
Under review as submission to TMLR

PCF Learned Sort: a Learning Augmented Sort Algorithm
with O(n log log n) Expected Complexity

Anonymous authors
Paper under double-blind review

Abstract

Sorting is one of the most fundamental algorithms in computer science. Recently, Learned
Sorts, which use machine learning to improve sorting speed, have attracted attention. While
existing studies show that Learned Sort is empirically faster than classical sorting algorithms,
they do not provide theoretical guarantees about its computational complexity. We propose
PCF Learned Sort, a theoretically guaranteed Learned Sort algorithm. We prove that the
expected complexity of PCF Learned Sort is O(n log log n) under mild assumptions on the
data distribution. We also confirm empirically that PCF Learned Sort has a computational
complexity of O(n log log n) on both synthetic and real datasets. This is the first study to
theoretically support the empirical success of Learned Sort, and provides evidence for why
Learned Sort is fast.

1 Introduction

Sorting is one of the most fundamental algorithms in computer science and has been extensively studied for
many years. Recently, a novel sorting method called Learned Sort has been proposed (Kraska et al., 2019). In
Learned Sort, a machine learning model is trained to estimate the distribution of elements in the input array,
specifically, the cumulative distribution function (CDF). The model’s predictions are then used to rearrange
the elements, followed by a minor refinement step to complete the sorting process. Empirical results show
that Learned Sort is faster than classical sorting algorithms, including highly optimized counting-based
sorting algorithms, comparison sorting algorithms, and hybrid sorting algorithms.

On the other hand, there are few theoretical guarantees regarding the computational complexity of Learned
Sort. The first proposed Learned Sort algorithm (Kraska et al., 2019) has a best-case complexity of O(n), but
its expected or worst-case complexity is not discussed. The more efficient Learned Sort algorithms proposed
later (Kristo et al., 2020; 2021a) also have O(n) best-case complexity, but O(n2) worst-case complexity (or
O(n log n) with some modifications). The goal of this paper is to develop a Learned Sort that is theoretically
guaranteed to be computationally efficient.

We propose PCF Learned Sort, which can sort with an expected complexity O(n log log n) under mild
assumptions on the data distribution. Furthermore, we prove that PCF Learned Sort can sort with a worst-
case computational complexity O(n log n). We then empirically confirm that our Learned Sort can sort with
an average complexity of O(n log log n) on both synthetic and real datasets.

Independently and concurrently, Zeighami & Shahabi (2024) explored complexity-guaranteed Learned Sort.
While our PCF Learned Sort is motivated by similar principles and incorporates comparable design choices,
several key distinctions exist between our approach and theirs. A comprehensive comparison between our
method and that of Zeighami & Shahabi (2024) is provided in Section 5.

This paper is organized as follows. In Section 2, we first present related work. Then, in Section 3, we introduce
our PCF Learned Sort and provide theorems along with brief explanations of their proofs, establishing the
computational complexity guarantees. Then, in Section 4, we empirically verify our theorems. We then
discuss our findings, limitations, and potential future directions in Section 5. Finally, in Section 6, we
summarize our results and conclusions.

1

Under review as submission to TMLR

2 Related Work

Our research is in the context of algorithms with machine learning (Section 2.1). There are two types of
sorting algorithms, comparison sorts (Section 2.2) and non-comparison sorts (Section 2.3), and our proposed
method is a non-comparison sort. However, the idea, implementation, and proof of computational complexity
of our method are similar to those of sample sort, which is a type of comparison sort. Furthermore, our
proposed algorithm and proof of computational complexity are based on those of Learned Index (Section 2.4).

2.1 Algorithms with Machine Learning

Our research lies in the emerging field of Learned Sort, which uses machine learning techniques to improve
the performance of classical sorting algorithms. Kraska et al. (2019) proposed a method for fast sorting
that employs a model F̃ (q) trained to approximate the CDF F (q). This first Learned Sort roughly sorts the
array by placing each element x in the array at the nF̃ (x)-th position of the output array. It then sorts the
array completely by refining the roughly sorted array using insertion sort. This algorithm has a best-case
complexity of O(n), but a worst-case complexity of O(n2) because of the exception handling for collisions
and final refinement.

Subsequently, implementations have been proposed that improve cache efficiency (Kristo et al., 2020) and
are robust against key duplication (Kristo et al., 2021a). Despite these improvements, these approaches
still employ insertion sort during the final refinement, which leads to a worst-case complexity of O(n2).
The worst-case complexity can be reduced to O(n log n) by using a sorting algorithm with small worst-case
complexity, such as Introsort (Musser, 1997) or TimSort (McIlroy, 1993). However, this complexity is the
same as that of many classical comparison sorting algorithms and thus does not explain the empirical success
of Learned Sort.

A related research area, known as algorithms with predictions, also aims to improve algorithm performance
by incorporating predictions from machine learning models (Mitzenmacher & Vassilvitskii, 2022). In this
context, machine learning predictions are typically assumed to be available at no cost, and the models are
treated as an opaque box. Algorithms with predictions have been successfully applied to a wide range of
problems, including caching (Narayanan et al., 2018; Rohatgi, 2020; Lykouris & Vassilvitskii, 2021; Im et al.,
2022), ski rental (Purohit et al., 2018; Gollapudi & Panigrahi, 2019; Shin et al., 2023), scheduling (Gollapudi
& Panigrahi, 2019; Lattanzi et al., 2020; Lassota et al., 2023), and matching (Antoniadis et al., 2023; Dinitz
et al., 2021; Sakaue & Oki, 2022).

As part of the study of algorithms with predictions, there has been research on sorting with predictions Lu
et al. (2021); Chan et al. (2023); Erlebach et al. (2023). In particular, Bai & Coester (2023) proposed a
sorting algorithm with predictions with tight performance guarantees. It is important to note, however,
that their analysis excludes the cost of training and inference of the machine learning model from the
computational complexity guarantee. This exclusion contrasts with our problem setting, where we ensure
that the computational complexity covers the entire process from receiving an unsorted array to returning a
sorted array.

2.2 Comparison Sorts

Sorting algorithms that use comparisons between keys and require no other information about the keys
are called comparison sorts. It is well-known that the worst-case complexity of a comparison sort is at
least Ω(n log n). Commonly used comparison sorting algorithms include quick sort, heap sort, merge sort,
and insertion sort. The GNU Standard Template Library in C++ uses Introsort (Musser, 1997), an algo-
rithm that combines quick sort, heap sort, and insertion sort. Java (Java, 2023) and Python up to version
3.10 (Peters, 2002) use TimSort (McIlroy, 1993), an improved version of merge sort. Python 3.11 and later
use Powersort (Munro & Wild, 2018), a merge sort that determines a near-optimal merge order.

Sample sort (Frazer & McKellar, 1970) is an extension of quick sort that uses multiple pivots, whereas quick
sort uses only one pivot. Sample sort samples a small number of keys from the array, determines multiple
pivots, and uses them to partition the array into multiple buckets. The partitioning is repeated recursively

2

Under review as submission to TMLR

until the array is sufficiently small. The in-place parallel superscalar sample sort (Axtmann et al., 2022) is
one of the most efficient sample sort implementations. Its computational and cache efficiency is theoretically
guaranteed by a theorem about the probability that the pivots partition the array (nearly) equally.

2.3 Non-Comparison Sorts

Non-comparison sorts use information other than key comparison. Radix sort and counting sort are the
most common types of non-comparison sorts. Radix sort uses counting sort as a subroutine for each digit.
When the number of digits in the array element is w, the computational complexity of radix sort is O(wn).
Thus, radix sort is particularly effective when the number of digits is small. There are several variants of
radix sort, such as Spreadsort (Ross, 2002), which integrates the advantages of comparison sort into radix
sort and is implemented in the Boost C++ Libraries, and RegionSort (Obeya et al., 2019), which enables
efficient parallelization by modeling and resolving dependencies among the element swaps.

In addition, non-comparison sorting algorithms tailored for specific data types have been developed. For
integer arrays, a deterministic algorithm with worst-case complexity of O(n log log n) (Han, 2002) and a ran-
domized algorithm with expected complexity of O(n

√
log log n) (Han & Thorup, 2002) have been proposed.

For real-valued arrays, recent advances have led to the development of a sorting algorithm with a worst-case
complexity of O(n

√
log n) (Han, 2020). Our PCF Learned Sort also targets real-valued arrays and, under

mild assumptions on the distribution, achieves an expected complexity of O(n log log n), which is smaller
than (Han, 2020).

2.4 Learned Index

Kraska et al. (2018) showed that index data structures such as B-trees and Bloom filters can be made
faster or more memory efficient by combining them with machine learning models and named such novel
data structures Learned Index. Since then, various learning augmented B-trees (Wang et al., 2020; Kipf
et al., 2020) and learning augmented Bloom filters (Mitzenmacher, 2018; Vaidya et al., 2021; Sato & Matsui,
2023) have been proposed. There are several works on learning augmented B-trees whose performance is
theoretically guaranteed. PGM-index (Ferragina & Vinciguerra, 2020) is a learning augmented B-tree that
is guaranteed to have the same worst-case query complexity as the classical B-tree, i.e., O(log n). Zeighami
& Shahabi (2023) proposed a learning augmented B-tree with an expected query complexity of O(log log n)
under mild assumptions on the distribution.

3 Methods

This section describes our PCF Learned Sort. First, in Section 3.1, we give an overview of the algorithm
and the key theorems used to guarantee the expected and worst-case computational complexity. Next, in
Section 3.2, we introduce the specific algorithm for PCF Learned Sort and guarantee its computational
complexity.

3.1 Method Overview

Our algorithm repeats recursive model-based bucketing until the array is small enough or the bucketing
“fails.” In model-based bucketing, a CDF model is trained and then used to partition an array of length n
into (approximately) γ buckets, satisfying the following two conditions: all elements in the i-th bucket are
smaller than all elements in the (i + 1)-th bucket, and with high probability, all buckets are approximately
the same size. If we set γ = nc (where 0 < c < 1 is a constant) and the partitioning into buckets is done
well, the size of each bucket will be approximately n1−c, so the size of the bucket in the k-th recurrence
depth will be approximately n(1−c)k . Here,

k ≥ − log log n

log(1− c) ⇒ n(1−c)k

≤ n(1−c)
− log log n

log(1−c) = e (1)

(where log is the natural logarithm, so the base is e). That is, with a recursion depth of k = Θ(log log n),
the size of the bucket is small enough, i.e., the max recursion depth is O(log log n). Thus, if the expected

3

Under review as submission to TMLR

36 48 59 38 22 47 74 43 34 24 21 56 62 23 80 57 50 45 71 40

36 22 34 24 21 23 38 47 43 45 40

48 50 56 57 59 62 71 74 80

48 59 74 56 62 80 57 50 71

38 43 40 47 4522 21 23 36 34 24

38 40 43 45 4721 22 23 24 34 36

21 22 23 24 34 36 38 40 43 45 47 48 50 56 57 59 62 71 74 80

𝑶(𝒏 𝐥𝐨𝐠𝒏)	sort
if |bucket| < 𝝉

𝑶(𝒏 𝐥𝐨𝐠𝒏)	sort
if |bucket| ≥ 𝜹

Recursive model-based bucketing
until |bucket| < 𝝉

Concatenate

CDF Model

CDF ModelCDF Model

0

1

0.5

5040 60 7030

𝑞

𝐹𝒙 𝑞
#𝐹(𝑞)

CDF Model
(Piecewise Constant Function)

: Output of CDF model

: Empirical CDF

𝒙

𝒄! 𝒄" 𝒄#$!

𝒙%&'()*

Figure 1: PCF Learned Sort: First, the input array is partitioned into γ+1 buckets using a CDF model-based
method. Buckets larger than δ or smaller than τ are sorted with a “standard” sort algorithm of complexity
O(n log n) (e.g., IntroSort). Otherwise, the recursive model-based bucketing is repeated. Finally, the sorted
arrays are concatenated. The CDF model used for bucketing is a Piecewise Constant Function (PCF). The
function is constant within each interval, and the interval widths are constant.

computational complexity of the partition is O(n) and the probability that the bucketing “fails” is sufficiently
small, the total computational complexity is O(n log log n). Under mild assumptions on the distribution, we
can prove that this fast and accurate partition can be achieved by using the Piecewise Constant Function
(PCF) as the CDF model.

Let D (⊆ R) be the range of possible values of the input array and x (∈ Dn) be the input array. If the length
of the input array, denoted as |x|, is less than τ , our algorithm sorts the input array using a “standard” sort
algorithm with O(n log n) complexity, such as IntroSort, where τ is a predetermined constant. Otherwise, if
|x| ≥ τ , model-based bucketing is performed.

The model-based bucketing method M takes an input array x and partitions it into several buckets. First,
it sets the parameter γ (∈ N), which determines the number of buckets. The parameter γ is determined as a
function of the array length n. The number of buckets returned by M is γ + 1. Next, all or some elements
of x are used to train the CDF model F̃ : D → [0, 1]. The F̃ (q) is trained to predict Fx(q), the empirical
CDF of x defined as:

Fx(q) := |{i ∈ {1, . . . , n} | xi ≤ q}|
|x|

. (2)

The specific model and training method of F̃ (q) are explained in Section 3.2. Finally, the CDF model is used
to partition the input array x into γ + 1 buckets. All γ + 1 buckets, {cj}γ+1

j=1 , are initialized to be empty, and
then for each i ∈ {1, . . . , n}, xi is appended to c⌊F̃ (xi)γ⌋+1. This is based on the intuition that the number
of elements less than or equal to xi in the array x (i.e., |{j ∈ {1, . . . , n} | xj ≤ xi}|) is approximately equal
to nF̃ (xi).

We restrict the CDF model F̃ to non-decreasing functions to ensure that the bucket with the larger ID gets
the larger value, i.e.,

p ∈ cj ∧ q ∈ ck ∧ j < k ⇒ p < q. (3)

4

Under review as submission to TMLR

Algorithm 1 The Learned Sort algorithm
1: Input:
2: x ∈ Rn : The array to be sorted
3: Output:
4: xsorted ∈ Rn : The sorted version of array x
5: Algorithm:
6: Standard-Sort(x) : The sort algorithm with computational complexity O(n log n)
7: CDF-Model(x) : Instantiate a CDF Model F̃ (q) that estimates Fx(q)
8:
9: function Learned-Sort(x)

10: n← |x|
11: if n < τ then
12: return Standard-Sort(x)
13:
14: // Model-based bucketing
15: F̃ (q)← CDF-Model(x)
16: c1 ← [], c2 ← [], . . . , cγ+1 ← []
17: for i = 1, 2, . . . , n
18: j ←

⌊
F̃ (xi)γ

⌋
+ 1

19: cj .Append(xi)
20:
21: // Recursively sort and concatenate
22: for j = 1, 2, . . . , γ + 1
23: if |cj | ≥ δ then
24: cj ← Standard-Sort(cj)
25: else
26: cj ← Learned-Sort(cj)
27: xsorted ← Concatenate(c1, c2, . . . , cγ+1)
28: return xsorted

This means that each bucket is responsible for a disjoint and continuous interval. Let tj = minx∈cj
x (j =

1, . . . , γ + 1), tγ+2 = ∞, then the j-th bucket cj (j = 1, . . . , γ + 1) is responsible for a continuous interval
Ij := [tj , tj+1).

After model-based bucketing, our algorithm determines for each bucket whether the bucketing “succeeds” or
“fails.” For each j ∈ {1, . . . , γ +1}, we check whether the size of bucket cj is less than δ, where δ is an integer
determined by n. If |cj | ≥ δ (which means the bucketing “fails”), the bucket is sorted using the “standard”
sort algorithm (e.g., IntroSort). If |cj | < δ (which means the bucketing “succeeds”), the bucket is sorted by
recursively calling our Learned Sort algorithm. Note that the parameters such as γ and δ are redetermined
for each recursion according to the size of the bucket (i.e., the input array in the next recursion step), and
the CDF model is retrained for each bucket. After each bucket is sorted, the buckets are concatenated. The
input array x is sorted by the above procedure. The basic idea of our algorithm is visualized in Figure 1,
and the pseudocode is given in Algorithm 1.

The following is a lemma about the worst-case complexity of our Learned Sort as defined above.
Lemma 3.1. Assume that there exists a model-based bucketing algorithm M such that M can perform
bucketing (including model training and inferences) an array of length n into γ + 1 = O(n) buckets with a
worst-case complexity of O(n). Also, assume that the “standard” sort algorithm has a worst-case complexity
of O(n log n). Then, the worst-case complexity of our Learned Sort with such M and δ = ⌊nd⌋ (where d is
a constant satisfying 0 < d < 1) is O(n log n).

This lemma can be intuitively shown from the following two points: (i) the maximum recursion depth is
O(log log n), and (ii) each element of the input array x undergoes several bucketing and only one “standard”

5

Under review as submission to TMLR

sort. (i) can be shown from the fact that the size of the bucket in the i-th recursion depth is less than ndi ,
and (ii) is evident from the algorithm’s design since the buckets sorted by “standard” sort are now left only
to be concatenated. The exact proof is given in Appendix A.1.

Next, we introduce an important lemma about the expected computational complexity of our Learned Sort.
The following assumption is necessary to guarantee the expected computational complexity.
Assumption 3.2. The input array x ∈ Dn is formed by independent sampling according to a probability
density distribution f(x) : D → R≥0.

We define fI(x) : I → R≥0 to be the conditional probability density distribution of f(x) under the condition
that x ∈ I for a interval I ⊆ D, i.e.,

fI(x) := f(x)∫
I f(y)dy

. (4)

The expected computational complexity of our proposed Learned Sort is guaranteed by the following lemma.
Lemma 3.3. Let xI (∈ In) be the array formed by sampling n times independently according to fI(x).
Assume that there exist a model-based bucketing algorithm M and a constant d (∈ (0, 1)) that satisfy the
following for any interval I (⊆ D):

• M can perform bucketing (including model training and inferences) an array of length n, with an
expected complexity of O(n). That is, M can take the array xI (∈ In) as input and divide it into
γ + 1 buckets, {cj}j=γ+1

j=1 satisfying Equation (3), with an expected complexity of O(n).

• γ + 1 = O(n).

• Pr[∃j, |cj | ≥ ⌊nd⌋] = O
(

1
log n

)
.

Also, assume that the “standard” sort algorithm has an expected complexity of O(n log n). Then, the expected
complexity of our Learned Sort with such M and δ = ⌊nd⌋ is O(n log log n).

This lemma can be proved intuitively by the following two points: (i) the maximum recursion depth is
O(log log n), and (ii) the expected total computational complexity from the i-th to the (i + 1)-th recursion
depth is O(n). (i) is the same as in the explanation of the proof of Lemma 3.1. (ii) can be shown from the
fact that the expected computational complexity from the i-th to the (i + 1)-th recursion depth is O(n log n)
with probability O(1

log n), and O(n) in other cases. See Appendix A.2 for the exact proof.

Note that the assumption of Lemma 3.3 includes “M works well with high probability for any I (⊆ D).”
This is because our Learned Sort algorithm recursively repeats the model-based bucketing. The range of
elements in the bucket, i.e., the input array in the next recursion step, can be any interval I (⊆ D).

3.2 PCF Learned Sort

We propose PCF Learned Sort as an implementation that satisfies the assumptions of Lemma 3.1 and
Lemma 3.3, and thus has a guarantee that the worst-case complexity is O(n log n) and the expected com-
plexity is O(n log log n). PCF Learned Sort approximates the CDF by a Piecewise Constant Function (PCF).
The PCF is a function that has intervals of equal width and outputs the same value in each interval (the
right side of Figure 1). The study that develops a Learned Index with a theoretical guarantee on its com-
plexity (Zeighami & Shahabi, 2023) also used PCF as a CDF model.

The model-based bucketing method in PCF Learned Sort MPCF trains the CDF model F̃ in the following
way. First, the parameters α ∈ {1, . . . , n} and β ∈ N are determined by n, the length of the input array.
The parameter α is the number of samples to train the CDF model, and β is the number of intervals in the
PCF. Next, the PCF is trained by counting the number of samples in each interval. Using xmin = mini xi

and xmax = maxi xi, let i(x) be a function defined as follows:

i(x) =
⌊

x− xmin

xmax − xmin
β

⌋
+ 1. (5)

6

Under review as submission to TMLR

α samples are taken at random from x to form a (∈ Dα), and then i(x) is used to form the array b (∈ Z≥0
β+1)

defined as follows:
bi = |{j ∈ {1, . . . , α} | i(aj) ≤ i}| . (6)

This counting corresponds to the training of the PCF. Note that b is an non-decreasing non-negative array
and bβ+1 = α, i.e., 0 ≤ b1 ≤ b2 ≤ · · · ≤ bβ+1 = α.

The inference for the CDF model F̃ (x) is performed using i(x), b, and the following equation:

F̃ (x) =
bi(x)

α
. (7)

Since i(x) is a non-decreasing function and b is also a non-decreasing array, F̃ (x) is a non-decreasing function.
Also, 0 ≤ F̃ (x) ≤ 1 because 0 ≤ bi ≤ α for every i.

The following is a lemma to bound the probability thatMPCF will “fail” bucketing. This lemma is important
to guarantee the expected computational complexity of PCF Learned Sort.
Lemma 3.4. Let σ1 and σ2 be respectively the lower and upper bounds of the probability density distribution
f(x) in D, and assume that 0 < σ1 ≤ σ2 <∞. That is, x ∈ D ⇒ σ1 ≤ f(x) ≤ σ2.

Then, in model-based bucketing of xI (∈ In) to {cj}γ+1
j=1 using MPCF, the following holds for any interval

I (⊆ D):

K ≥ 1⇒ Pr[∃j, |cj | > δ] ≤ 2n

δ
exp

{
−αK

2γ

(
1− 1

K

)2
}

, (8)

where
K := γδ

2n
− 2σ2γ

σ1β
. (9)

The proof of this lemma is based on and combines proofs from two existing studies. The first is Lemma
5.2. from a study of IPS4o (Axtmann et al., 2022), an efficient sample sort. This lemma guarantees the
probability of a “successful recursion step” when selecting pivots from samples and using them to perform a
partition. This lemma is for the method that does not use the CDF model, so the proof cannot be applied
directly to our case. Another proof we refer to is the proof of Lemma 4.5. from a study that addressed
the computational complexity guarantee of the Learned Index (Zeighami & Shahabi, 2023). This lemma
provides a probabilistic guarantee for the error between the output of the PCF and the empirical CDF.
Some modifications are required to adapt it to the context of sorting and to attribute it to the probability
of bucketing failure, i.e., Pr[∃j, |cj | > δ]. By appropriately combining the proofs of these two lemmas,
Lemma 3.4 is proved. The exact proof is given in Appendix A.3.

Here, we emphasize that the assumption of this lemma, 0 < σ1 ≤ σ2 < ∞, is sufficiently reasonable and
“mild” as described in (Zeighami & Shahabi, 2023). It asserts that the probability density function f(x)
is both bounded and nonzero over its domain D. This class of distributions covers the majority of real-
world scenarios because real-world data is commonly derived from bounded and continuous phenomena,
e.g., heights, weights, and prices.

Using Lemma 3.1, Lemma 3.3, and Lemma 3.4, we can prove the following theorems.
Theorem 3.5. IfMPCF is the bucketing method, the sort algorithm with worst-case complexity of O(n log n)
is “standard” sort, and α = β = γ = δ = ⌊n3/4⌋, then the worst-case complexity of PCF Learned Sort is
O(n log n).

Proof. When α = β = γ = ⌊n3/4⌋, the computational complexity for model-based bucketing is O(n) because
(i) the PCF is trained in O(α + β) = O(n3/4), and (ii) the total complexity of inference for n elements is
O(n), since the inference is performed in O(1) per element. Therefore, since γ + 1 = O(n), the worst-case
complexity of “standard” sort is O(n log n), and δ = ⌊n3/4⌋, we can prove the worst-case complexity of PCF
Learned Sort is O(n log n) by Lemma 3.1.

7

Under review as submission to TMLR

Theorem 3.6. Let σ1 and σ2 be the lower and upper bounds, respectively, of the probability density distri-
bution f(x) in D, and assume that 0 < σ1 ≤ σ2 < ∞. Then, if MPCF is the bucketing method, the sort
algorithm with expected complexity of O(n log n) is “standard” sort, and α = β = γ = δ = ⌊n3/4⌋, then the
expected complexity of PCF Learned Sort is O(n log log n).

Proof. When α = β = γ = ⌊n3/4⌋, the computational complexity for model-based bucketing is O(n). Since
K = Ω(

√
n) when α = β = γ = δ = ⌊n3/4⌋, K ≥ 1 for sufficiently large n, and

2n

δ
exp

{
−αK

2γ

(
1− 1

K

)2
}

= O(n 1
4 exp(−

√
n)) ≤ O

(
1

log n

)
. (10)

Given that γ +1 = O(n), the expected complexity of “standard” sort is O(n log n), and δ = ⌊n3/4⌋, it follows
from Lemma 3.3 and Lemma 3.4 that the expected complexity of PCF Learned Sort is O(n log log n).

Note that the exact value of σ1 and σ2 is not required to run PCF Learned Sort since the parameters for this
algorithm, i.e., α, β, γ, and δ, are determined without any prior knowledge. In other words, PCF Learned
Sort can sort in expected O(n log log n) complexity as long as 0 < σ1 ≤ f(x) ≤ σ2 < ∞, even if it does
not know the exact value of σ1 and σ2. If σ1 and σ2 do not satisfy the assumption of Theorem 3.6, i.e.,
σ1 = 0 or σ2 = ∞, then the expected complexity of PCF Learned Sort is increased to O(n log n), but from
Theorem 3.5, it cannot be greater than O(n log n).

4 Experiments

In this section, we confirm our theorems empirically. First, in Section 4.1, we confirm that the computational
complexity of PCF Learned Sort is O(n log log n) for both synthetic and real data. Then, in Section 4.2,
we conduct experiments with various parameter settings and empirically confirm Lemma 3.4, a lemma that
bounds the probability of bucketing failure and is an important lemma to guarantee the expected compu-
tational complexity of PCF Learned Sort. Finally, in Section 4.3, we present the results of an experiment
measuring sorting time.

4.1 Computational Complexity of PCF Learned Sort

We experimented with synthetic datasets created from the following four types of distributions: uniform dis-
tribution (min = 0, max = 1), normal distribution (µ = 0, σ = 1), exponential distribution (λ = 1), lognormal
distribution (µ = 0, σ = 1). The input array was generated by independently taking n = 104, . . . , 108 samples
from each distribution. We also used four real datasets, NYC, Wiki, OSM, and Books, which are described
below. NYC: pick-up datetimes in the yellow taxi trip records (Kristo, 2021). Wiki: Wikipedia article edit
timestamps (Marcus et al., 2020). OSM: uniformly sampled OpenStreetMap locations represented as Google
S2 CellIds (Marcus et al., 2020). Books: book sale popularity data from Amazon (Marcus et al., 2020). For
each dataset, we randomly sample n = 104, . . . , 108 elements, shuffle the sampled elements, and then use
them as an input array to examine the computational complexity of the sort algorithms. We meticulously
counted the total number of basic operations for sorting the input array to observe the computational com-
plexity of each sorting algorithm. Here, the basic operations consist of four arithmetic operations, powers,
comparisons, logical operations, assignments, and memory access. We chose this metric, which counts basic
operations, to mitigate the environmental dependencies observed in other metrics, such as CPU instructions
and CPU time, which are heavily influenced by compiler optimizations and the underlying hardware. This
is the same idea as the metric selection in the experiment of (Zeighami & Shahabi, 2023).

The parameters of PCF Learned Sort are set as in Theorem 3.5 and Theorem 3.6, α = β = γ = δ = ⌊n3/4⌋
and τ = 100. As the “standard” sort algorithm used in PCF Learned Sort, we used quick sort, which has an
expected computational complexity of O(n log n). We compared our PCF Learned Sort with (plain) quick
sort, radix sort, and one of the state-of-the-art learning augmented sort algorithms (Kristo et al., 2021b).

Figure 2 shows the number of operations divided by the length of the input array, n. It shows the mean
and standard deviation of the 10 measurements for each condition. The proposed PCF Learned Sort has the

8

Under review as submission to TMLR

Figure 2: Number of operations to sort the array. Below each graph is a histogram that visualizes the
distribution of each dataset. The standard deviation of the 10 measurements is represented by the shaded
area.

lowest number of operations for all condition settings. We see that PCF Learned Sort has up to 2.8 times
fewer operations than quick sort. Also, while the graph of quick sort is almost linear, the graph of PCF
Learned Sort is almost flat. This suggests that PCF Learned Sort has a computational complexity much
smaller than O(n log n).

The graph of the radix sort is almost perfectly flat, but it always requires more operations than PCF Learned
Sort. This difference is due to the different partitioning methods of the two algorithms. While the radix
sort performs partitioning at a predetermined granularity, our PCF Learned Sort performs partitioning
using intervals that are adaptively set by the learning model. Kristo et al.’s Learned Sort 2021a uses a
more complex regression model than ours and focuses on cache efficiency, so it is harder to guarantee
computational efficiency and requires more operations to sort than PCF Learned Sort. In particular, for
the OSM dataset, the difference between Kristo et al.’s Learned Sort 2021a and PCF Learned Sort is more
pronounced. The OSM dataset has a histogram with multiple sharp peaks, which makes it difficult for
the CDF model to regress. Therefore, the number of operations for (Kristo et al., 2021a) increases rapidly
as n increases. On the other hand, PCF Learned Sort, which has theoretical guarantees on expected and
worst-case computations, shows an almost flat graph.

4.2 Confirmation of Lemma 3.4

Lemma 3.4 bounds the probability that a bucket of size greater than δ exists. This is an important lemma that
allows us to guarantee the expected computational complexity of PCF Learned Sort. Here, we empirically
confirm that this upper bound is appropriate.

9

Under review as submission to TMLR

Figure 3: Heatmap showing the empirical frequency of bucketing failure, i.e., ∃j, |cj | > δ. The variables
a, b, c, d, except those on the x- and y-axes, were set to 0.75. The white dotted line represents the parameters
that make the right side of Equation (8) equal to 0.5.

We have experimented with α = ⌊na⌋, β = ⌊nb⌋, γ = ⌊nc⌋, δ = ⌊nd⌋, varying a, b, c, d from 0.05 to 0.95 at
0.05 intervals. For each a, b, c, d setting, the following was repeated 100 times: we took n = 106 elements
from the uniform distribution to form the input array and divided the array into γ + 1 buckets by MPCF,
and checked whether or not ∃j, |cj | > δ. Thus, for each a, b, c, d ∈ {0.05, 0.10, . . . , 0.95}, we obtained the
empirical frequency at which bucketing “fails.”

Heat maps in Figure 3 show the empirical frequency of bucketing failures when two of the a, b, c, d parameters
are fixed, and the other two parameters are varied. The values of the two fixed variables are set to 0.75, e.g.,
in the upper left heap map of Figure 3 (horizontal axis is a and vertical axis is b), c = d = 0.75. The white
dotted line represents the parameter so that the right side of Equation (8) is 0.5. That is, Lemma 3.4 asserts
that “in the region upper right of the white dotted line, the probability of bucketing failure is less than 0.5.”

We can see that the white dotted line is close to (or slightly to the upper right of) the actual bound of
whether bucketing “succeeds” or “fails” more often. In other words, we can see that the theoretical upper
bound from Lemma 3.4 agrees well (to some extent) with the actual probability. We can also confirm that,
as Lemma 3.4 claims, the probability of bucketing failure is indeed small in the region upper right of the
white line.

4.3 Experiments on Sorting Time

Here, we empirically compare the time each algorithm takes to sort. Note that the metric used in Section 4.1,
the number of operations, does not change depending on the machine or compilation method, but the sort-
ing time does. All experiments were performed on a Linux machine equipped with an Intel® Core™ i9-
11900H CPU @ 2.50GHz and 62GB of memory. GCC version 9.4.0 was used for compilation, employing the
-O3 optimization flag. As the “standard” sort algorithm used in PCF Learned Sort, we used std::sort,
which has a worst-case computational complexity of O(n log n). We compared our PCF Learned Sort with

10

Under review as submission to TMLR

Figure 4: Time to sort the array. Below each graph is a histogram that visualizes the distribution of each
dataset. The standard deviation of the 10 measurements is represented by the shaded area.

std::sort, radix sort, boost::sort::spreadsort::float_sort (Boost C++ implementation of Spread-
sort (Ross, 2002)), and one of the state-of-the-art learning augmented sort algorithms (Kristo et al., 2021b).

Figure 4 shows the sorting time divided by the length of the input array, n. It shows the mean and standard
deviation of the 10 measurements for each condition. We see that our PCF Learned Sort is up to 2.5 times
faster than std::sort. Also, while the graph of std::sort is almost linear, the PCF Learned Sort graph
shows a relatively slow increase, suggesting that PCF Learned Sort has a computational complexity much
smaller than O(n log n). Furthermore, we find that for relatively large n (n > 106), our PCF Learned Sort
usually outperforms not only radix sort but also Spreadsort, an algorithm that cleverly incorporates the
advantage of comparison sort into radix sort.

Kristo et al.’s Learned Sort 2021a turns out to be much faster than PCF Learned Sort. This is because
(Kristo et al., 2021a) is implemented with an emphasis on cache efficiency, while we have not done a highly
optimized implementation that carefully considers cache. Another reason is that (Kristo et al., 2021a) uses
a more complex and accurate (but harder to guarantee complexity and accuracy theoretically) regression
model than PCF Learned Sort. Developing a Learned Sort that is as fast as (Kristo et al., 2021a) and can
be theoretically guaranteed is a future work.

5 Discussion

Comparison with (Zeighami & Shahabi, 2024). Most recently, a concurrent work (Zeighami & Sha-
habi, 2024) introduced a theoretical framework for learned database operations, including sorting, indexing,

11

Under review as submission to TMLR

and cardinality estimation. A key strength of their approach is the formal definition of “distribution learnabil-
ity” and its applicability to a broad class of distributions, including those subject to distribution shifts. Using
this framework, they developed a Learned Sort algorithm with an expected running time of O(n log log n)
under certain distributional assumptions. While their approach employs a bucketing-based sorting algorithm
similar to ours, there are several key differences between their method and ours.

First, their algorithm relies on detailed prior knowledge about the distribution. Specifically, their algorithm
explicitly requires a parameter κ2, which represents the “learning possibility” of the distribution (see Defi-
nition 3.2 in (Zeighami & Shahabi, 2024) for details). This means that their algorithm cannot be executed
without knowing the parameter κ2. Since the parameter κ2 depends on ρ1 and ρ2, their algorithm must
know the exact values of ρ1 and ρ2 or at least their lower and upper bounds. In contrast, our algorithm does
not require these values, making it more widely applicable.

Second, they do not provide experimental results. Since estimating ρ1 and ρ2 from real data is challenging,
empirical evaluation of their method is difficult. On the other hand, since our algorithm does not depend
on these specific values, it is easy to implement and evaluate experimentally.

Finally, their algorithm lacks a worst-case complexity guarantee. In particular, there are cases where the
algorithm may not terminate, making it impossible to give an upper bound on its worst-case complexity. In
contrast, we provide a formal worst-case complexity guarantee of O(n log n).

Limitations of the Current Theoretical Framework. The proof of Theorem 3.6, which establishes
the expected complexity of PCF Learned Sort as O(n log log n), does not extend to distributions where
there exists an x ∈ D such that f(x) = 0 or f(x) = ∞. A similar limitation is observed in Learned
Indexes Zeighami & Shahabi (2023). Addressing these constraints and developing a theory or algorithm
applicable to a broader class of distributions remains an important direction for future research on Learned
Indexes and Learned Sorts.

Future Research Directions. Future work could include integrating a more advanced CDF approxi-
mation method with theoretical guarantees into our Learned Sort algorithm. By adopting a refined CDF
model and a bucketing algorithm that satisfies the conditions of Lemma 3.3, we may achieve a sorting algo-
rithm with even stronger theoretical guarantees. In other words, improving the accuracy and speed of CDF
approximation can lead to further advances in Learned Sort.

Another important research direction is achieving an implementation that not only maintains theoretical
guarantees but also matches or surpasses the empirical performance of the state-of-the-art Learned Sorts. One
potential approach to improving real-world efficiency is optimizing memory access patterns to enhance cache
efficiency, similar to existing Learned Sort (Kristo et al., 2021a). By carefully structuring memory accesses,
reducing cache misses, and leveraging cache-aware data layouts, the performance of PCF Learned Sort could
be improved without compromising its theoretical guarantees. Another promising direction is dynamic
parameter tuning. Currently, the parameters of PCF Learned Sort are set as α = β = γ = δ = ⌊n3/4⌋.
Dynamically adjusting these parameters based on the input distribution and array size could lead to further
performance gains while maintaining theoretical guarantees.

6 Conclusion

We proposed PCF Learned Sort and proved theoretically that its worst-case computational complexity is
O(n log n) without assumptions and its expected computational complexity is O(n log log n) under mild
assumptions on the distribution. We then confirm this computational complexity empirically on both syn-
thetic and real data. This is the first study to support the empirical success of Learned Sort theoretically
and provides insight into why Learned Sort is fast.

12

Under review as submission to TMLR

References
Antonios Antoniadis, Christian Coester, Marek Eliáš, Adam Polak, and Bertrand Simon. Online metric

algorithms with untrusted predictions. ACM Transactions on Algorithms, 2023.

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. Engineering in-place (shared-memory)
sorting algorithms. ACM Transactions on Parallel Computing, 2022.

Xingjian Bai and Christian Coester. Sorting with predictions. Advances in Neural Information Processing
Systems, 2023.

T.-H. Hubert Chan, Enze Sun, and Bo Wang. Generalized sorting with predictions revisited. In Frontiers
of Algorithmics, 2023.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster matchings
via learned duals. Advances in Neural Information Processing Systems, 2021.

Thomas Erlebach, Murilo de Lima, Nicole Megow, and Jens Schlöter. Sorting and hypergraph orientation
under uncertainty with predictions. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2023.

Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed learned index with
provable worst-case bounds. Proceedings of the Very Large Data Bases Endowment, 2020.

W Donald Frazer and Archie C McKellar. Samplesort: A sampling approach to minimal storage tree sorting.
Journal of the Association for Computing Machinery, 1970.

Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert advice. In
Proceedings of the International Conference on Machine Learning, 2019.

Yijie Han. Deterministic sorting in o(n log log n) time and linear space. In Proceedings of the Annual ACM
Symposium on Theory of Computing, 2002.

Yijie Han. Sorting real numbers in o(n sqrt(log n)) time and linear space. Algorithmica, 2020.

Yijie Han and Mikkel Thorup. Integer sorting in o(n sqrt(log log n)) expected time and linear space. In
Proceedings of the Symposium on Foundations of Computer Science, 2002.

Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. Parsimonious learning-augmented caching.
In Proceedings of the International Conference on Machine Learning, 2022.

Java. List (java se 21 & jdk 21). URL: https://docs.oracle.com/en/java/javase/21/docs/api/java.
base/java/util/List.html#sort(java.util.Comparator), 2023. Accessed on 2024-01-18.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas
Neumann. Radixspline: a single-pass learned index. In Proceedings of the international workshop on
exploiting artificial intelligence techniques for data management, 2020.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In Proceedings of the International Conference on Management of Data, 2018.

Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding, Ani Kristo, Guillaume Leclerc,
Samuel Madden, Hongzi Mao, and Vikram Nathan. Sagedb: A learned database system. In Proceedings
of the Conference on Innovative Data Systems Research, 2019.

Ani Kristo. NYC Yellow Taxi Trips Dataset, Version 2.0, License: CC0 1.0 Universal. URL: https:
//doi.org/10.7910/DVN/SSDV7O, 2021.

Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska. The case for a learned sorting
algorithm. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020.

13

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/List.html#sort(java.util.Comparator)
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/List.html#sort(java.util.Comparator)
https://doi.org/10.7910/DVN/SSDV7O
https://doi.org/10.7910/DVN/SSDV7O

Under review as submission to TMLR

Ani Kristo, Kapil Vaidya, and Tim Kraska. Defeating duplicates: A re-design of the learnedsort algorithm.
arXiv preprint arXiv:2107.03290, 2021a.

Ani Kristo, Kapil Vaidya, and Tim Kraska. LearnedSort, License: GPL 3.0. URL: https://github.com/
anikristo/LearnedSort, 2021b. Accessed on 2024-01-18.

Alexandra Anna Lassota, Alexander Lindermayr, Nicole Megow, and Jens Schlöter. Minimalistic predictions
to schedule jobs with online precedence constraints. In Proceedings of the International Conference on
Machine Learning, 2023.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling via learned
weights. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2020.

Pinyan Lu, Xuandi Ren, Enze Sun, and Yubo Zhang. Generalized sorting with predictions. In Symposium
on Simplicity in Algorithms (SOSA), 2021.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. Journal of
the Association for Computing Machinery, 2021.

Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons Kemper, Thomas
Neumann, and Tim Kraska. SOSD, License: GPL 3.0. URL: https://github.com/learnedsystems/
SOSD, 2020. Accessed on 2024-01-18.

Peter McIlroy. Optimistic sorting and information theoretic complexity. In Proceedings of the ACM-SIAM
Symposium on Discrete algorithms, 1993.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. Advances in
Neural Information Processing Systems, 2018.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications of the ACM,
2022.

J Ian Munro and Sebastian Wild. Nearly-optimal mergesorts: Fast, practical sorting methods that optimally
adapt to existing runs. In European Symposium on Algorithms, 2018.

David R Musser. Introspective sorting and selection algorithms. Software: Practice and Experience, 1997.

Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li Zhang. Deepcache: A deep
learning based framework for content caching. In Proceedings of the Workshop on Network Meets AI &
ML, 2018.

Omar Obeya, Endrias Kahssay, Edward Fan, and Julian Shun. Theoretically-efficient and practical par-
allel in-place radix sorting. In Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures, 2019.

Tim Peters. Python: list.sort. URL: https://github.com/python/cpython/blob/main/Objects/
listsort.txt, 2002. Accessed on 2024-01-18.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions. Advances
in Neural Information Processing Systems, 2018.

Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, 2020.

Steven J Ross. The spreadsort high-performance general-case sorting algorithm. In PDPTA, 2002.

Shinsaku Sakaue and Taihei Oki. Discrete-convex-analysis-based framework for warm-starting algorithms
with predictions. Advances in Neural Information Processing Systems, 2022.

Atsuki Sato and Yusuke Matsui. Fast partitioned learned bloom filter. Advances in Neural Information
Processing Systems, 2023.

14

https://github.com/anikristo/LearnedSort
https://github.com/anikristo/LearnedSort
https://github.com/learnedsystems/SOSD
https://github.com/learnedsystems/SOSD
https://github.com/python/cpython/blob/main/Objects/listsort.txt
https://github.com/python/cpython/blob/main/Objects/listsort.txt

Under review as submission to TMLR

Yongho Shin, Changyeol Lee, Gukryeol Lee, and Hyung-Chan An. Improved learning-augmented algorithms
for the multi-option ski rental problem via best-possible competitive analysis. In Proceedings of the Inter-
national Conference on Machine Learning, 2023.

Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. Partitioned learned bloom filter. In
International Conference on Learning Representations, 2021.

Youyun Wang, Chuzhe Tang, Zhaoguo Wang, and Haibo Chen. Sindex: a scalable learned index for string
keys. In Proceedings of the ACM SIGOPS Asia-Pacific Workshop on Systems, 2020.

Sepanta Zeighami and Cyrus Shahabi. On distribution dependent sub-logarithmic query time of learned
indexing. In Proceedings of the International Conference on Machine Learning, 2023.

Sepanta Zeighami and Cyrus Shahabi. Theoretical analysis of learned database operations under distribution
shift through distribution learnability. In Proceedings of the 41st International Conference on Machine
Learning, 2024.

15

Under review as submission to TMLR

A Proofs

Here, we give the proofs omitted in the main paper. In Appendix A.1, we give the proof of Lemma 3.1, which
is important for proving the worst-case complexity of PCF Learned Sort. Appendix A.2 and Appendix A.3
give proofs of Lemma 3.3 and Lemma 3.4, respectively, which are important for proving the expected com-
putational complexity of PCF Learned Sort. The quantization-aware version of Lemma 3.4 and Theorem 3.6
is defined and the proof is given in the Appendix A.4.

A.1 Proof of Lemma 3.1

Proof. Let P (n) be the worst-case complexity of our Learned Sort when using the model-based bucketing
algorithm M as assumed in Lemma 3.1 and δ = ⌊nd⌋. Let S(n) be the worst-case complexity of the
“standard” sort algorithm and R(n) be the worst-case complexity of model-based bucketing (including model
training and inferences). Since S(n) = O(n log n) and the “standard” sort algorithm terminates after a finite
number of operations,

∃ C1, l1 (> 0), n ≥ 0⇒ S(n) ≤ C1 + l1n log n. (11)

Since R(n) = O(n) and γ + 1 = O(n),

∃ n2, l2 (> 0), n ≥ n2 ⇒ R(n) ≤ l2n. (12)
∃ n3, l3 (> 0), n ≥ n3 ⇒ γ + 1 ≤ l3n. (13)

In the following, we prove T (n) = O(n log log n) by mathematical induction.

First, for n < max(n2, n3, τ) =: n0, there exists a constant C (> 0) such that P (n) ≤ C. That is, for n < n0,
our Learned Sort terminates in a finite number of operations. This is because, since δ < n, the bucket will
either be smaller than the original array length n, or the bucket will be immediately sorted by the “standard”
sort algorithm.

Next, assume that there exists a constant C (> 0) and l (> 0) such that P (n) ≤ C + ln log n for all n < k,
where k is an integer such that k ≥ n0. Let Sγ,k be the set consisting of all (γ + 1)-dimensional vectors of
positive integers whose sum is k, i.e., Sγ,k :=

{
s ∈ Zγ

≥0 |
∑γ+1

i=1 si = k
}

. Then,

P (k) ≤ R(k) + max
s∈Sγ,k

γ+1∑
i=1

{
1[si ≥ ⌊kd⌋] · S(si) + 1[si < ⌊kd⌋] · P (si)

}
≤ l2k + max

s∈Sγ,k

γ+1∑
i=1

{
1[si ≥ ⌊kd⌋] · (C1 + l1si log si) + 1[si < ⌊kd⌋] · (C + lsi log si)

}
≤ l2k + max

s∈Sγ,k

γ+1∑
i=1

{
(C1 + l1si log si) +

(
C + lsi log kd

)}
≤ l2k + C1(γ + 1) + l1k log k + C(γ + 1) + lk log kd

≤ l2k + C1l3k + l1k log k + Cl3k + lkd log k

≤ {l2 + C1l3 + l1 + Cl3 − l(1− d)} k log k + (C + lk log k).

(14)

Therefore, if we take l such that
l2 + C1l3 + l1 + Cl3

1− d
≤ l, (15)

then P (k) ≤ C + lk log k (note that the left side of the following equation is a constant independent of k).

Hence, by mathematical induction, it is proved that there exists a constant C (> 0) and l (> 0) such that
P (n) ≤ C + ln log n for all n ∈ N.

16

Under review as submission to TMLR

A.2 Proof of Lemma 3.3

Proof. The proof approach is the same as in Lemma 3.1, but in Lemma 3.3, the “expected” computational
complexity is bounded. The following two randomnesses are considered for computing the “expected” com-
putational complexity: (i) the randomness with which n elements are independently sampled according to
the probability density function f(x) in the process of forming the input array x, and (ii) the randomness
of the PCF Learned Sort algorithm sampling α elements from the input array x for training the PCF.

Let T (n) be the expected complexity of our Learned Sort when using the model-based bucketing algorithm
M as assumed in Lemma 3.3 and δ = ⌊nd⌋. Let S(n) be the expected complexity of the “standard” sort
algorithm and R(n) be the expected complexity of model-based bucketing (including model training and
inferences). Since S(n) = O(n log n) and the “standard” sort algorithm terminates after a finite number of
operations,

∃ C1, l1 (> 0), n ≥ 0⇒ S(n) ≤ C1 + l1n log n. (16)

Since R(n) = O(n), Pr[∃j, |cj | ≥ ⌊nd⌋] = O(1/ log n), and γ + 1 = O(n),

∃ n2, l2 (> 0), n ≥ n2 ⇒ R(n) ≤ l2n, (17)

∃ n3, l3 (> 0), n ≥ n3 ⇒ Pr[∃j, |cj | ≥ ⌊nd⌋] ≤ l3
log n

, (18)

∃ n4, l4 (> 0), n ≥ n4 ⇒ γ + 1 ≤ l4n. (19)

In the following, we prove T (n) = O(n log log n) by mathematical induction.

First, for n < max(n2, n3, n4, τ) =: n0, there exists a constant C (> 0) such that T (n) ≤ C. That is, for
n < n0, our Learned Sort terminates in a finite number of operations.

Next, assume that there exists a constant C (> 0) and l (> 0) such that T (n) ≤ C + ln log log n for all n < k,
where k is an integer such that k ≥ n0. Then, from k ≥ n2,

T (k) ≤ R(k) + E

γ+1∑
j=1

1[|cj | ≥ ⌊kd⌋] · S(|cj |) + 1[|cj | < ⌊kd⌋] · T (|cj |)


≤ l2k + Pr

[
∃j, |cj | ≥ ⌊kd⌋

]
· E

γ+1∑
j=1

S(|cj |)

 + E

γ+1∑
j=1

1[|cj | < ⌊kd⌋] · T (|cj |)


≤ l2k + Pr[∃j, |cj | ≥ ⌊kd⌋] · {C1(γ + 1) + l1k log k}+ E

[
γ+1∑
i=1

T (min(⌊kd⌋, |cj |))
]

.

(20)

Here, from k ≥ n3 and k ≥ n4,

Pr[∃j, |cj | ≥ ⌊kd⌋] · {C1(γ + 1) + l1k log k} ≤ l3
log k

· (C1l4k + l1k log k)

≤ (C1l3l4 + l1l3)k.

(21)

Also, from the assumption of induction and k ≥ n4,

E

[
γ+1∑
i=1

T (min(⌊kd⌋, |cj |))
]
≤ E

[
γ+1∑
i=1

{
C + l ·min(⌊kd⌋, |cj |) log log min(⌊kd⌋, |cj |)

}]

≤ E

[
C(γ + 1) +

γ+1∑
i=1

l · |cj | log log⌊kd⌋

]
≤ Cl4k + lk log log⌊kd⌋
≤ Cl4k + lk log d + lk log log k.

(22)

17

Under review as submission to TMLR

Therefore,

T (k) ≤ l2k + (C1l3l4 + l1l3)k + Cl4k + lk log d + lk log log k

≤
{

l2 + C1l3l4 + l1l3 + Cl4 − l log 1
d

}
k + (C + lk log log k).

(23)

Therefore, if we take l such that
l2 + C1l3l4 + l1l3 + Cl4

log 1
d

≤ l, (24)

then T (k) ≤ C + lk log log k (note that the left side of Equation (24) is a constant independent of k).

Hence, by mathematical induction, it is proved that there exists a constant C (> 0) and l (> 0) such that
T (n) ≤ C + ln log log n for all n ∈ N.

A.3 Proof of Lemma 3.4

We first present the following lemma to prove Lemma 3.4.
Lemma A.1. Let e (∈ In) be a sorted version of xI (∈ In) and ∆ := (xmax − xmin)/β (where xmin and
xmax are the minimum and maximum values of xI , respectively).

Also, define the set Sr and Tr as follows (r = 1, . . . , n):

Sr = {k | emax(1,r−δ/2) + ∆ < ek ≤ er −∆}, Tr = {k | er + ∆ ≤ ek < emin(r+δ/2,n) −∆}. (25)

Using this definition, define Yjr, Zjr, Yr, Zr as follows (j = 1, . . . , α, r = 1, . . . , n):

Yjr =
{

1 (j ∈ Sr)
0 (else)

, Zjr =
{

1 (j ∈ Tr)
0 (else)

, (26)

Yr =
α∑

j=1
Yjr, Zr =

α∑
j=1

Zjr. (27)

If the size of the bucket to which er is allocated is greater than or equal to δ, then the following holds:(
r ≥ δ

2 + 1 ∧ Yr ≤
⌊

α

γ

⌋)
∨

(
r ≤ n− δ

2 ∧ Zr ≤
⌊

α

γ

⌋)
. (28)

Proof. We prove the contraposition of the lemma. That is, we prove that er is allocated to a bucket smaller
than δ under the assumption that

(
r < δ

2 + 1 ∨ Yr >
⌊

α
γ

⌋)
∧

(
r > n− δ

2 ∨ Zr >
⌊

α
γ

⌋)
.

For convenience, we hypothetically define e0 = −∞, en+1 =∞, and assign e0 to the 0th bucket and en+1 to
the (γ + 2)-th bucket. The size of the 0th bucket and the (γ + 2)-th bucket are both 1.

First, we prove that er and emin(r+δ/2,n+1) are assigned to different buckets. When n− δ/2 < r ≤ n, er and
emin(r+δ/2,n+1) = en+1 are obviously assigned to different buckets. When r ≤ n− δ/2, the ID of the bucket
to which er is assigned is

⌊F̃ (er)γ⌋+ 1 =
⌊ γ

α
bi(er)

⌋
+ 1

≤ γ

α
bi(er) + 1

= γ

α
|{j | i(aj) ≤ i(er)}|+ 1

≤ γ

α
|{j | aj ≤ er + ∆}|+ 1.

(29)

18

Under review as submission to TMLR

The ID of the bucket to which emin(r+δ/2,n+1) = er+δ/2 is assigned is

⌊F̃ (er+δ/2)γ⌋+ 1 =
⌊ γ

α
bi(er+δ/2)

⌋
+ 1

>
γ

α
bi(er+δ/2)

= γ

α

∣∣{j | i(aj) ≤ i(er+δ/2)}
∣∣

≥ γ

α

∣∣{j | aj ≤ er+δ/2 −∆}
∣∣ .

(30)

Thus, taking the difference between these two bucket IDs,(
⌊F̃ (er+δ/2)γ⌋+ 1

)
−

(
⌊F̃ (er)γ⌋+ 1

)
>

γ

α

∣∣{j | aj ≤ er+δ/2 −∆}
∣∣− (γ

α
|{j | aj ≤ er + ∆}|+ 1

)
= γ

α

∣∣{j | er + ∆ < aj ≤ er+δ/2 −∆}
∣∣− 1

= γ

α
|Tr| − 1

= γ

α

α∑
j=1

Zjr − 1

= γ

α
Zr − 1

≥ 0.

(31)

Therefore, er and emin(r+δ/2,n+1) are assigned to different buckets.

In the same way, we can prove that emax(0,r−δ/2) and er are also assigned to different buckets. Thus, the size
of the bucket to which er is assigned is at most δ − 1 (at most from emax(0,r−δ/2)+1 to emin(r+δ/2,n+1)−1),
and the contraposition of the lemma is proved.

Using Lemma A.1, we can prove Lemma 3.4.

Proof. Let q = max
y

∫ y+∆
y

fI(x)dx (where y is a value such that (y, y + ∆) ⊆ I). Then, from σ1 ≤ f(x) ≤ σ2

for all x ∈ I,

q ≤
maxy

∫ y+∆
y

f(y)dy∫
I f(x)dx

≤
maxy

∫ y+∆
y

σ2dy∫
I σ1dx

≤ σ2∆
σ1(xmax − xmin)

= σ2

σ1β
.

(32)

Thus, when r ≥ δ
2 + 1,

E
[

δ

2 − |Sr|
]

= E
[

δ

2 −
∣∣{k | er−δ/2 + ∆ < ek ≤ er −∆}

∣∣]
= E

[∣∣{k | er−δ/2 < ek ≤ er−δ/2 + ∆}
∣∣] + E [|{k | er −∆ < ek ≤ er}|]

≤ nq + nq

≤ 2σ2n

σ1β
.

(33)

19

Under review as submission to TMLR

Thus, when r ≥ δ
2 + 1,

E[Yr] = α

n
E [|Sr|]

= α

n

(
δ

2 − E
[

δ

2 − |Sr|
])

≥ αδ

2n
− 2σ2α

σ1β

= αK

γ
.

(34)

Here, when K ≥ 1, we have
0 ≤ 1− α

γE[Yr] < 1. (35)

Therefore, from the Chernoff bound,

Pr
[
Yr ≤

α

γ

]
= Pr

[
Yr ≤

{
1−

(
1− α

γE[Yr]

)}
E [Yr]

]
≤ exp

{
−1

2

(
1− α

γE[Yr]

)2
E [Yr]

}

≤ exp
{
−αK

2γ

(
1− 1

K

)2
}

.

(36)

In the same way, we can prove that when r ≤ n− δ
2 ,

Pr
[
Zr ≤

α

γ

]
≤ exp

{
−αK

2γ

(
1− 1

K

)2
}

. (37)

Thus, by defining Er to be the event “er is allocated to a bucket with size greater than or equal to δ,” from
Lemma A.1,

Pr[Er] ≤ Pr
[(

r ≥ δ

2 + 1 ∧ Yr ≤
⌊

α

γ

⌋)
∨

(
r ≤ n− δ

2 ∧ Zr ≤
⌊

α

γ

⌋)]
≤ Pr

[(
r ≥ δ

2 + 1 ∧ Yr ≤
⌊

α

γ

⌋)]
+ Pr

[(
r ≤ n− δ

2 ∧ Zr ≤
⌊

α

γ

⌋)]

≤

exp
{
−αK

2γ

(
1− 1

K

)2
}

,
(
r < δ

2 + 1 ∨ r > n− δ
2
)

2 exp
{
−αK

2γ

(
1− 1

K

)2
}

, (else)

≤ 2 exp
{
−αK

2γ

(
1− 1

K

)2
}

.

(38)

Therefore,

E

[
n∑

r=1
1[Er]

]
≤ 2n exp

{
−αK

2γ

(
1− 1

K

)2
}

(39)

Then, noting that the number of buckets with size greater than or equal to δ is less than or equal to∑n
r=1 1[Er]/δ,

E [|{j | |cj | > δ}|] ≤ 2n

δ
exp

{
−αK

2γ

(
1− 1

K

)2
}

. (40)

20

Under review as submission to TMLR

Then, from Markov’s inequality, we have

Pr[∃j, |cj | > δ] = Pr[|{j | |cj | > δ}| ≥ 1]

≤ 2n

δ
exp

{
−αK

2γ

(
1− 1

K

)2
}

.
(41)

A.4 The Quantization-Aware Version of Lemma 3.4 and Theorem 3.6

In general, computers represent numbers in a finite number of bits, so the numbers they handle are inherently
discrete. However, Theorem 3.6, which states that the expected computational complexity of PCF Learned
Sort is O(n log log n), does not cover discrete distributions. Here, we define the quantization process by which
a computer represents numbers in finite bits and then show that the expected computational complexity of
PCF Learned Sort is still O(n log log n), under the assumption that “the quantization is fine enough.”

First, we assume the sampling and quantization process is as follows:
Assumption A.2. For a range of values D (⊆ R), define m (∈ N) contiguous regions D1,D2, . . . ,Dm

such that (i) they are disjoint from each other and (ii) together they form D. For each region, determine
representative values r1, r2, . . . , rm. Here, r1, r2, . . . , rm are values contained in D1,D2, . . . ,Dm, respectively.
For a value x (∈ D), the quantized value of x, x′, is obtained as x′ = ri, where i is the (only) i such that
x ∈ Di. The value x is sampled according to the probability density function f(x), but a computer keeps x′

(instead of x) in log2 m bits with some quantization error.

Also, for the interval I ⊆ D, we define η(I) as follows.
Definition A.3. η(I) is the maximum width of Di that intersects with interval I, i.e.,

η(I) := max {|Di| | Di ∪ I ≠ ∅, i = 1, . . . , m} , (42)

where |Di| is the width of the range Di.

We can prove that η(I) is the upper bound of the quantization error of x in I, i.e., |x − x′| ≤ η(I) when
x ∈ I.

Now, the assumption that the quantization is “fine enough” is specifically defined as follows.
Assumption A.4. (Recall that our PCF Learned Sort recursively calls its own algorithm. Each time of
recursion, the range of values of interest I changes, and the length of the array of interest n also changes.)
For all I and n that appear in the algorithm, the following holds:

βη(I)
|I|

≤ 1
2 . (43)

We show intuitively and empirically that this is a satisfactory assumption.

First, to show intuitively that this assumption is satisfactory, we give an example. Let I be a range of values
that can be represented by a 64-bit double (1 bit for the sign, 11 bits for the exponent part, and 52 bits for
the mantissa part), that is, I = [−1.79×10308, 1.79×10308]. The quantization is performed by mapping each
value to the nearest number that can be represented by a 64-bit double. In this setting, η(I) = 1.99× 10292,
|I| = 3.59× 10308. η(I)/|I| = 5.55× 10−17. Thus, for usual β, β ≤ 9× 1015, Equation (43) holds.

Second, we show that Equation (43) is a satisfactory assumption empirically. In the 1,280 measurements,
where 10 measurements each for 16 different n(∈ {103, 2 × 103, 5 × 103, . . . , 108}) on 8 different datasets,
5.23 × 107 pairs of (I, β) appeared (we set β =

⌊
n3/4⌋

), and the left side of Equation (43) is at most
8.11× 10−9, indicating that Equation (43) is always true with a margin.

Under this definition and assumption about quantization, we can prove the quantization-aware version of
Lemma 3.4.

21

Under review as submission to TMLR

Lemma A.5 (Quantization-aware version of Lemma 3.4). Let σ1 and σ2 be respectively the lower and upper
bounds of the probability density distribution f(x) in D, and assume that 0 < σ1 ≤ σ2 < ∞. That is,
x ∈ D ⇒ σ1 ≤ f(x) ≤ σ2. Also, let x′

I be the array created by the quantization of x (∈ In) in the manner
defined in Assumption A.2.

Then, in model-based bucketing of x′
I (∈ In) to {cj}γ+1

j=1 using MPCF, the following holds for any interval
I (⊆ D) under Assumption A.4:

K ≥ 1⇒ Pr[∃j, |cj | > δ] ≤ 2n

δ
exp

{
−αK ′

2γ

(
1− 1

K ′

)2
}

, (44)

where
K ′ := γδ

2n
− 4σ2γ

σ1β
. (45)

The proof of Lemma A.5 is done in the same way as Lemma 3.4. That is, we first prove the following lemma.
Lemma A.6 (Quantization-aware version of Lemma A.6). Let e′ (∈ In) be a sorted version of x′

I (∈ In)
and ∆ := (x′

max−x′
min)/β (where x′

min and x′
max are the minimum and maximum values of x′

I , respectively).

Also, define the set S ′
r, T ′

r as follows (r = 1, . . . , n):

S ′
r = {k | emax(1,r−δ/2) + ∆ + 2η(I) < ek ≤ er −∆− 2η(I)}, (46)

T ′
r = {k | er + ∆ + 2η(I) ≤ ek < emin(r+δ/2,n) −∆− 2η(I)}. (47)

Using this definition, define Y ′
jr, Z ′

jr, Y ′
r , Z ′

r as follows (j = 1, . . . , α, r = 1, . . . , n):

Y ′
jr =

{
1 (j ∈ S ′

r)
0 (else)

, Z ′
jr =

{
1 (j ∈ T ′

r)
0 (else)

, (48)

Y ′
r =

α∑
j=1

Y ′
jr, Z ′

r =
α∑

j=1
Z ′

jr. (49)

If the size of the bucket to which e′
r is allocated is greater than or equal to δ, then the following holds:(

r ≥ δ

2 + 1 ∧ Y ′
r ≤

⌊
α

γ

⌋)
∨

(
r ≤ n− δ

2 ∧ Z ′
r ≤

⌊
α

γ

⌋)
. (50)

Proof. The proof method is exactly the same as for Lemma A.1. That is, by taking the difference between
the IDs of the buckets to which e′

r+δ/2 and e′
r are assigned,(

⌊F̃ (e′
r+δ/2)γ⌋+ 1

)
−

(
⌊F̃ (e′

r)γ⌋+ 1
)

>
γ

α

∣∣{j | aj ≤ er+δ/2 −∆− 2η(I)}
∣∣− (γ

α
|{j | aj ≤ er + ∆ + 2η(I)}|+ 1

)
= γ

α

∣∣{j | er + ∆ + 2η(I) < aj ≤ er+δ/2 −∆− 2η(I)}
∣∣− 1

= γ

α
Z ′

r − 1

≥0,

(51)

when Z ′
r >

⌊
α
γ

⌋
. Thus, we can prove that when(

r <
δ

2 + 1 ∨ Y ′
r >

⌊
α

γ

⌋)
∧

(
r > n− δ

2 ∨ Z ′
r >

⌊
α

γ

⌋)
(52)

holds, e′
r+δ/2 and e′

r are assigned to the different bucket and e′
r−δ/2 and e′

r are assigned to the different
bucket. Then, the contraposition of the lemma is proved.

22

Under review as submission to TMLR

Using Lemma A.6, we can prove Lemma A.5.

Proof. Let q′ = max
y

∫ y+∆2η(I)
y

fI(x)dx (where y is a value such that (y, y + ∆ + 2η(I) ⊆ I). Then, from
σ1 ≤ f(x) ≤ σ2 for all x ∈ I,

q′ ≤
maxy

∫ y+∆+2η(I)
y

f(y)dy∫
I f(x)dx

≤
maxy

∫ y+∆+2η(I)
y

σ2dy∫
I σ1dx

= σ2(∆ + 2η(I))
σ1(x′

max − x′
min)

≤ σ2

σ1β
·
(

1 + 2βη(I)
|I|

)
≤ 2σ2

σ1β
.

(53)

The last inequality is obtained by Assumption A.4.

Thus, when r ≥ δ
2 + 1,

E
[

δ

2 − |S
′
r|

]
= E

[
δ

2 −
∣∣{k | er−δ/2 + ∆ + 2η(I) < ek ≤ er −∆− 2η(I)}

∣∣]
= E

[∣∣{k | er−δ/2 < ek ≤ er−δ/2 + ∆ + 2η(I)}
∣∣] + E [|{k | er −∆− 2η(I) < ek ≤ er}|]

≤ nq′ + nq′

≤ 4σ2n

σ1β
.

(54)

Thus, when r ≥ δ
2 + 1,

E[Y ′
r] = α

n
E [|S ′

r|]

= α

n

(
δ

2 − E
[

δ

2 − |S
′
r|

])
≥ αδ

2n
− 4σ2α

σ1β

= αK ′

γ
.

(55)

From this point forward, by proceeding in exactly the same way as the proof of Lemma 3.4, we can prove
the following using Lemma A.1:

K ′ ≥ 1⇒ Pr[∃j, |cj | > δ] ≤ 2n

δ
exp

{
−αK ′

2γ

(
1− 1

K ′

)2
}

. (56)

Using Lemma A.5, we can prove the following theorem.
Theorem A.7 (Quantization-aware version of Theorem 3.6). Let σ1 and σ2 be the lower and upper bounds,
respectively, of the probability density distribution f(x) in D, and assume that 0 < σ1 ≤ σ2 < ∞. Also,
assume that the input array is quantized in a way that satisfies Assumption A.2 and Assumption A.4. Then,
the expected complexity of PCF Learned Sort with MPCF as the bucketing method and α = β = γ = δ =
⌊n3/4⌋ is O(n log log n).

23

Under review as submission to TMLR

Proof. When α = β = γ = ⌊n3/4⌋, the computational complexity for model-based bucketing is O(n). Since
K ′ = Ω(

√
n) when α = β = γ = δ = ⌊n3/4⌋, K ′ ≥ 1 for sufficiently large n, and

2n

δ
exp

{
−αK ′

2γ

(
1− 1

K ′

)2
}

= O(n 1
4 exp(−

√
n)) ≤ O

(
1

log n

)
. (57)

Therefore, from Lemma 3.3 and Lemma A.5, the expected computational complexity of PCF Learned Sort
is O(n log log n).

24

	Introduction
	Related Work
	Algorithms with Machine Learning
	Comparison Sorts
	Non-Comparison Sorts
	Learned Index

	Methods
	Method Overview
	PCF Learned Sort

	Experiments
	Computational Complexity of PCF Learned Sort
	Confirmation of thm: pcf divide success prob
	Experiments on Sorting Time

	Discussion
	Conclusion
	Proofs
	Proof of thm: nlogn
	Proof of thm: nloglogn
	Proof of thm: pcf divide success prob
	The Quantization-Aware Version of thm: pcf divide success prob and thm: pcf nloglogn

