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Abstract

The seminal work of [Dasgupta, 2016] has intro-
duced a combinatorial cost function for hierarchi-
cal graph clustering that has inspired numerous
follow-up studies adopting similar combinatorial
approaches. In this paper, we investigate this prob-
lem from the information-theoretic perspective.
We formulate a new cost function that is fully ex-
plainable and establish the relationship between
combinatorial and information-theoretic perspec-
tives. We present two algorithms for expander-like
and well-clustered cardinality weighted graphs, re-
spectively, and show that both of them achieve
O(1)-approximation for our new cost function. Ad-
dressing practical needs, we consider non-binary
hierarchical clustering problem, and propose a
hyperparameter-free framework HCSE that recur-
sively stratifies cluster trees through sparsity-aware
partitioning, automatically determining the opti-
mal hierarchy depth via an interpretable mecha-
nism. Extensive experimental results demonstrate
the superiority of our cost function and algorithms
in binary clustering performance, hierarchy level
identification, and reconstruction accuracy com-
pared to existing approaches.

1 INTRODUCTION

Hierarchical clustering on graphs plays an important role
in the structural analysis of a given data set. Understanding
hierarchical structures on the levels of multi-granularity is
fundamental in various disciplines including artificial intel-
ligence, physics, biology, sociology, etc [Brown et al., 1992,
Eisen et al., 1998, Gorban et al., 2008, Culotta et al., 2007].
Hierarchical clustering requires a cluster tree that represents
a recursive partitioning of a graph into smaller clusters as
the tree nodes get deeper. A leaf represents a graph node

while a non-leaf node represents a cluster containing its
descendant leaves. The root is the largest one containing all
leaves. In this paper, we investigate the hierarchical cluster-
ing problem from the perspective of information theory. Our
study is based on Li and Pan’s structural information theory
[Li and Pan, 2016] whose core concept named structural
entropy measures the complexity of hierarchical networks.
We propose from the information-theoretical perspective
a new and fully explainable cost function that has advan-
tages over the combinatorial ones, and also establish the
relationship to them. In the remaining parts of this section,
we introduce the combinatorial perspective first and then
our contributions.

1.1 THE COMBINATORIAL PERSPECTIVE OF
HIERARCHICAL CLUSTERING

Clustering is typically formulated as an optimization prob-
lem for some cost function. For hierarchical clustering, [Das-
gupta, 2016] introduced his celebrated cost function as a
combinatorial explanation for cluster trees. In this definition,
similarity or dissimilarity between data points is represented
by weighted edges. Taking the similarity-based metrics as
an example, a cluster is a set of nodes with relatively denser
intra-links compared with its inter-links, and in a good clus-
ter tree, heavier edges tend to connect leaves whose lowest
common ancestor (LCA) is assigned as deep as possible.
This intuition leads to Dasgupta’s cost function that is a
bilinear combination of edge weights and the sizes of corre-
sponding LCAs (refer to Section 2 for the formal definition).

Motivated by Dasgupta’s cost function, [Cohen-Addad et al.,
2019] proposed admissible cost functions. In their definition,
the size of each LCA in Dasgupta’s objective is generalized
to be a function of the sizes of its left and right children.
For all similarity-based graphs generated from a minimal
ultrametric (see Section 2.2, [Cohen-Addad et al., 2019]),
a cluster tree achieves the minimum cost if and only if it is
a generating tree that is a “natural” ground truth tree in an
axiomatic sense therein. A necessary condition of admissi-
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bility of a cost function is that it achieves the same value for
every cluster tree for a uniformly weighted clique that has
no significant clustering structure in common sense. How-
ever, any slight deviation of edge weights would generally
separate the two end-points of a light edge on a high level
of its optimal (similarity-based) cluster tree. Thus, it seems
that admissible cost functions, which take Dasgupta’s cost
function as a specific form, ought to be an unchallenged cri-
terion in evaluating cluster trees since they are formulated
by an axiomatic approach.

However, an admissible cost function seems imperfect in
practice. The arbitrariness of optima of cluster trees for
cliques indicates that the division of each internal node on
an optimal cluster tree totally neglects the balance of its
two children. Edge weight therein is the unique factor that
decides the structure of optimal trees. But a balanced tree
is commonly considered as an ideal candidate in hierarchi-
cal clustering compared to an unbalanced one. Balance of
clustering has many applications in practice, for example,
load balancing for cloud computing and management, net-
work design, and avoidance of outlier cluster formation,
etc. Balance has also been widely considered in partition-
ing and clustering problems, which has motivated some
classic optimization problems such as balanced cut and bal-
anced clustering (e.g., balanced k-means). Even clustering
for cliques, a balanced partition should be preferable for
each internal node. At least, an optimal cluster tree whose
height is logarithm of graph size n is intuitively more rea-
sonable than a caterpillar shaped cluster tree whose height
is n − 1. Moreover, a simple proof would imply that the
optimal cluster tree for any connected graphs is binary. This
property is not always useful in practice since a real system
usually has its inherent number of hierarchies and a natural
partition for each internal cluster. For instance, the natural
levels of administrative division in a country is usually in-
trinsic, and it is not suitable to differentiate hierarchies for
parallel cities in the same state. This structure cannot be
obtained by simply minimizing admissible cost functions,
and new non-binary clustering algorithms are worth study.

1.2 RELATED WORK

Along with the line of study on Dasgupta’s cost function,
several alternative objectives have been presented. All of
them are bilinear functions of edge weights and some func-
tion of the corresponding LCAs. For Dasgupta’s cost func-
tion and the worst case study, Dasgupta showed that by
applying Arora’s seminal recursive bipartition algorithm
for the sparsest cut problem [Arora et al., 2009], we have
O(log1.5 n)-approximation. This guarantee was improved
by [Roy and Pokutta, 2017] and [Charikar and Chatzi-
afratis, 2017, Cohen-Addad et al., 2019] to O(log n) and√

log n, respectively. It is NP-hard to optimize the cluster
tree [Dasgupta, 2016] and even a O(1)-approximation is

impossible under the Small Set Expansion hypothesis [Roy
and Pokutta, 2017, Charikar and Chatziafratis, 2017]. Be-
yond the worst case, Cohen-Addad et al. [Cohen-Addad
et al., 2019] showed that a SVD-based algorithm achieves a
O(1 + o(1))-approximation for the stochastic block model
with high probability. Manghiuc and Sun [Manghiuc and
Sun, 2021] presented a O(1)-appromation algorithm for
more generalized well-clustered graphs. The outline of their
method is to utilize a flat clustering algorithm [Gharan and
Trevisan, 2014] to obtain the underlying clusters first, and
then some relatively easy heuristics for clustering in and out
of these clusters are enough for the guarantee. Our proof
follows this route also.

For other lines of this study, Moseley and Wang [Moseley
and Wang, 2017] studied the dual of Dasgupta’s cost func-
tion and showed that the average-linkage algorithm achieves
a (1/3)-approximation. This factor has been improved by
a series of works to 0.336 [Charikar et al., 2019], 0.4246
[Chatziafratis et al., 2020] and 0.585 [Alon et al., 2020], re-
spectively. Cohen-Addad et al. [Cohen-Addad et al., 2019]
considered maximization of Dasgupta’s cost function for the
dissimilarity-based metrics. They proved that the average-
link and random partitioning algorithms achieve a (2/3)-
approximation, which has been improved to 0.667 [Charikar
et al., 2019], 0.716 [Rahgoshay and Salavatipour, 2021] and
0.74 [Naumov et al., 2021], respectively.

For non-binary cluster tree construction, the most popular
and representative algorithm is LOUVAIN [Blondel et al.,
2008]. More recently, a hierarchical label propagation based
algorithm HLP has been presented [Rossi et al., 2020]. Both
of these two algorithms construct a non-binary cluster tree
with the same efficient framework, that is, the hierarchies
are formed from bottom to top one by one. In each round,
they invoke different flat clustering heuristics, Modularity
and Label Propagation, respectively.

For other metrics of cluster trees, Charpentier and Bonald
[Charpentier and Bonald, 2019] proposed an information-
theoretic metric named tree sampling divergence (TSD) for
hierarchical clustering. Two distributions of non-leaf nodes
on cluster tree T of graph G are defined, one by sampling
a random edge of G with probability proportional to edge
weights and taking the LCA of its two endpoints, and the
other, considered as a null model, by sampling two random
leaves and taking their LCA. TSD is defined as the Kullback-
Leibler divergence of these two distributions that measures
the distance of them. Intuitively, if G is well clustered by
T , then the mass of the former distribution will aggregate
on LCAs that are far down from the root, which makes it
far from the null model, and thus TSD is large. Otherwise,
TSD is small. Note that this definition is quite different from
our cost function since they measure the uncertainties of
different distributions.



1.3 OUR CONTRIBUTIONS

Our study is able to address above issues to some extent.
We summarize our contributions as follows.

(1) We formulate a new and explainable cost function
for cluster trees from the information-theoretic perspec-
tive, which bridges combinatorial and information-theoretic
perspectives of hierarchical clustering. For this cost func-
tion, the balance of cluster trees will be involved naturally
as a factor just like we design optimal codes (cf. Huffman
codes), for which the balance of probability over objects is
fundamental in constructing an efficient coding tree. Our
theoretical result on complete graphs (Proposition 2) and
experimental results demonstrate the advantages of our cost
function.

(2) For our new cost function, we present two polynomial-
time approximation algorithms respectively for two cases
of the conductance Φ(G) of a cardinality weighted graph
G. Our first result shows that any cluster tree of G has
an approximation factor O(Φ(G)−1) (Theorem 1). So any
cluster tree achieves O(1)-approximation when Φ(G) is
a constant. The second result is a O(1)-approximation al-
gorithm for G that can be well clustered into a constant
number of expander-like clusters (Theorem 2). The main
idea of this algorithm is inspired by Manghiuc and Sun’s
work [Manghiuc and Sun, 2021], and our approximation
factors for our new objective also match their results in
these two cases. An expander-like graph has high conduc-
tance, and a well-clustered graph is its opposite. So, our
results has covered two representative scenarios in the field
of clustering study.

(3) For practical scenarios, we develop a new interpretable
framework for natural hierarchical clustering that out-
puts a non-binary cluster tree. The idea of our framework is
essentially different from the traditional recursive division
or agglomeration ones. In our framework, the sparsest level
of the cluster tree is stratified recursively. This coincides
with the intuition that when we differentiate the hierarchies
of a complex system, the clearest level should be stratified
first, rather than in a rigid divisive or agglomerative fashion.
Therefore, this framework has much better interpretability
than the traditional ones.

(4) We develop a new non-binary clustering algorithm
(HCSE) under the new clustering framework. To find the
sparsest level in each iteration, we formulate two basic oper-
ations called stretch and compress, respectively. Guided by
our new cost function, HCSE constructs a binary cluster tree
in the stretch step, and then the sparsest level is stratified
after compress. HCSE terminates when a specific criterion
that intuitively coincides with the natural hierarchies is met,
and no hyperparameter is needed. Our experimental results
demonstrate that HCSE has a great advantage in both finding
the intrinsic number of hierarchies and hierarchy reconstruc-

tions.

2 A COST FUNCTION FROM
INFORMATION-THEORETIC
PERSPECTIVE

In this section, we first introduce the structural information
theory of [Li and Pan, 2016] as well as the combinatorial
cost functions of [Dasgupta, 2016] and [Cohen-Addad et al.,
2019]. Then we propose a new cost function that is devel-
oped from structural information theory and establish the
relationship between the information-theoretic and combi-
natorial perspectives.

Notations. Let G = (V,E,w) be an undirected weighted
graph with a set of vertices V , a set of edges E and a weight
function w : E → R+, where R+ denotes the set of all
positive real numbers. An unweighted multigraph can be
viewed as a cardinality weighted one whose edge weight is
the number of parallel edges. For each vertex u ∈ V , denote
by du =

∑
(u,v)∈E w(u, v) the weighted degree of u. For

a subset of vertices S ⊆ V , define the volume of S to be
the sum of degrees of vertices. We denote it by vol(S) =∑
u∈S du. The conductance of S, denoted by ΦG(S), is

defined as w(E(S, S))/vol(S) where w(E(S, S)) is the
total weight of edges crossing S and S, and the conductance
of graph G is the minimum conductance over all subset S
whose volume is at most vol(V )/2. We denote by G[S] the
subgraph induced by S. A cluster tree T for graph G is a
rooted tree with |V | leaves, each of which is labeled by a
distinct vertex v ∈ V . Each non-leaf node on T is labeled
by a subset S of V that consists of all the leaves treating
S as an ancestor. For each node α on T , denote by α− the
parent of α, and by |α| its size. For each pair of leaves u
and v, denote by u ∨ v the LCA of them on T .

Structural entropy of graphs. We first give the formal
definition of structural entropy, and then introduce the idea
behind it. Given a weighted graph G = (V,E,w) and a
cluster tree T for G, the structural entropy of G on T is
defined as

HT (G) = −
∑
α∈T

gα
vol(V )

log
vol(α)

vol(α−)
, 1 (1)

where gα denotes the sum of weights of edges in G with
exactly one end-point in the set of vertices corresponding
to α. The structural entropy of G is defined as the min-
imum one among all cluster trees, denoted by H(G) =
minT {HT (G)}.

The main idea of structural information is based on the ran-
dom walk that has been well-known as an effective tool

1For notational convenience, for the root λ of T , set λ− = λ.
So the term for λ in the summation is 0. In this paper, the default
base of logarithm is always 2.



in revealing clustering structures. In this theory, the ran-
dom walk is encoded with a certain rule by using a high-
dimensional encoding system for a graph G. In each step
of the random walk, a neighbor is randomly chosen with
probability proportional to edge weights, and so it has a sta-
tionary distribution on vertices that is proportional to vertex
degree. For connected graphs, this stationary distribution is
unique, but not for disconnected ones. Here, we consider
this canonical one for all graphs. So, to position a random
walk under its stationary distribution, the amount of informa-
tion needed is typically the Shannon’s entropy, denoted by
H(1)(G) = −

∑
v∈V

dv
vol(V ) log dv

vol(V ) . By Shannon’s noise-

less coding theorem, H(1)(G) is the tight lower bound of
average code length generated from the memoryless source
for one step of the random walk. However, dependence of
locations may shorten the code length.

The core concept of structural information is structural en-
tropy. To demonstrate the underlying idea, consider flat
(rather than hierarchical) clustering as a simple case exam-
ple. Structural entropy measures the uncertainty (informa-
tion) of locations under the stationary distribution of the
random walk. This uncertainty consists of two parts, one
from that of clusters, and the other from that of vertices
in its cluster. These two parts can also be viewed as two
parts of an encoding for each vertex. By the additivity of
Shannon’s entropy, the sum of these two parts of uncertainty
should be equal to the original one of locations for memo-
ryless sampling under the stationary distribution. The key
idea is as follows. For one step of the random walk from
a vertex u to v, to measure the uncertainty of v, if u and v
are in the same cluster, the uncertainty of clusters may not
be involved. For a good clustering structure, this kind of
in-cluster movements will happen with high probability, and
thus the uncertainty of clusters will decrease sharply due
to the dependence of steps of random walks. The resulting
measurement of uncertainty under the stationary distribution
is exactly the structural entropy of flat clustering.

The above idea can be generalized to hierarchical clus-
tering. For each level of a cluster tree, the uncertainty of
locations during the random walk is measured by the en-
tropy of the stationary distribution on the clusters of this
level. Consider an encoding for every cluster, including
the leaves. Each non-root node α is labeled by its order
among the children of its parent α−. So, the amount of
self-information of α within this local parent-children sub-
structure is − log(vol(α)/vol(α−)), which is also roughly
the length of Shannon code for α and its siblings. The code-
word of α consists of the sequential labels of nodes along
the unique path from the root (excluded) to itself (included).
For one step of the random walk from u to v in G, to in-
dicate v, we omit from v’s codeword the longest common
prefix of u and v that is exactly the codeword of u ∨ v. This
means that the random walk takes this step in the cluster
u ∨ v (and also in u ∨ v’s ancestors) and the uncertainty

at this level may not be involved. Therefore, intuitively, a
quality similarity-based cluster tree would trap the random
walk with high frequency in the deep clusters that are far
from the root, and the long codeword of u ∨ v would be
omitted. This shortens the average code length of the ran-
dom walk. Note that we ignore the uniqueness of decoding
since a practical design of codewords is not our purpose. We
utilize this scheme to evaluate hierarchical structures.

Then we formulate the above scheme and measure the
average code length as follows. Given a weighted graph
G = (V,E,w) and a cluster tree T for G, note that un-
der the stationary distribution, the random walk takes one
step out of a cluster α on T with probability gα/vol(V ).
Therefore, the aforementioned uncertainty measured by the
average code length is exactlyHT (G) that has been defined
as the structural entropy of G on T (Eq. (1)). To minimize
this uncertainty, the structural entropyH(G) of G has been
defined as the minimum one among all cluster trees. Note
that the structural entropy of G on the trivial 1-level cluster
tree is consistent with the previously defined H(1)(G). It
doesn’t have any non-trivial cluster.

Combinatorial explanation of structural entropy. Das-
gupta’s cost function [Dasgupta, 2016] of a cluster tree
T for graph G = (V,E) is defined to be cT (G) =∑

(u,v)∈E w(u, v)|u ∨ v|. The admissible cost function in-
troduced by [Cohen-Addad et al., 2019] generalizes the term
|u ∨ v| in the definition of cT (G) to be a general function
g(|L|, |R|) for a binary cluster tree, where L and R are the
two children of u ∨ v, respectively. Thus, Dasgupta had
defined g(x, y) = x+ y. For both definitions, the optimal
hierarchical clustering of G is in correspondence with a
cluster tree of minimum cost in the combinatorial sense that
heavy edges are cut as far down the tree as possible.

The following proposition establishes the relationship be-
tween structural entropy and this kind of combinatorial form
of cost functions.

Proposition 1. For a weighted graph G = (V,E,w), mini-
mizingHT (G) (over T ) is equivalent to minimizing the cost
function

costT (G) =
∑

(u,v)∈E

w(u, v) log vol(u ∨ v). (2)

We defer the proof of Proposition 1 to Appendix A. We
denote by cost(SE) the cost function in Proposition 1 from
now on. Proposition 1 indicates that when we view g as a
function of the LCA rather than that of its size and define
g(u, v) = log vol(u∨v), the “admissible” function becomes
equivalent to structural entropy in evaluating cluster trees,
although it is not admissible any more.

So what is the difference between these two cost functions?
As stated by [Cohen-Addad et al., 2019], an important ax-
iomatic hypothesis for admissible function, thus also for



Dasgupta’s cost function, is that the cost for every binary
cluster tree of an unweighted clique is identical. So any
binary tree for clustering on cliques is reasonable, which
coincides with the common sense that structureless datasets
can be organized hierarchically free. However, for structural
entropy, the following theorem indicates that balanced or-
ganization is of importance even though for structureless
datasets.

Proposition 2. For any positive integer n, let Kn be the
clique of n vertices with identical weight on every edge.
Then a cluster tree T of Kn achieves minimum structural
entropy if and only if T is a balanced binary tree, that is,
the two children clusters of each non-leaf node of T have
difference in size at most 1.

The proof of Proposition 2 is a bit technical, and we defer
it to Appendix B. The intuition behind Proposition 2 is
that balanced codes are the most efficient encoding scheme
for unrelated data, cf. Huffman codes (recall the main idea
behind the structural entropy). So the codewords of the
random walk that jumps freely among clusters on each level
of a cluster tree have the minimum average length if all the
clusters on this level are in balance.

Why is Proposition 2 able to explain that cost(SE) has taken
balance into account in hierarchical clustering? We remark
that two factors impact the quality of hierarchical clustering
and should be considered in a cost function, one is edge
weight, and the other is balance. Edge weight means struc-
ture, which should be the main factor in clustering. If one
needs to show that balance is also a factor, it is better to ex-
clude the influence of structure. Complete graph is the most
ideal candidate, because it is unstructured. We utilize com-
plete graph since it is a counterpart to Dasgupta’s equal-cost
property of unstructured graphs with his cost function.

Note that for regular graphs (e.g. cliques), replacing vol(u∨
v) by |u∨v| is equivalent for optimization. [Dasgupta, 2016]
claimed that for the clique K4 of four vertices, a balanced
tree is preferable when replace |u ∨ v| by g(|u ∨ v|) for
any strictly increasing concave function g with g(0) = 0.
However, it is worth noting that this does not hold for all
those concave functions. For example, it is easy to check
that for g(x) = 1− e−x, the cluster tree of K6 that achieves
minimum cost partitions K6 into K2 and K4 on the first
level, rather than K3 and K3. In contrast, Proposition 2
shows that for all cliques, balanced trees are preferable
when concave g is a logarithmic function.

It is worth noting that the admissible function introduced by
[Cohen-Addad et al., 2019] is defined from the viewpoint
of generating trees. A generating tree T of a similarity-
based graph G is generated from a minimal ultrametric and
achieves the minimum cost. In this definition, the monotonic-
ity of edge weights between sibling clusters from bottom
to top on T , which is given by [Cohen-Addad et al., 2019]
as a property of a “natural” ground-truth hierarchical clus-

tering, is the unique factor when evaluating T . However, as
discussed earlier, Proposition 2 implies that for cost(SE),
besides edge weights, the balance factor of cluster trees is
implicitly involved as another factor. Moreover, for cliques,
the minimum cost should be achieved on every subtree,
which makes an optimal cluster tree balanced everywhere.
This unique optimal clustering for cliques is also robust
in the sense that a slight perturbation to the minimal ultra-
metric, which can be considered as slight variations to the
weights of a batch of edges, will not change the optimal
cluster tree wildly due to the holdback force of balance.

3 APPROXIMATION ALGORITHMS FOR
COST(SE)

In this section, we present approximation algorithms for
expander-like and well-clustered graphs, respectively. These
approximation factors work for cardinality edge weights
whose value is at least one (e.g. the multiplicity of edges).

Why cardinality weights? In general, the term log vol(u ∨
v) in Eq. 2 and cost(SE) can become negative as the volume
of u ∨ v varies, causing the approximation analysis to fail.
The cardinality weight function w is at least one, which
makes cost(SE) non-negative. Although the dependence of
cost(SE) on the scale of edge weights violates the scale-
invariance principle, we emphasize that HT (G) is scale-
invariant and Proposition 1 holds for any scale variation. In
this paper, we present approximation algorithms for cost(SE)
in well-defined settings, and our approximation guarantees
hold for all graphs with edge weights at least one.

Theorem 1. For any cardinality weighted graph G =
(V,E,w) with conductance Φ(G), it holds that for any clus-
ter tree, costT (G) = O(Φ(G)−1) · OPT , where OPT is
the minimum cost(SE) of G.

We defer the proof of Theorem 1 to Appendix C. When
Φ(G) is a constant, Theorem 1 implies that any cluster tree
achieves O(1)-approximation for expander-like graphs. We
remark that expander-like graphs do not have good cluster-
ing structures, and so the cost of any cluster tree is constant
times near to the universal upper bound (as shown in the
proof). This result is in fact a lower bound of cost(SE) for
graphs without clustering structure, which demonstrates
the rationality of our objective. Considering balance as an
important factor, we present a Huffman-merging heuristic
(Algorithm 1). It will serve as a subroutine within expander-
like clusters in the algorithm for well-clustered graphs.

Next, we consider well-clustered graphs that are composed
by a collection of densely-connected components with high
inner conductance and weakly interconnections. Our set-
tings for well-clustered graphs is the same as those in
[Manghiuc and Sun, 2021]. We start from the following
(Φin,Φout)-decomposition presented by Gharan and Tre-



Algorithm 1 HuffmanMerge

Input: a graph G = (V,E,w).
Output: a cluster tree T of G.
Create n singleton trees.
while there are at least two trees do

Select the two trees T1 and T2 with the least volumes.
Construct a new tree T0 with T1 and T2 as two sub-

trees of the root.
return the resulting binary tree T0.

Algorithm 2 Balanced Binary Merge (BBM)

Input: a graph G = (V,E,w), an integer k ≥ 2 such
that λk > 0.
Output: a cluster tree T of G.
Apply the partitioning algorithm in Lemma 1 on input
(G, k) to obtain {Pi}li=1 for some l < k.
Sort P1, ..., Pl be such that volG(Pi) ≤ volG(Pi+1), for
all 1 ≤ i < l.
Let Ti = HuffmanMerge(G[Pi]).
Initialize T = T1.
for i = 2, ..., l do

Let T be the tree with T and Ti as its two children.
return T .

visan [Gharan and Trevisan, 2014]. Let λk be the k-th small-
est eigenvalue of the normalized Laplacian matrix of G and
ΦG(S) be the conductance of a vertex set S in G.

Lemma 1. ([Gharan and Trevisan, 2014], Theorem 1.5)
Let G = (V,E,w) be a graph such that λk > 0, for some
k ≥ 1. Then, there is a local search algorithm that finds a
l-partition {Pi}li=1 of V, for some l < k, such that for every
1 ≤ i ≤ l, ΦG(Pi) = O(k6

√
λk−1) and Φ(G[Pi]) =

Ω(λ2k/k
4).

Lemma 1 implies that, when G exhibits a clear clustering
structure, there is a partition {Pi}li=1 of V such that for each
Pi both the outer and inner conductance can be bounded.
This is a crucial insight that we can use {Pi}li=1 directly to
construct a cluster tree.

Our algorithm consists of two phases: Partition and Merge.
In the Partition phase, it invokes the algorithm in Lemma
1 to partion V into subsets {Pi}li=1. In the Merge phase, it
combines the trees in a "caterpillar style" according to an in-
creasing order of their volumes. This algorithm is described
as Algorithm 2. Note that Algorithm 2 degenerates to Algo-
rithm 1 when k = 2. For the approximation guarantee, we
have the following theorem.

Theorem 2. Let G = (V,E,w) be a cardinality weighted
graph such that λk > 0 for some k ≥ 1. Then Algorithm
2 constructs in polynomial time a cluster tree T of G that
achievesO

(
1

(1−α)β log k
1−α

)
-approximation for costT (G),

where α = O(k6
√
λk−1), β = Ω(λ2k/k

4). Consequently,

when λk = Ω(1/poly(k)) and λk−1 = O(1/k12) such
that α < 1 − ρ for some constant ρ ∈ (0, 1), Algorithm 2
achieves O(poly(k))-approximation. In addition, when k is
a constant, Algorithm 2 achieves O(1)-approximation.

The proof of Theorem 2 is given in Appendix D. It follows
the intuition that the cost contributed by the inner edges
of clusters is upper bounded due to the cluster volumes,
and that contributed by the outer edges is upper bounded
due to their few number. Our proof is more natural than
that in [Manghiuc and Sun, 2021] since it circumvents the
complicated decomposition into critical nodes.

4 NON-BINARY HIERARCHICAL
CLUSTERING ALGORITHM HCSE

In this section, we develop a non-binary hierarchical cluster-
ing algorithm. At present, most algorithms for hierarchical
clustering can be categorized into two frameworks: top-
down division and bottom-up agglomeration [Cohen-Addad
et al., 2019]. The top-down division approach usually yields
a binary tree by recursively dividing a cluster into two parts
by a cut-based subroutine. But a binary clustering tree is
far from practical application. For practical use, bottom-up
agglomeration that is also known as hierarchical agglomera-
tive clustering (HAC) is commonly preferable. It constructs
a cluster tree from leaves to the root recursively, during each
round of which the newly generated clusters shrink into sin-
gle vertices. We remark that there is no proper cost function
for non-binary hierarchical clustering yet, and all existing
algorithms for this purpose cannot be evaluated by any cost.
We provide a new one by using cost(SE) in its subroutines.
However, it is unclear and worth study whether cost(SE)
and cost(Das) fit to evaluate non-binary cluster trees.

Our algorithm jumps out of these two frameworks. We es-
tablish a new one that stratifies the sparsest level of a cluster
tree recursively rather than in a sequential order. In general,
guided by cost(SE), we construct a (k + 1)-level cluster
tree from the previous k-level one, during which we find
the level whose stratification makes the average cost in a
local reduced subgraph decrease most, and then differentiate
it into two levels. The process of stratification consists of
two basic operations: stretch and compression. In stretch
step, given an internal node of a cluster tree, a local bi-
nary subtree is constructed, while in compression step, the
paths that are overlong from the root to leaves on the bi-
nary tree are compressed by shrinking tree edges that make
the cost reduce most. The intuition behind the “stretch-and-
compress” scheme is as follows. First, we run a fast and
simple, but probably rough clustering algorithm to obtain a
binary cluster subtree. So, after stretch, we have unfolded
all the potential hierarchies such that the sparsest level can
probably be seen. Second, we compress every overlong path
that is supposed to get through each level of this subtree,



during which, the tree edge on the sparsest level whose com-
pression makes too many graph edges amplify the sizes of
their LCAs greatly will be retained. This edge is expected in
the backbone of the final non-binary cluster tree. We remark
that this framework can be collocated with any cost function
and any binary cluster tree algorithm. For computational
efficiency, we will adopt in our experiments an HAC con-
struction of binary cluster trees with no hyper-parameter in
stretch steps.

Stretch and compress. Given a cluster tree T for graphG =
(V,E), let u be an internal node on T and v1, v2, . . . , v` be
its children. We call this 1-level local parent-children struc-
ture rooted at u to be a u-triangle of T , denoted by Tu.
These two operations are defined on u-triangles. Note that
each child vi of u represents a cluster in G. We reduce G by
shrinking each vi to be a single vertex v′i while maintaining
each inter-link and ignoring each internal edge of vi. This
reduction captures the connections of clusters at this level
in the parent cluster u. The stretch operation constructs a bi-
nary tree for u-triangle with an HAC process. Initially, view
each v′i as a cluster and then recursively merge two clusters
into a new one such that cost(SE) drops most. This yields
a binary subtree T ′u rooted at u which has v1, v2, . . . , v`
as leaves. Then the compression operation is proposed to
reduce the height of T ′u to be 2. Let Ê(T ′) be the set of
edges on T ′, each of which appears on a path of length more
than 2 from the root of T ′ to some leaf. Denote by ∆(e) the
amount of structural entropy enhanced by shrinking edge
e. We pick from Ê(T ′u) the edge e with least ∆(e). Note
that compressing a tree edge makes the grandchildren of
some internal node to be children, which must amplify the
cost. The compression operation picks the least amplifica-
tion. The processes of stretch and compress are illustrated
in Figure 3 and stated as Algorithms 3 and 4, respectively.

Algorithm 3 Stretch(Tu)

Input: a u-triangle Tu.
Output: a binary tree rooted at u.
Let {v1, v2, . . . , v`} be the set of leaves of Tu.
Compute η(a, b) which is the cost reduced by merging
siblings a, b into a single cluster.
for t ∈ [`− 1] do

(α, β)← arg max(a,b) are siblings{η(a, b)}.
Add a new node γ.
γ.parent← α.parent.
α.parent = γ.
β.parent = γ.

return Tu.

Sparsest level. Let Uj be the set of j-level nodes on
cluster tree T , that is, Uj is the set of nodes each of
which has distance j from T ’s root. Suppose that the
height of T is k, then U0, U1, . . . , Uk−1 is a partition for
all internal nodes of T . For each internal node u, define

Algorithm 4 Compress(T )

Input: a binary tree T .
while T ’s height is more than 2 do

e← arg mine′∈Ê(T ){∆(e′)}
Denote e = (u, v) where u is the parent of v
for w ∈ v.children do

w.parent← u

Delete v from T

H(u) = −
∑
v:v−=u

gv
vol(V ) log vol(v)

vol(u) . Note that H(u) is
the partial sum contributed by u inHT (G). After a “stretch-
and-compress” round on u-triangle, denote by ∆H(u) the
structural entropy by which the new cluster tree reduces.
Since the reconstruction of u-triangle stratifies cluster u,
∆H(u) is always non-negative. Define the sparsity of u to
be Spar(u) = ∆H(u)/H(u), which is the relative variation
of structural entropy in cluster u. From the information-
theoretic perspective, this means that the uncertainty of
random walk can be measured locally in any internal clus-
ter, which reflects the quality of clustering in this local
area. At last, we define the sparsest level of T to be the
j-th level such that the average sparsity of triangles rooted
at nodes in Uj is maximum, that is arg maxj{Sparj(T )},
where Sparj(T ) =

∑
u∈Uj Spar(u)/|Uj |. Then stratifica-

tion works for the sparsest level of T . This process is illus-
trated in Figure 4 in Appendix G.

For a given positive integer k, to construct a cluster tree of
height k, we start from the trivial 1-level cluster tree that
involves all vertices of G as leaves. Then we do not stop
stratifying at the sparsest level recursively until a k-level
cluster tree is obtained. The pseudocode is described as
Algorithm 5 in Appendix G.

To determine the height of the cluster tree automatically,
we derive the natural clustering from the variation of spar-
sity on each level. Intuitively, a natural hierarchical clus-
ter tree T should have not only sparse boundary on clus-
ters, but also low sparsity for triangles of T , which means
that further stratification within the reduced subgraphs cor-
responding to such triangles makes little sense. For this
reason, we consider the inflection points of the sequence
{δt(H)}t=1,2,..., where δt(H) is the structural entropy by
which the t-th round of stratification reduces. Formally, de-
note ∆tδ = δt−1(H) − δt(H) for each t ≥ 2. We say
that ∆tδ is an inflection point if both ∆tδ ≥ ∆t−1δ and
∆tδ ≥ ∆t+1δ hold. Our algorithm finds the least t such that
∆tδ is an inflection point and fix the height of the cluster
tree to be t (Note that after t − 1 rounds of stratification,
the number of levels is t). The pseudocode is described as
Algorithm 6 in Appendix G.

Time complexity. The running time of HCSE on graph
G = (V,E) for which |V | = n and |E| = m depends
mainly on the iterations of stratification for the sparsest



level. For each round of t-HCSE in Algorithm 6, since the
change of structure entropy can be calculated incrementally
and locally when merge siblings, the time complexity for the
Stretch process is O((m+ n) log n). Note that the LCA of
each edge ofG can be recorded during Stretch. Since at most
n times of shrinking operations on tree edges will happen,
and ∆(e) can be calculated locally, the time complexity
for the Compress process is O((m+ n) log n). Combining
these two, the time complexity of HCSE (and also k-HCSE)
is O(k(m + n) log n. Practically, k is usually very small,
for example O(log n). In this case, the time complexity is
merely O((m+ n) log2 n).

5 EXPERIMENTS

In this section, we evaluate experimentally our binary
clustering algorithm BBM and the non-binary hierarchi-
cal clustering algorithm HCSE mainly on synthetic net-
works generated from the stochastic block model (SBM)
[Ana and Jain, 2003] and the hierarchical stochastic block
model (HSBM) [Lyzinski et al., 2017], respectively. Due
to the lack of ground truth for hierarchical clustering on
real datasets, we conduct our experiments on the Ama-
zon network that is the only one we suppose to have
overlapping, possibly hierarchical, ground-truth clusters
(see Appendix F.5). All algorithms were implemented in
python 3.8 and the experiments were performed using an
Intel(R) Core(TM) i5-12400 CPU @ 2.50GHz processor,
with 16 GB RAM. For the source codes, please refer to
https://github.com/Hardict/HCSE.

Binary clustering: cost and balancedness on SBM
graphs. We evaluate our binary clustering algorithm BBM
in two aspects: cost and balancedness. We denote Das-
gupta’s cost function by cost(Das). The baselines in-
clude four linkage-based methods [Cohen-Addad et al.,
2019]: average-linkage (AL), single-linkage (SL), complete-
linkage (CL) and Linkage++ (L++, previous state-of-the-art
for cost(Das)). PruneMerge proposed by [Manghiuc and
Sun, 2021] always has complicated operations on critical
nodes and sometimes is hard to terminate in short time. So
we do not include it as a baseline.

The datasets we use are random graphs generated from
SBM. We remark that a good clustering algorithm should
always treat clustering structure as the most significant im-
pact, and when cluster outlines become vague, the balance
factor makes an effect. Therefore, we produce a series of
SBM graphs, each of which has a significant variation in
cluster sizes. Two strategies for generating clusters of differ-
ent sizes are used, one is a totally biased way and the other
is random. More details are introduced in Appendix E.

For balance evaluation on a binary tree, we define three
indices, for each of which, the smaller, the better. The first
is size balance index, denoted by Bsize. For each node α on

T , if α is a non-leaf node, let α` and αr be its two children,
and α’s size balance index is defined as a normalized size
difference between the children, that is Bsize(α) = ||α`| −
|αr||/|α|. If α is a leaf, Bsize(α) = 0. The size balance
index of T is a weighted sum of Bsize(α), that is Bsize(T ) =∑
α∈T ρα ·Bsize(α), where ρα = |α|/

∑
α′∈T |α′|. So, after

simplicity, we have

Bsize(T ) =
∑
α∈T

||α`| − |αr||∑
α′∈T |α′|

.

The second index is the counterpart of Bsize that uses volume,
named volume balance index and denoted by Bvol. Formally,

Bvol(T ) =
∑
α∈T

|vol(α`)− vol(αr)|∑
α′∈T vol(α′)

.

The last index is depth balance index, denoted by Bdep.
Bdep(T ) is simply the standard deviation of the depths of all
leaves on T .

We show the cost and balancedness results on SBM graphs
in Table 1. On both datasets with two different generating
strategies, our algorithm BBM achieves the best cost(SE),
and also competitive cost(Das) with Linkage++. Meanwhile,
BBM achieves the best balances factors for all three indices,
which means that small cost(SE) corresponds to good bal-
ance of cluster trees in the case that the underlying ground
truth clusters can be well constructed. More comprehensive
experimental results are provided in Appendix F.1.

Non-binary clustering: NMIs on HSBM graphs. To eval-
uate the effective of HCSE, we adopt two popular and repre-
sentative non-binary clustering methods as baselines, LOU-
VAIN [Blondel et al., 2008] and HLP [Rossi et al., 2020],
that follow the traditional bottom-up agglomeration frame-
work. LOUVAIN admits a sequential input of vertices. To
avert the worst-case trap, vertices come randomly, and the
resulting cluster tree depends on their order. HLP invokes
the common Label Propagation algorithm recursively, and
so it cannot be guaranteed to avoid under-fitting in each
round. This can be seen in our experiments on synthetic
datasets, for which these two algorithms sometimes miss
ground-truth levels. To evaluate the effectiveness of our cost
function, we replace the stretch step of HCSE by linkage-
based methods AL, SL and CL, each of which also depends
on no hyper-parameter. Our experiments evaluate our frame
work incorporated with these methods in the Stretch step,
for which we denote by HCave, HCsin, HCcom these three
algorithms, respectively.

We utilize the k-level HSBM (introduced in Appendix E.2)
for the task to reconstruct the ground-truth HSBM cluster
trees. Table 4 in Appendix 4 demonstrates the results on
two groups of random graphs generated from HSBM whose
heights are k = 4, 5, respectively. We compare the Normal-
ized Mutual Information (NMI) at each level of the ground-
truth cluster tree. Due to the randomness in LOUVAIN and

https://github.com/Hardict/HCSE


(Biased) (Random)
Method Bsize Bvol Bdep cost(Das) cost(SE) Bsize Bvol Bdep cost(Das) cost(SE)

AL 0.619 0.666 6.79 1.07E7 7.16E5 0.411 0.438 2.83 4.68E5 6.20E4
SL 0.232 0.241 1.41 1.62E7 7.43E5 0.263 0.271 1.51 7.45E5 6.72E4
CL 0.977 0.978 64.7 1.43E7 7.50E5 0.933 0.935 22.2 7.08E5 6.75E4
L++ 0.897 0.921 30.2 9.45E6 7.12E5 0.721 0.735 7.31 3.82E5 6.09E4
BBM 0.0148 0.0681 0.181 9.48E6 7.03E5 0.0981 0.0980 0.645 3.94E5 6.06E4

Table 1: Cost and balancedness on SBM graphs. “Biased” and “Random” denote the two strategies for generating cluster
sizes for SBM. Five clusters are generated by Biased strategy, and their sizes are set to be [32, 32, 64, 128, 256] with ±5
random perturbation on each figure. The sizes of five clusters generated by Random strategy are uniformly and randomly
drawn from integers in the interval [24, 26). The probability of presence for intra-cluster edges is 0.9 and that for inter-cluster
edges is 0.1. All values are averaged over 100 trials.

convergence of HLP, we choose the most effective strategy
and pick the best results in five runs for both of these two
baselines. In contrast, our algorithm HCSE yields determin-
istic results. We need to emphasize that since there is no
proper cost function for non-binary clustering yet, we do
not evaluate HCSE with any cost.

The main results are summarized as follows. HCSE is al-
ways able to find the correct height k, while HLP and LOU-
VAIN are not. Although LOUVAIN is comparable with
HCSE in NMI values, it cannot find the correct level num-
ber in any group. HLP and the three linkage-based methods
cannot achieve the best NMI for any probability vector, even
if we calculate the NMI between each ground-truth level and
the one that achieves the maximum NMI in the resulting tree
when the height of cluster tree is incorrect. The reason why
HCSE performs not so well as LOUVAIN on deep levels is
as follows. The accuracy of HCSE for deep levels depends
on that for the intermediate levels that are probably stratified
earlier. The early errors will accumulate later to the bottom.
Comparatively, LOUVAIN starts with the deepest level in
a bottom-up fashion. So it has better NMIs on deep levels
than HCSE, but due to error accumulation also, it has worse
NMIs on high levels, even miss the top level. For the three
linkage-based methods, the structure of resulting non-binary
tree is quite different from the ground truth. This indicates
that the binary tree after Stretch are not accurate enough in
the sense that the real sparse levels have not been properly
unfolded by the internal nodes of the binary tree, and so
they cannot be stratified properly. This also demonstrates
the advantage of our cost function in binary clustering. More
ablation experiments are provided in Appendix F.3.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we investigate the hierarchical clustering prob-
lem on graphs from an information-theoretic perspective and
propose a new cost function that relates to the combinatorial
objective raised by Dasgupta [Dasgupta, 2016]. We present

two O(1)-approximation algorithms for it on two canonical
kinds of graphs, i.e., expander-like and well-clustered cardi-
nality weighted ones, respectively. For non-binary hierarchi-
cal clustering, we propose a new interpretable framework
that stratifies the sparsest level of the cluster tree recursively,
which can be collocated with any binary clustering algo-
rithm. We also present an interpretable strategy to find the
intrinsic number of levels without any hyper-parameter. The
experimental results have verified the effectiveness of our
cost function and algorithms.

There are several directions that are worth further study.
The first problem is about the complexity of minimizing
cost(SE). It is unknown whether computing min cost(SE) is
NP-hard. For approximation guarantee, note that there is a
trivial factor log vol(V ) for the cardinality weighted graphs
simply due to the definition of cost(SE). However, there
is no non-trivial factor in the worst case yet. The second
problem is about the relationship between the concavity of
g of the cost function and the balance of the optimal cluster
tree. It can be checked that for cliques, being concave is
not a sufficient condition for total balance. Whether is it a
necessary condition? Moreover, is there any explicit neces-
sary and sufficient condition for total balance of the optimal
cluster tree for cliques? The third one is about more precise
characterizations for “natural” hierarchical clustering whose
depth is limited. Since any reasonable choice of g makes
the cost function achieve optimum on some binary tree, a
blind pursuit of minimization of cost functions seems not
to be a rational approach. More criteria in this scenario are
worth study.
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A PROOF OF PROPOSITION 1

Proof. For each internal node α on T , denote by ∂(α) the sets of edges in G with exactly one end-point in the set of vertices
corresponding to α. So gα =

∑
e∈∂(α) w(e). Note that

HT (G) = −
∑
α∈T

gα
vol(V )

log
vol(α)

vol(α−)

= −
∑
α∈T

∑
(u,v)∈∂(α)

w(u, v)

vol(V )
log

vol(α)

vol(α−)

= −
∑

(u,v)∈E

w(u, v)

vol(V )

∑
α:(u,v)∈gα

log
vol(α)

vol(α−)

 .

For a single edge (u, v) ∈ E, all the terms log(vol(α)/vol(α−)) for leaf u satisfying (u, v) ∈ gα sum (over α) up to
log(du/vol(u ∨ v)) along the unique path from u to u ∨ v. It is symmetric for v. Therefore, considering ordered pair
(u, v) ∈ E,

HT (G) = −
∑

ordered (u,v)∈E

w(u, v)

vol(V )
log

du
vol(u ∨ v)

=
1

vol(V )

−∑
u∈V

du log du +
∑

ordered (u,v)∈E

w(u, v) log vol(u ∨ v)


=

1

vol(V )

−∑
u∈V

du log du + 2 ·
∑

(u,v)∈E

w(u, v) log vol(u ∨ v)

 .

The second equality follows from the fact that for a fixed u, du =
∑
v:(u,v)∈E w(u, v), and the last equality from the

symmetry of (u, v). Since the first summation is independent of T , Proposition 1 follows.

B PROOF OF PROPOSITION 2

Proof. Note that a balanced binary tree (BBT for abbreviation) means the tree is balanced on every internal node. Formally,
for an internal node of cluster size k, its two sub-trees are of cluster sizes bk/2c and dk/2e, respectively.
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For cliques, since the weights of each edge are identical, we assume it safely to be 1. By Proposition 2.1, minimizing the
structural entropy is equivalent to minimizing the cost function (over T )

costT (G) =
∑

(u,v)∈E

log vol(u ∨ v)

=
∑

(u,v)∈E

log ((n− 1)|u ∨ v|)

=
∑

(u,v)∈E

log(n− 1) +
∑

(u,v)∈E

log |u ∨ v|

Since the first term in the last equation is independent of T , the optimization turns to minimizing the last term, which we
denote by Γ(T ). Grouping all edges in E by LCA of two end-points, the cost Γ(T ) can be written as the sum of the cost γ
at every internal node N of T . Formally, for every internal node N , let A,B ⊆ V be the leaves of the sub-trees rooted at the
left and right child of N , respectively. We have

Γ(T ) =
∑
N

γ(N)

γ(N) =

 ∑
x∈A,y∈B

1

 · log (|A|+ |B|)

= |A| · |B| · log(|A|+ |B|)

Now we only have to show the following lemma.

Lemma 2. For any positive integer n, a cluster tree T of Kn achieves minimum cost Γ(T ) if and only if T is a BBT.

Proof. Lemma 2 is proved by induction on |V |. The key technique of tree swapping we use here is inspired by Cohen-Addad
et al [4]. The basis step holds since for |V | = 2 or 3, the cluster tree is balanced and unique. It certainly achieves the
minimum cost exclusively.

Now, consider a clique G = (V,E) with n = |V | ≥ 4. Let T1 be an arbitrary unbalanced cluster tree and λ be its root. We
need to prove that the cost Γ(T1) does not achieve the minimum. Without loss of generality, we can safely assume the root
node is unbalanced, since otherwise, we set T1 to be the sub-tree that is rooted at an unbalanced node. Let T2 be a tree with
root λ whose left and right sub-trees are BBTs such that they have the same sizes with the left and right sub-trees of T1,
respectively. Let Vll, Vlr, Vrl and Vrr be the sets of nodes on the four sub-trees at the second level of T2 (Vll means the left
child of left child, Vlr the right child of left child, and so on), and nll, nlr, nrl and nrr denote their sizes, respectively. Our
proof is also available when some of them are empty. We always assume nll ≤ nlr and nrl ≥ nrr. Next, we construct T3 by
swapping (transplanting) Vlr and Vrl with each other. Finally, let T4 be a tree with root λ whose left and right sub-trees are
BBTs after balancing the left and right sub-trees of T3. So T4 is a BBT. Then we only have to prove that Γ(T1) > Γ(T4).
Note that the strict “>” is necessary since we need to negate all unbalanced cluster trees.

Then we show that the transformation process that consists of the above three steps makes the cost decrease step by step.
Formally,

(a) T1 to T2. The sub-trees of T1 become BBTs in T2. Since the number of edges whose end-points treat the root as LCA
is the same, by induction we have Γ(T1) ≥ Γ(T2).

(b) T2 to T3. We will show that Γ(T2) > Γ(T3) in Lemma 3.

(c) T3 to T4. The sub-trees of T3 become BBTs in T4. For the same reason as (a), we have Γ(T3) ≥ Γ(T4).

Putting them together, we get Γ(T1) > Γ(T4) and Lemma 2 follows.

Lemma 3. After swapping Vlr and Vrl, we obtain T3 from T2, for which Γ(T2) > Γ(T3).



Proof. We only need to consider the changes in cost of three nodes: root and its left and right children, since the cost
contributed by each of the remaining nodes does not change after swapping. Ignoring the unchanged costs, define

cost(T2) = nlnr log n+ nllnlr log nl + nrlnrr log nr

= nlnr log n+
⌊nl

2

⌋ ⌈nl
2

⌉
log nl +

⌈nr
2

⌉ ⌊nr
2

⌋
log nr,

where nl = nll + nlr, nr = nrl + nrr. Both of them are at least 1. Similarly, define

cost(T3) = (nll + nrl)(nlr + nrr) log n+ nllnrl log (nll + nrl) + nlrnrr log (nlr + nrr)

=
⌊n

2

⌋ ⌈n
2

⌉
log n+

⌊nl
2

⌋ ⌈nr
2

⌉
log
(⌊nl

2

⌋
+
⌈nr

2

⌉)
+
⌈nl

2

⌉ ⌊nr
2

⌋
log
(⌈nl

2

⌉
+
⌊nr

2

⌋)

Denote

∆ = Γ(T2)− Γ(T3)

= cost(T2)− cost(T3)

=
⌊nl

2

⌋ ⌈nl
2

⌉
log
(nl
n

)
+
⌈nr

2

⌉ ⌊nr
2

⌋
log
(nr
n

)
−
⌊nl

2

⌋ ⌈nr
2

⌉
log

(⌊
nl
2

⌋
+
⌈
nr
2

⌉
n

)
−
⌈nl

2

⌉ ⌊nr
2

⌋
log

(⌈
nl
2

⌉
+
⌊
nr
2

⌋
n

)
(3)

So we only have to show that ∆ > 0. We consider the following three cases according to the odevity of nl and nr.

Case 1: nl and nr are even.

Case 2: nl and nr are odd.

Case 3: nl is odd while nr is even.

The case that nl is even while nr is odd is symmetric to Case 3.

For Case 1, if both nl and nr are even, then notations of rounding in Eq. (3) can be removed and ∆ can be simplified as

∆ =
n2l
4

log
(nl
n

)
+
n2r
4

log
(nr
n

)
+
nlnr

2
.

Let p = nl/n, q = nr/n, and so p+ q = 1. Recall that T1 is unbalanced on the root λ, so is T2. Thus p 6= q. Multiplying by
4
n2 on both sides, we only have to prove that

p2 log p+ q2 log q + 2pq > 0.

That is,
p

q
log p+

q

p
log q + 2 > 0.

Let g(x) = x
1−x log x. Then we only need to show that g(p) + g(q) + 2 > 0 when p 6= q. Since

g′(x) =
(1− x) + lnx

ln 2 · (1− x)2
,

g′′(x) = −x
2 − 2x lnx− 1

ln 2 · x(1− x)3
.

It is easy to check that g′′(x) > 0 when 0 < x < 1. So g(x) is strictly convex in the interval (0, 1). Since p 6= q,

g(p) + g(q) > 2g

(
p+ q

2

)
= −2.

Thus ∆ > 0 holds.



For Case 2, if both nl and nr are odd, then ∆ can be split into two parts ∆ = ∆1 + ∆2, in which

∆1 =
n2l
4

log
(nl
n

)
+
n2r
4

log
(nr
n

)
+
nlnr

2

∆2 = −1

4
log
(nl
n

)
− 1

4
log
(nr
n

)
− 1

2

Since we have shown that ∆1 > 0, if we can prove ∆2 ≥ 0, then the lemma will hold for Case 2. Due to the convexity of
logarithmic function, this holds clearly since

2 log
(n

2

)
≥ log nl + log nr.

For Case 3, if nl is odd while nr is even,

∆ =
n2l − 1

4
log
(nl
n

)
+
n2r
4

log
(nr
n

)
−
[

(nl − 1)nr
4

log

(
n− 1

2n

)
+

(nl + 1)nr
4

log

(
n+ 1

2n

)]
.

Multiplying the above equation by 4 ln 2, without changing its sign, yields

(4 ln 2)∆ = (n2l − 1) ln
(nl
n

)
+ n2r ln

(nr
n

)
−
[
(nl − 1)nr ln

(
n− 1

2n

)
+ (nl + 1)nr ln

(
n+ 1

2n

)]
Splitting the right hand side into two parts,

A = n2l ln
(nl
n

)
+ n2r ln

(nr
n

)
+ 2nlnr ln 2

B = − ln
(nl
n

)
− (nl + 1)nr ln

(
1 +

1

n

)
− (nl − 1)nr ln

(
1− 1

n

)
Since n is odd and the root λ of T2 is unbalanced, we only need to consider the case that nl = (n− i)/2, nr = (n+ i)/2
(Note that nl and nr are symmetric. So if (n− i)/2 is even, exchange nl and nr), where both n and i are odd satisfying
n > i ≥ 3. Next we show that in this case, A ≥ ln(1/5) + 42 ln(4/5) + 2 · 4 ln 2 and B > ln 2− 3/4− (2/3) · (1/52). By
calculation, ∆ = A+B > 0 for Case 3.

Claim 1. A ≥ ln(1/5) + 42 ln(4/5) + 2 · 4 ln 2 for odd integers n > i ≥ 3.

Proof. Substituting nl = (n− i)/2, nr = (n+ i)/2 into the A yields

A = C(n, i) ,

(
n− i

2

)2

ln

(
n− i
2n

)
+

(
n+ i

2

)2

ln

(
n+ i

2n

)
+ 2 · n− i

2
· n+ i

2
ln 2.

Treat n as a continuous variable, we have

∂C(n, i)

∂n
=

1

2

[
(n+ i) ln

(
1 +

i

n

)
+ (n− i) ln

(
1− i

n

)
− i2

n

]
Multiplying the above equation by 2/n and setting x = i/n yields

f(x) , (1 + x) ln(1 + x) + (1− x) ln(1− x)− x2,
f ′(x) = ln(1 + x)− ln(1− x)− 2x,

f ′′(x) =
2x2

1− x2
.

It is easy to check that f(0) = 0 and f ′(0) = 0. When 0 < x < 1, f ′′(x) > 0. Thus f ′(x) > 0 and f(x) > 0. This means
that ∂C(n, i)/∂n > 0 for all n > 0. So C(n, i) ≥ C(i+ 2, i) for n ≥ i+ 2 (When i is fixed, the minimum value of n can
be taken to i+ 2, which makes nl = (n− i)/2 and nr = (n+ i)/2 integral). The curves of C(n, i) for varying i are plotted
in Figure 1.



Figure 1: Functions C(n, i)

When n = i+ 2, we get nl = (n− i)/2 = 1 and nr = (n+ i)/2 = n− 1. Substituting them into A yields

D(n) , ln

(
1

n

)
+ (n− 1)2 ln

(
1− 1

n

)
+ 2(n− 1) ln 2,

dD

dn
= 1− 2

n
+ 2 ln 2 + 2(n− 1) ln

(
1− 1

n

)
.

When n > 2, it is easy to check that dD/dn > 0. So the minimum value of d(n), which is also the minimum value of
C(i+ 2, i), is achieved at n = i+ 2 = 5. So A = C(n, i) ≥ C(i+ 2, i) ≥ C(5, 3) = ln(1/5) + 42 ln(4/5) + 2 · 4 ln 2.

Claim 2. B > ln 2− 3/4− (2/3) · (1/52).

Proof. Due to the facts that

ln

(
1 +

1

n

)
<

1

n
− 1

2n2
+

1

3n3
,

ln

(
1− 1

n

)
< − 1

n
− 1

2n2
− 1

3n3
,

we have

B = − ln
(nl
n

)
− (nl + 1)nr ln

(
1 +

1

n

)
− (nl − 1)nr ln

(
1− 1

n

)
> − ln

(nl
n

)
+
nlnr
n2
− 2nr

n
− 2nr

3n3

> − ln
(nl
n

)
+
nlnr
n2
− 2nr

n
− 2

3n2
.

Let α = nl/n, then

B > − lnα+ α(1− α)− 2(1− α)− 2

3n2

≥ ln 2− 3

4
− 2

3n2
.

When n ≥ 5, B > ln 2− 3/4− (2/3) · (1/52).



Combining Claims 1 and 2, Lemma 3 follows.

This completes the proof of Theorem 1.

C PROOF OF THEOREM 1

Proof. Note that costT (G) for any cluster tree T has a trivial upper bound. That is,

costT (G) =
∑

(u,v)∈E

w(u, v) · log(vol(u ∨ v)) ≤
∑

(u,v)∈E

w(u, v) · log(vol(V )) ≤ vol(V ) · log(vol(V ))

2
.

Let T ∗ be the optimal cluster tree that achieves the minimum cost, we present here a lower bound for costT
∗
(G). Referring

to the dense branch technique [Dasgupta, 2016, Manghiuc and Sun, 2021], we start with the root node A0 and walk along
T ∗ recursively as follows: at every internal node Ai, walk down to the node Ai+1 of higher volume between its two children.
This process stops when we reach node Ak such that volG(Ak) ≤ 2vol(V )

3 . Denote A = Ak as well as B = V \ Ak. By
construction, it holds that volG(A) > vol(V )

3 and volG(B) ≥ vol(V )
3 . Moreover, vol(Ai) >

2vol(V )
3 for every 0 ≤ i < k. The

basic idea behind the dense branch is that cut (A,B) has a significant contribution to costT
∗
(G). Denote by E(A,B) the

set of edges between cut (A,B).

costT
∗
(G) =

∑
(u,v)∈E

w(u, v) · log(vol(u ∨ v))

≥
∑

(u,v)∈E(A,B)

w(u, v) · log(vol(u ∨ v))

≥ w(A,B) · log

(
2vol(V )

3

)
.

≥ Φ(G) · vol(V )

3
· log

(
2vol(V )

3

)
.

Let T be an arbitrary cluster tree, and T ∗ be an optimal tree. We have

costT (G)

costT∗(G)
≤ 3

2Φ(G)
· log(vol(V ))

log
(

2vol(V )
3

) = O(Φ(G)−1).

D PROOF OF THEOREM 2

Proof. To prove Theorem 2, we only have to prove the following lemma. Then the theorem follows from a simplification of
the approximation factor.

Lemma 4. Let α = maxi{ΦG(Pi)} and β = mini{Φ(G[Pi])}. Algorithm 2 achieves(((
log

(
1

1− α

)
+ 1

)
+

2α

1− α

(
1 + log

k

1− α

))
· 3

2β log
(
4
3

))

approximation.

Proof. We group the edges of G into two categories: let E1 be the set of edges in the induced subgraphs G[Pi] for all
1 ≤ i ≤ l, i.e.,

E1 , ∪li=1E[G[Pi]],



and E2 be the remaining crossing edges. Then we have

costT (G) =
∑
e∈E1

costT (e) +
∑
e∈E2

costT (e).

We denote by vol(G[Pi]) the volume of the induced graph G[Pi], by volG(Pi) the volume of Pi in G, and by parentT (Pi)
the parent of Pi on T . By the construction of T , for every Pi,

volG(parentT (Pi)) =

i∑
j=1

volG(Pj) ≤ i · volG(Pi) ≤ k · volG(Pi).

Note that
w(Pi, V \Pi) = volG(Pi)− vol(G[Pi]) ≤ α · volG(Pi),

(1− α) · volG(Pi) ≤ vol(G[Pi]),

and thus

volG(parentT (Pi)) ≤ k · volG(Pi) ≤
k

1− α
vol(G[Pi]).

Combining the above, we have that∑
e∈E1

costT (e) ≤
∑
e∈E1

we · log(volG(Pi))

≤
∑
e∈E1

we · log

(
1

1− α
vol(G[Pi])

)
=

∑
e∈E1

(
we · log

1

1− α
+ we · log(vol(G[Pi]))

)

≤
(

log
1

1− α
+ 1

)
·
k∑
i=1

vol(G[Pi]) · log(vol(G[Pi]))

2
,

and

∑
e∈E2

costT (e) ≤
k∑
i=1

w(Pi, V \Pi) · log(volG(parentT (Pi)))

≤
k∑
i=1

α

1− α
vol(G[Pi]) log

(
k

1− α
vol(G[Pi])

)

≤
k∑
i=1

α

1− α

(
1 + log

k

1− α

)
vol(G[Pi]) log(vol(G[Pi]))

=
2α

1− α

(
1 + log

k

1− α

)
·
k∑
i=1

vol(G[Pi]) · log(vol(G[Pi]))

2
.

Let T ∗ be the optimal cluster tree of G, and OPTG be the optimal value. We have

OPTG = costG(T ∗) ≥
l∑
i=1

∑
e∈E(G[Pi])

costT∗(e) ≥
l∑
i=1

OPTG[Pi].

Denote by

h(α, k) =

((
log

(
1

1− α

)
+ 1

)
+

2α

1− α

(
1 + log

k

1− α

))
.



We have

costT (G) =
∑
e∈E1

costT (e) +
∑
e∈E2

costT (e)

≤ h(α, k) ·
k∑
j=1

vol(G[Pi]) · log(vol(G[Pi]))

2

≤ h(α, k) ·
k∑
j=1

vol(G[Pi]) · log(vol(G[Pi]))

2ΦG[Pi] · 13vol(G[Pi]) · log( 2
3vol(G[Pi]))

OPTG[Pi]

≤ h(α, k) ·max
i

3 log(vol(G[Pi]))

2ΦG[Pi] · log( 2
3vol(G[Pi]))

k∑
j=1

OPTG[Pi]

≤ h(α, k) ·max
i

3 log(vol(G[Pi]))

2ΦG[Pi] · log( 2
3vol(G[Pi]))

OPTG

≤ h(α, k) · 3

2β log( 4
3 )
OPTG

Lemma 4 follows.

Note that h(α, k) = O
(

1
(1−α) log k

1−α

)
, Theorem 2 follows.

E SYNTHETIC DATASETS AND LINKAGE-BASED METHODS

In this section, we introduce the datasets generated from SBM [Ana and Jain, 2003] and HSBM [Lyzinski et al., 2017], and
the settings of linkage-based baseline algorithms.

E.1 SBM DATASETS AND LINKAGE-BASED METHODS

SBM is a classic random graph model for two-level clustering structures. In this model, clusters are preset and two
probabilities p0 and p1 for intra-cluster and inter-cluster connections of vertices are required. Usually, p0 < p1. For example,
in Table 1 of the full paper, we preset five clusters with p0 = 0.1 and p1 = 0.9.

We compare our algorithm BBM on SBM graphs against four linkage-based methods [Cohen-Addad et al., 2019]: average-
linkage (AL), single-linkage (SL), complete-linkage (CL) and Linkage++ (L++). AL, SL and CL are agglomerative methods
based on different greedy strategy. For two clusters C1 and C2 in a weighted graph (denote by w the weight function on
edges), their similarity sim(C1, C2) are defined as:

(1) 1
|C1||C2|

∑
u∈C1,v∈C2

w(u, v) for AL;

(2) maxu∈C1,v∈C2
{w(u, v)} for SL;

(3) minu∈C1,v∈C2
{w(u, v)} for CL.

These three algorithms have the same agglomerative framework. For a weighted graph of n nodes, starting from n singleton
trees with labels {vi}, i = 1, 2, . . . , n, in each iteration, two trees T1, T2 with root labels C1, C2 that have maximum
similarity are merged into a new tree, whose root label is C1 ∪ C2, until a single tree is left.

Note that in unweighted (or uniformly weighted) graphs used in our experiments, SL and CL probably have a large number
of ties on similarity to break in each iteration. An arbitrary breaking strategy makes the resulting tree varies wildly. To break
these ties in a mild fashion, we introduce a random and slight perturbation on edge weights, that is, each edge weight is set
to be 1 + ε where ε is uniformly and randomly chosen from interval [0, 10−6]. Intuitively, a slight perturbation should not
affect the construction of a cluster tree and the output trees of SL and CL will not varies a lot. The balance indices and costs
of resulting trees in our experiments are calculated on the original unweighted graphs.

Linkage++ [Cohen-Addad et al., 2019] is proposed for unweighted graphs. It takes a positive integer d as a parameter and
projects vertices into a d-dimensional subspace of Rn. The Euclidean distance based SL algorithm are invoked to construct



d clusters, and then based on a newly defined similarity (the same as that for AL) for these d clusters, SL is invoked again to
merge them into a single tree. In our experiments, the ground truth d of each SBM graph is given as input for Linkage++.

E.2 HSBM DATASETS

HSBM is a generalization of SBM to the hierarchical case. In this model, k is set to be an intrinsic number of hierarchies of a
graph. Let ~p = (p0, p1, . . . , pk−1) be a probability vector, for which pi is the probability of generating edges for vertex pairs
whose LCA on the ground-truth cluster tree has depth i. The 0-depth node is the root, and typically, pi−1 ≤ pi for each i.

Our experiments for HCSE utilize k-level HSBM with k = 4 and 5. we set the graph sizes for k = 4, 5 to be 2500 and 6000
respectively. For simplicity, in each ground-truth cluster tree, the number of internal nodes on each level is fixed. On each
level, we group all the tree nodes uniformly and randomly into a fixed number of groups, and then allocate each group
accordingly to the tree nodes on the next upper level. For k = 4, we set the tree node numbers from leaves to the root to be
[2500, 250, 25, 5, 1], and for k = 5, to be [6000, 600, 125, 25, 5, 1].

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we introduce the balance indices and additional results on binary and non-binary clustering algorithms.

F.1 MORE COST AND BALANCEDNESS RESULTS FOR BINARY CLUSTERING ON SBM GRAPHS

We conduct more experiments on cost and balancedness results on SBM graphs. As similar settings in Table 1 of the full
paper, we choose the two strategies “Biased” and “Random” for generating cluster sizes for SBM. For the Biased strategy,
five clusters are generated, and their sizes are set to be [32, 32, 64, 128, 256] with ±5 random perturbation on each figure.
The probability of presence for intra-cluster edges is also p1 = 0.9, but compared to p0 = 0.1 for inter-cluster edges in the
full paper, we choose p0 = 0.2 and 0.01 respectively. The results are shown in Table 2.

Table 2: Cost and balancedess results on SBM graphs for the Biased strategy. All values are averaged over 100 rounds of
trials.

(p1, p0) = (0.9, 0.2) (p1, p0) = (0.9, 0.01)

Method Bsize Bvol Bdep cost(Das) cost(SE) Bsize Bvol Bdep cost(Das) cost(SE)
AL 0.663 0.702 8.70 1.51E7 8.75E5 0.351 0.407 2.33 6.21E6 5.73E5
SL 0.217 0.225 1.29 1.92E7 8.92E5 0.244 0.251 1.55 1.37E7 6.15E5
CL 0.975 0.976 60.2 1.81E7 9.02E5 0.972 0.976 60.1 9.59E6 6.13E5
L++ 0.894 0.913 29.7 1.32E7 8.65E5 0.603 0.655 5.05 6.12E6 5.74E5
BBM 0.0146 0.0556 0.178 1.33E7 8.55E5 0.0148 0.0148 0.181 6.13E6 5.72E5

Our algorithm BBM always achieves the best cost(SE) and balance indices compared with the baselines, while keeps
competitive (quite near) to the cost(Das) of Linkage++. Combined with the results in Table 1 of the full paper, it can be
observed that the costs and balance indices are better for SBM graphs with more obvious clustering structure.

For the Random strategy, we choose different cluster numbers 10 and 15 while adjusting the inter-link probabilities
accordingly to p0 = 0.01 and 0.005, respectively. The sizes of each clusters are generated uniformly and randomly from
integers in the interval [24, 26) as we do in the full paper. The probability of presence for intra-cluster edges is p1 = 0.9.
The results are shown in Table 3.

It can be observed that our algorithm BBM always achieves the best cost(SE) and balance indices compared with the
baselines, while keeps competitive to cost(Das) of Linkage++.

F.2 NMI RESULTS FOR NON-BINARY CLUSTERING ON HSBM GRAPHS

The NMI results for our non-binary clustering algorithm HCSE on HSBM graphs are summarized in Table 4.



Table 3: Cost and balancedness results on SBM graphs for the Random strategy. All values are averaged over 100 rounds of
trials.

block num = 10, (p1, p0) = (0.9, 0.01) block num = 15, (p1, p0) = (0.9, 0.005)

Method Bsize Bvol Bdep cost(Das) cost(SE) Bsize Bvol Bdep cost(Das) cost(SE)
AL 0.321 0.351 2.09 4.71E5 8.27E4 0.333 0.362 2.28 8.87E5 1.37E5
SL 0.337 0.346 2.36 2.04E6 1.02E5 0.382 0.390 2.76 5.28E6 1.76E5
CL 0.957 0.959 37.6 1.63E6 9.90E4 0.969 0.970 50.6 3.83E6 1.67E5
L++ 0.725 0.735 7.10 4.16E5 8.26E4 0.769 0.779 9.12 7.74E5 1.37E5
BBM 0.108 0.0866 0.723 4.24E5 8.19E4 0.102 0.0749 0.724 7.99E5 1.36E5

Table 4: The NMI results for k = 4, 5 respectively. Each group picks three probability vectors. The probability pk−1 = 0.9
for the innermost hierarchy is default and omitted from the table. pk−2, . . . , p0 of each vector are listed sequentially. Those
choices of ~p guarantee that the clusters on each level are clear and the generated graphs are connected with high probability.
For each k, ~p makes the clustering structure become increasingly clear one by one. “−” means that the algorithm does not
find the corresponding level. HCSE and all baselines have no hyper-parameters.

(k = 4) (k = 5)
~p HCave HCsin HCcom HLP LOU HCSE ~p HCave HCsin HCcom HLP LOU HCSE

4.5E(-2) 0.904 0.821 0.815 0.899 0.997 0.902 1.5E(-2) 0.927 0.857 0.863 0.993 1.00 0.957
1.5E(-3) 0.958 0.611 0.642 0.792 1.00 0.825 1.5E(-3) 0.843 0.731 0.743 0.703 0.961 0.857
6.0E(-6) − 0.557 0.894 0.598 − 1.00 7.5E(-5) 0.875 0.593 0.601 − 0.877 0.885

1.0E(-6) − 0.438 0.523 − − 0.984

5.5E(-2) 0.876 0.819 0.816 0.864 0.994 0.886 4.5E(-2) 0.940 0.846 0.849 0.962 0.999 0.946
1.5E(-3) 0.914 0.595 0.606 0.799 1.00 0.860 4.5E(-3) 0.915 0.723 0.748 0.822 0.951 0.892
4.0E(-6) − 0.657 0.840 0.653 − 1.00 7.5E(-5) 0.925 0.639 0.648 0.771 0.903 0.948

6.0E(-7) − 0.508 0.542 − − 0.959

4.5E(-2) 0.908 0.823 0.824 0.879 0.978 0.901 1.5E(-2) 0.917 0.857 0.866 0.994 0.999 0.935
7.5E(-4) 0.947 0.630 0.652 0.824 1.00 0.977 1.5E(-3) 0.813 0.735 0.757 0.879 0.958 0.860
2.5E(-6) 0.656 0.574 0.718 0.677 − 1.00 5.0E(-5) 0.872 0.631 0.671 0.841 0.877 0.915

3.0E(-7) 0.762 0.686 0.761 0.786 − 0.953



Our experiments demonstrate that HCSE outperforms those algorithms that incorporate other efficient and non-parametric
linkage-based binary clustering methods into our framework. This demonstrates the effectiveness of our new cost function.
HCSE also outperforms the representative heuristic non-parametric algorithms LOUVAIN [Blondel et al., 2008] and HLP
[Rossi et al., 2020]. These two algorithms proceed simply by recursively invoking flat clustering algorithms based on
modularity and label propagation, respectively, and the hierarchy number is solely determined by the number of rounds when
the algorithm terminates. They follow the main framework of present non-binary clustering algorithms whose interpretability
is poor. Our experimental results show that HCSE has a great advantage in both finding the intrinsic number of hierarchies
and reconstructions.

F.3 ABLATION FOR COST(SE)

For ablation, we replace cost(SE) with cost(Das) in the stretch and compress processes, respectively. We define Das-Das to
be the non-binary clustering algorithm that replaces the structural entropy cost used in both stretch and compress processes
with cost(Das), Das-SE the one that replaces with cost(Das) in stretch only, and SE-Das the one that replaces with cost(Das)
in compress only. In these settings, HCSE is in fact SE-SE. The NMI results for k = 4, 5 with the same settings of probability
vectors with Table 4 are demonstrated in Table 5.

Table 5: The ablation NMI results for k = 4, 5 respectively.

(k = 4) (k = 5)
~p Das-Das Das-SE SE-Das HCSE ~p Das-Das Das-SE SE-Das HCSE

4.5E(-2) 0.795 0.813 0.825 0.902 1.5E(-2) 0.843 0.845 0.928 0.957
1.5E(-3) 0.579 0.593 0.718 0.825 1.5E(-3) 0.710 0.713 0.845 0.857
6.0E(-6) 0.287 0.382 1.00 1.00 7.5E(-5) 0.544 0.551 0.876 0.885

1.0E(-6) 0.317 0.353 0.965 0.984

5.5E(-2) 0.814 0.823 0.808 0.886 4.5E(-2) 0.832 0.847 0.885 0.946
1.5E(-3) 0.587 0.584 0.758 0.860 4.5E(-3) 0.706 0.714 0.833 0.892
4.0E(-6) 0.395 0.369 1.00 1.00 7.5E(-5) 0.563 0.553 0.932 0.948

6.0E(-7) 0.443 0.368 0.943 0.959

4.5E(-2) 0.814 0.821 0.830 0.901 1.5E(-2) 0.839 0.846 0.934 0.935
7.5E(-4) 0.594 0.591 0.938 0.977 1.5E(-3) 0.710 0.713 0.872 0.860
2.5E(-6) 0.403 0.396 1.00 1.00 5.0E(-5) 0.555 0.557 0.925 0.915

3.0E(-7) 0.447 0.442 0.949 0.953

It can be observed that, for almost all settings of probability vectors, HCSE outperforms all other strategies with stretch or
compress process that uses cost(Das). When we keep to use structural entropy in stretch, the NMIs of HCSE and SE-Das are
much better than Das-Das and Das-SE that use cost(Das) in stretch. This implies that structural entropy always has more
advantages in binary hierarchical clustering than cost(Das), because structural entropy based stretch process reconstructs on
the binary cluster tree more precise intermediate truth clusters which can be preserved after compress.

F.4 INFLECTION POINTS

We show in Figure 2 the inflection points of HCSE for the three probability vectors with k = 4 in Table 4 of the full
paper. δt(H) has the sharpest drop for each graph after the ground-truth sparsest levels have been stratified at t = 4, which
terminates the stratification of HCSE. This verifies the rationality of our strategy of stratification in finding the intrinsic
hierarchy numbers.



Figure 2: δt(H) variations for HCSE and k = 4. The inflection points for all probability vectors appear correctly on t = 4.

F.5 JACCARD INDEX RESULTS ON AMAZON NETWORK

We do our non-binary clustering experiments on the Amazon network 1 for which the set of ground-truth clusters has been
given. There are a huge number of overlaps and variations on the sizes of these clusters, and we suppose that they are some
parts of a hierarchical cluster tree. We evaluate the resulting cluster trees by Jaccard index. For two sets A,B, the Jaccard
Index of them is defined as J(A,B) = |A∩B|/|A∪B|. We pick the largest cluster which is a subgraph with 58283 vertices
and 133178 edges. For each ground-truth cluster c that appears in this subgraph, we find from the resulting cluster tree an
internal node that has maximum Jaccard index with c. Then we calculate the average Jaccard index J over all such c. The
scores are summarized in Table 6.

Table 6: Comparisons of the average Jaccard index (J). We choose the best results in five runs for the two baselines HLP
and LOUVAIN, respectively.

index HCSE HLP LOUVAIN

J 0.20 0.16 0.17

G SUPPLEMENTARY FIGURES AND PSEUDOCODES

We list all the supplementary figures and pseudocodes in this section.

Figure 3: Illustrations of stretch and compress for a u-triangle. A binary cluster tree is constructed first by stretch, and then
edge e is compressed, which yields a non-binary tree.

1http://snap.stanford.edu/data/



(a) (b)

Figure 4: Illustrations of stratification for a 2-level cluster tree. The preference of (a) and (b) depends on the average sparsity
of triangles at each level.

Algorithm 5 k-Hierarchical clustering based on structural entropy (k-HCSE)

Input: a graph G = (V,E), k ∈ Z+.
Output: a k-level cluster tree T .
Initialize T to be the 1-level cluster tree.
h = height(T).
while h < k do

// Find the sparsest level of T (breaking ties arbitraily).
j′ ← arg maxj{Sparj(T )}.
if Sparj′(T ) = 0 then

// No cost will be saved by any further clustering.
break.

for u ∈ Uj′ do
Tu ← Stretch(u-triangle Tu).
Compress(Tu).

h← h+ 1
for j ∈ [j′ + 1, h] do

Update Uj .
return T .

Algorithm 6 Hierarchical clustering based on structural entropy (HCSE)

Input: a graph G = (V,E).
Output: a cluster tree T .
t← 2.
while ∆tδ < ∆t−1δ or ∆tδ < ∆t+1δ do

if maxj{Sparj(T )}=0 then
break.

t← t+ 1.
return t-HCSE(T ).
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