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ABSTRACT

We show that by employing a distribution over random matrices, the matrix variate
Gaussian Gupta & Nagar (1999), for the neural network parameters we can obtain
a non-parametric interpretation for the hidden units after the application of the
“local reprarametrization trick” (Kingma et al., 2015). This provides a nice duality
between Bayesian neural networks and deep Gaussian Processes Damianou &
Lawrence (2013), a property that was also shown by Gal & Ghahramani (2015).
We show that we can borrow ideas from the Gaussian Process literature so as to
exploit the non-parametric properties of such a model. We empirically verified
this model on a regression task.

1 MATRIX-VARIATE GAUSSIAN

The matrix variate Gaussian (Gupta & Nagar, 1999) is a three parameter distribution that governs a
random matrix, e.g. W:

p(W) =MN (M,U,V) =
exp

(
− 1

2 tr
[
V−1(W −M)TU−1(X−M)

])
(2π)np/2|V|n/2|U|n/2

(1)

where M is a r × c matrix that is the mean of the distribution, U is a r × r matrix that provides the
covariance of the rows and V is a c × c matrix that governs the covariance of the columns of the
matrix. According to Gupta & Nagar (1999) this distribution is essentially a multivariate Gaussian
distribution over the “flattened” matrix W: p(vec(W)) = N (vec(M),V ⊗ U), where vec(·) is
the vectorization operator (i.e. stacking the columns into a single vector) and ⊗ is the Kronecker
product.

2 BAYESIAN NEURAL NETS WITH MATRIX-VARIATE GAUSSIANS

For the following derivation we will assume that each input to a layer is augmented with an extra di-
mension containing 1’s so as to account for the biases and thus we are only dealing with weights W
on this expanded input. In order to obtain a matrix variate Gaussian posterior distribution for these
weights we will perform variational inference and we can work in a pretty straightforward way: the
derivation is similar to (Graves, 2011; Kingma & Welling, 2014; Blundell et al., 2015; Kingma et al.,
2015). Let pθ(W), qφ(W) be a matrix variate Gaussian prior and posterior distribution with param-
eters θ, φ respectively and (xi,yi)

N
i=1 be the training data sampled from the empirical distribution

p̃(x,y). Then the following lower bound on the marginal log-likelihood can be derived:

Ep̃(x,y)[log p(Y|X)] ≤ Ep̃(x,y)
[
Eqφ(W)

[
log p(Y|X,W)

]
−KL(qφ(W)||pθ(W))

]
(2)
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Furthermore, by approximating the covariance matrices for each matrix variate Gaussian we can
achieve a more efficient layer parametrization; for a rank-1 approximation with diagonal correc-
tions (Rezende et al., 2014) we have a total of nin×nout+2(nin+nout) parameters whereas with
a fully factorized Gaussian posterior we have 2(nin×nout). In addition, due to the relation with the
multivariate normal, the KL-divergence can still be calculated efficiently in closed form.

3 DEEP MATRIX VARIATE GAUSSIAN PROCESS

Directly using the expected log-likelihood estimator of eq. 2 yields increased variance and higher
memory requirements, as it was pointed in Kingma et al. (2015). Fortunately, similarly to a standard
multivariate Gaussian, the inner product between a matrix and a matrix variate Gaussian is again a
matrix variate Gaussian (Gupta & Nagar, 1999) and as a result we can use the “local reparametriza-
tion trick” (Kingma et al., 2015). Let AM×r be a minibatch of M inputs with dimension r that is
the input to a network layer; the inner product BM×c = AW, where W is a matrix variate variable
with size r × c, has the following distribution:

p(B|A) =MN (AM,AUAT ,V) (3)

As we see, after the inner product the inputs A become dependent due to the non-diagonal row
covariance AUAT . However, the resulting matrix variate Gaussian maintains the same marginal-
ization properties as a multivariate Gaussian, i.e. marginalizing out a row from B corresponds to
simply removing that particular datapoint from the minibatch. This fact exposes a nonparametric
nature for the output B, similar to the one provided by a Gaussian process (Rasmussen, 2006) (GP).

To make the connection even clearer lets’ consider an example similar to the one presented in Gal
& Ghahramani (2015). Let’s assume that we have a neural network with one hidden layer and one
output layer. Furthermore, let X, with dimensions N ×Dx, be the input to the network and Y, with
dimensions N ×Dy , be the target variable. Finally, let’s also assume that for the first weight matrix
pθ1(W1) =MN (0,U0

1,V
0
1) and that for the second weight matrix pθ2(W2) =MN (0,U0

2,V
0
2).

Now we can define the following generative model:

W1 ∼MN (0,U0
1,V

0
1); W2 ∼MN (0,U0

2,V
0
2)

B = XW1; F = σ(B)W2; Y ∼MN (F, τ−1IN , IDy )

where σ(·) is an elementwise nonlinearity andMN (F, τ−1IN , IDy ) corresponds to an independent
multivariate Gaussian over each column of Y, i.e. p(Y|X) =

∏Dy
i=1N (yi|fi, τ−1IN ), where fi is

a column of F. Now if we make use of the matrix variate Gaussian property 3 we have that the
generative model becomes:

B|X ∼MN (0,XU0
1X

T ,V0
1); F|B∼MN (0, σ(B)U0

2σ(B)T ,V0
2); Y|F ∼MN (F, τ−1IN , IDy )

or else equivalently:

vec (B)|X ∼ N (0, K̂θ1(X,X)); vec (F)|B∼ N (0, K̂θ2(B,B)); vec (Y)|F ∼ N (vec(F), τ−1(IN ⊗ IDy ))

where K̂θ(z1, z2) = Kout ⊗Kin(z1, z2;U) = V⊗
(
σ(z1)Uσ(z2)

T
)

1. In other words, we have a
composition of GP’s where the covariance of each GP is governed by a kernel function of a specific
form; it is the kroneker product of a global output and an input dependent kernel function, where the
latter is composed of fixed dimension nonlinear basis functions (the inputs to each layer) weighted
by their covariance. Essentially this kernel provides a distribution for each layer that is similar to
a (correlated) multi-output GP, which was previously explored in the context of shallow GP’s (Yu
et al., 2006; Bonilla et al., 2007a;b). Now in order to obtain the marginal likelihood of the targets Y
we have to marginalize over the function values B and F, which results into a deep GP (Damianou
& Lawrence, 2013) with the aforementioned kernel function for each GP:

log p(Y|X) = logEpθ1 (B|X)pθ2 (F|B)

[
N (vec(F), τ−1(IN ⊗ IDy ))

]
In order to obtain the posterior distribution of the parameters W we will perform variational in-
ference. We place a matrix variate Gaussian posterior distribution over the weights of the neural

1σ(·) is the identity function for the input layer.
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network, i.e. qφ1
(W1)qφ2

(W2) =MN (M1,U1,V1)MN (M2,U2,V2), and the marginal like-
lihood lower bound in eq. 2 becomes:

Ep̃(x,y)[log p(Y|X)] ≤ Ep̃(x,y)
[
Eqφ1 (W1)qφ2 (W2)

[
log p(Y|X,W1,W2)

]
−

2∑
i=1

KL(qφi(Wi)||pθi(Wi))

]
(4)

Noting that Y only depends on X,W1,W2 through F = σ(B)W2 = σ(XW1)W2, and applying
the reparametrization trick, i.e.∫

qφ1(W1)qφ2(W2) log p(Y|F(X,W1,W2))dW1,2 =

∫
q̃φ1(B|X)q̃φ2(F|B) log p(Y|F)dBdF

where (using 3),

q̃φ1
(B|X) = N (vec(µφ1

(X)), K̂φ1
(X,X)); q̃φ2

(F|B) = N (vec(µφ2
(H)), K̂φ2

(H,H))

where φ1 = (M1,U1,V1), φ2 = (M2,U2,V2) are the variational parameters, µφ(z) = σ(z)M
is the mean function and σ(·) is the identity for the input layer. As we can see, q̃φ1(B|X), q̃φ2(F|B)
can be considered as approximate posterior GP functions while the local reparametrization trick pro-
vides the connection between the primal and dual GP view of the model. The variational objective
thus becomes:

Ep̃(x,y)[log p(Y|X)] ≤ Ep̃(x,y)
[
Eq̃φ1 (B|X)q̃φ2 (F|B)

[
log p(Y|F)

]
−

2∑
i=1

KL(qφi(Wi)||pθi(Wi))

]
(5)

However, sampling distribution 3 for every layer is computationally intensive, as we have to calcu-
late the square root of the row covariance K(A,A) = AUAT every time. A simple solution is to
only use its’ diagonal for sampling. This corresponds to samples from the marginal distribution of
each pre-activation latent variable bi in the minibatch A; a multivariate Gaussian distribution where
the covariance is controlled by the local scalar row variance (i.e. per datapoint feature correlations)
and the global column, i.e. pre-activation latent variable (or target variable in the case of the output
layer), covariance: p(bi|ai) = N (aiM,

(
aiUaTi

)
� V). Despite its’ simplicity however this ap-

proach does not use the non-parametric nature of this model. In order to fully utilize this property we
adopt an idea from the GP literature: the concept of pseudo-data (Snelson & Ghahramani, 2005).
More specifically, we can introduce pseudo inputs Ã and pseudo outputs B̃ for each layer in the
network and sample the marginal distribution of each pre-activation latent variable bi conditioned
on the pseudo-data:

p(bi|ai, Ã, B̃) = N
(

aiM + σT12Σ
−1
11

(
B̃− ÃM

)
,
(
σ22 − σT12Σ

−1
11 σ12

)
�V

)
(6)

Σ11 = ÃUÃT ; σ12 = ÃUaTi ; σ22 = aiUaTi (7)

Finally, since we want a fully Bayesian model, we also place fully factorized “dropout posteriors”
on both Ã and B̃ along with log-uniform priors, as it was described in Kingma et al. (2015). The
final form of the bound 5 with the inclusion of the pseudo-data is:

Ep̃(x,y)[log p(Y|X)] ≤ Ep̃(x,y)
[
Eqφ1 (B,Ã1,B̃1|X)qφ2 (F,Ã2,B̃2|B)

[
log p(Y|F)

]
+

2∑
i=1

Lc(φi, θi)

]
(8)

qφi(B, Ã, B̃|X) = q̃φi(B|X, Ã, B̃)qφi(Ã)qφi(B̃) (9)

Lc(φi, θi) = −KL(q(Wi)||p(Wi))−KL(q(Ãi)||p(Ãi))−KL(q(B̃i)||p(B̃i)) (10)

where now φi, θi also include the parameters of the distributions of the pseudo-data. The KL-
divergence for these can be found at Kingma et al. (2015).

3



Workshop track - ICLR 2016

4 REGRESSION EXPERIMENT

We tested the aforementioned model with a rank-1 approximation for the square root of the covari-
ance matrices of the matrix variate Gaussian posteriors on the regression task used in Hernández-
Lobato & Adams (2015) and Gal & Ghahramani (2015). Similarly to Hernández-Lobato & Adams
(2015) we also introduced Gamma priors and posteriors for the precision of the Gaussian likelihood
and the precision of the row and column for the matrix-variate prior. The results can be seen at
Tables 1 and 2 where VI, PBP, Dropout and DMGP correspond to the variational inference method
of Graves (2011), probabilistic backpropagation (Hernández-Lobato & Adams, 2015), dropout un-
certainty (Gal & Ghahramani, 2015) and the model considered here.

Table 1: Average test set RMSE and standard errors for the regression datasets.
Dataset VI PBP Dropout DMGP
Boston Housing 4.32±0.29 3.01±0.18 2.97±0.85 2.81±0.13
Concrete Compression Strength 7.19±0.12 5.67±0.09 5.23± 0.53 4.64±0.14
Energy Efficiency 2.65±0.08 1.80±0.05 1.66±0.19 1.11±0.03
Kin8nm 0.10±0.00 0.10±0.00 0.10±0.00 0.08±0.00
Naval Propulsion 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00
Combined Cycle Power Plant 4.33±0.04 4.12±0.03 4.02±0.18 3.85±0.03
Protein Structure 4.84±0.03 4.73±0.01 4.36±0.04 4.11±0.01
Wine Quality Red 0.65±0.01 0.64±0.01 0.62±0.04 0.61±0.01
Yacht Hydrodynamics 6.89±0.67 1.02±0.05 1.11±0.38 0.78±0.06
Year Prediction MSD 9.034±NA 8.879±NA 8.849±NA 8.790±NA

Table 2: Average predictive log-likelihood and standard errors for the regression datasets.
Dataset VI PBP Dropout DMGP
Boston Housing -2.90±0.07 -2.57± 0.09 -2.46±0.25 -2.58±0.08
Concrete Compression Strength -3.39±0.02 -3.16±0.02 -3.04±0.09 -2.97±0.04
Energy Efficiency -2.39±0.03 -2.04±0.02 -1.99±0.09 -1.34±0.02
Kin8nm 0.90±0.01 0.90±0.01 0.95±0.03 1.15±0.01
Naval Propulsion 3.73±0.12 3.73±0.01 3.80±0.05 5.85±0.00
Combined Cycle Power Plant -2.89±0.01 -2.84±0.01 -2.80±0.05 -2.77±0.01
Protein Structure -2.99±0.01 -2.97±0.00 -2.89±0.01 -2.83±0.00
Wine Quality Red -0.98±0.01 -0.97±0.01 -0.93±0.06 -0.93±0.02
Yacht Hydrodynamics -3.43±0.16 -1.63±0.02 -1.55±0.12 -1.15±0.04
Year Prediction MSD -3.622±NA -3.603±NA -3.588±NA -3.591±NA
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