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Abstract

Sorting is one of the most fundamental algorithms in computer science. Recently, Learned
Sorts, which use machine learning to improve sorting speed, have attracted attention. While
existing studies show that Learned Sort is empirically faster than classical sorting algorithms,
they do not provide theoretical guarantees about its computational complexity. We propose
Piecewise Constant Function (PCF) Learned Sort, a theoretically guaranteed Learned Sort
algorithm. We prove that the expected complexity of PCF Learned Sort is O(nloglogn)
under mild assumptions on the data distribution. We also confirm empirically that PCF
Learned Sort has a computational complexity of O(nloglogn) on both synthetic and real
datasets. This is the first study to theoretically support the empirical success of Learned
Sort, and provides evidence for why Learned Sort is fast.

1 Introduction

Sorting is one of the most fundamental algorithms in computer science and has been extensively studied for
many years. Recently, a novel sorting method called Learned Sort has been proposed (Kraska et al.,|2019). In
Learned Sort, a machine learning model is trained to estimate the distribution of elements in the input array,
specifically, the cumulative distribution function (CDF). The model’s predictions are then used to rearrange
the elements, followed by a minor refinement step to complete the sorting process. Empirical results show
that Learned Sort is faster than classical sorting algorithms, including highly optimized counting-based
sorting algorithms, comparison sorting algorithms, and hybrid sorting algorithms.

On the other hand, there are few theoretical guarantees regarding the computational complexity of Learned
Sort. The first proposed Learned Sort algorithm (Kraska et al.||2019) has a best-case complexity of O(n), but
its expected or worst-case complexity is not discussed. The more efficient Learned Sort algorithms proposed
later (Kristo et al., 2020; 2021a) also have O(n) best-case complexity, but O(n?) worst-case complexity (or
O(nlogn) with some modifications). The goal of this paper is to develop a Learned Sort that is theoretically
guaranteed to be computationally efficient.

We propose Piecewise Constant Function (PCF) Learned Sort, which can sort with an expected complexity
O(nloglogn) under mild assumptions on the data distribution. In addition, we show that PCF Learned Sort
admits a worst-case complexity guarantee that depends on the choice of the internal sorting algorithm. For
instance, if MergeSort—whose worst-case complexity is O(nlogn)—is used, then the worst-case complexity
of PCF Learned Sort is O(nlogn). If we instead use the algorithm by Han| (2020), which has a worst-case
complexity of O(ny/logn), then the worst-case complexity of PCF Learned Sort becomes O(n+/logn). We
then empirically confirm that our Learned Sort can sort with a complexity of O(nloglogn) on both synthetic
and real datasets.
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Independently and concurrently, |Zeighami & Shahabi| (2024) explored complexity-guaranteed Learned Sort.
While our PCF Learned Sort is motivated by similar principles and incorporates comparable design choices,
several key distinctions exist between our approach and theirs. A comprehensive comparison between our
method and that of [Zeighami & Shahabi| (2024) is provided in Section

This paper is organized as follows. Section [2| reviews related literature. Section [3] introduces PCF Learned
Sort and provides complexity theorems with proof sketches. Section ] provides empirical validation of the
theoretical results. We discuss implications and limitations in Section [5} and conclude in Section [6]

2 Related Work

Our research is in the context of algorithms with machine learning (Section . There are two types of
sorting algorithms, comparison sorts (Section and non-comparison sorts (Section , and our proposed
method is a non-comparison sort. However, the idea, implementation, and proof of computational complexity
of our method are similar to those of sample sort, which is a type of comparison sort. Furthermore, our
proposed algorithm and proof of computational complexity are based on those of Learned Index (Section.

2.1 Algorithms with Machine Learning

Our work lies in the emerging area of Learned Sort, where machine learning models accelerate sorting. The
first approach by |Kraska et al.| (]2019b trained a model F (¢) to approximate the CDF F(gq) and placed
each element at position nF'(z), and then applies insertion sort to complete the ordering. While this yields
O(n) in favorable cases, the insertion-based refinement causes a O(n?) worst case. Later implementations
improved cache efficiency (Kristo et al., 2020), robustness to duplicates (Kristo et al., 2021a), and even
introduced cache-friendly CDF models tailored for sorting (Ferragina & Odorisiol 2025), but still relied on
insertion sort and thus retained a quadratic worst-case complexity. Using stronger fallback algorithms such

as Introsort 1997) or TimSort (McIlroyl}, [1993) reduces this to O(nlogn), though this only matches

classical comparison-based sorts and does not fully explain the empirical advantage of Learned Sort.

Parallelization has also been explored: |Carvalho| (2022)) proposed IPLS, integrating learned partitioning into
IPS40 (Axtmann et all2017), and Carvalho & Lawrence| (2023) framed LearnedSort as a sample sort with a
parallel IPS40 implementation. These studies primarily highlight the engineering potential of learned sorting
in parallel settings, which is complementary but orthogonal to our focus on providing theoretical guarantees
for the sequential case.

In a broader context, showed that neural programs can achieve strong generalization and
replicate efficient algorithmic behaviors such as sorting, demonstrating that machine learning can recover
algorithmic complexity classes like O(nlogn) without explicit manual design. This provides a useful per-
spective on the generalizability of learned algorithms.

Related to this, the field of algorithms with predictions studies how machine learning predictions accelerate
classical algorithms (Mitzenmacher & Vassilvitskii, [2022)), with applications in caching (Narayanan et al.|
2018; Rohatgi, 2020; |Lykouris & Vassilvitskii, 2021} [Im et al., 2022)), ski rental (Purohit et al.|2018; Gollapudi
& Panigrahil 2019; [Shin et al.| 2023)), scheduling (Gollapudi & Panigrahi, 2019} [Lattanzi et al., 2020} Lassota
et al., 2023, and matching (Antoniadis et al., 2023} |Dinitz et al., 2021} |Sakaue & Oki, 2022). Sorting with
predictions has also been analyzed (Lu et al. [2021} |Chan et al., 2023; Erlebach et all [2023), including
tight guarantees by Bai & Coester| (2023). In the context of algorithms with predictions, machine learning
predictions are typically assumed to be available at no cost, and the models are treated as an opaque box.
This exclusion contrasts with our problem setting, where we ensure that the computational complexity covers
the entire process from receiving an unsorted array to returning a sorted array.

2.2 Comparison Sorts

Sorting algorithms that use comparisons between keys and require no other information about the keys
are called comparison sorts. It is well-known that the worst-case complexity of a comparison sort is at
least Q(nlogn). Commonly used comparison sorting algorithms include QuickSort, heap sort, merge sort,
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and insertion sort. The GNU Standard Template Library in C++ uses Introsort 1997)), an algo-
rithm that combines QuickSort, heap sort, and insertion sort. Java 2023)) and Python up to version

3.10 (Peters, 2002) use TimSort (Mcllroy, [1993), an improved version of merge sort. Python 3.11 and later

use Powersort (Munro & Wild}, [2018)), a merge sort that determines a near-optimal merge order.

Sample sort (Frazer & McKellar] [1970) extends QuickSort by using multiple pivots instead of one. Sample
sort samples a small number of keys from the array, determines multiple pivots, and uses them to parti-
tion the array into multiple buckets. The partitioning is repeated recursively until the array is sufficiently
small. Among its implementations, the in-place parallel superscalar sample sort (Axtmann et all [2017) was
introduced as a highly efficient parallel algorithm, and later engineering refinements further improved its
performance (Axtmann et al.| [2022)). Its computational and cache efficiency is theoretically guaranteed by a
theorem about the probability that the pivots partition the array (nearly) equally.

2.3 Non-Comparison Sorts

Non-comparison sorts use information other than key comparison. Radix sort and counting sort are the
most common types of non-comparison sorts. Radix sort uses counting sort as a subroutine for each digit.
When the number of digits in the array element is w, the computational complexity of radix sort is O(wn).
Thus, radix sort is particularly effective when the number of digits is small. There are several variants of
radix sort, such as Spreadsort 7 which integrates the advantages of comparison sort into radix
sort and is implemented in the Boost C++ Libraries, and RegionSort (Obeya et all 2019)), which enables
efficient parallelization by modeling and resolving dependencies among the element swaps.

In addition, non-comparison sorting algorithms tailored for specific data types have been developed. For
integer arrays, a deterministic algorithm with worst-case complexity of O(nloglogn) (Han,[2002) and a ran-
domized algorithm with expected complexity of O(n+/loglogn) (Han & Thorupl 2002) have been proposed.
For real-valued arrays, recent advances have led to the development of a sorting algorithm with a worst-case
complexity of O(n+/Togn) . Our PCF Learned Sort also targets real-valued arrays and, under
mild assumptions on the distribution, achieves an expected complexity of O(nloglogn). Moreover, when
the algorithm of is used as the internal sorting component, PCF Learned Sort has a worst-case

complexity o n+/logn), which matches that of |Han .
plexity of O(ny/Iogn), which hes that of [Han| (2020)

2.4 Learned Index

Kraska et al.| (2018) showed that index data structures such as B-trees and Bloom filters can be made
faster or more memory efficient by combining them with machine learning models and named such novel
data structures Learned Index. Since then, learning augmented B-trees (Wang et al., 2020; Kipf et al., [2020
Ferragina & Vinciguerra), 2020} Zeighami & Shahabil, 2023)), Bloom filters (Mitzenmacher} 2018} [Vaidya et al.
2021} [Sato & Matsui, [2023} 2024)), and even range-minimum query structures (Ferragina et al.l |2025) have
been proposed. There are several works on learning augmented B-trees whose performance is theoretically
guaranteed. PGM-index (Ferragina & Vinciguerral, |2020) is a learning augmented B-tree that is guaranteed
to have the same worst-case query complexity as the classical B-tree, i.e., O(logn). |Zeighami & Shahabi
(2023) proposed a learning augmented B-tree with an expected query complexity of O(loglogn) under mild
assumptions on the distribution. More broadly, this line of research connects to earlier studies on compressed
data structures with provable guarantees, such as the foundational work of (2007).

3 Methods

This section introduces our Learned Sort framework and its PCF-based instantiation. In Section [3.1] we set
up the notation, in Section we present the general framework, and in Section we instantiate it with
a PCF-based CDF model to obtain concrete complexity guarantees.
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Figure 1: PCF Learned Sort: First, the input array is partitioned into v + 1 buckets using a CDF model-
based method. Buckets larger than ¢ or smaller than 7 are sorted with a standard sort (e.g., IntroSort
or QuickSort). Otherwise, the recursive model-based bucketing is repeated. Finally, the sorted arrays are
concatenated. The CDF model used for bucketing is a Piecewise Constant Function (PCF). The function is
constant within each interval, and the interval widths are constant.

3.1 Notation and Setup

Following the learned-sort paradigm [Kraska et al.| (2019)); Kristo et al.| (2020} 2021a), our learned sort
algorithm recursively applies model-based bucketing. Model-based bucketing partitions the array into multiple
buckets using a CDF model trained on the input so that the bucket with the larger ID gets the larger value.

Let D C R be the domain of possible key values and & € D" be the input array. For vector/array v, we
write |v| for its length (number of elements), e.g., || = n. If |x| is smaller than a fixed threshold 7 € N,
the algorithm falls back to a classic sorting algorithm. We refer to this fallback classical sorting algorithm
as the standard sort. As the standard sort, we can use any sorting algorithm, such as IntroSort, QuickSort,

or the algorithm of (2020).

For model-based bucketing, we define functions a(n), 8(n),v(n),d(n) : N — N as follows: a(n) is the number
of samples used to train the CDF model, 8(n) is the number of PCF bins (a hyperparameter; see Section7
~v(n) + 1 is the number of buckets, and d(n) is the threshold that determines the behavior after bucketing
(see Section [3.2)). For brevity, we write a, 3,7, 4.

3.2 Learned-Sort Framework

Algorithm description. At a high level, our algorithm is a recursive model-based bucketing scheme aug-
mented with an exception-handling mechanism for bucketing “failures.” This exception-handling mechanism
greatly simplifies the analysis of both expected and worst-case complexity. The overall workflow is visualized
in Figure[l} and the pseudocode is given in Algorithm

If the length of the input array is less than 7, our algorithm sorts the input array using a standard sort (e.g.,
IntroSort or QuickSort). Otherwise, model-based bucketing is performed.

The model-based bucketing method M takes an input array & and partitions it into several buckets. First,
all or some elements of & are used to train the CDF model F': D — [0, 1]. The F(g) is trained to approximate
the empirical CDF Fy(q) = i € {1,...,n} | 2; < ¢|/|x|. Any non-decreasing model can serve as the CDF
model F(q) (e.g., linear models, monotonic MLPs, or the PCF introduced in Section .
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Algorithm 1 The Learned Sort algorithm

1: Input: £ € R* Output: Tsoteqa € R™ (the sorted version of x)
2: Subroutines:
3: STANDARD-SORT(x) : The standard sort with complexity guarantees (e.g, IntroSort or QuickSort)

4. CDF-MoDEL(z) : Instantiate a CDF Model F(q) that estimates Fj(q)

5: function LEARNED-SORT(x)

6: n <« |CIZ|

7: if n <7 then > Small bucket
8: return STANDARD-SORT(x)

9:  F(q) + CDF-MODEL(zx) > Model-based bucketing
10: Cl%[],CQ(*[L...,C,H_l(*[]

11: fori=1,2,...,n

12: J LF(Z‘Z)’)/J +1

13: ¢;j . APPEND(z;)

14: for j=1,2,....,v+1 > Recursively sort and concatenate
15: if |c;| > ¢ then

16: ¢j < STANDARD-SORT(c;)

17: else

18: ¢j < LEARNED-SORT(c;)

19: Zsorted <~ CONCATENATE(c1, €2, . . ., Cy41)

20: return Tyoried

After training, the CDF model is used to partition the input array x into v + 1 buckets. All v+ 1 buckets,
{cj};ill, are initialized to be empty, and then for each ¢ € {1,...,n}, z; is appended to €| Py | +1-
This is based on the intuition that the number of elements less than or equal to x; in the array @ (i-e.,
H{jeA{l,...,n}|z; <a;}|) is approximately equal to nF'(x;).

We restrict the CDF model F' to non-decreasing functions to ensure that the bucket with the larger ID gets
the larger value, i.e., p€c; AN g€cp N j<k = p<gq. This means that each bucket is responsible for a
disjoint and continuous interval. Let t; = mingee,  (j = 1,...,7 + 1), ty42 = 0o, then the j-th bucket c;
(j=1,...,7+1) is responsible for a continuous interval Z; := [t;,t;11).

After model-based bucketing, our algorithm determines for each bucket whether the bucketing “succeeds” or
“fails” For each j € {1,...,v + 1}, we check whether the size of bucket ¢; is less than . If |¢;| > § (which
means the bucketing “fails”), the bucket is sorted using the standard sort (e.g., IntroSort or QuickSort). If
lej| < 6 (which means the bucketing “succeeds”), the bucket is sorted by recursively calling our Learned
Sort algorithm. Note that the parameters such as v and § are redetermined for each recursion according to
the size of the bucket (i.e., the input array in the next recursion step), and the CDF model is retrained for
each bucket. Finally, the sorted buckets are concatenated to form the sorted array.

Worst-case complexity. The following lemma guarantees the worst-case complexity of our Learned Sort.

Lemma 3.1. Assume that there exists a model-based bucketing algorithm M such that M can perform
bucketing (including model training and inferences) an array of length n into v+ 1 = O(n) buckets with a
worst-case complexity of O(n). Also, assume that the standard sort has a worst-case complexity of O(nU(n)),
where U(n) is a non-decreasing function. Then, the worst-case complexity of our Learned Sort with such M
and § = |n?| (where d is a constant satisfying 0 < d < 1) is O(nU(n) + nloglogn).

This lemma can be intuitively shown from the following two points: (1) the maximum recursion depth is
O(loglogn), and (2) each element of the input array « undergoes several bucketing and only one standard
sort. The first point can be shown from the fact that the size of the bucket in the i-th recursion depth is
less than n . The second point is evident from the algorithm’s design since the buckets sorted by standard
sort are now left only to be concatenated. The exact proof is given in Appendix [A]]
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Note that this guarantee critically relies on the exception-handling mechanism: without it, the recursion
depth could reach ©(n) and the worst-case time would degrade to ©(n?), whereas with it the recursion
depth is always bounded by O(loglogn).

Expected complexity. Next, we introduce a lemma about the expected computational complexity of our
Learned Sort. The following assumption is necessary to guarantee the expected computational complexity.
Assumption 3.2. The input array « € D" is formed by independent sampling according to a probability
density distribution f(z): D — Rx>o.

We define fz(x): Z — Rx¢ to be the conditional probability density distribution of f(z) under the condition
that © € Z for a interval Z C D, i.e., fr(x) := G

fz fy)dy
The expected computational complexity of our proposed Learned Sort is guaranteed by the following lemma.
Lemma 3.3. Let 7 (€ I™) be the array formed by sampling n times independently according to fr(x).
Assume that there exist a model-based bucketing algorithm M and a constant d (€ (0,1)) that satisfy the
following three conditions for any interval Z (C D): (i) M can perform bucketing (including model training
and inferences) on an array of length n, with an expected complexity of O(n), (i) v +1 = O(n), and (i)

Pr[3j, |¢;| > [nl]] = O (lo;n>' Also, assume that the standard sort has an expected complezity of O(nlogn).

Then, the expected complexity of our Learned Sort with such M and § = |n?| is O(nloglogn).

This lemma can be proved intuitively by the following two points: (1) the maximum recursion depth is
O(loglogn), and (2) the expected total computational complexity from the i-th to the (i 4+ 1)-th recursion
depth is O(n). The first point is the same as in the explanation of the proof of Lemma The second
point holds because the expected computational complexity from the i-th to the (¢ + 1)-th recursion depth
is O(nlogn) with probability O(-1—), and O(n) in other cases. See Appendix for the exact proof.

logn

Note that the assumption of Lemma includes “M works well with high probability for any Z (C D).
This is because our Learned Sort algorithm recursively repeats the model-based bucketing. The range of
elements in the bucket, i.e., the input array in the next recursion step, can be any interval Z (C D).

3.3 PCF Learned Sort

We now instantiate the framework with PCF Learned Sort, which satisfies the assumptions of Lemma 3.1
and Lemma [3.3] thereby providing both worst-case and expected-time guarantees. PCF Learned Sort ap-
proximates the CDF using a Piecewise Constant Function (PCF) with 8 equal-width bins; the model output
is constant within each bin (see the right panel of Figure . The study that develops a Learned Index with a
theoretical guarantee on its complexity (Zeighami & Shahabi), 2023) also used PCF as a CDF model. While
our framework admits more expressive CDF models (such as spline-based or neural models), we focus on
PCF due to its minimal training and inference cost and the tractability of its theoretical analysis.

The model-based bucketing method in PCF Learned Sort Mpcp trains the CDF model F as follows. The
parameters a € {1,...,n} and 8 € N are determined by n, where « is the number of samples used to train
the model and $ is the number of intervals in the PCF. The PCF is trained by counting the number of
samples in each interval. We define i(x) = [( — Zmin)B/(Tmax — Tmin)] + 1, where 2y = min; z; and
ZTmax = Max; ;. From x, a samples are taken to form a € D%, and i(z) is used to construct b € Z[;gl with
b; = |{j €{1,...,a} |i(a;) <i}|. This counting procedure trains the PCF. Note that b is an non-decreasing
non-negative array and bgy1 = o, ie., 0 <by <by <--- <bgy1 =

Inference for F(z) is then given by F(z) = b’fTT) Since i(z) and b are non-decreasing, F(z) is also non-
decreasing. Also, 0 < F(w) < 1 because 0 < b; < « for every i.

The following is a lemma to bound the probability that Mpcpr will “fail” bucketing. This lemma is important
to guarantee the expected computational complexity of PCF Learned Sort.

Lemma 3.4. Let o1 and o5 be respectively the lower and upper bounds of the probability density distribution
f(x) in D, and assume that 0 < o1 < 09 < 00. That is, x € D = o1 < f(x) < o9. Then, in model-based
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bucketing of xz (€ I") to {cj}]ill using Mpcr, the following holds for any interval Z (C D):

¥o 2097 . 2n aK 1\?
= — — > ; < — _ S .
K o of 1 = Pr[3j, e >4 < 5 exp{ o 1 % (1)

The proof of this lemma is based on and combines proofs from two existing studies. The first is Lemma
5.2. from a study of IPS%*o (Axtmann et al., [2022), an efficient sample sort. This lemma guarantees the
probability of a “successful recursion step” when selecting pivots from samples and using them to perform a
partition. This lemma is for the method that does not use the CDF model, so the proof cannot be applied
directly to our case. Another proof we refer to is the proof of Lemma 4.5. from a study that addressed
the computational complexity guarantee of the Learned Index (Zeighami & Shahabi, [2023). This lemma
provides a probabilistic guarantee for the error between the output of the PCF and the empirical CDF.
Some modifications are required to adapt it to the context of sorting and to attribute it to the probability
of bucketing failure, i.e., Pr[3j,|c;| > 6]. By appropriately combining the proofs of these two lemmas,
Lemma is proved. The exact proof is given in Appendix

Here, we emphasize that the assumption of this lemma, 0 < 01 < 09 < 00, is sufficiently reasonable and
“mild” as described in (Zeighami & Shahabil, 2023)). It asserts that the probability density function f(x) is
both bounded and nonzero over its domain D. This class of distributions covers the majority of real-world
scenarios because real-world data is commonly derived from bounded and continuous phenomena, e.g., age,
grades, and data over a period of time. Empirically, |Zeighami & Shahabi (2023]) further suggest that the
ratio o9 /07 tends to remain close to 1 in a wide variety of practical datasets, and even for more challenging
cases like OSM, the ratio still appears to remain at most around 20.

Using Lemma [3.1] Lemma [3.3] and Lemma [3.4] we can prove the following theorems.

Theorem 3.5. If Mpcr is the bucketing method, the worst-case complexity of standard sort is O(nU(n))
(where U(n) is a non-decreasing function), and o = 8 =y = § = |n/*], then the worst-case complexity of
PCF Learned Sort is O(nU(n) 4+ nloglogn).

Proof. When a = 8 = v = [n3/*], the computational complexity for model-based bucketing is O(n) because
(i) the PCF is trained in O(a + ) = O(n?/4), and (i) the total complexity of inference for n elements is
O(n), since the inference is performed in O(1) per element. Therefore, since v + 1 = O(n), the worst-case
complexity of standard sort is O(nU(n)), and § = [n®/*], we can prove the worst-case complexity of PCF
Learned Sort is O(nU(n) + nloglogn) by Lemma O

Theorem 3.6. Let o1 and o2 be the lower and upper bounds, respectively, of the probability density distri-
bution f(x) in D, and assume that 0 < 01 < 09 < 0. Then, if Mpcr is the bucketing method, the expected
complexity of standard sort is O(nlogn), and o = B = = & = |n>/*], then the expected complexity of PCF
Learned Sort is O(nloglogn).

Proof. When o = 3 = v = |n%/*|, the computational complexity for model-based bucketing is O(n). Since
K = Q(y/n) when a = f =~ =0 = |n’/*], K > 1 for sufficiently large n, and

%nexp {O;f (1 - ;{)2} = O(ni exp(—v/n)) < O (1();”) : (2)

Given that v + 1 = O(n), the expected complexity of standard sort is O(nlogn), and § = |n3/4], it follows
from Lemma and Lemma that the expected complexity of PCF Learned Sort is O(nloglogn). O

Note that the exact value of o; and o9 is not required to run PCF Learned Sort since the parameters for
this algorithm, i.e., o, S, 7, and §, are determined without any prior knowledge. In other words, PCF
Learned Sort can sort in expected O(nloglogn) complexity as long as 0 < o1 < f(z) < 09 < 00, even if it
does not know the exact value of o7 and o9. If o1 and o2 do not satisfy the assumption of Theorem [3.6]
the expected complexity of PCF Learned Sort increases to O(nU(n) 4+ nloglogn). Such scenarios arise, for
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instance, in heavy-tailed distributions, datasets with extremely sparse regions (o7 = 0), or cases where the
density is highly concentrated at particular values (o = 00). However, thanks to the worst-case bound in
Theorem the complexity never exceeds O(nU(n)+nloglogn). Thus, the algorithm remains robust even
under distributions that do not fully satisfy the assumption.

Alternative CDF Models. Our framework is not limited to PCF; it can also accommodate more expres-
sive CDF models. For instance, we can replace PCF with a spline-based model that approximates the CDF
by interpolating the empirical distribution at bin boundaries. Concretely, given [ intervals, we evaluate the
empirical CDF at the endpoints of each interval and then construct a piecewise linear spline that connects
these values, yielding a continuous and non-decreasing CDF approximation. We refer to the algorithm that
applies this spline-based CDF model within our Learned Sort framework as Spline Learned Sort. We show
that spline-based models constructed in this way still satisfy the assumptions of Lemma [3.3] and thus the
expected time complexity guarantee of O(nloglogn) remains valid. A detailed theoretical proof for the
spline-based case is provided in Appendix

4 Experiments

In this section, we empirically validate our theoretical results. First, in Section we confirm that the
complexity of PCF Learned Sort is O(nloglogn) for both synthetic and real datasets. Then, in Section
we conduct experiments with various parameter settings and empirically confirm Lemma a lemma that
bounds the probability of bucketing failure and plays a crucial role in guaranteeing the expected complexity
of PCF Learned Sort. Finally, in Section [£.3] we present from sorting time measurements.

Setup. We experimented with synthetic datasets created from the following four distributions: uniform
(min = 0, max = 1), normal (g = 0,0 = 1), exponential (A = 1), lognormal (z = 0,0 = 1). The input array
was generated by independently taking n samples from each distribution. Only the uniform distribution
satisfies the theoretical assumptions required for our complexity guarantees. The other distributions violate
these assumptions, but we include them to evaluate the empirical robustness of PCF Learned Sort.

We also used the following 16 real datasets, including Chicago [Start, Tot] (Chicagol 2021), NYC
[Pickup, Dist, Tot] (nyc, [2020), SOF [Humidity, Pressure, Temperature] (Mavrodiev, [2019), Wiki,
OSM, Books, Face (Marcus et al., 2020), and Stocks [Volume, Open, Date, Low] (Onyshchakl, [2020).
Further dataset details are provided in Appendix [B] For each dataset, we randomly sample n elements,
shuffle them, and use them as an input array to examine the complexity of the sort algorithms. Since these
are real-world datasets, we cannot definitively determine whether they satisfy our theoretical assumptions.
However, as shown in the histograms in Figure [2| Chicago [Start], NYC [Pickup, Tot], SOF [Humidity], and
Face appear to distribute values across a relatively dense and continuous domain, aligning well with our as-
sumptions. In contrast, other datasets exhibit long tails or sparse regions, suggesting that our assumptions
may not hold. Furthermore, note that for several datasets (Chicago [Start, Tot], NYC [Dist, Tot], SOF
[Humidity, Pressure, Temperature|, and Stocks [Volume, Open, Date, Low]), the number of unique values is
extremely small (less than 3.2% of the total elements, as detailed in Appendix .

All experiments were run on a Linux machine equipped with an Intel® Core™ i9-11900H CPU @ 2.50GHz
and 62GB of memory. GCC version 9.4.0 was used for compilation, employing the -03 optimization flag.

4.1 Computational Complexity of PCF Learned Sort

We meticulously counted the total number of basic operations for sorting the input array to observe the
computational complexity of each sorting algorithm. Here, the basic operations consist of four arithmetic
operations, powers, comparisons, logical operations, assignments, and memory access. We chose this metric,
which counts basic operations, to mitigate the environmental dependencies observed in other metrics, such as
CPU instructions and CPU time, which are heavily influenced by compiler optimizations and the underlying
hardware. This is the same idea as the metric selection in the experiment of (Zeighami & Shahabi) 2023)).
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Figure 2: Number of operations to sort the array. Below each graph is a histogram visualizing the distribution
of each dataset. The standard deviation of the 10 measurements is represented by the shaded area. Our
PCF Learned Sort consistently achieves a complexity lower than O(nlogn), while Learned Sort 2.0
, which has O(n?) worst-case complexity, occasionally requires huge operations.

The parameters of PCF Learned Sort are set as in Theorems and a=pB=v=46=|n" and
7 = 100. As the standard sort, we used QuickSort, which has an expected complexity of O(nlogn). For
ease of implementation and straightforward measurement of comparison counts, we chose QuickSort. We
compared our PCF Learned Sort against (plain) QuickSort, radix sort, and Learned Sort 2.0
. Learned Sort 2.0 was selected as the learned-method baseline because it allows relatively simple
counting of operations (a broader comparison appears in the sorting time experiments of Section .

Figure [2] shows the number of operations divided by the length of the input array, n. Each point represents
the average over 10 runs, with the shaded region indicating the standard deviation. Note that the horizontal
axis is logarithmic. As a result, the curve for QuickSort (with O(nlogn) complexity) appears approximately
linear in this plot for synthetic datasets and real-world datasets with few duplicates (i.e., NYC [Pickup|, Wiki,
OSM, Books, and Face). In contrast, the curve for PCF Learned Sort is nearly flat, suggesting a complexity
significantly lower than O(nlogn). PCF Learned Sort consistently requires the fewest operations across all
conditions, achieving up to 2.8 times fewer operations than QuickSort. These results confirm not only our
theoretical analysis but also the robustness of PCF Learned Sort under assumption-violating scenarios.
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= 0.75,b = 0.75

Figure 3: Heatmap showing the empirical frequency of bucketing failure, i.e., 37, |¢;| > . The variables
a, b, c,d, except those on the x- and y-axes, were set to 0.75. The white dotted line represents the parameters
that make the right side of Equation equal to 0.5. The close alignment between this white dotted line
and the actual success/fail boundery suggests the theoretical bound by is Equation reasonably tight.

For datasets with many duplicates, QuickSort, Learned Sort 2.0 (Kristo et al., 2021a)), and PCF Learned
Sort all exhibit relatively few operations. This behavior arises because highly duplicated datasets often result
in buckets containing only one distinct value, allowing the algorithms to terminate early. Even under such
conditions, PCF Learned Sort performs fewer operations than the other algorithms.

The curve for radix sort is also flat but lies consistently above that of PCF Learned Sort. This is due to the
difference in partitioning strategies. While the radix sort partitions at a fixed granularity, our PCF Learned
Sort performs partitioning using intervals that are adaptively set by the learning model.

In particular, on the SOF [Temperature] dataset with medium input sizes (2 x 10° < n < 2 x 107), Learned
Sort 2.0 incurs extremely high costs: while all other methods keep the number of operations per n below
100, it can exceed 50,000. This shows that Learned Sort methods without worst-case guarantees may suffer
from pathological overhead. By contrast, our method maintains both expected and worst-case guarantees,
ensuring robust performance across diverse datasets.

4.2 Confirmation of Lemma [3.4]

Lemma[3.4]bounds the probability that a bucket of size greater than § exists. This is an important lemma that
allows us to guarantee the expected computational complexity of PCF Learned Sort. Here, we empirically
confirm that this upper bound is appropriate.

We have experimented with o = [n?|, 3 = [n®],y = [n¢|,6 = |n¢], varying a,b,c,d from 0.05 to 0.95 at
0.05 intervals. For each a,b,c,d setting, the following was repeated 100 times: we took n = 10% elements
from the uniform distribution to form the input array and divided the array into v + 1 buckets by Mpcp,
and checked whether or not 3j, |¢;| > 6. Thus, for each a,b,c,d € {0.05,0.10,...,0.95}, we obtained the
empirical frequency at which bucketing “fails.”

Heat maps in Figure [§]show the empirical frequency of bucketing failures when two of the a, b, ¢, d parameters
are fixed, and the other two parameters are varied. The values of the two fixed variables are set to 0.75, e.g.,
in the upper left heap map of Figure [3| (horizontal axis is a and vertical axis is b), ¢ = d = 0.75. The white
dotted line represents the parameter so that the right side of Equation is 0.5. That is, Lemma asserts
that “in the region upper right of the white dotted line, the probability of bucketing failure is less than 0.5.”

We observe that the white dotted line is close to (or slightly to the upper right of) the actual bound of
whether bucketing “succeeds” or “fails” more often. This suggests that the theoretical upper bound from
Lemmaagrees well (to some extent) with the actual probability. We can also confirm that, as Lemma
claims, the probability of bucketing failure is indeed small in the region upper right of the white line.

4.3 Experiments on Sorting Time

We empirically compare the sorting time of our PCF Learned Sort against several baselines. Note that
the metric used in Section the number of operations, does not change depending on the machine or
compilation method, but the sorting time does. As the standard sort used in PCF Learned Sort, we used
std: :sort, which has a worst-case complexity of O(nlogn). We compared our PCF Learned Sort with
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Figure 4: Time to sort the array. The standard deviation of the 10 measurements is represented by the shaded
area. Our PCF Learned Sort is significantly faster than std::sort, and more importantly, it maintains
robust performance across all datasets, whereas other learned sorts without worst-case guarantees can suffer
catastrophic slowdowns, as seen with Learned Sort 2.0 on the SOF [Temperature| dataset.

std: :sort, radix sort, boost: :sort: :spreadsort::float_sort (Boost C++ implementation of Spread-
sort 2002)), and Learned Sort 2.0 (Kristo et all [2021b). In addition, we evaluated more recent
state-of-the-art learned sorting algorithms (Ferragina & Odorisio, [2025)—Balanced Learned Sort (BLS),
Unbalanced Learned Sort (ULS), and Learned Sort 2.1—as well as IS40 (Axtmann et al.| [2017), one of the
state-of-the-art non-learned sequential sample sort algorithms.

Figure [4] shows the sorting time divided by n. It shows the mean and standard deviation of the 10 mea-
surements for each condition. Note that the horizontal axis is logarithmic, and therefore the curve of
std: :sort, which has a complexity of O(nlogn), is almost linear in this plot for synthetic datasets and
real-world datasets with few duplicates. In contrast, our PCF Learned Sort graph shows a relatively slow
increase, suggesting that PCF Learned Sort has a complexity much smaller than O(nlogn). We see that our
PCF Learned Sort is up to 2.5 times faster than std: :sort. Furthermore, we find that for relatively large
n (> 10°%), our PCF Learned Sort usually outperforms not only radix sort but also Spreadsort, an algorithm
that cleverly incorporates the advantage of comparison sort into radix sort.

The figure also shows that highly optimized methods like IS40 and other learned sorts often outperform PCF
Learned Sort in average speed. This is because these methods are highly optimized implementations that
consider factors like cache efficiency, whereas our implementation prioritizes providing rigorous theoretical
guarantees. However, this speed comes at the cost of robustness: learned sorts without worst-case guarantees
can suffer catastrophic slowdowns. For example, on the SOF [Temperature] dataset with n = 2x107, Learned
Sort 2.0 took up to 326.4 seconds, while our method consistently finished in 0.45 seconds. Moreover, as shown
in our adversarial analysis (Appendix, other recent learned sorts (BLS, ULS, Learned Sort 2.1) also exhibit
vulnerabilities. These results highlight the practical value of our theoretical guarantees.

To better understand runtime behavior, we profiled PCF Learned Sort across its stages (Appendix@[). The
results show that while the training stage is consistently lightweight across datasets and input sizes, the
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bucketing stage often becomes the bottleneck. The dominant cost varies depending on both n and the
dataset characteristics, suggesting opportunities for further optimization.

5 Discussion

Comparison with (Zeighami & Shahabi, 2024]). Most recently, a concurrent work (Zeighami & Sha-
habil [2024) introduced a theoretical framework for learned database operations, including sorting, indexing,
and cardinality estimation. A key strength of their approach is the formal definition of “distribution learnabil-
ity” and its applicability to a broad class of distributions, including those subject to distribution shifts. Using
this framework, they developed a Learned Sort algorithm with an expected running time of O(nloglogn)
under certain distributional assumptions. While their approach employs a bucketing-based sorting algorithm
similar to ours, there are several key differences between their method and ours.

First, their algorithm relies on detailed prior knowledge about the distribution; it explicitly requires a
parameter s, which represents the “learning possibility” of the distribution (see Definition 3.2 in (Zeighami
& Shahabi, [2024) for details). Since s depends on p; and po, their algorithm cannot be executed without
knowing the values of p; and py (or at least their lower and upper bounds). In contrast, our algorithm does
not require these values, making it more widely applicable.

Second, they do not provide experimental results. Since estimating p; and ps from real data is challenging,
empirical evaluation of their method is difficult. On the other hand, since our algorithm does not depend
on these specific values, it is easy to implement and evaluate experimentally.

Finally, their algorithm lacks a worst-case complexity guarantee. In particular, there are cases where the
algorithm may not terminate, making it impossible to give an upper bound on its worst-case complexity. In
contrast, we provide a formal worst-case complexity guarantee.

Limitations of the Current Theoretical Framework. Our proof of the O(nloglogn) expected com-
plexity (Theorem, does not extend to distributions with f(z) = 0 or co. A similar limitation is observed
in Learned Indexes (Zeighami & Shahabil, [2023), and extending the theory to cover a broader class of dis-
tributions remains an open direction in both Learned Indexes and Learned Sorts contexts. One promising
direction is to integrate more advanced CDF approximation methods with theoretical guarantees into our
Learned Sort algorithm. By adopting a refined CDF model and a bucketing algorithm that satisfies the
conditions of Lemma [3.3] it may be possible to achieve stronger theoretical guarantees.

Implementation Considerations and Optimizations. A straightforward implementation of PCF
Learned Sort is not in-place, as it requires an auxiliary buffer for buckets nearly as large as the input.
Engineering techniques from highly optimized sample-sort implementations (Axtmann et al., 2017} [2022)
suggest in-place variants without changing the asymptotic structure of our algorithm. Another important
aspect is real-world efficiency: optimizing memory access patterns to enhance cache efficiency, reducing cache
misses, and leveraging cache-aware data layouts could improve empirical performance without compromising
theoretical guarantees. Dynamically tuning parameters such as «, 3, 7y, and § based on the input distribution
may yield further performance gains while maintaining guarantees.

Parallelization Potential. Although our analysis targets the sequential setting, the structure of PCF
Learned Sort admits parallelization at several stages: training the CDF model, computing bucket IDs, scat-
tering into buckets, and sorting buckets are all amenable to data parallelism. This observation is consistent
with prior engineering work that integrates learned partitioning with high-performance (in-place) sample-
sort pipelines and parallel learned-sorting frameworks (Axtmann et al., 2017} |Carvalhol [2022; (Carvalho &
Lawrence, [2023). These results complement our theoretical analysis and suggest opportunities for developing
parallel learned-sorting algorithms with provable guarantees.
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6 Conclusion

We proposed PCF Learned Sort, which provides guarantees on both its expected and worst-case complexities.
We then confirmed these computational complexities empirically on both synthetic and real data. This is
the first study to support the empirical success of Learned Sort theoretically and provides insight into why
Learned Sort is fast.
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A Proofs

Here, we give the proofs omitted in the main paper. In Appendix we give the proof of Lemma
which is important for proving the worst-case complexity of PCF Learned Sort. Appendix [A22] and Ap-
pendix [A73 give proofs of Lemma [3.3] and Lemma [3.4] respectively, which are important for proving the
expected computational complexity of PCF Learned Sort. The quantization-aware version of Lemma
and Theorem [3.6] is defined and the proof is given in the Appendix [A:4] Flnally, we provide the proofs of
the theorems guaranteelng the complexity of Spline Learned Sort in Appendix |A

A.1 Proof of Lemma 3.1l

Proof. Let P(n) be the worst-case complexity of our Learned Sort when using the model-based bucketing
algorithm M as assumed in Lemma and 6 = |n?]. Let S(n) be the worst-case complexity of the
standard sort and R(n) be the worst-case complexity of model-based bucketing (including model training
and inferences). Since S(n) = O(nU(n)) and the standard sort terminates after a finite number of operations,

3C,L (>0), n>0 = S(n) <Cy+hLnU(n). (3)

Since R(n) = O(n) and v+ 1 = O(n),
Ing,le (>0), n>ny = R(n)<lan. (4)
Ing,ls (>0), n>ng = ~v+1<lI3n. (5)

In the following, we prove P(n) = O(nU(n) + nloglogn) by mathematical induction.

First, for n < max(ng, ng, 7) =: ng, there exists a constant C' (> 0) such that P(n) < C. That is, for n < nog,
our Learned Sort terminates in a finite number of operations. This is because, since § < n, the bucket will
either be smaller than the original array length n, or the bucket will be immediately sorted by the standard
sort.

Next, assume that there exists a constant C' (> 0) and [ (> 0) such that P(n) < C 4 I(nU(n) + nloglogn)
for all n < k, where k is an integer such that & > ng. Without loss of generality, we assume that C' > C4
and | > I;. Let S, x be the set consisting of all (y + 1)-dimensional vectors of positive integers whose sum

is k, i.e., Sy i —{3621“27131—/{}. Then,

7+l

P(k) < R(k) + max Z{nsp k2] - S(si) + L[s; < [k]]- P(s:)}

SES, i

7-&-1
<lsk + Jnax Z {1s; > [k%]] - (C1 + lisiU(s:)) + L[s; < [k%]] - (C + U(s;U(si) + siloglog s;)) }

o (6)
<k + max Z C’ +1s;U(s;) + Is;loglog kd)

seS v,k
<bk+C(y+ 1) + 1kU (k) + Ik log log k*
<ok + Clzk + kU (k) + lkloglog k + Ik logd
(lz + Cl3 —llog d> k+ (C+U(kU(k)+ kloglogk)).

Therefore, if we take [ such that
lo +Cl
200 <, (7)
log 5

then P(k) < C 4+ I(kU(k) + kloglogk) (note that the left side of Equation is a constant independent of

Hence, by mathematical induction, it is proved that there exists a constant C' (> 0) and I (> 0) such that
P(n) < C+ (kU (k) + lkloglogk) for all n € N. O
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A.2 Proof of Lemma [3.3

Proof. The proof approach is the same as in Lemma but in Lemma [3:3] the “expected” computational
complexity is bounded. The following two randomnesses are considered for computing the “expected” com-
putational complexity: (i) the randomness with which n elements are independently sampled according to
the probability density function f(z) in the process of forming the input array @, and (ii) the randomness
of the PCF Learned Sort algorithm sampling « elements from the input array « for training the PCF.

Let T'(n) be the expected complexity of our Learned Sort when using the model-based bucketing algorithm
M as assumed in Lemma and § = [n?]. Let S(n) be the expected complexity of the standard sort and
R(n) be the expected complexity of model-based bucketing (including model training and inferences). Since
S(n) = O(nlogn) and the standard sort terminates after a finite number of operations,

3C,L (>0), n>0 = S(n) <Ci+linlogn. (8)

Since R(n) = O(n), Pr[34, |¢;| > |n?]] = O(1/logn), and v + 1 = O(n),

Ing,la (>0), n>ny = R(n)<lan, (9)
l

Ang,ls (>0), n>n3 = Pr[3j|¢;| > [n?]] < ﬁ, (10)

Ang,ly (>0), n>ng = v+1<lIlyn. (11)

In the following, we prove T'(n) = O(nloglogn) by mathematical induction.

First, for n < max(ng,ns,n4, 7) =t ng, there exists a constant C' (> 0) such that T'(n) < C. That is, for
n < ng, our Learned Sort terminates in a finite number of operations.

Next, assume that there exists a constant C' (> 0) and [ (> 0) such that T'(n) < C'+Inloglogn for all n < k,
where k is an integer such that k > ng. Then, from k > no,

v+1
T(k) < R(k) +E | 3 1lles| = k)] S(les]) + les] < [7]] - T(les])
v+ v+1
<ok +Pr [ [ej| > (K] B | D S(ei) | +E | Y el < K] T(ley)) (12)
v+1
< bk + Pr(3j, |e;| > [K7)] - {Cr(y +1) + aklogk} + E | 3 T(min( [k}, |¢;1))

Here, from k > ng and k > ny,

l
Pr[3j,|c;| > Ucdj] AC1(v+ 1) + l1klogk} < ﬁ < (Cilyk + L1k log k)

(13)
< (Chlsly + l1l3)k.
Also, from the assumption of induction and k > ny,
y+1 v+1
E | T(min([k?],[e;))| <E > {C+1-min([k?],|¢;]) loglog min( [k, chl)}]
i=1 i=1
v+1
<E C(’y+l)+2l-|cj|10glongdJ1 (14)
i=1

< Clyk + lkloglog| k%]
< Clyk + lklogd + Ik loglog k.

18
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Therefore,

T(k) < lok + (Cilsls + lhl3)k + Clak + lklogd + lk loglog k

1 15
< {lg + Cil3ly + lil3 + Cly — llog d} k+ (C+lkloglogk). (15)

Therefore, if we take [ such that
lo + Cyl3ly + 1113 + Cly <1, (16)

log é
then T'(k) < C + lkloglogk (note that the left side of Equation is a constant independent of k).

Hence, by mathematical induction, it is proved that there exists a constant C' (> 0) and I (> 0) such that
T(n) < C+Inloglogn for all n € N. O

A.3 Proof of Lemma[3.4]

We first present the following lemma to prove Lemma (3.4

Lemma A.1. Let e (€ I™) be a sorted version of xz (€ I™) and A = (Tmax — Tmin)/B (where Tmin and
ZTmax are the minimum and mazimum values of Tz, respectively).

Also, define the set S, and T, as follows (r=1,...,n):
87' = {k | ema}c(l,rf6/2) + A < ek S €r — A}, 7;“ = {k | e, + A S e < emin(r+5/2,n) - A} (17)

Using this definition, define Yjy, Zjr, Yy, Zy as follows (j =1,...,0, r=1,...,n):

1 (jes) 1 (GeT) - -
Y = Ly = Y, = Y; Z, = Z 1
Jar {0 (else) ) Jr {0 (e]se) I T Z Jros T J:Zl Jr ( 8)

j=1

When using Mpcr, if the size of the bucket to which e,. is allocated is greater than or equal to 6, the following

holds:
1) o 1) «
r>—4+1AY.<|[— V [r<n—= AN Z.<|—]|]. (19)
2 ¥ 2 ¥

Proof. We prove the contraposition of the lemma. That is, we prove that e, is allocated to a bucket smaller

than § under the assumption that (7‘ < g +1V Y, > {%J) A (r >n— g vV Z, > {%J)

For convenience, we hypothetically define eg = —00, e,,11 = 00, and assign ey to the Oth bucket and e, 41 to
the (7 + 2)-th bucket. The size of the Oth bucket and the (v + 2)-th bucket are both 1.

First, we prove that e, and emin(r45/2,n+1) are assigned to different buckets. When n —4/2 <r < n, e, and
Cmin(r+6/2,n4+1) = €nt1 are obviously assigned to different buckets. When r < n — /2, the ID of the bucket
to which e, is assigned is

7 — | 7y,
\_F(er),” +1= Labz(er)J +1
Y
< —b, 1
>~ abz(er) +
Yoir.g s .
= [ liey) <ier)} +1

Tl et AY 1.

(20)

AN
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The ID of the bucket to which eyin(r45/2,n+1) = €r45/2 15 assigned is

~ Y
I_F(erjté/?)'” +1= \‘Ebi(eﬂ-ém)J +1
Y
> abi(6r+5/2)

= % {7 | i(a;) <i(eris/2)}]

L1471 a5 < epesjo = B}.

(21)

Y

Thus, taking the difference between these two bucket IDs,

(P (ersap)r) +1) = (LF () +1) > L [{j |5 S eryop =AY = (211 @ e+ A} +1)
=%|{j\er+A<aj <erp52— A} -1

=171
«

’y «
=— Zir —1
a2
Jj=1
x
o

> 0.

Therefore, e, and eyin(r45/2,n+1) are assigned to different buckets.

In the same way, we can prove that enay(o,r—s5/2) and e, are also assigned to different buckets. Thus, the size
of the bucket to which e, is assigned is at most § — 1 (at most from emax(0,r—5/2)+1 tO €min(r+s/2,n+1)—1),
and the contraposition of the lemma is proved.

Using Lemma [A7T] we can prove Lemma [3.4]

Proof. Let ¢ = max f;H_A fz(x)dz (where y is a value such that (y,y+A) C 7). Then, from o1 < f(z) < 09
y
for all x € 7,

< T S5 fy)dy
- J7 f(x)da
_ max, f;H_A oody
- J7ovda (23)
O'QA

01 (xmax - -Tmin)
02

m.

IN

Thus, when r > g +1,

4 5
ELLS}@ ]E|:2|{k6r—5/2+A<6k§€rA}|

=E[[{klers2<ex Serspp+ AN +E[{k]er — A <er <e}]
< ng+nq

209
<

~ o
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Thus, when r > g +1,

e
E[Y,] = —E|[|S.
v] = B[S,
a (o )
-5 (5-2[5-w))
ad 2090 (25)
> 7
- 2n o1
_ ok
S
Here, when K > 1, we have
@
0<1- <1 26
- EY] (26)

Therefore, from the Chernoff bound,

st om s - (i

In the same way, we can prove that when r <n — %,

Pr [ZTgﬂ gexp{—oéf (1-}1,)2}. (28)

Thus, by defining E, to be the event “e, is allocated to a bucket with size greater than or equal to 9,” from

Lemma

exp{—”é—v 1—%)2}, (7‘<g—|—1\/r>n—g) (29)
o 2

Therefore,

<2nexp{—C;{Y( (1-2)2} (30)

Then, noting that the number of buckets with size greater than or equal to § is less than or equal to

SSURTICAE
E[|{j||cj|>6}us2§exp{";f (1-%) } (31)
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Then, from Markov’s inequality, we have

Pr[3j, le;| > 0] = Pr(|{j [ |e;| > 0} = 1]

< oo {55 (1- 1)) @

A.4 The Quantization-Aware Version of Lemma [3.4] and Theorem [3.6]

In general, computers represent numbers in a finite number of bits, so the numbers they handle are inherently
discrete. However, Theorem [3.6] which states that the expected computational complexity of PCF Learned
Sort is O(nloglogn), does not cover discrete distributions. Here, we define the quantization process by which
a computer represents numbers in finite bits and then show that the expected computational complexity of
PCF Learned Sort is still O(nloglogn), under the assumption that “the quantization is fine enough.”

First, we assume the sampling and quantization process is as follows:

Assumption A.2. For a range of values D (C R), define m (€ N) contiguous regions Dy,Da, ..., Dp,
such that (i) they are disjoint from each other and (ii) together they form D. For each region, determine
representative values r1, 79, ..., 7. Here, r1,7s,..., 7, are values contained in Dy, Do, ..., D,,, respectively.
For a value z (€ D), the quantized value of z, 2/, is obtained as &’ = r;, where 7 is the (only) ¢ such that
x € D;. The value z is sampled according to the probability density function f(x), but a computer keeps z’
(instead of x) in log, m bits with some quantization error.

Also, for the interval Z C D, we define n(Z) as follows.
Definition A.3. n(Z) is the maximum width of D; that intersects with interval Z, i.e.,

n(Z) =max{|D;| | D; UL #2,i=1,...,m}, (33)
where |D;| is the width of the range D;.

We can prove that 7(Z) is the upper bound of the quantization error of z in Z, i.e., |z — 2’| < n(Z) when
z €l

Now, the assumption that the quantization is “fine enough” is specifically defined as follows.

Assumption A.4. (Recall that our PCF Learned Sort recursively calls its own algorithm. Each time of
recursion, the range of values of interest Z changes, and the length of the array of interest n also changes.)
For all Z and n that appear in the algorithm, the following holds:

Bn(I) _1
<3 (34)

We show intuitively and empirically that this is a satisfactory assumption.

First, to show intuitively that this assumption is satisfactory, we give an example. Let Z be a range of values
that can be represented by a 64-bit double (1 bit for the sign, 11 bits for the exponent part, and 52 bits for
the mantissa part), that is, Z = [~1.79 x 103°8,1.79 x 103°8]. The quantization is performed by mapping each
value to the nearest number that can be represented by a 64-bit double. In this setting, (Z) = 1.99 x 10292
|Z| = 3.59 x 10398, 0(Z)/|Z| = 5.55 x 1017, Thus, for usual 3, 3 < 9 x 1015, Equation (34) holds.

Second, we show that Equation is a satisfactory assumption empirically. In the 1,280 measurements,
where 10 measurements each for 16 different n(e {103,2 x 10%,5 x 103,...,10%}) on 8 different datasets,
5.23 x 107 pairs of (Z,3) appeared (we set = Lng/ﬂ), and the left side of Equation is at most
8.11 x 1077, indicating that Equation is always true with a margin.

Under this definition and assumption about quantization, we can prove the quantization-aware version of
Lemma [3.41
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Lemma A.5 (Quantization-aware version of Lemma. Let 01 and o5 be respectively the lower and upper
bounds of the probability density distribution f(x) in D, and assume that 0 < o1 < 09 < oo. That is,
z €D = o1 < f(x) <oy Also, let % be the array created by the quantization of x (€ I™) in the manner
defined in Assumption[A3

Then, in model-based bucketing of % (€ I™) to {cj} 1 using Mpcr, the following holds for any interval
T (C D) under Assumption [A]

v 4oy . 2n aK’ 1\°
= — — > - < — _ _— .
T 1 = Pr[3j,le;| > 6] < 5 exp{ % 1 - (35)

The proof of Lemma [A75]is done in the same way as Lemma[3.:4] That is, we first prove the following lemma.

Lemma A.6 (Quantization—aware version of Lemma [A.6). Let e’ (€ I™) be a sorted version of x’ (€ I™)
and A == (T) 0 — Thoin) /B (where x, ., and . are the minimum and mazimum values of €7, respectively).

Also, define the set S., T, as follows (r=1,...,n):

min ax

S ={k | emax(ir—s/2) T A +2n(T) < ex < e, — A —2n(I)}, (36)
T =A{k|er + A+2n(T) < ep < emin(rts/2.n) — A —2n(I)}. (37)
Using this definition, define Y., Z:.,Y,\, Z} as follows (j =1,...,a, r=1,...,n):

1 (jes) 1L (GeT) -
Y! = r 7 = r 7! = A 38
" {0 (else) ' " 0 (else) ’ Z gr " ; " (38)

If the size of the bucket to which €. is allocated is greater than or equal to 0, then the following holds:

(rngrlAYr’ngv(rgn—gAz;g{:D. (39)

Proof. The proof method is exactly the same as for Lemma That is, by taking the difference between

the IDs of the buckets to which e/  ; /2 and e!. are assigned,

(LB (€ sor) +1) = (LF (] +1)

Yy Yo

>y < erasjp— A= 20(D} = (217 | a; < er + A+ 2D} +1)
:%Hj|er+A+2n(I)<aj§er+5/2— — (D)} -1 (40)
1z -1

«

>0,

when Z|. > {%J Thus, we can prove that when

<r<g+1er’>BDA(r>ng\/Z{A>BJ> (41)

holds, e, . 5/, and e, are assigned to the different bucket and e;_;,, and e; are assigned to the different
bucket. Then, the contraposition of the lemma is proved. O

Using Lemma [AZ6] we can prove Lemma [A75]
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Proof. Let ¢ = max fyﬁAQ"(I) fz(x)dz (where y is a value such that (y,y + A + 2n(Z) C Z). Then, from
y
o1 < f(z) <og forall z € T,

max, [} f(y)dy

fIf(x)dzzr
max, f;+A+2n(I) oady
<
- fI 0'1d£L'
_ oA+ 2(T)) (42)
01 (‘T;nax - x;nin)
< ag'(H 25?7@))
Ulﬁ ‘I|
< 202
1

The last inequality is obtained by Assumption [A4]

Thus, when r > g + 1,

) )
E [2 - |S;|] =E [2 — k| ersp+A+20(T) <ep < ep — A —29(D)}]

=E H{k | er_s/2 <er < ep_s2+ A+ 2n(I)}|] +E[{k|er —A=2n(T) < er <ep}]

/ ! (43)
<ng +nq
40’271
~ of’
Thus, when r > g +1,
E[Y]] = ZE[|S!
¥ =2E(5/]
a (6 )
= — ——]E —_ — /
+ (525 =)
> &5 _ 4020[ (44)
— 2n o1
_aK’
ot

From this point forward, by proceeding in exactly the same way as the proof of Lemma we can prove
the following using Lemma [AT}

) 2n aK’ 1\?
K>1 = Pr[33,|cj|>5]§5exp{ 5 <1K’> } (45)

Using Lemma we can prove the following theorem.

Theorem A.7 (Quantization-aware version of Theorem . Let o1 and oo be the lower and upper bounds,
respectively, of the probability density distribution f(x) in D, and assume that 0 < o1 < 09 < 00. Also,
assume that the input array is quantized in a way that satisfies Assumption[A.3 and Assumption[A.J) Then,
the expected complexity of PCF Learned Sort with Mpcr as the bucketing method and o = f =~v =0 =
|n3/4] is O(nloglogn).

24



Published in Transactions on Machine Learning Research (10/2025)

Proof. When o = 3 = v = |n®/*|, the computational complexity for model-based bucketing is O(n). Since
K'=Q(y/n) when a = 8 =~ =6 = [n?*], K' > 1 for sufficiently large n, and

2 e {—O‘;j' (1- ;)} = Ot expl(—vi) < 0 (). (46)

Therefore, from Lemma [3:3] and Lemma [AF] the expected computational complexity of PCF Learned Sort
is O(nloglogn). O

A.5 Proofs for Spline Learned Sort

Definition of Spline Learned Sort. We now formally define Spline Learned Sort, which we propose as
a variant of PCF Learned Sort. In particular, Spline Learned Sort replaces Mpcp—the bucketing method
that uses PCF as the CDF model—with Mgypiine, & bucketing method based on a spline-based CDF model.
Below, we give a rigorous description of Mgpjine.

The training algorithm of the CDF model in Mgpine is the same as in Mpcp. That is, the parameters
«, B € N are determined by n. Then, following this setting, we sample an array a of length a from the input
array @, which is subsequently bin-counted (as described in Section |3.3)).

For later explanation and proofs, we introduce additional terminology. We define the vector of thresholds
used for counting as t € R**2: t; = 2in + (Tmax — Tmin)(@ — 1)/8 for i = 1,2,...,8 + 2. Thus, the i-th
bin during CDF model training corresponds to the interval [t;, ¢;11). Accordingly, the non-decreasing, non-
negative array b formed by bin-counting is given by b; = |[{j € {1,...,a} | a; < tiy1} fori=1,2,...,8+1.
We also denote by Fy (x) the empirical CDF of the sampled array a: Fo(z) = |{j € {1,2,...,a} | a; < z}| /a.

The inference algorithm of the CDF model in Mgpiine is similar to but slightly different from that in
Mpcr. In PCF, the prediction is constant within each interval [t;,t;11). In contrast, in the spline-based
case, the prediction is obtained by linearly interpolating the empirical CDF values at the endpoints of
the interval. Specifically, the output F(z) for input z is obtained as follows. As in PCF, we compute

i(z) = {MJ + 1, so that = € [ti), ti(e)+1). While PCF returns Fy(tiz)+1) = bi(x)/c as the CDF

Tmax —Lmin

prediction, the spline-based method linearly interpolates between Fg(t;(;)) and Fa(ti(z)41):
~ T — ti(a:)

F(x) = F,(t; +
(=) (fita)) Li(z)+1 = ti(a)

<bi(ac)—1 +

(Fa(tiwy+1) — Falti)) (47)

T — ti(:c)

(bi(a) — bi(x)—l)) ; (48)

1 _ Tt
@ Liz)+1 — Li(z)

Unlike PCF, which only considers which bin a value falls into, the spline-based method also accounts for
the relative position of the value within the bin to compute the predicted CDF F (). The asymptotic
computational complexity for training and inference is the same as PCF: O(n) for training and O(1) per
element for inference. However, unlike PCF (which only requires array lookups), the spline-based approach
requires additional subtractions and multiplications during inference, leading to a larger constant factor in
runtime.

Theorems Guaranteeing the Complexity of Spline Learned Sort. When Mgpiine is used as the
bucketing method in our learned sort framework, the same complexity guarantees as in PCF Learned Sort
hold. In particular, we obtain the following worst-case guarantee (Theorem and expected-case guarantee
(Theorem [A.9).

Theorem A.8 (Spline version of Theorem. If Mgpiine 1s the bucketing method, the worst-case complexity
of the standard sort is O(nU(n)) (where U(n) is a non-decreasing function), and a = 3 =~ = § = [n3/*],
then the worst-case complezity of Spline Learned Sort is O(nU(n) + nloglogn).

Proof. The proof is identical to that of Theorem using Lemma O
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Theorem A.9 (Spline version of Theorem. Let o1 and o2 be the lower and upper bounds, respectively,
of the probability density f(x) on D, and assume 0 < 01 < 09 < 00. If Mgpline 5 the bucketing method,
the expected complexity of the standard sort is O(nlogn), and a = B = v = 6 = |n3/*|, then the expected
complezity of Spline Learned Sort is O(nloglogn).

To prove this theorem, we first establish the following lemma.

Lemma A.10 (Spline version of Lemma [A.1). Define e,S,, Ty, Yjr, Zjr, Yy, Z, exactly as in Lemma
G=1,...,a, r=1,...,n). Thatis, lete € ™ be the sorted version of xz € I™ and set A = (Tmax—Lmin)/ S
(where Tmin and Tmax are the minimum and mazimum values of Tz, respectively). Also define

Sr = {k | emax(l,r75/2) + A< €L < €r — A}a 7;‘ = {k | er + A < ex < emin(r+5/2,n) - A}’ (49)
and
1 (Ges) 1 (GeT) - -
Y. = y Zir = y Y, = Yir, Zy = Zjr. 50
’ {() (otherwise) ! 0 (otherwise) ; ’ jz:; ’ 0

When using Msgpiine, if the size of the bucket to which e, is assigned is at least §, then the same condition
as in Equation holds; namely,

(rzg+1AYr§{%Dv(rgn—gAngm). (51)

Proof. The proof proceeds exactly as in Lemma by contraposition. That is, assume
(r < g +1VY > L%J) A (r >n— g VvV Z. > L%J), and prove that e, is assigned to a bucket smaller
than 4.

First, we show that e, and eyin(r45/2,n+1) are assigned to different buckets. As in the proof of Lemma

the case n —0/2 < r < n is immediate; hence we focus on r < n — /2. The bucket ID of e, is | F'(e;)v] +1,
while that of e, 5/ is | F'(er4.5/2)7] +1. By the definition of the spline-based CDF model and the inequalities
tite)+1 < €r + A, bi(errs)n) = Crts/2 — A, we obtain

Fler) < Faltites1) = 2 i 105 <tieyin}| < 2 {7 [ aj < e + A}, (52)
Flerts2) = Faltite,,s) = = |{i | a; < ti(er+5/2)}' >L{jlaj <erysn— A} (53)

Hence, their bucket IDs satisfy
LF(en )] +1< 2 I{j [ aj <er+ A} +1, (54)

; (55)

LF(erH/z)VJ +1>2 ‘{J | a; < erq5/20 — A}
which are identical to Equations and . Thus,

(LE(ervs/2)7) +1) = ([F(er)y] +1) >0, (56)

and hence e, and e, 5/, are assigned to different buckets.
By a symmetric argument, €pax(0,r—s/2) and e, are also assigned to different buckets. Therefore, the bucket
containing e, has size at most 6 — 1, completing the contraposition. O

From Lemma [A710] we obtain the following theorem.

Theorem A.11 (Spline version of Lemma. Let o1 and o9 be the lower and upper bounds of the probability
density f(xz) on D, and assume 0 < 01 < 03 < 00 (i.e., 01 < f(x) < o3 for allz € D). Then, in model-based

bucketing of x7 € I" into {cj};ill using Mspline, the following holds for any interval Z C D:
Y6 2097 ) 2n aK 112
K:=—— >1 = Pr[3 | >8] < — —— (1 - = . 57
P21+ pifilel> s Fen{-5 0-4) 67)
Proof. The proof is identical to that of Lemma [3.4] using Lemma [A710] O
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Table 1: Statistics of real-world datasets used in our experiments.

Dataset Size # Unique Values % of Duplicates
Chicago [Start] - 39,588,772 216,610 99.45
Chicago [Tot] (C l 39,199,154 6,387 99.98
NYC [Pickup] q]; 100,000,000 926,666,741 73.33
NYC [Dist] (nyc, [2020) 200,107,656 2,060 100.00
NYC [Tot] 199,964,459 7,428 100.00
SOF [Humidity] (Mavrodiev |2()19D 96,318,228 8,128 99.99
SOF [Pressure] (Mavrodiev, 2019) 96,317,180 862,502 99.10
SOF [Temperature Mavrodiev, |2019D 96,432,856 5,638 99.99
Wiki (Marcus et al. 020% 200,000,000 90,437,011 54.78
OSM 2020 800,000,000 799,469,195 0.07
Books (]Marcus et al.|, |2020D 800,000,000 799,994,961 0.00
Face (Marcus et al., [2020) 199,998,000 199,998,000 0.00
Stocks [Volume] (Onyshchak, [2020) 27,596,686 325,654 98.82
Stocks [Open] (Onyshchak, [2020) 27,596,686 830,758 96.99
Stocks [Date] 2020) 927,596,686 14,646 99.95
Stocks [Low] (Onyshchalkl 2020)) 27,596,686 863,701 96.87

Finally, using Theorem we can prove Theorem

Proof of Theorem[A.g The proof follows exactly the same steps as Theorem [3.6] applying Theorem [A.T] to
Lemma 3.3 O

B Real Dataset Details
In the main text, we provided only a concise list of the real datasets used in our experiments. Here we
describe each dataset in more detail.

e Chicago [Start, Tot]: The Chicago Taxi Trips dataset includes taxi trips reported to the City of
Chicago in its role as a regulatory agency over the last six years. The data to be sorted includes
trip starting timestamps and total fare amounts.

¢ NYC [Pickup, Dist, Tot]: The New York City yellow taxi trip dataset includes trip pickup
datetimes, trip distances, and total fare amounts.

o SOF [Humidity, Pressure, Temperature]: The Sofia dataset contains time-series air quality
metrics (humidity, pressure, and temperature) measured at 1-minute intervals from outdoor sensors
in Sofia, Bulgaria.

o Wiki: The Wikipedia dataset contains article edit timestamps (Marcus et al. [2020]).

o OSM: Uniformly sampled OpenStreetMap locations represented as Google S2 Celllds (Marcus et al.
2020).

« Books: Book sale popularity data from Amazon (Marcus et al., 2020).

o Face: The FB dataset contains an upsampled set of Facebook user IDs obtained via random walks
on the FB social graph (Marcus et all [2020). As in (Kristo et al. 2021a} |[Ferragina & Odorisiol,
2025)), the outliers greater than the 0.99999 quantile are discarded.

o Stocks [Volume, Open, Date, Low|: The Stocks dataset contains historical daily opening, low
prices, trading volumes, and dates for all NASDAQ tickers (stocks and ETFs), retrieved via the
yfinance Python package up to April 1, 2020.
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Figure 5: Time to sort the array in adversarial environments. Below each graph is a histogram that visualizes
the distribution of each dataset. The standard deviation of the 10 measurements is represented by the shaded
area.

Furthermore, the detailed statistics of these datasets, including their sizes, the number of unique values,
and the percentage of duplicates, are summarized in Table The percentage of duplicates is computed

as 100 x (1 - IunLW), where n is the total number of elements and unique_values is the set of

distinct elements. In particular, for several datasets (Chicago [Start, Tot], NYC [Dist, Tot], SOF [Humidity,
Pressure, Temperature|, and Stocks [Volume, Open, Date, Low]), the number of unique values is extremely
small, accounting for less than 3.2% of the total elements.

C Experiments in Adversarial Environments

To evaluate the robustness of our Learned Sort, we conducted experiments under adversarially constructed
inputs that explicitly violate the assumptions of Lemma [3.3] Specifically, given an original dataset of size n,
we injected n duplicate elements of a randomly chosen value inside the range [Zmin, Zmax], where Ty, and
Tmax 18 the minimun and maximum value of the input array x. As a result, the array length doubled to 2n,
and the constructed distribution contained a point mass of probability one-half, leading to a huge probability
density at that value. This setting intentionally breaks the assumption o2 < oo required in Lemma [3:3]
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Figure [5| reports the sorting time on such adversarial datasets. The results show that the expected bound
of O(nloglogn) for our PCF Learend Sort no longer holds once the assumptions are violated, and the
performance of PCF Learned Sort occasionally degrades to the level of std: : sort. However, we consistently
observed that PCF Learned Sort never exceeded the worst-case complexity of O(nlogn), and thus its runtime
remained comparable to std: :sort.

On the other hand, we found that Learned Sort 2.0 (Kristo et al., [2021b), which has O(n?) worst-case
complexity, sometimes exhibited severe slowdowns. For example, on data of size n = 10° sampled from
a Normal distribution with injected duplicates, the sorting time of Learned Sort 2.0 reached up to 10.89
seconds, whereas PCF Learned Sort required at most 0.021 seconds.

We also found that BLS, ULS, and Learned Sort 2.1 (Ferragina & Odorisio, 2025), which also have O(n?)
worst-case complexity, sometimes exhibited substantial performance degradation. For example, on data of
size n = 105 sampled from a Normal distribution with injected point masses, Learned Sort 2.1 took up to
0.154 seconds, compared with 0.042 seconds for PCF Learned Sort and 0.078 seconds for std: :sort.

These results highlight the fragility of sorting algorithms without strong worst-case complexity guarantees, a
limitation shared by many existing learned sorting algorithms. They underscore the importance of developing
learned sorting algorithms—such as our PCF Learned Sort—that combine practical efficiency with rigorous
worst-case complexity guarantees.

D Runtime Profiling

To better understand the practical behavior of PCF Learned Sort, we profiled the runtime of its major
components: (i) model training, (ii) bucketing, (iii) standard sort applied to buckets that are too small
(< 7), and (iv) standard sort applied to buckets that are too large (> ). The results are shown in Figure 6]

For small input sizes n, the majority of the runtime is typically spent on applying the standard sort to buckets
smaller than 7. As n increases, the relative cost shifts, and most of the runtime is instead consumed by the
bucketing stage. Model training remains consistently lightweight, comparable to or faster than bucketing,
and never exceeds roughly one quarter of the total runtime. Thus, training does not become the dominant
factor in practice.

Figure 7| shows the results for adversarially clustered inputs (as described in Appendix. Under the adver-
sarial setting, the bucketing algorithm more frequently produces large buckets, which are then handled by
standard sort. In these cases, a larger fraction of the runtime is attributed to this fallback mechanism.

Overall, these analyses clarify which components of PCF Learned Sort dominate the runtime under different
conditions. They also highlight that the algorithm adapts gracefully: training and bucketing scale well, while
the worst-case fallback ensures robustness without catastrophic slowdowns.

29



Published in Transactions on Machine Learning Research (10/2025)

Normal

Uniform

Density

Time Ratio [%]

Density

°

Time Ratio [%]

3

2

Time Ratio [%]
Time Ratio [%]
Time Ratio [%]

553

<

&

3

°

104 10 10°

Time Ratio [%]

8

Exponential 1o
-- 6
5 o

07 108

a

2

0-

0-

0-

0-
0-

L0| normal

104 100 100 100 10°

Time Ratio [%]

Time Ratio [%]

10%

3

Time Ratio [%]

3

s 3 9w
& 8 8

Time Ratio [%]

°

2
2|

553

<

s
53

o 8 &

Time Ratio [%]

10

0-

0-

105 100 100 10°

Time Ratio [%]

Time Ratio [%]

n n n
A2 | 2 “ ‘go 2z 201l ]

G o. @, @ @ @
§ | & | & 5 g
Q0.0 Qoo O oy o Qoo

oo oz o 06 0e 0 T 0 2 e .

Value alue alue
NYC [Pickup NYC [Dist. SOF [Humidit SOF [Pressure

Time Ratio [%]

°

553

g
g

=
g

2
2

Time Ratio [%]

S
8

Time Ratio [%]

Density

Time Ratio [%]

Density
>

“Value
Stocks [O

2 4
Value
Stocks [Date

[ Std Sort (n < 1)
[ Train PCF

I Assign Buckets
I Std Sort (n > 8)

n n n
z |z = E 0 E
’ 2 2005 2 0. 2o @ 0.
2 2 &, & A &
. 153 154 00 0.00 o 6 04 80000 100000 120000 140000 04
Value Value Value Value
Wiki Face

Figure 6: Breakdown of runtime components in PCF Learned Sort. The total runtime is decomposed into
(i) model training, (ii) bucketing, (iii) standard sort applied to buckets smaller than 7, and (iv) standard
sort applied to buckets larger than §.
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Figure 7: Breakdown of runtime components in PCF Learned Sort in adversarial environments. The total
runtime is decomposed into (i) model training, (ii) bucketing, (iii) standard sort applied to buckets smaller
than 7, and (iv) standard sort applied to buckets larger than J.
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