminate mixing) and consequently lead to misleading total scores. Hence, we choose to
report only the average batch metric score and average bio metric score, separately.

C.1 BIO CONSERVATION METRICS

We measure the latent space’s ability to separate by cell-type with three different bio metrics: nor-
malized mutual information (NMI), adjusted rand index (ARI), and cell-type average silhouette
width (cellASW).

The NMI and ARI metrics require comparing cell-type information with learned clusterings from
the latent space. To help make the metrics comparable for different models, we define the learned
clusters with the Leiden clustering method with default resolution = 1 (Traag et al., 2019) on the
latent space projections. We also considered k-means clustering on the latent space projections
but found that the resulting metrics were sometimes not reflective of the perceived clusters (e.g.
when clearly-defined clusters are long and thin and close together width-wise, k-means outputs poor
metrics).

Normalized Mutual Information (NMI). NMI compares the overlap of two clusterings, taking on
values between 0 and 1 where 0 indicates no overlap and 1 indicates perfect overlap.

More formally, let T define the true cell type labels with #T distinct clusters and C denote the
predicted clusterings with #C distinct clusters. Furthermore, let {Ti}#T

i=1 denote the different clus-
ters in T and {Cj}#C

j=1 denote the different clusters in C, and for each cluster |Cj | is the number of
samples in cluster Cj . N is the total number of samples being clustered. Then, NMI is defined as
follows:

NMI(T, P ) =
2I(T ;C)

H(T ) +H(C)
, (20)
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where

I(T ;C) =

#T∑
i=1

#C∑
j=1

P (Ti ∩ Cj) log

(
P (Ti ∩ Cj)

P (Ti)P (Cj)

)

=

#T∑
i=1

#C∑
j=1

|Ti ∩ Cj |
N

log

(
N |Ti ∩ Cj |
|Ti||Cj |

)
(21)

is the mutual information of T and C and

H(T ) = −
#T∑
i=1

|Ti|
N

log
|Ti|
N

(22)

denotes the entropy of T (and is similarly defined for C).

Adjusted Rand Index (ARI). Adjusted Rand Index (ARI) also compares two clusterings but ARI
(1) counts the pairwise agreements between the clusterings instead element-wise comparisons as
done in NMI; and (2) adjusts for chance. The measurement usually takes on values between 0 and
1, and may extend to −0.5 for very different clusterings (Luecken et al., 2022).

For a given sample S of N samples, Rand index by itself captures the proportion of samples upon
which the two clusterings X and Y capture similar information. More formally,

RI =
a+ b

a+ b+ c+ d
=

a+ b(
N
2

) , (23)

where

• a is the number of pairs that are in the same cluster in T and in the same cluster in C

• b is the number of pairs that are in different clusters in T and in different clusters in C

• c is the number of pairs that are in same cluster in T and in different clusters in C

• d is the number of pairs that are in different clusters in T and in the same cluster in C

ARI is the corrected-for-chance version of RI.

ARI =
RI − Expected RI

max(RI)− Expected RI
. (24)

Cell Average Silhouette Width (Cell type ASW). The cell-type average silhouette width measures
how compact the predicted clusters are by comparing the intra-cluster distances with inter-cluster
distances. A score of 1 indicates well-separated and compact clusters while a score of 0 indicates
misaligned or overlapping clusters. The clusters in this case are defined by the cell-types.

For a cell n of cell type Cj , its silhouette score is defined as:

s(n) =
b(n)− a(n)

max(a(n), b(n))
, (25)

where a(n) is the average (Euclidean) distance between cell n and the other cells of the same cell-
type and b(n) is the minimum average (Euclidean) distance between cell n and a cell of a different
cell type. More formally,

a(k) =
1

|Cj | − 1

∑
l∈Cj

d(k, l), (26)

b(k) = min
j′ ̸=j

1

|Cj′ |
∑
l∈Cj′

d(k, l). (27)

Then, the average silhoutte width for each cell-type cluster Cj is defined as the average silhoutte
scores for each cell of that type:

ASWj =
1

|Cj |
∑
n∈Cj

s(n). (28)
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Cell type ASW simply scales the average silhouette width over all cell-types so that instead of taking
values between -1 and 1, it takes on values between 0 and 1:

cell type ASWj =
1

2

1 +
1

M

M∑
j=1

ASWj

 ,

where M is the total number of cell types.

C.2 BATCH CORRECTION METRICS

Batch Average Silhouette Width. Much like Cell-type ASW, Batch ASW also measures the com-
pactness of the predicted clusters. However, for the case of batches, we want the clusters to be
spread out, so the Batch ASW formula must be adjusted accordingly so that a score of 1 reflects
well-mixed batches and a score of 0 reflects poorly mixed batches. This is done by first introducing
the absolute silhouette width for a cell n,

sbatch(n) = |s(n)|, (29)

so that 0 represents a perfectly-mixed batch and any other value represents some deviation from
being well-mixed.

The Batch ASW for a cell-type j is then

batch ASWj =
1

|Cj |
∑

n ∈ Cj1− sbatch(n). (30)

The overall Batch ASW is given by

batch ASW =
1

M

M∑
j=1

batch ASWj . (31)

Graph Connectivity The graph connectivity score represents how well the kNN graph connects
cells of the same type. If there is good batch mixing, we would expect the cells of the same type
to be clustered together, representing well connected same cell-type subgraphs. Conversely, when
batches are not corrected for, cells of the same type could be dispersed across the latent space and
not connected by the kNN graph.

This idea is formally represented by the following graph connectivity metric:

GC =
1

M

M∑
j=1

|LCC(G(Nj ;Ej)

|Nj |
, (32)

where G(Nj ;Ej) is the subgraph containing only cells of cell type j, Nj is the set of nodes of
cell-type j, and LCC(G(Nj ;Ej)) is the Largest Connected Component of the subgraph G(Nj ;Ej).
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D DETAILED METRICS

We report the latent metrics for the first two experiments, taking the mean and standard deviation
across trained models from three different seeds. Blue columns correspond to batch metrics and
Green columns correspond to cell-type metrics.

D.1 ABLATION STUDY

Model
Change BatchASW iLisi kBET

Graph
Connec-

tivity

NMI
Leiden

ARI
Leiden cellASW cLisi

Simple NN 0.843 ±
0.003

0.881 ±
0.095

0.141 ±
0.245

0.338 ±
0.571

0.237 ±
0.394

0.110 ±
0.189

0.557 ±
0.157

0.511 ±
0.424

Gaussian
Likelihood

0.447 ±
0.164

0.000 ±
0.000

0.015 ±
0.005

0.262 ±
0.158

0.003 ±
0.001

0.000 ±
0.000

0.429 ±
0.010

0.335 ±
0.010

Linear
Kernel

0.088 ±
0.005

0.000 ±
0.000

0.000 ±
0.000

0.517 ±
0.001

0.627 ±
0.069

0.352 ±
0.100

0.486 ±
0.005

0.988 ±
0.005

Table 1: Latent space metrics for the ablation study on simulated dataset.

D.2 BENCHMARKING

(a) OBGPLVM (b) Proposed Model (c) scVI (d) LDVAE

Figure 7: UMAPs generated from the latent spaces of four models: an implementation of the original
BGPLVM, the modified BGPLVM for scRNA-seq data, scVI, and a linear decoder scVI (LDVAE)
for the simulated dataset. The top row is color/shaded by cell type and the bottom by batch.

Model BatchASW iLisi kBET
Graph

Connec-
tivity

NMI ARI cellASW cLisi

OBGPLVM 0.527 ±
0.472

0.319 ±
0.495

0.284 ±
0.424

0.582 ±
0.200

0.00247 ±
0.00036

0.00026 ±
0.00020

0.475 ±
0.004

0.321 ±
0.002

Proposed
model

0.877 ±
0.049

0.570 ±
0.199

0.260 ±
0.149

0.998 ±
0.001

0.912 ±
0.061

0.849 ±
0.119

0.643 ±
0.026 1.0 ± 0

LDVAE 0.978 ±
0.049

0.913 ±
0.199

0.854 ±
0.149

1.000 ±
0.001

0.999 ±
0.061

1.000 ±
0.119

0.700 ±
0.026 1.0 ± 0.0

scVI 0.983 ±
0.002

0.916 ±
0.005

0.885 ±
0.028

1.000 ±
0.001

0.903 ±
0.061

0.805 ±
0.158

0.601 ±
0.012

1.000 ±
0.001

Table 2: Latent space metrics for benchmarking on the simulated dataset.
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Model BatchASW iLisi kBET
Graph

Connec-
tivity

NMI ARI cellASW cLisi

OBGPLVM 0.795 ±
0.088

0.377 ±
0.055

0.465 ±
0.214

0.398 ±
0.258

0.265 ±
0.230

0.055 ±
0.065

0.459 ±
0.095

0.894 ±
0.086

Proposed
model

0.848 ±
0.040

0.230 ±
0.017

0.884 ±
0.009

0.903 ±
0.028

0.606 ±
0.049

0.369 ±
0.053

0.492 ±
0.053

0.989 ±
0.002

linear scVI 0.918 ±
0.001

0.319 ±
0.003

0.861 ±
0.011

0.925 ±
0.001

0.690 ±
0.004

0.458 ±
0.007

0.578 ±
0.001

0.996 ±
0.000

scVI 0.945 ±
0.002

0.335 ±
0.004

0.881 ±
0.005

0.947 ±
0.002

0.722 ±
0.019

0.538 ±
0.053

0.544 ±
0.006

0.995 ±
0.000

Table 3: Latent space metrics for benchmarking on the COVID-19 dataset
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