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Abstract

Injecting desired geometric properties into text001
representations has attracted a lot of attention.002
A property that has been argued for, due to003
its better utilisation of representation space, is004
isotropy. In parallel, VAEs have been success-005
ful in areas of NLP, but are known for their sub-006
optimal utilisation of the representation space.007
To address an aspect of this, we investigate008
the impact of injecting isotropy during train-009
ing of VAEs. We achieve this by using an010
isotropic Gaussian posterior (IGP) instead of011
the ellipsoidal Gaussian posterior. We illus-012
trate that IGP effectively encourages isotropy013
in the representations, inducing a more dis-014
criminative latent space. Compared to vanilla015
VAE, this translates into a much better classi-016
fication performance, robustness to input per-017
turbation, and generative behavior. Addition-018
ally, we offer insights about the representa-019
tional properties encouraged by IGP.1020

1 Introduction021

In recent years, with the success facilitated by pre-022

trained representations across various NLP tasks,023

more attention has been placed on studying and util-024

ising the geometric properties of learned represen-025

tations. A phenomena that has been studied more026

recently in this direction is anisotropy (Ethayarajh,027

2019), indicating a suboptimal property where the028

learned embeddings only utilise a small subset of029

the representation space. Various methods have030

been proposed to rectify this and encourage the031

representations to be more discriminative and or to032

exploit the representation dimensions more effec-033

tively (Liu et al., 2021; Gao et al., 2021; Li et al.,034

2020a; Su et al., 2021; Mu and Viswanath, 2018).035

In parallel, Variational Autoen-036

coders (VAEs) (Kingma and Welling, 2014)037

have been widely used in various areas of NLP,038

from representation learning for downstream039

1Our code, data, and scripts will be released at publication.

tasks (Li et al., 2020b; Wei and Deng, 2017), to 040

generation (Prokhorov et al., 2019; Bowman et al., 041

2016), and semi-supervised learning (Zhu et al., 042

2021; Choi et al., 2019; Yin et al., 2018; Xu et al., 043

2017). In recent years, most of the developments 044

around VAEs have focused on avoiding the poste- 045

rior collapse (Bowman et al., 2016) which leads 046

to learning sub-optimal representations (Havrylov 047

and Titov, 2020; Fu et al., 2019; Li et al., 2019; 048

Dieng et al., 2019; He et al., 2019; Higgins 049

et al., 2017; Yang et al., 2017; Bowman et al., 050

2016). Despite the success of these techniques, a 051

non-collapsed VAE still utilises the representation 052

space sub-optimally (Prokhorov et al., 2019; He 053

et al., 2019; Burda et al., 2016), as very commonly 054

the learned representations do not fully utilise the 055

latent space to encode information. 056

In this paper we bridge between the two lines of 057

research by injection isotropy in the latent space of 058

VAEs. Such property could be encouraged by us- 059

ing an Isotropic Gaussian Posterior (IGP) which in- 060

volves a simple modification of VAEs. An Isotropic 061

Gaussian distribution, N (µ, σ2I), is similar to 062

vanila VAE’s posterior with the exception that all 063

dimensions share the same unified variance. Tying 064

the variances would encourage encoder of VAEs to- 065

wards the extremes where all dimensions are either 066

active or inactive.2 067

Our experimental findings indicate that, com- 068

pared to vanilla VAE: The use of IGP is effective in 069

both increasing dimension activation and injecting 070

isotropy in the learned representation space. We ob- 071

serve that isotorpy results in a more discriminative 072

representation space which is much more suited for 073

classification tasks and robust to input perturbation. 074

Our generative experiment for sentence completion 075

suggests that the VAE trained with IGP is more 076

capable of maintaining semantic cohesiveness. 077

2A dimension u is defined to be active if Au =
Covx(Eu∼q(u|x) [u]) is larger than 0.01, where Cov denotes
covariance (Burda et al., 2016).
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2 Isotropic Gaussian Posterior (IGP)078

Variational Autoencoder (VAE). Let x denote079

datapoints in data space and z denote latent vari-080

ables in the latent space, and assume the datapoints081

are generated by the combination of two random082

processes: The first random process is to sample083

a point z(i) from the latent space in VAEs with084

prior distribution of z, denoted by p(z). The sec-085

ond random process is to generate a point x(i) from086

the data space, denoted by p(x|z(i)). VAE uses087

a combination of a probabilistic encoder qφ(z|x)088

and decoder pθ(x|z), parameterised by φ and θ, to089

learn this statistical relationship between x and z.090

VAE is trained by maximizing the lower bound of091

the logarithmic data distribution log p(x), called092

evidence lower bound (ELBO), L(φ, θ; x):093

Eqφ(z|x)[log(pθ(x|z))]− KL(qφ(z|x)||p(z))094

The first term of objective function is the expecta-095

tion of the logarithm of data likelihood under the096

posterior distribution of z. The second term is KL-097

divergence, measuring the distance between the098

recognition distribution qφ(z|x) and the prior dis-099

tribution p(z) and can be seen as a regularisation.100

In the presence of auto-regressive and power-101

ful decoders, a common optimisation challenge of102

training VAEs in text modelling is called poste-103

rior collapse, where the learned posterior distribu-104

tion qφ(z|x), collapses to the prior p(z). Several105

strategies have been proposed to alleviate this prob-106

lem (Bowman et al., 2016; Havrylov and Titov,107

2020; Fu et al., 2019; He et al., 2019). In this work,108

we follow Prokhorov et al. (2019), L(φ, θ; x):109

Eqφ(z|x)[log(pθ(x|z))]−|KL(qφ(z|x)||p(z))−C|110

where C is a positive real value which represents111

the target KL-divergence term value. We set β = 1112

to make sure the weights of the two terms bal-113

ance, noting that it acts as a Lagrange Multiplier114

(Boyd and Vandenberghe, 2004). This also has115

an information-theoretic interpretation, where the116

placed the KL term is seen as the amount of in-117

formation transmitted from a sender (encoder) to118

a receiver (decoder) via the message (z) (Alemi119

et al., 2018) and the usage of C can control this120

channel capacity. This can help us to make a fair121

comparison between DGP and IGP when VAEs are122

under the same encoder capacity constraint.123

VAE with Isotropic Gaussian Posterior. A124

common behaviour of VAEs is the presence of in-125

active representation units across the entire dataset,126

causing the number of utilised dimensions to be127

even far smaller than the number of potential gen- 128

erative factors behind any real-world dataset. The 129

soft ellipsoidal representation space of VAEs is 130

known to lead to less representative mean vec- 131

tors (Bosc and Vincent, 2020). We illustrate that 132

encouraging isotropy (i.e., tying the variance of di- 133

mensions on the posterior) will avoid the aforemen- 134

tioned issue since the encoder of VAEs would be 135

forced to either use all dimensions or none and the 136

learned latent space is soft spherical. In the Gaus- 137

sian case, this corresponds to using an Isotropic 138

Gaussian, a subclass of diagonal Gaussian distribu- 139

tion
{
N (µ, σ2I)|µ ∈ Rn, σ ∈ R+

}
, as the poste- 140

rior. Tying the variances in IGP imposes a different 141

pathological pattern by encouraging AU to reach 142

the maximum (i.e., representation dimension). 143

Additionally, the use of IGP allows the estima- 144

tion of variance more accurately. Suppose we 145

have N samples with the same posterior. For a 146

K-dimension diagonal Gaussian posterior, we will 147

have an estimate of variance with standard devia- 148

tion approximately σ̂2k
√

2
N for each dimension k, 149

whereas for an isotropic Gaussian posterior, we will 150

have a unified estimation of variance with standard 151

deviation approximately σ̂2
√

2
NK , where σ̂2k and 152

σ̂2 denote the estimates of the variance. Moreover, 153

with K different σ̂2k estimates, a few may differ 154

substantially from their best values by chance.3 155

3 Experiments 156

We trained our models on Yahoo Question 157

and DBpedia (Zhang et al., 2015) which have 158

(100K/10K/10K, 12K, 10) and (140K/14K/14K, 159

12K, 14) for (sentences in training/dev/test, vo- 160

cabulary size, classes), respectively. We use the 161

VAE architecture of (Bowman et al., 2016) and 162

concatenate the latent code with word embedding 163

at every timestamp as the input of the decoder. For 164

VAE with IGP, we just produce one variance value 165

and assign it to be the variance of posterior for all 166

dimensions. At decoding phase, we use greedy 167

decoding. The dimensions for word embedding, 168

encoder-decoder LSTMs, and latent code are (200, 169

512, 32). Three different values of C are used on 170

each dataset to explore the impact of the amount 171

of information transmitted by the code. We also 172

3It is worth noting that IGP is not a solution for posterior
collapse, and our experimental findings are not specific to the
chosen technique for avoiding the collapse (i.e., our prelimi-
nary experiments with KL-annealing exhibit similar findings
reported in this paper).
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Figure 1: Results are calculated on the test set (aver-
age of 3 runs reported) of (top) DBpedia Corpus and
(bottom) Yahoo Question (Zhang et al., 2015). AU is
bounded by the dimensionality of z (32).

adopt Autoencoder (AE) as a baseline.4 All models173

are trained from 3 random starts for 20 epochs and174

128 batch size using Adam (Kingma and Ba, 2015)175

with learning rate 0.0005.176

We compare the choice of isotropic Gaussian177

posterior (IGP) with vanilla diagonal Gaussian pos-178

terior (DGP) on various grounds, from reconstruc-179

tion loss and unit activation (§3.1) to downstream180

classification task, sample efficiency, robustness,181

and generation (§3.2), and distributional properties182

of the induced representations (§3.3).183

3.1 Basic Results184

Figure 1 reports the reconstruction loss, active units185

(AU; Burda et al., 2016) and BLEU-2 (Papineni186

et al., 2002) for C = 5, 15, 50. KL in all cases187

match the set target C. We observe the C con-188

straint can effectively control the KL-divergence189

to the set level. The reconstruction loss generally190

drops with the increase of C. We observe the same191

pattern for DGP and IGP. Additionally, while DGP192

struggles, IGP can activate all dimensions (e.g.,193

AU for C=5 on DBpedia are 4 and 32 for DGP and194

IGP, respectively). This translates into IGP reach-195

ing a significantly higher BLEU. For more results,196

including autoencoder, see Appendix.197

3.2 Classification and Generation198

Classification. We trained a classifier on top of199

the frozen encoders of DGP and IGP and use the200

mean vector representations as a feature to train the201

classifier. For the classifier, we used a 2-hidden-202

layer MLP with 128 neurons and ReLU activation203

function at each layer. We trained 10 randomly204

4We also tried Importance Weighted Autoencoder
(IWAE;Burda et al. (2016)) as another baseline commonly
used in image domain. This model yields KL-collapse which
is non-trivial to address given its objective function.
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Figure 2: Classification accuracy on DBpedia (top-left)
and Yahoo (top-left) with and without the isotropic
Gaussian posterior (IGP) under different C values.
Also, classification accuracy for C = 15 trained on var-
ious portion of DBpedia (bottom). Results are reported
as mean and std across 3 VAE encoders.

initialised classifiers and used the mean of classifi- 205

cation accuracy as the final accuracy. Figure 2 (top) 206

reports the results. Overall, the representations of 207

most VAEs with IGP lead to a significant improve- 208

ment of classification accuracy compared to vanilla 209

VAEs. In the only exception (i.e, C = 5 on DB- 210

pedia), two models have comparable results with 211

no model having any statistically significant advan- 212

tage. We attribute this to having a more representa- 213

tive mean which is encouraged by IGP. One notable 214

thing is that DGP does not perform as good as AEs 215

regardless of C choice, whereas IGP (C = 15, 50) 216

achieve similar and better classification accuracy 217

on DBpedia and Yahoo Question, respectively. 218

We adopted few-shot setting to compare sample 219

efficiency of both VAEs, by using 0.1%, 1% and 220

10% of training data of DBpedia to them with C = 221

15 and do classification on the test set as before. 222

Accuracy scores are reported in Figure 2 (bottom) 223

with IGP exhibiting a better sample efficiency. For 224

instance, the mean accuracy gap at 0.1% is quite 225

significant being above 7 points, and VAE gets the 226

gap down to 4 points at 100% (still significant). 227

We further investigated the robustness of the 228

learned representations to perturbation via apply- 229

ing word dropout on sentences by randomly delet- 230

ing 30% of words in a sentence, and repeating the 231

classification experiment. IGP with accuracies of 232

(83.5, 34) outperforms both DGP (76.4, 24.1) and 233

AE (83.1, 30.7) on (DBpedia, Yahoo). We specu- 234

late this to be an indication of information overlap 235

across dimensions of the representations at higher 236

AU, offering a better recovery of information in the 237

presence significant perturbation. 238
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ORIGINAL the carnegie library in unk washington is a
building from 1911 . it was listed on the
national register of historic places in 1982 .

IMPUTED the carnegie library in unk washington · · ·
DGP the carnegie library in unk washington is a

unk ( unk ft ) high school in the unk district of
unk in the province of unk in the unk province
of armenia .

IGP the carnegie library in unk washington was
built in 1909 . it was listed on the national
register of historic places in unk was designed
by architect john unk .

Table 1: Word imputation experiment.

DBpedia Yahoo

Sample Mean Sample Mean

DGP 0.72 0.62 0.72 0.63
IGP 0.76 0.77 0.78 0.76
AE 0.087 0.059

Table 2: Isotropy score of mean and samples for DBpe-
dia and Yahoo test sets (trained with C = 15).

Generation. We imputed %75 of words of a sen-239

tence from the test set of DBpedia, fed it to VAE240

encoder and reconstructed the sentence from its241

latent code using IGP and DGP in Table 1. IGP242

successfully recovers the type of the mentioned243

object and complete the imputed sentence with a244

similar structure, whereas DGP fails to do so (an-245

other example is provided in Appendix).246

3.3 Properties of Representations.247

Isotropy Score. We quantitatively approximate
the isotropy score (Mu and Viswanath, 2018),

IS(V) =
minm∈M

∑
v∈V exp(m

ᵀv)

maxm∈M
∑

v∈V exp(m
ᵀv)

,

where V is the matrix of representations (i.e., of248

samples or mean vectors of posteriors), andM is249

the set of eigen vectors of VᵀV . As observed in250

Table 2, compared to DGP, IGP has a significantly251

larger IS on both means and samples. Interestingly,252

given that dimensions are independently modeled253

via univariate Gaussians, both VAEs outperform254

the Autoencoder counterparts.255

Visualization. We visualize the learned represen-256

tation space of DGP and IGP for DBpedia, using257

t-sne (van der Maaten and Hinton, 2008), in Fig-258

ure 3 (Bottom). As illustrated in the right plot, the259

clusters of classes in IGP has less overlap among260

classes compared with DGP (left). Additionally,261

we use the Mapper5 algorithm (Singh et al., 2007)262

to visualise the highest density region (HDR) (Hyn-263

5github.com/scikit-tda/kepler-mapper
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Figure 3: Visualisations of the mean representations of
posterior on DBpedia test set for C = 15. Left: DGP;
Right: IGP. Top: HDR; Bottom: T-SNE.

dman, 1996) of the mean vectors for DGP and IGP. 264

HDR cuts the overall density space to form latent 265

spaces that contain above a threshold probability 266

mass (i.e., ≥ 0.05 with minimum samples ≥ 2 267

per latent space). The output of the mapper is a 268

graph, where each component in the graph corre- 269

sponds to a set of nearby points forming a high 270

density space. The connectivity of the graph re- 271

flects some topological properties of the sampling 272

space (darker colors indicate higher density). As 273

observed in Figure 3 (Top), the HDR of DGP pos- 274

terior means forms a single component whereas 275

IGP forms 9 disconnected components indicating 276

a more discriminative characteristics of its mean 277

vectors, echoing earlier results in better accuracy 278

in the classification setting (§3.2). 279

4 Conclusion 280

We proposed Isotropic Gaussian Posteriors (IGP) 281

as the means for encouraging isotropy in the latent 282

space induced by VAEs. The injection of isotropy 283

addressed a sub-optimal behaviour of VAEs by 284

activating more dimensions of the representation 285

and encouraging a more discriminative latent space. 286

Our experiments illustrated a significant improve- 287

ment of classification performance and robustness 288

to input perturbations with IGP. We also observed, 289

in the sentence completion task, that VAE trained 290

with IGP is more capable at maintaining seman- 291

tic cohesiveness. Our ongoing work suggests the 292

representation utilisation achieved by IGP has the 293

potential to be exploited towards representational 294

properties such as disentanglement. 295

4
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A Full Results 480

We report detailed reconstruction loss, KL- 481

divergence, active units and results of BLEU and 482

ROUGE scores on reconstructed test set in Table 3. 483

B Generation Results 484

Another example of generation results is provided 485

in Table 4. 486

C Full Robustness Results 487

We report full results for various C settings in Ta- 488

ble 5. 489

D Posterior Shape 490

To understand the impact of isotropy on the ag- 491

gregated posterior, qφ(z) =
∑

x∼q(x) qφ(z|x), we 492

obtain unbiased samples of z by sampling an x 493

from data and then z ∼ qφ(z|x), and measure 494

the log determinant of covariance of the samples 495

(log det(Cov[qφ(z)])) as well as the mean of the 496

samples to measure ||µ||22. Table 6 reports these 497

for C = 15. We observe that log det(Cov[qφ(z)]) 498

is significantly lower for IGP indicating a sharper 499

approximate posteriors. 500
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Rec. KL AU BLEU-2/4 ROUGE-2/4
D

B
pe

di
a

AE 66.32±0.11 - 32.0±0.0 40.96±0.25/27.57±0.17 35.87±0.19/23.78±0.07

C = 5, DGP 100.65±0.08 5.09±0.01 4.0±0.0 23.47±0.79/14.00±0.47 20.85±0.69/10.19±0.34
C = 5, DGP 101.73±0.31 5.04±0.01 32.0±0.0 25.09±0.55/14.83±0.22 22.29±0.17/10.47±0.10

C = 15, DGP 94.16±0.19 15.06±0.04 8.7±0.9 35.35±0.49/22.37±0.31 30.54±0.43/17.41±0.16
C = 15, IGP 95.52±0.08 15.08±0.05 32.0±0.0 37.23±0.27/24.47±0.11 34.19±0.12/19.32±0.06

C = 50, DGP 80.65±0.53 50.02±0.04 31.7±0.5 40.54±0.21/26.95±0.19 35.19±0.25/22.13±0.24
C = 50, IGP 80.58±0.04 50.15±0.04 32.0±0.0 44.79±0.30/30.72±0.17 39.91±0.12/25.40±0.08

Ya
ho

o
Q

ue
st

io
n AE 17.64±0.28 - 32.0±0.0 42.88±0.51/32.86±0.58 41.63±0.58/31.67±0.67

C = 5, DGP 50.58±0.06 5.14±0.01 5.7±0.5 17.07±0.71/6.04±0.25 10.96±0.41/1.50±0.06
C = 5, IGP 51.24±0.01 5.06±0.03 32.0±0.0 20.91±0.03/8.07±0.03 14.48±0.13/2.21±0.02

C = 15, DGP 43.00±0.12 15.06±0.04 9.3±1.2 22.62±0.37/10.81±0.21 16.04±0.32/4.76±0.08
C = 15, IGP 44.43±0.05 15.20±0.12 32.0±0.0 29.76±0.06/14.99±0.08 23.11±0.17/6.94±0.12

C = 50, DGP 28.29±0.40 50.00±0.19 31.3±0.9 31.78±0.73/20.47±0.70 27.14±0.85/15.07±0.77
C = 50, IGP 26.18±0.19 50.15±0.08 32.0±0.0 39.68±0.20/27.49±0.31 35.73±0.40/22.57±0.55

Table 3: Results are calculated on the test set. We report mean value and standard deviation across 3 runs. Rec,
AU, and PPL denote reconstruction loss, number of Active Units and estimated perplexity, respectively. DGP, and
IGP denote diagonal Gaussian posteriors and isotropic Gaussian posteriors, respectively. C is the target KL value.

ORIGINAL st. marys catholic high school is a private roman catholic high school in phoenix arizona . it is located in the
roman catholic diocese of phoenix .

IMPUTED st. marys catholic high school is · · ·
DGP st. marys catholic high school is a unk - unk school in unk unk county new jersey united states . the school is part

of the unk independent school district .
IGP st. marys catholic high school is a private roman catholic high school in unk california . it is located in the roman

catholic diocese of unk .

Table 4: Word imputation experiment on DBpedia test set.

DBpedia Yahoo

AE 83.09±0.81 30.68±0.32

C = 5, DGP 68.77±4.76 18.47±0.50
C = 5, IGP 72.46±1.00 22.28±0.30

C = 15, DGP 76.42±1.18 24.08±0.28
C = 15, IGP 83.49±0.63 33.99±0.20

C = 50, DGP 79.18±0.38 28.29±1.02
C = 50, IGP 83.04±0.70 32.16±0.19

Table 5: Results on robustness. Classification accura-
cies after 30% Proportion of reserved label information
on test set and robustness.

CBT DBpedia Yahoo

DGP [0.11,−0.41] [0.11,−0.63] [0.10,−0.51]
IGP [0.11,−1.48] [0.12,−6.22] [0.08,−4.86]

Table 6: Reports [ ||µ||22 , log det(Cov[qφ(z)]) ].
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