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ABSTRACT

The ability to engineer optimized protein variants has transformative potential for
biotechnology and medicine. Prior sequence-based optimization methods struggle
with the high-dimensional complexities due to the epistasis effect and the disre-
gard for structural constraints. To address this, we propose HADES, a Bayesian
optimization method utilizing Hamiltonian dynamics to efficiently sample from a
structure-aware approximated posterior. Leveraging momentum and uncertainty
in the simulated physical movements, HADES enables rapid transition of propos-
als toward promising areas. A position discretization procedure is introduced to
propose discrete protein sequences from such continuous state system. The poste-
rior surrogate is powered by a two-stage encoder-decoder framework to determine
the structure and function relationships between mutant neighbors, consequently
learning a smoothed landscape to sample from. Extensive experiments demon-
strate that our method outperforms state-of-the-art baselines in in-silico evalua-
tions across most metrics. Remarkably, our approach offers a unique advantage
by leveraging the mutual constraints between protein structure and sequence, fa-
cilitating the design of protein sequences with similar structures and optimized
properties.

1 INTRODUCTION

Designing proteins with improved fitness is a fundamental but challenging task in protein engineer-
ing. The search space of protein variants is vastly expanded as the length of the protein sequence
grows, which is typically 20 for a sequence composed of L amino acids for 20 types of amino
acids. Optimizing protein fitness is difficult due to the complex epistasis effect, which creates a
rugged, multi-peaked landscape (Poelwijk et al., 2011). Traditional directed evolution approaches
rely on random variation combined with screening and selection, without incorporating models to
understand the sequence-function relationship (Arnold, [1998). This process is costly and time-
consuming, limiting the exploration to only a small fraction of possible mutations, even with the
advent of reasonably high-throughput techniques.

The challenge of identifying novel protein designs for maximal fitness has driven scientists to adopt
machine learning approaches, starting with (Fox et al.l 2007) and followed by many others, increas-
ingly utilizing in physics- and machine learning-based exploration beyond traditional experimental
methods (Sinai et al., [2020; [Frey et al., [2024; |Gruver et al., 2024). Recent advancements in protein
language models and structural-informed models also offer new opportunities for modeling protein
mutational effects and generalizing fitness knowledge across different datasets(Zheng et al., 2023
Notin et al., 2023 |Hie et al., [2024).

The primary research challenge in designing an iterative protein engineering strategy is navigating
the vast combinatorial space to uncover the sequence-to-function landscape and find the optimal
sequences (Romero & Arnold| 2009). This daunting task can be tackled by employing a black-
box optimization approach, where the inputs are optimized to get better outputs with limited and
often expensive black-box oracle calls. However, protein landscapes are notoriously non-smooth,
with fitness levels that can drastically change due to a single mutation, and most mutants have poor
fitness. As a result, existing machine learning methods often falter, struggling with noisy fitness
landscapes that lead to false positives (Kirjner et al., [2023) and failing to venture beyond local
optima due to inefficient exploration (Brookes et al.,[2019).
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Compared to sequence-based searching strategies, leveraging structural information offers a more
natural approach by providing useful constraints for navigating the noisy fitness landscape, given the
decisive role of 3D structure in determining protein function (Branden & Toozel 2012). Therefore,
when optimizing a protein for a desired function, designing it in structure latent space seems more di-
rect, allowing the use of gradient-based sampling methods in conjunction with carefully engineered
potentials (Trippe et al., 2022} |Watson et al., [2023). However, a drawback of this approach is that
the optimized structure must be converted back to an amino acid sequence for synthesis(Dauparas
et al., 2022), while there is no guarantee that the optimized structure can be realized by an actual
sequence. Additionally, current structural models are computationally intensive and constrained by
the scarcity of high-quality structural data, posing challenges to optimization and search.
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Figure 1: The overall architecture of the proposed HADES framework.

To address these issues, we propose a new learning-based protein engineering framework that
combines Bayesian Optimization and HAmiltonian dynamics for protein Directed Evolution in a
Structure-informed manner (HADES, Figure E[) Our motivation is based on the mutual constraints
between protein sequence and structure. The distribution of conformational perturbations among a
series of mutants can serve as prior information to model a smoothed landscape of protein function,
potentially enhancing the efficiency of gradient-based algorithms for exploration and sampling. We
achieve this by designing a surrogate fitness predictor powered by a two-stage encoder-decoder to
learn the structure perturbations distilled from ESMFold (Lin et al., [2023) as the prior. To address
the inefficiency in exploring high-dimensional sequence space, we introduce an acquisition function
based on Hamiltonian Monte Carlo that proposes distant samples for the Metropolis-Hastings algo-
rithm in MCMC sampling steps by introducing momentum variable in a continuous state space. We
further combine the sampling process under Bayesian optimization with estimation of model uncer-
tainty to balance between exploration and exploitation. Our approach offers a significant advantage
by leveraging the mutual constraints between protein structure and sequence, facilitating the design
of protein sequences with similar structures and enhanced properties.

2 RELATED WORK

Machine-learning-assisted directed evolution Machine-learning accelerates the laboratory di-
rected evolution by learning a sequence-to-function mapping and propose promising samples (Yang
et al.|[2019). Recent methods are based on paradigm of model-based black-box optimization, where
different sequence-function models and exploration algorithms are proposed for better modeling and
exploration of the function landscape based on sequence mutations (Hansen & Ostermeier, 2001}
Brookes et al., [ 2019; Jain et al.,|2022; Ren et al L2022} |[Song & Li, 2023} [Frey et al.|[2024). |Brookes
& Listgarten|(2018) and [Brookes et al.| (2019) adaptively sample sequences combining unsupervised
generative models and black box predicted models. |[Ren et al.|(2022) prioritizes the proximal explo-
ration for high-fitness mutants with low mutation counts and design a mutation factorization network
to predict low-order mutational effects. [Kirjner et al.| (2023) employs a graph-based smoothing to
remove noisy gradients in the protein sequence landscape. (Gruver et al.|(2024) proposes a diffusion-
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optimized sampling strategy for controllable categorical diffusion in discrete sequence space. Unlike
previous methods, we perform a structure-informed search over continuous sequence space. This
allows us to construct a smooth energy surrogate, ensuring strong performance guarantees.

Hamiltonian mechanics and MCMC Markov Chain Monte Carlo defines a transition kernel to ex-
plore target distribution, and Metropolis-Hastings algorithm is a common method to automatically
construct appropriate transitions. For high-dimensional spaces, MCMC with Hamiltonian dynam-
ics is an effective way to make large jumps away from the initial point (Neal, [2012b} |Girolami &
Calderhead, 2011). A key to its usefulness is that Hamiltonian dynamics preserves volume which
can be exactly maintained even when the dynamics is approximated by discretizing time. A special
case of implementation which takes a single leapfrog step in HMC is the Langevin Monte Carlo
(LMC) algorithm, and the stochastic gradient version, stochastic gradient langevin dynamics, has
been widely studied and applied (Welling & Teh, 2011} |Chen et al., [2014; Frey et al., [2024). Com-
pared to other MCMC works, our approach introduces an extra position discretization procedure to
propose discrete protein sequence from a continuous state system.

3 BACKGROUND

In this study, we address the challenge of machine-learning-guided protein directed evolution within
a black-box optimization framework. The process initiates with a single wild type protein sequence,
denoted as x,,, of length L. A protein sequence is represented as a concatenation of one-hot vectors,
Xyt = (21, T2, ..., 2L ), each vector corresponding to an amino acid. The ground-truth fitness of an
unknown protein is assessed through wet-lab evaluations, functioning as the black-box oracle F(x).

The primary objective of this research is to engineer protein variants exhibiting enhanced fitness
scores, particularly under the constraint of limited oracle evaluations. The directed evolution process
is conducted iteratively: in each iteration n, where n € {1, 2, ..., N'}, a batch of protein variants D,,,
with |D,,| = K, is analyzed by the black-box oracle to determine the true fitness scores G,, =
{(z, F(z)),z € D, }. The optimization sequence concludes after N rounds of oracle calls.

Typically, a surrogate fitness predictor f(x) is trained to approximate the black-box oracle, utiliz-
ing samples collected through an acquisition function. This function strategically proposes new,
promising protein variants for subsequent rounds. Operating under a fixed budget of K oracle
queries per round, the acquisition process must effectively balance exploration of the expansive,
high-dimensional sequence space with the exploitation of regions potentially close to optima. The
surrogate fitness predictor, serving as an approximate posterior, provides fitness predictions that
guide the acquisition function in selecting promising variants for further evaluation.

Hamiltonian dynamics and MCMC Markov Chain Monte Carlo (MCMC) with the Metropolis-
Hastings algorithm is a widely-used technique for generating samples from an approximate posterior
distribution. For an unknown target distribution (), proposal distribution is define by Q(z'|z),
mm%@»

Q' |z)7(z)

However, in high-dimensional target distributions, the naive proposals in Metropolis-Hastings
MCMC (MH-MCMC) often lead to low acceptance rates. Hamiltonian Monte Carlo (HMC), ini-
tially developed for molecular simulation and later adapted for use in statistics and neural network
models, addresses this issue by leveraging Hamiltonian dynamics to propose new samples (Alder &
Wainwright| [1959; Neall, 2012a)).

and the probability to accept a proposal is min(1,

A Hamiltonian system characterizes the energy of a frictionless particle as the sum of its potential
energy U (q) and kinetic energy K (p):

H(gq,p) = U(q) + K(p)

Here, ¢ represents the particle’s position, and p represents its momentum. As the particle moves
along a surface of varying height, its momentum allows it to ascend slopes, trading kinetic energy
for potential energy.

Hamiltonian dynamics exhibit properties such as time reversibility, Hamiltonian conservation, and
volume preservation. Time reversibility ensures that the mapping 7. from state (g¢,p:) to state
(Gt+¢, Pt+c) has an inverse T_ by reversing the time derivatives. This property maintains the desired
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distribution invariant during MCMC updates by ensuring reversibility in Markov chain transitions.
Hamiltonian conservation is expressed as:

LH_zd: dq; OH  dp; OH _zd: OHOH OHOH
d dt 0g; ~ dt Op; | op; 0q;  0q; Op;

i=1 i=1

For Metropolis updates derived from Hamiltonian dynamics, this conservation implies an acceptance
probability of one. The volume conservation property indicates that the volume in the (g, p) phase
space remains unchanged:

Zd: 0 dg; O dp; 72% 0 0H 9 oH 72‘12 H _ H | _,
dg; dt ~ Op; dt | dq; Op;  Opi 0qi | “= [9q:0p;  Ipida;|

=1 i=1 i=

This property eliminates the need to compute the determinant of the Jacobian matrix.

In practice, Hamiltonian dynamics are approximated via discretization, often using the leapfrog
algorithm. HMC has proven to be a highly effective and versatile method for sampling from com-
plex distributions, particularly in high-dimensional spaces, making it a valuable tool for Bayesian
inference and other statistical applications (Neall, 2012b).

4 METHOD

Overall procedures of our method are described in Algorithm [T} We maintain a collection of mea-
sured sequence-score pairs G, and update parameters 6 of the surrogate model f using G at each
round. f consists of an ensemble of N models with same architecture and distinct parameters. In
each round, a sampling algorithm based on HMC is employed to propose K new variants D; for
each f; € f, and select top K variants for black-box evaluation based on the upper confidence
bound over D.

Algorithm 1 Algorithm Overview

input: candidates set D < {2}
Initialize 0; for f; € f
Initialize ground-truth protein fitness set: G «+ 0
Thest = Tawt
forn =1to N do
Query ground truth fitness of X and update G: G < G U {(z, fitness,),x € D}
Update 6; with G for f; € f
Update zpes; to be the sequence with highest fitness in G
for f; in f do
D; «+ {xbest}
while |D;| < K do
D; < D; UHMC(@pest, fi)
end while
D+ DUD;
end for
D + Topy (UCB(f, D))
end for
return D

4.1 SAMPLING WITH HAMILTONIAN DYNAMICS

Hamiltonian equation The Hamiltonian dynamics defines the energy of a particle ¢ by the sum
of its potential energy U(q) and kinetic energy K (p), where p is the momentum variable. Here,
the ¢ refers to the continuous representation of a protein sequence, initialized with the one-hot
representation and then turns into continuous vectors with components constraint between 0 and 1
during the dynamic process. For a sampled ¢, we take the components as the probabilities of amino
acids for each site, thus we can discretize the continuous representation q to the one-hot vector ¢ by
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selecting the amino acids with highest probabilities. The potential energy U (¢) represents our target
function with higher value represents lower fitness, we define U (q) as the negative log of probability
of f(x) and K(q) as the standard kinetic energy:

U(q) = ~log P(/(0)), K () = 5.l m

where f is the surrogate fitness prediction model and the probability P is defined as the sigmoid
function. We set the mass m to be 1 for all components.

Time Step Discretization The approximation of Hamiltonian dynamics is achieved by time dis-
cretization defined by the leapfrog algorithm. For a given time ¢, the leapfrog algorithm generate
Gt+1 and pyy; with a half-step update of p followed by a full-step update of ¢ and p, as defined in
equation [3]and 4}

€
Diyl =Dt — §VU((1t) 2
€2
Qt+1 =qt + €1 = qt + €pr — §VU((1t) 3)
€ € €

P41 = Pyl — §VU(%+1> =pt— §VU(Qt) - §VU(‘1t+1) “)
Virtual barriers as position constraints The gradient update in equa-
tionmight results in a g;+; with components exceed the limit of 0 ~ 1. fol
To handle this constraints, we repeatedly run step [3] after the leapfrog _

qt+2
Y 1

step of equation [3| until ¢;1 satify the constraint of 0 < ¢;41(¢) < 1. 4 5
An intuitive illustration is displayed in Figure 2| this procedure establish 4, W‘mz
g 0

two virtual barriers during the movement. Hitting the barrier results in a

reversed momentum and new position satisfying dynamics. This “bounc- (AN
ing” movement constrains the location of ¢ within valid zones. A theoret- X
ical illustration of this mechanism is provided in Appendix B}

Moy o
O qe+2

) ’ Figure 2: Virtual barrier
2 —qi41(i), forgia(i) > 1 and position discretiza-
—q+1(7),  forqy1(i) <0 tion.
(5)

Proposals with Metropolis sampling Constraints on ¢ provide continuous representation for each
amino acid. We take the continuous state as the probability distribution for each site to map back
to the one-hot representation. Such approximation inevitably brings error to the discretization. A
Metropolis sampling is adopted to reject the samples with large discretization error by discreteized

repsentation @1 with probability min{1, exg’{g(gffigg ziggg 21)1)) 1, as described in Algorithm

P (1) = =Pey 1 (1), @ (i) = {

Candidates election based on Estimated Uncertainty Gaussian Process (GP) is a preferred choice
in Bayesian optimization for its natural property to provide uncertainty estimation based on the
covariance. In our method, uncertainty is estimated based on deviations of surrogate model ensem-
bles. Specifically, proposed candidates are filtered based on the upper confidence bound defined
by the sum of the average value and standard deviation of model predictions. Different from Ren
et al.| (2022)) which propose samples based on lower confidence bound, samples on upper confidence
bound provide refined approximation of high fitness regions with high uncertainty which benefits
the Hamiltonian samplers for the exploitation of diverse promising regions.

4.2 TWO-STAGE SURROGATE MODEL LEARNING

The surrogate model aims to approximate the ground-truth fitness landscape within a constrained
budget of labeled samples. Given that the model inputs are discrete one-hot vectors, it is essential
to model the continuous relationships among mutants derived from discrete amino acid variations to
facilitate a gradient-based optimization strategy. In this context, protein structure data is utilized as
a prior to model these relationships. The fundamental rationale is to leverage the mutual constraints
between protein structure and sequence, facilitating the design of protein sequences with similar
structures, thereby avoiding being trapped in local optima induced by epistasis effect. Our surrogate
model employs an encoder-decoder architecture, and its training proceeds in two distinct stages. The
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encoder is utilized in both stages, while two separate decoders are dedicated to learn about protein
structure and fitness sequentially.

Sequence encoder Inspired by (Hamamsy et al.l [2023) that learns structure homology through se-
quence information, we input a candidate sequence x and apply three pairformer-like shallow atten-
tion layers (Abramson et al.,[2024])) to capture intra- and inter-interactions of amino acid embeddings
and produce a latent vector representation, h(x), for each sequence.

Structure decoder This first decoder is designed to learn the Root Mean Square Deviation (RMSD)
score between a sequence candidate and the wild type across mutation sites. We employ ESMFold
(Lin et al., 2023) to predict the structures and compute the conformation perturbations through
RMSD scores. During the training phase, the encoder captures the latent representations that reflect
the structural distance from input protein to the wild type. Our assumption is that understanding this
distribution of structural distances provides prior knowledge of how mutations reflect the structural
changes, which benefits the gradient calculation and fitness learning.

Fitness decoder In the second stage, the fitness decoder focuses on learning fitness scores, operat-
ing with the frozen encoder parameters obtained from the first stage. This separation ensures that
the fitness assessment is based on stable, well-defined structural representations derived in the first
training stage. Both decoders stack three 1-D convolution layers followed by max pooling and a two
multi-layer perceptrons. We did not use complex architectures because these scenarios involve low-
resource training, where intricate networks and representations can easily lead to model overfitting.

5 EXPERIMENTS

5.1 DATASETS, BASELINES AND EVALUATION METRICS

We evaluate our method on two widely recognized combinatorial datasets, GB1 (Wu et al.| | 2016)and
PhoQ (Podgornaia & Laub, [2015) following Wang et al.| (2023).Both datasets feature multi-site sat-
uration mutagenesis, each containing approximately 20* = 160,000 samples, specifically cover-
ing 149,361 and 140,517 sequences, respectively. Unlike the majority of existing protein fitness
datasets, which predominantly include mutants characterized by only one or two mutations, these
two datasets avoid relying on inaccurate oracle models for scoring, providing a rigorous testing
ground for machine learning-guided directed evolution methodologies.

We compare our method against five baseline approaches: BO refers to Bayesian Optimization
with Thompson sampling (BO) based on expected improvement. CMA-ES, a classical evolution-
ary search algorithm, estimates the covariance matrix to adaptively update mutation distributions
(Hansen & Ostermeier, |2001). AdaLead adopts a straightforward yet robust approach, employing a
hill-climbing style to greedily select the top-predicted candidates (Sinai et al.|[2020). PEX explores
the nearby region around wild type by proxmial frontier to trade-off between fitness scores and mu-
tation distances (Ren et al.,|[2022). EvoPlay utilizes a self-play framework within a reinforcement-
learning setting, employing Monte Carlo tree search to guide decision-making (Wang et al., [2023).
Additionally, we provide the Langevin dynamics version of our methods (HADES-L) for compari-
son.

We evaluate our methods and baseline models by three metrics: cumulative maximum fitness, aver-
age fitness and fitness-conditioned diversity score (fDiv). The maximum and average fitness scores
are calculated over N = 10 query rounds, with K = 100 new queries in each round. The fDiv score
is calculated as follows:

Z(mi,yq,)ED Z(xj,yj)ED\(a:i,yi) d(xi7xj) : (‘F(ml) + .F(.’E]))
2-D|- (Pl - 1)

fDiv(D) = (6)

where D denotes the top K samples after N query rounds, and d(x;, x;) calculates the edit distance
of sequence x; and x;. The fDiv score follows definition of diversity score from previous studies
with a modification to combine the average fitness score of any two different samples, alleviates
the dilemma where poor fitness designs reports significantly high diversity score. All results are
averaged over 10 runs with different random seeds.
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Table 1: Comparing different models for protein engineering task on GB1 and PhoQ datasets. Cu-
mulative maximum fitness, mean fitness and fDiv scores are presented.

GBI1 PhoQ
Method
max fit. mean fit. fDiv max fit. mean fit. fDiv
BO 0.57+0.15 0.084+0.01 0.14+£0.02 027+0.05 0.054+0.01 0.08=+0.01

CMA-ES 0.69+0.16 0284007 037+0.08 0474023 0.13+£0.03 0.18£0.03
AdalLead 0.84+£0.15 049+0.05 0.64+009 062+021 0.19+0.03 0.26=£0.04
PEX 0.83+0.17 051+£006 0.68+0.14 0464005 0.2040.01 0.3040.01
EvoPlay 091 +0.09 0544003 0.77+0.04 069+022 0.18+£0.02 0.26=£0.03

HADES-L 093+0.14 051+0.06 070+£0.12 0.724+0.24 020+£0.02 0.28 +0.03
HADES 1.00 £0.00 0.59£0.02 0.84+£0.03 0.80+0.25 0.22+0.02 0.32+0.02

GB1 PhoQ
1.01 . ..

087 ,
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Max. fitness
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Query rounds Query rounds
[ BO [0 CMA-ES BN PEX [0 Adalead [0 EvoPlay WM HADES-L HEEEN HADES

Figure 3: Cumulative maximum fitness scores by experiment rounds on two protein engineering
benchmark tasks. Green triangles represent the mean values.

5.2 RESULTS AND ANALYSIS

Overall performance comparison Table[T|provides a comprehensive evaluation of the performance
of our method in comparison to baselines. Bold texts represents best results and the second-best re-
sults are marked with underlines. Our method demonstrates superior effectiveness across both tasks
on three metrics. Specifically, in the GB1 task, our approach consistently excelled, with all ten
experimental runs successfully identifying the optimal protein sequence, providing full score with
zero standard deviation. For the more difficult PhoQ task, our method also significantly outper-
forms baselines on maximum fitness scores. This is indicative of our method’s robustness and its
effectiveness in navigating more complex problem spaces. Moreover, the best functional diversity
(fDiv) scores obtained in both tasks highlight another critical advantage of our method that it not
only discover high-fitness variants but also maintain a diverse set of solutions.

To further investigate the optimization curve, we conducted a detailed examination of the optimiza-
tion efficiency by analyzing the results across various query rounds, as depicted in Figure [3] This
investigation allows us to assess the consistency and reliability of our method’s performance over
successive experimental rounds. Our method provides stable performance across different experi-
ment rounds, persistently outperform baseline methods on both datasets. It is important to note the
observation of high variances in the results for the PhoQ task. This variability can be attributed pri-
marily to the inherent sparsity of high-fitness samples within this dataset. Nevertheless, our method’s
ability to maintain a competitive results highlights its advanced capability to navigate and optimize
within intricate and sparse fitness landscapes.

Ablation experiments To verify our proposed framework, we conduct a series of ablation experi-
ments, as summarized in Table 2] The baseline model’s performance is presented at the top. Sub-
sequent rows detail the impact of different modifications to the framework. We first replace the
HMC-based sampling module with proposals based on random mutations. This change led to a
marked performance decline in the GB1 task and a moderate decline in the PhoQ task, verifying the
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Table 2: Ablation studies for key components.

GB1 PhoQ
Method . .
max fit. mean fit. fDiv max mean fDiv
HADES 1.00+0.00 0.594+0.02 0.84+0.03 0.80+0.25 0.224+0.02 0.32+0.02
w/o HD 0.84+0.15 0.524+0.05 0.73+0.12 0.75+£0.25 0.21+0.01 0.32+0.02
w/o structure  0.95+0.10 0.57+0.04 0.84+0.05 0.74+0.27 0.21+0.02 0.31+0.02
w/o ucb 0.93+£0.11 0.51+0.04 0.75+0.06 0.76+0.24 0.19+0.02 0.30£0.02
w/o vb. 0.97+£0.09 0.56+0.04 0.7940.05 0.63+0.25 0.204+0.02 0.30+0.03
K=16 K=32 K=64 K=128
1.0
0.8 =
0.6 =1 — 7
8 0.4 4
0.2
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Figure 4: Cumulative maximum fitness scores for K={16, 32, 64, 128} on two protein engineering
benchmark tasks. across a suite of protein engineering benchmark tasks. All curves are derived from
10 runs with random network initialization. The shaded regions represent the standard deviation.

effectiveness of our Hamiltonian acquisition strategy. The removal of the structure decoder mod-
ule is documented in the third row of results, the relatively modest impact on performance could
possibly due to generalization error of ESMFold. The fourth row of results involves with omitting
the uncertainty estimation process and relying solely on predictions from a single model, this ad-
justment resulted in uniformly lower scores across all evaluated metrics, confirming the hypothesis
that incorporating uncertainty and model ensembles enhances prediction reliability and optimizes
performance. The last row of results denotes the modification of removing the virtual barrier mech-
anism and directly applying discreatization. This also led to a reduction in the cumulative maximum
fitness score, particularly evident in the PhoQ task’s steep landscape. The results demonstrate that
the virtual barrier effectively mitigates discretization errors associated with large gradient updates,
confirming its utility in enhancing model robustness.

Effect of query size and query round In practical protein engineering scenarios, the costs associ-
ated with wet-lab evaluations can vary significantly depending on the optimization targets. A robust
algorithm, therefore, must maintain stable performance across a range of different evaluation costs.
To explore how varying the oracle query size affects algorithm performance, we conducted exper-
iments with varying query sizes K = {16, 32,64,128} under N = 10 rounds of experiments, as
shown in Figure [d] Our results indicate that all evaluated methods show improvement as the query
size increases. Notably, the performance gap between our method and other methods widens with
increasing query size. This observation highlights our method’s superior scaling effect, which is
particularly pronounced at larger query sizes. The increased performance gap observed at larger
query sizes indicates that our method not only adapts well to increased information availability but
also leverages this information more effectively than baselines.
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Figure 5: Optimization trajectories of EvoPlay and HADES.
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Figure 6: High-fitness structures sampled from EvoPlay and HADES on GB1 task. The RMSD*
score (the lower the better) calculates the root mean square deviation over the 4 mutation sites.

Analysis of sampling trajectory To provide an intuitive understanding of model behaviours, we
visualized the optimization trajectories of EvoPlay and our method, as shown in Figure [5] For this
visualization, we utilized the ESM <CLS> token representations of the sampled proteins, projecting
these onto a one-dimensional plane via PCA for the horizontal coordinates, with the vertical coordi-
nates representing fitness values. The colors of the dots are determined by the ESM log likelihood,
which aggregates the ESM log probabilities of the amino acids. For clarity in the visualization, we
plotted the trajectories of the first five runs for each method and task. A trajectory is formed with
arrows linking proteins that achieved the maximum fitness scores in each query round. Each tra-
jectory begins at the wild-type, denoted by the red cross, and concludes at the local maximum. For
the GBI task, the trajectories of our method are shorter and more compact, demonstrating enhanced
efficiency and robustness in discovering high-fitness variants. On PhoQ task, this comparison is
less obvious, however, we observe that our method notably optimizes from the second-best protein
directly towards the highest-fitness protein in both tasks, which is not observed with EvoPlay.

Analysis of structures To further investigate the effectiveness of our structure learning module. We
visualize several wild-type aligned structures with maxmimum fitness sampled at different steps of
EvoPlay and our method on GBI task, as displayed in Figure[f] Proteins colored yellow denotes the
wild-type, and proteins colored blue are the model designs. Green regions represents the four muta-
tion sites. From the structure variances in mutation sites, we observe that samples from our method
exhibit minor structural changes in mutation region with improved fitness, proving the effectiveness
of structure-informed surrogate module.

6 CONCLUSION AND FUTURE WORK

‘We propose a protein engineering framework that combines an acquisition function based on Hamil-
tonian dynamics and a structure-aware surrogate model for protein directed evolution. In-silico
experiments verify that our method efficiently discovers diverse protein variants with high fitness
levels, achieving improved efficiency with limited wet-lab costs and experiment rounds. Future ef-
forts will focus on enhancing the modeling of protein structures to improve generalization ability
and designing proteins that optimize multiple objectives. Our code will be publicly available upon
acceptance.
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A HMC-BASED SAMPLING ALGORITHM

Algorithm [2|illustrate our HMC-based sampling algorithm. Note that the Langevin version of our
method ignores the update of p; 11 in line 5 and reset p; 1 as p;1 € N(0,1).

Algorithm 2 HMC(q, f)

Input: seed sequence ¢, surrogate fitness scorer f

1:

2: Initialize py € N(0,1)

32D« 0

4: fori=1to L do

5: Update p; 11 and g;41 with formula[3]and 4]

6: Discretize g1 < one-hot(argmax(gy1))

7: Accept g1 with probability: min{1, exg’{g(&(ﬁ;; Zigggg 21)1))}
8: D+ DU qi+1

9: end for
10: return D

B THEORETICAL ILLUSTRATION OF VIRTUAL BARRIER

For constraint on p; < 1, We can split the potential function into two terms: U(q) = U.(q) + Vs (i),
where U, (q) is the potential energy ignoring constraint, and

Vo(qi) = {

0, forqg; <=1 lim Vi (g;) = 0, forg; <=1
(g — 1)B°, forq; >1 ~ oo b\di) = oo, forg; >1

For constraint that ¢; > 0:

07 fOTQi Z O . O, fOI'qi Z O
i) = , | i) =
e {(qi)bba forg; <0 bglolovbw ) {oo, forg; < 0

We can thus define Hamiltonian dynamics as:

H(q,p) = Us(q) + Vi(q:) + K(p)

Taking b — oo, H(q,p) falls back to the original form of U(q) + K(p) for 0 < ¢; < 1. For
gi < 0orgq; > 1, H(g,p) is dominated by V}(g;) — oo, the V}, term can be seen as a steep hill
to climb up until K (p) = 0 and V}(g;) reaches the value of initial K (p), then the values of ¢; falls
down to be 0 < ¢g; < 1 and p; becomes the negative value of original p;, leaving the barrier. Such
processes preserve the Hamiltonian properties, providing theoretical high acceptance rate with small
discretization error corrected by reject sampling.

C ADDITIONAL RESULTS

C.1 RESULTS OF DIFFERENT METHOD USING SAME CNN SURROGATE

We change the surrogate models of PEX, EvoPlay and HADES to use same CNN model for a more
fair comparison. Results from table [3] shows that HADES with CNN surrogate still outperforms
baselines, proving that our sampler module is capable of proposing promising samples both robustly
and efficiently.

C.2 RESULTS OF UNSUPERVISED METHOD AND GROUND-TRUTH
In accordance with Notin et al.|(2023), we evaluate the zero-shot performance of ESM2. The results

are assessed based on the top K = 100 sequences. As reference, we also include the ground-truth
scores which is obtained by directly selecting top K = 100 sequences from labeled data. Results
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Table 3: Results of different methods on GB1 and PhoQ datasets using same CNN surrogate model.
Cumulative maximum fitness, mean fitness and fDiv scores are presented.

GB1 PhoQ
Method
max fit. mean fit. fDiv max fit. mean fit. fDiv
BO (CNN) 0.57+£0.15 0.08£0.01 0.14+£0.02 027+005 0.054+0.01 0.08+£0.01

CMA-ES (CNN) 0.69+0.16 028+0.07 037+£0.08 047+£023 0.13£0.03 0.18+£0.03
AdalLead (CNN) 0.84 £0.15 049+0.05 0.64+0.09 0.62£021 0.19£0.03 0.26=£0.04
PEX (CNN) 0.86 +£0.16 0.51+0.05 068+0.11 043+0.03 020£0.01 0.30=£0.01
EvoPlay (CNN)  0.85+0.09 048+0.06 0.67+0.08 0584025 0.154+£0.03 0.22+0.04

HADES (CNN) 091 £0.14 0524+0.06 0.73+0.11 0.72+0.23 0.21 £0.01 0.32 £0.02
HADES 1.00 £0.00 0.59£0.02 0.84=+0.03 0.80+0.25 0.22+0.02 0.32+0.02

Table 4: Results of zero-shot ESM2, HADES and ground truth.

GB1 PhoQ
Method
mean fit. fDiv  max fit. mean fit. fDiv max fit.
ESM2 0.03 0.04 1.00 0.01 0.02 0.32
HADES 0.59 0.84 1.00 0.22 0.32 0.80
Ground truth 0.65 0.98 1.00 0.37 0.63 1.00

from table ] shows that zero-shot methods based on ESM2 exhibit almost no signal. In contrast, our
method is more closely aligned with experimental results, highlighting the importance of few-shot
learning.

D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION DETAILS

Our model was developed and executed within the PyTorch framework. For the surrogate modeling
training, we use Adam optimizer with 0.001 learning rate and MSE loss for both training stages, and
the training stops when the training loss does not decrease for 3 epochs. The batch size is 64 during
training. The dimension of hidden vector for all neural network moudules is 256, and the kernel
size of CNN is 3. For the structure learning module, the RMSD labels define the root mean square
deviation on backbone atoms covering C, Ca, N after aligning the positions of the four mutation
sites.

D.2 SAMPLING DETAILS

We run 128 parallel samples during sampling, the trajectory length L of Hamiltonian dynamics is
16, and the leapfrog step size € is 0.1 for both tasks. Empirically, the choices of L and e affect
the sampling results significantly. A common strategy is to take preliminary runs to determine the
parameters. Here, for fair comparison, we evaluate for the best choices of L and ¢ on GBI task
and apply on PhoQ task with the same configuration. Following previous works, the first round of
sampling is based on the surrogate learning of X mutants with random mutations from wild-type
(Ren et al., 2022} [Wang et al., 2023).

D.3 BASELINES DETAILS

Baseline. We conducted a comprehensive comparison of our method against four advanced baseline
methodologies:
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Bayesian Optimization: A classical approach for sequential design problems, it uses an ensemble
of models to estimate uncertainty and construct the acquisition function for exploration (Boender,
1991)).

CMA-ES: A well-known evolutionary search algorithm, CMA-ES adapts the search strategy of sub-
sequent generations by estimating the covariance matrix to update mutation distributions adaptively
(Hansen & Ostermeier, [2001)).

AdaLead: An advanced model-guided evolution technique, AdalLead performs a hill-climbing
search on the learned landscape model at each batch query round and then queries sequences with
high predicted fitness. This straightforward implementation of model-directed evolution has shown
competitive performance against more elaborate algorithms (Sinai et al., 2020).

PEX: This method balances fitness scores and mutation distances by exploring regions near the
wild type through a proximal frontier. It uses a regularized objective function to search locally for
sequences with a low mutation count from the wild-type sequence (Ren et al.| 2022).

EvoPlay: EvoPlay combines reinforcement learning techniques such as Monte Carlo Tree Search
(MCTS) and a policy-value neural network. It focuses on mutating single-site residues in protein se-
quences, optimizing their properties through an iterative, strategic process akin to gameplay. (Wang
et al., [2023)

For BO, CMA-ES and Adalead, we run implementations provided by FLEXS (Sinai et al., [2020).
The surrogate models of these methods share the same architecture with our fitness/structure de-
coder. For PEX and EvoPlay, we run the official implementations. The baselines are evaluated on
a single NVIDIA RTX 4090 GPU with default hyperparameters. We run our method on a single
NVIDIA A40 GPU for its compatibility to run ESMFold.

14



	Introduction
	Related Work
	Background
	Method
	Sampling with Hamiltonian dynamics
	Two-stage surrogate model learning 

	Experiments
	Datasets, baselines and evaluation metrics
	Results and analysis

	Conclusion and Future Work
	HMC-based sampling algorithm
	Theoretical illustration of virtual barrier
	Additional Results
	Results of different method using same CNN surrogate
	Results of unsupervised method and ground-truth

	Implementation details
	Implementation details
	Sampling details
	Baselines details


