
Workshop track - ICLR 2016

CONVOLUTIONAL MONTE CARLO ROLLOUTS FOR THE
GAME OF GO

Peter H. Jin & Kurt Keutzer
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720, USA
phj@eecs.berkeley.edu & keutzer@berkeley.edu

ABSTRACT

In this work, we present a Monte Carlo tree search-based program for playing
Go which uses convolutional rollouts. Our method performs MCTS in batches,
explores the Monte Carlo tree using Thompson sampling and a convolutional pol-
icy network, and evaluates convnet-based rollouts on the GPU. We achieve strong
win rates against an open source Go program and attain competitive results against
state of the art convolutional net-based Go-playing programs.

1 INTRODUCTION

Recent work in convolutional networks for playing Go (Silver et al., 2016; Tian & Zhu, 2015; Maddi-
son et al., 2014; Clark & Storkey, 2015; Sutskever & Nair, 2008) have produced deep convolutional
policy networks for Go with up to 57% classification accuracy (non-ensemble) on datasets of histor-
ical Go game records. However, even the most successful deep convolutional net and MCTS-based
program to date, Silver et al. (2016), still uses a local pattern-based policy for the rollout phase of
MCTS inspired by the pioneering Go-playing program MoGo (Gelly et al., 2006).

Our contribution is threefold: (1) we implement a MCTS-based Go-playing program that uses con-
volutional policy networks executed on the GPU for both the tree policy and rollout policy; (2) we
perform MCTS in batches to maximize the throughput of convolutions during rollouts; and (3) we
demonstrate that Thompson sampling (Thompson, 1933) during exploration of the search tree in
MCTS is a viable technique for computer Go. Combining those three techniques, we address the
earlier concerns, and our program consistently wins against the open source Go programs and is also
competitive against other deep convolutional net-based Go programs.

2 BATCH THOMPSON SAMPLING MCTS

We would like to use a convolutional policy network to perform Monte Carlo rollouts initialized
from the leaf states of the search tree. To effectively evaluate convolutional rollouts on hardware
platforms such as modern GPUs, it is necessary to perform batch convolutions. Naively exploring
the search tree in batches using UCB1 (Auer et al., 2002) would lead to many duplicate initial states
during rollouts; whereas one would prefer the a more varied distribution of initial states is preferred
to induce more exploration of the tree. Asynchronous parallel versions of MCTS (Enzenberger &
Müller, 2009) avoid this problem by adding “virtual losses” to the tree statistics to introduce variance
during exploration (Chaslot et al., 2008).

Instead, we substitute for UCB1 the probabilistic bandit algorithm Thompson sampling (Thompson,
1933) as the search policy in MCTS, a choice justified by recent empirical evidence (Chapelle &
Li, 2011), as well as proofs of its comparable regret bounds to those of UCB1 (Agrawal & Goyal,
2012; Kaufmann et al., 2012). During exploration, at each node in the search tree, the index j∗ of
the action to take is determined by the binomial Thompson sampling decision rule:

qj ∼ Beta(wj + 1, nj − wj + 1) (1)
j∗ = argmax

j
qj (2)
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Table 1: Input features for policy networks.

Feature Channels

Ones 1
Stones (empty/black/white) 3
Turns since 8
Chain liberties 8
Chain size (black/white) 16
Ko 1
Opponent rank 6
Distance to center 1
Total 44

Table 2: Policy network architectures and their classification accuracy. The prior policy accuracy
is shown for the KGS dataset, while the other two are shown for the GoGoD dataset. A very deep
network trained on the GoGoD dataset has lower accuracy (not shown) but exhibits stronger play.

Policy Layers Hidden channels Accuracy

Prior policy 12 384 54.2%
Rollout policy A 2 16 33.7%
Rollout policy B 3 32 37.8%

where wj and nj are the wins and total plays statistics of the j-th actions for the node.

3 EXPERIMENTS

3.1 FEATURES AND NETWORK ARCHITECTURE

We used a hybrid of Tian and Zhu features (Tian & Zhu, 2015) and AlphaGo features (Silver et al.,
2016); see Table 1. For our “opponent rank“ feature, we quantized the traditional amateur dan and
professional dan ranks of Go into 6 levels. For our “distance to center” feature, we used the formula
xij = exp(− 1

2

√
u2
ij + v2ij) where (uij , vij) is the offset of the point (i, j) ∈ N2

19 from the center of
the board.

We trained 3 policy networks: (1) a very deep tree policy network with 12 layers; (2) a shallow
rollout policy network with 2 layers; and (3) a deep rollout policy network with 3 layers. The very
deep network is based on the architecture of Tian & Zhu (2015), while the smaller networks are
more similar to those of Sutskever & Nair (2008); see Table 2 for details.

3.2 TRAINING

We trained the policy networks on two datasets: over 175,000 games from the KGS dataset (Görtz,
2015); and over 74,000 games from GoGoD Winter 2015 edition (Hall & Fairbairn). For each
training set, we held out over 1000 games (equivalent to over 200,000 positions) for validation.

We used stochastic gradient descent to train the policy networks. The very deep tree policy network
was trained using 3-step lookahead prediction (Tian & Zhu, 2015) with a step size of 2−6 and no
momentum. The rollout networks were trained using only next-step prediction with step size of 2−4

and a momentum of 0.1.

3.3 EVALUATION

We primarily evaluate against the open source MCTS-based Go program Pachi version 11.00 “Ret-
sugen” (Baudiš & Gailly, 2012), with fixed 10,000 playouts per move and pondering during its op-
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Table 3: Win rates of our convolutional policy networks against Pachi, with standard error bars
(sample size is 256 for each of our own programs). The greedy prior policy selects the highest
probability move of the prior policy network that is legal; it uses no search. The batch-MCTS
programs use the prior policy in conjunction with rollout policy A or B. We also show the win rates
of other comparable convolutional net-based MCTS programs.

Policy Wins v. Pachi(10k)

(Maddison et al., 2014) 47.4 ± 3.7%
darkforest (Tian & Zhu, 2015) 71.5%
darkfores2 + MCTS (Tian & Zhu, 2015) 99.2%

Greedy prior policy 79.8 ± 2.5%
Batch-MCTS(1k) + rollout policy A 87.9 ± 2.0%
Batch-MCTS(1k) + rollout policy B 82.0 ± 2.4%

ponent’s turn disabled. We also ran tests on GNU Go version 3.8 at level 10; our program was able
to defeat GNU Go over 99% of the time, losing occasionally due to misjudging ladder situations.1

Our own MCTS-based program was set to evaluate 1024 rollouts per turn with a batch size of 32
rollouts. We used progressive widening (Coulom, 2007) to prune the search tree. RAVE (Gelly &
Silver, 2007) did not seem to significantly affect the strength of our program. We note that using
reduced-size input features to the rollout policy network, it is possible to attain between 1000 and
2000 rollouts per second on a server with 8× high end NVIDIA Maxwell GPUs (Titan X or Tesla
M40).

3.4 RESULTS

We show the winning rate of different variants of our Go program against Pachi in 3, where the
variants differed in whether they used batch-MCTS or not, and which rollout policy network was
used. First, we see that our batch-MCTS program with a convolutional rollout policy is able to
achieve competitive win rates compared to the most comparable work to ours (Tian & Zhu, 2015).
Second, the deeper rollout policy with 3 convolutional layers performs much worse in conjuction
with batch-MCTS compared to the shallower 2-layer rollout policy. While counterintuitive, this is
a known paradox that previous authors of MCTS Go programs have encountered (Gelly & Silver,
2007). Possible solutions include using Monte Carlo simulation balancing (Silver & Tesauro, 2009)
or self-play policy gradient reinforcement learning (Silver et al., 2016) to learn a more appropriate
rollout policy network.

4 DISCUSSION

In this work, we demonstrated that combining convolutional networks in the exploration phase of
MCTS with convolutional nets in the rollout phase is practical and effective through Thompson
sampling-based batched MCTS. Our Go program consistently wins against the open source program
Pachi and is competitive against other convolutional net and MCTS-based programs. Future work
includes improving the quality of the rollout policy for stronger play.
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Rémi Coulom. Computing Elo Ratings of Move Patterns in the Game of Go. In Computer Games
Workshop, 2007.

Markus Enzenberger and Martin Müller. A Lock-Free Multithreaded Monte-Carlo Tree Search
Algorithm. In Advances in Computer Games, pp. 14–20. 2009.

Sylvain Gelly and David Silver. Combining Online and Offline Knowledge in UCT. In Proceedings
of the 24th International Conference on Machine Learning, pp. 273–280, 2007.
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