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Abstract001

In this paper, we investigate whether Large002
Language Models (LLMs) actively recall or003
retrieve their internal repositories of factual004
knowledge when faced with reasoning tasks.005
Through an analysis of LLMs’ internal factual006
recall at each reasoning step via Knowledge007
Neurons, we reveal that LLMs fail to harness008
the critical factual associations under certain009
circumstances. Instead, they tend to opt for010
alternative, shortcut-like pathways to answer011
reasoning questions. By manually manipulat-012
ing the recall process of parametric knowledge013
in LLMs, we demonstrate that enhancing this014
recall process directly improves reasoning per-015
formance whereas suppressing it leads to no-016
table degradation. Furthermore, we assess the017
effect of Chain-of-Thought (CoT) prompting,018
a powerful technique for addressing complex019
reasoning tasks. Our findings indicate that CoT020
can intensify the recall of factual knowledge021
by encouraging LLMs to engage in orderly and022
reliable reasoning. Furthermore, we explored023
how contextual conflicts affect the retrieval of024
facts during the reasoning process to gain a025
comprehensive understanding of the factual re-026
call behaviors of LLMs. Code and data will be027
available soon.028

1 Introduction029

Recent advancements in Large Language Mod-030

els have underscored their exceptional reason-031

ing prowess with natural language understanding032

across a broad spectrum of tasks (Chen et al.,033

2023a; Kojima et al., 2022; Brown et al., 2020;034

Creswell et al., 2023). However, amidst these035

achievements, a specific form of reasoning has036

been somewhat overlooked and insufficiently inves-037

tigated: reasoning tasks that entail the utilization038

of internal factual knowledge associations. For039

instance, when presented with a 2-hop question040

such as "Who is the chairperson of the manufac-041

turer of the Holden Caprice?", LLMs must first042

Figure 1: An unsuccessful case of reasoning due to
factual retrieval failure of the triplet (General Motors,
chairperson, Marry Barra).

identify the manufacturer of the Holden Caprice 043

as General Motors, and subsequently retrieve the 044

chairperson of General Motors from their inter- 045

nal knowledge or parametric knowledge (Neeman 046

et al., 2023; Zhong et al., 2024). Factual knowledge 047

is observed to emerge in both GPT (Meng et al., 048

2022) and Bert models (Petroni et al., 2019; Jiang 049

et al., 2020). Unlike mathematical (Floyd, 2007) 050

and logical reasoning (Pan et al., 2023), factual 051

reasoning heavily relies on the factual knowledge 052

encoded within LLMs, acquired through extensive 053

pretraining on vast corpora, rather than on user- 054

inputted premises. At the same time, it differs 055

from commonsense reasoning (Zhao et al., 2023; 056

Trinh and Le, 2019), which taps into general knowl- 057

edge acquired through dynamic training to foster 058

a holistic understanding of the world, instead of 059

emphasizing specific factual information. 060

Intuitively, it is reasonable to expect LLMs 061

to harness their extensive internal knowledge to 062

tackle reasoning tasks. Yet, an important ques- 063

tion emerges: How effectively can LLMs actually 064

retrieve and utilize their internal knowledge for 065

reasoning purposes? Delving into this question is 066

crucial for a multitude of reasons. First, LLMs’ 067

efficient use of internal knowledge may greatly 068
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reduce reliance on external data sources, thereby069

lowering operational costs of data retrieval and API070

usage. Second, this dynamic capability allows the071

factual knowledge within LLMs to flow and in-072

terconnect (Onoe et al., 2023), showcasing these073

models as organic entities rather than static infor-074

mation repositories (Petroni et al., 2019). From075

a practical perspective, LLMs’ accurate retrieval076

and application of facts lead to more reliable and077

interpretable reasoning, enhancing their utility and078

trustworthiness in real-world applications.079

Transformer-based language models have accu-080

mulated substantial knowledge through extensive081

pretraining (Vaswani et al., 2017). A significant082

body of recent research has focused on the factual-083

ity issues of LLMs (Wang et al., 2023). One stream084

of this research has concentrated on pinpointing the085

locations within these models’ architectures where086

factual knowledge is stored and encoded (Meng087

et al., 2022; Dai et al., 2022; Wallat et al., 2020;088

Geva et al., 2022, 2021). Simultaneously, there has089

been a concerted effort to understand the mecha-090

nism by which this knowledge is accessed during091

the inference phase (Geva et al., 2023; Yang et al.,092

2024). Another line of work discusses the balance093

of the retrieved knowledge and its parametric coun-094

terparts (Kwiatkowski et al., 2019; Kandpal et al.,095

2022; Yu et al., 2023). However, the majority of096

these studies have either been confined to elemen-097

tary retrieval tasks, such as recalling a single fact098

object o from a given triplet (s, r, o), or have not099

delved into the intricacies of factual knowledge re-100

call and utilization in more advanced challenges,101

particularly within complex reasoning scenarios.102

Our work addresses these limitations by examining103

the inner dynamics of factual recall within LLMs104

during the two-hop factual reasoning process, pro-105

viding fresh insights into the behavior of factual106

recall in reasoning and highlighting avenues for en-107

hancing the robustness and reliability of reasoning108

through more sophisticated knowledge utilization109

strategies.110

In this work, we investigate the harness of inter-111

nal knowledge for reasoning through the lens of112

Knowledge Neurons (KNs). We focus on the basic113

setting of factual reasoning involving the composi-114

tion of two facts (for example, "Who is the chair-115

person of the manufacturer of Holden Caprice?" in116

Figure 1). To achieve this, we carefully craft two-117

hop reasoning questions dataset that seamlessly118

integrates with the KN technique. We assess the119

level of factual recall at each reasoning step by in-120

troducing a novel metric, KN Scores. We examine 121

KN Scores under three conditions of two-hop rea- 122

soning: no CoT, zero-shot CoT, and few-shot CoT, 123

unveiling the pitfalls existing in the reasoning pro- 124

cess and the enhancement effect of CoT(Wei et al., 125

2022). Then we conduct targeted interventions on 126

KNs to enhance or suppress the factual retrieval 127

process, finding the contributing impact on reason- 128

ing performance. Furthermore, we provide a de- 129

tailed analysis of factual shortcuts (Ju et al., 2024; 130

Du et al., 2023), potentially caused by redundant 131

information stored in models’ parameters within 132

LLMs used for reasoning. Finally, we explore how 133

the presence of knowledge conflict outside LLMs 134

influences the factual recall process. Our findings 135

can be summarized as follows: 136

• LLMs do not consistently retrieve the pertinent 137

factual knowledge essential for reasoning, with 138

more than a third of reasoning errors stemming 139

from deficiencies in the retrieval of factual as- 140

sociations. 141

• CoT could remarkably enhance the recall of 142

factual knowledge by facilitating engagement 143

in step-by-step reasoning, thereby reducing the 144

likelihood of shortcuts. 145

• By enhancing and suppressing the recall pro- 146

cess, we demonstrate that successful factual re- 147

trieval is a pivotal factor in improving reasoning 148

performance. 149

• The presence of knowledge conflict in context 150

could enhance the retrieval of the corresponding 151

fact in the reasoning process to a degree. 152

2 Preliminaries 153

2.1 Problem Formulation 154

We represent facts, such as "(Holden Caprice, man- 155

ufacturer, General Motors)", as a triplet (s, r, o), 156

where s is the subject, r is the relation, and o 157

is the object. We formulate two-hop factual rea- 158

soning questions as a composition of two linked 159

facts ((s, r1, o1), (o1, r2, o2)), with a bridge entity 160

o1 connecting them. To query LLMs, these triplets 161

must be converted into natural language queries. 162

For a single relation r, we instruct ChatGPT (gpt- 163

3.5-turbo) to generate query templates as QTr(·). 164

For instance, the single-relation triplet (Holden 165

Caprice, manufacturer, General Motors) can be 166

converted as QTmanufacturer(HoldenCaprice): 167

"Which company manufactures Holden Caprice?". 168

Similarly, for a composition of two relations r1 169

and r2, we prompt ChatGPT to generate a query 170
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template as QTr2(r1(·)), with r1(·) denoting the171

description of the entity related to s via r1 rela-172

tion (e.g. The manufacturer of Holden Caprice).173

We refer to the single-hop query as QT1H and the174

two-hop query as QT2H .175

We consider an autoregressive language model176

F : X → Y , which accepts an input x ∈ X and177

produces a prediction y ∈ Y , continuing the input178

x. We deem that the model "knows" a fact (s, r, o)179

if the output F (QTr(s)) matches the ground la-180

bel o and that LLMs can reason a question involv-181

ing two-hop fact triplets ((s, r1, o1), (o1, r2, o2))182

successfully if the output F (QTr2(r1(s)) matches183

the ground label o2. It is noteworthy that query184

templates, even for the same single relation, are185

generated with diversity by ChatGPT. This diver-186

sity discourages models from making predictions187

based on the occurrence of specific words, ensur-188

ing that they recall knowledge from within them-189

selves instead. We denote the set of two-hop factual190

questions as Ω, with ΩT representing the subset of191

questions that LLMs can answer correctly and ΩF192

denoting the subset of questions that LLMs cannot193

answer correctly. For simplicity, we use ζ to denote194

((s, r1, o1), (o1, r2, o2)), thus we have:195

ΩT =
{
ζ | Fθ(QTr2(r1(s))) = o2, ∀ζ ∈ Ω

}
(1)196

197
ΩF =

{
ζ | Fθ(QTr2(r1(s))) ̸= o2, ∀ζ ∈ Ω} (2)198

2.2 Knowledge Neurons199

Pretrained language models store vast amounts of200

factual knowledge and have a strong ability to re-201

call this factual knowledge without further training202

(Petroni et al., 2019; Jiang et al., 2020). Drawing203

inspiration from the key-value-memory nature of204

feed-forward layers (Geva et al., 2021), Dai et al.205

(2022) proposes that factual knowledge is stored206

in specific neurons within the Feed-Forward Net-207

works (FFNs) of the Transformer models, termed208

as knowledge neurons. They find that knowledge209

neurons are activated by knowledge-expressing210

prompts. The higher the activation of these knowl-211

edge neurons is, the more significantly their corre-212

sponding facts are expressed. Therefore, to assess213

the recall and utilization of the fact triplet (s, r, o)214

necessary in the reasoning process, we refer to the215

activity of KNs as an indicator of factual recall. We216

make the following invariant assumptions: the217

KNs responsible for the expression of particular218

relational facts remain consistent across different219

application contexts. A specific fact is indicated by220

the same set of KNs under both single-hop queries221

and reasoning queries, which is a cornerstone for 222

subsequent experiments. In Appendix B, We detail 223

a methodology utilizing integrated gradients (Sun- 224

dararajan et al., 2017) to compute the contribution 225

of all neurons in the intermediate layers of FFNs to 226

the correct prediction of a multi-token ground truth, 227

identifying neurons with greater contributions as 228

KNs. 229

3 TFRKN: Two-hop Factual Reasoning 230

for Knowledge Neurons 231

To investigate the behavior of factual recall 232

in reasoning tasks for LLMs, we have devel- 233

oped a dataset called TFRKN (Two-hop Factual 234

Reasoning for Knowledge Neurons). This dataset 235

is composed of two-hop factual questions, which 236

are constructed with frequently occurring entities 237

(Mallen et al., 2023) in Wikidata (Vrandečić and 238

Krötzsch, 2014) and manually selected relations. 239

The construction method is detailed in Appendix 240

A. TFRKN dataset encompasses 4,550 distinct in- 241

stances that cover 213 unique relational combina- 242

tions. In alignment with the KN methodology, we 243

have reformulated each fact triplet into over five 244

varied query forms with the aim of refining true- 245

positive KNs from specific-form queries. (An in- 246

stance in TFRKN is shown in Table 6). 247

4 Diagnose the Pitfalls of Factual Recall 248

in Reasoning 249

In the realm of two-hop factual reasoning, an opti- 250

mal and dependable reasoning trajectory is a multi- 251

hop reasoning approach (Welbl et al., 2017; Ju 252

et al., 2024). This process requires identifying the 253

bridge entity first and then using it to solve the sec- 254

ond hop question, necessitating that LLMs recall 255

the relevant fact at each hop step by step, culminat- 256

ing in the formulation of the correct answers. In 257

this section, we investigate whether LLMs faith- 258

fully retrieve factual knowledge at each hop when 259

undertaking reasoning tasks. 260

4.1 KN Scores 261

To quantify the capacity for internal recall of spe- 262

cific facts within LLMs, we devise a novel metric, 263

termed KN Scores, as follows: 264

FFN(l)(H(l)) = W
(l)
2 SiLU(H(l)W

(l)
1 ) (3) 265

ωl
i = SiLU(H(l)W

(l)
1 )[i], ∀ωl

i ∈ ω (4) 266

KN Scores =
1

|ω|
∑

ωl
i,∀ωl

i ∈ ω (5) 267
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where ωl
i denotes the i-th neuron in the l-th inter-268

mediate layer of FFN and symbol ω represents the269

KNs associated with a specific fact triplet, denoted270

as (s, r, o). For the first-hop fact and the second-271

hop fact, we designate their respective sets of KNs272

as ω1 and ω2. Under the context of a single-hop273

query, we denote KN Scores as {ω|QT1H}. Sim-274

ilarly, within the two-hop reasoning context, KN275

Scores are represented as {ω|QT2H}.

Figure 2: Scaled visualization of neuron activity within
the intermediate layers of FFNs in Mistral-7B for the
same case (A 32-layer×14336-neuron matrix). The
vertical axis shows layer depth, and the horizontal axis
shows neuron index in the FFN’s intermediate layers.

276

4.2 Experiment277

Setup We begin by filtering out reasoning ques-278

tions where LLMs are unable to recall all individual279

facts, ensuring that any reasoning failures are due to280

the models’ inability to retrieve factual information281

rather than a lack of the foundational knowledge282

necessary for performing reasoning tasks. We then283

proceed to employ Fact1Query and Fact2Query (in284

Table 6) from each data point to pinpoint the posi-285

tions of KNs for each-hop fact. Then we hook286

the values of each neuron belonging to ω1 and287

ω2 across various query scenarios to compute KN288

Scores. Using the KN Scores metric, we evaluate289

the recall of each fact under three distinct experi-290

mental conditions: no CoT, zero-shot CoT, and291

few-shot CoT. For each condition, we record KN292

Scores for both the first-hop {ω1|QT2H} and the293

second-hop {ω2|QT2H} facts within the context of294

two-hop reasoning questions. We select the KN295

Scores {ω1|QT1H} and {ω2|QT1H} under single-296

hop queries as baselines since KNs are significantly297

active in that straightforward context. We experi-298

ment with the instructed versions of three popular299

open-source models: LLaMA2-7B (Touvron et al.,300

2023), LLaMA3-8B, Mistral-7B (Jiang et al., 2023)301

(see Appendix D for more experimental details).302

4.3 Results303

Single-hop vs. Muti-hop Reasoning In reason-304

ing scenarios, LLMs access their internal knowl-305

edge less frequently in comparison to the straight-306

forward retrieval of single-hop facts. Table 1 il- 307

lustrates a notable decrease in KN Scores for all 308

single-hop facts when addressing two-hop reason- 309

ing questions. This observation strongly indicates 310

that, in reasoning contexts, LLMs tend to either fail 311

to recall the bridge entity or struggle to identify the 312

second-hop relation, leading to the failure of exe- 313

cuting the remaining multi-hop reasoning as antic- 314

ipated. Compared to directly recalling single-hop 315

facts (e.g., "Who is the chairperson of General Mo- 316

tors?"), it is more challenging for LLMs to recall 317

and organize relevant facts for reasoning. LLMs 318

may take alternative salient pathways existing in 319

their parameters, such as shortcuts, rather than en- 320

gaging in systematic, step-by-step reasoning.

Models Mistral-7B LLaMA2-7B LLaMA3-8B

ω1 ω2 ω1 ω2 ω1 ω2

Single-hop 2.44 2.61 2.01 1.89 1.70 1.72

∆ω1 ∆ω2 ∆ω1 ∆ω2 ∆ω1 ∆ω2

No-CoT -10.84 -11.77 -13.18 -8.18 -10.79 -8.96
Zero-shot 11.56 -8.48 -2.49 -8.30 11.19 6.24
Few-shot 17.36 2.42 1.32 2.46 13.00 7.31

Table 1: KN Scores for three conditions across three
models. ω is the KN Score of a particular fact while
∆ indicates the change ratio (in percentages) of values
compared with the single-hop baselines. 321

CoT vs. No CoT CoT, whether zero-shot or few- 322

shot, markedly improves factual knowledge utiliza- 323

tion in LLMs over no CoT (see a case in Figure 324

2), which is evidenced by a higher ∆ω1 and ∆ω2 325

compared with no CoT setting, as shown in Table 1. 326

We posit that this enhancement is likely driven by 327

the step-by-step thinking process, which further 328

stimulates the recall of facts as multi-hop reason- 329

ing progresses. This hypothesis can be supported 330

by comparing the zero-shot CoT and few-shot CoT 331

settings. Across three models, it is clear that zero- 332

shot CoT struggles to significantly improve the 333

recall of the second-hop fact compared to the re- 334

inforcement of the first-hop fact recall. However, 335

consistent improvement across both triplets can be 336

observed for few-shot settings. This observation 337

strongly suggests that the reasoning direction in 338

zero-shot scenarios is unclear, which prevents mod- 339

els from effectively identifying which relations of 340

facts concerning the bridge entity to retrieve. In 341

stark contrast, few-shot scenarios often mitigate 342

this issue. Through the acquisition of knowledge 343

from contextual demonstrations, models are more 344

inclined to determine the subsequent phase in the 345
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Figure 3: Overall reasoning performance on TFRKN under different CoT situations.

reasoning trajectory and, in turn, adeptly utilize346

the relevant factual information via their attention347

mechanisms.348

Factual Recall vs. Reasoning Accuracy Figure349

3 illustrates a positive correlation between the re-350

call of relevant fact triplets and reasoning accuracy.351

This relationship is especially pronounced in the352

case of LLaMA3-8B model under few-shot CoT,353

where the maximum increase in the recall of both354

∆ω1 and ∆ω2 leads to the highest reasoning accu-355

racy. The eliciting effect of CoT on factual recall356

across various LLMs is not uniform. For instance,357

zero-shot CoT mitigates the forgetting of factual in-358

formation to some extent for LLaMA2-7B, whereas359

for LLaMA3-8B, zero-shot CoT enhances the re-360

trieval of factual information to a level comparable361

to few-shot CoT. This adequately illustrates that362

the efficacy of CoT is also contingent upon the in-363

trinsic capabilities of the LLMs themselves when364

they are of nearly the same scale.365

5 Interventions on the Recall of Facts366

5.1 Enhance and Suppress KNs367

To gain a deeper understanding of factual recall368

behaviors, we intervene in the retrieval of specific369

knowledge within LLMs by manually adjusting370

the activation levels of KNs. Specifically for each371

factual triplet (s, r, o), we modulate the internal372

recall by adjusting the values of the KNs associated373

with this triplet, either amplifying or diminishing374

them according to Equation 6.375 {
Enhance:ωl

i = n× ωl
i, n > 1, ∀ωl

i ∈ ω(s,r,o)

Suppress:ωl
i = 0, ωl

i ∈ ω(s,r,o)

(6)376

5.2 Experiment377

Setup We have meticulously designed four sets378

of controlled experiments on TFRKN to monitor379

changes in reasoning outcomes. The experimen- 380

tal paradigms are as follows: (1) Base: We allow 381

LLMs to respond to two-hop questions under stan- 382

dard conditions (2) Enhance: For questions an- 383

swered incorrectly under Base situation, we am- 384

plify the activation level of KNs and subsequently 385

assess the reasoning accuracy. (3) Suppress: Con- 386

versely, for two-hop questions correctly answered 387

in the Base scenario, we reduce the activation of 388

relevant KNs and evaluate the reasoning accuracy 389

afterward. (4) Random: To establish a baseline 390

for comparison with conditions (2) and (3), we 391

randomly select an equal number of neurons and 392

enhance or suppress their activation accordingly, 393

facilitating a comparative analysis. 394

Metrics We design a novel metric, termed En- 395

hance Ratio (ER), which serves to quantify the 396

impact of factual retrieval failures on reasoning 397

outcomes. ER is calculated by calculating the per- 398

centage of reasoning instances that are initially in- 399

correct but are successfully resolved following the 400

enhancement of KNs as Equation 7. Analogously, 401

we define another metric Suppress Ratio (SR) to 402

measure the obstructive effect of suppressed KNs 403

on the reasoning process. The SR is ascertained by 404

evaluating the ratio of cases where correct reason- 405

ing is converted to incorrect after the suppression 406

of KNs, as outlined in Equation 8: 407

ER =
|{ζ | Fθ′(QTr2(r1(s)) = o2}|

|ΩF |
, ∀ζ ∈ ΩF (7) 408

409

SR =
|{ζ | Fθ′′(QTr2(r1(s)) ̸= o2}|

|ΩT |
,∀ζ ∈ ΩT (8) 410

where θ′ denotes the parameters of the enhanced 411

model while θ′′ represents the parameters of the 412

suppressed model. QTr2(r1(s)) represents the rea- 413

soning question derived from two-hop fact triplets 414

((s, r1, o1), (o1, r2, o2)) with the ground truth o2. 415
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5.3 Results416

Mistral-7B LLaMA2-7B LLaMA3-8B

Base 64.09 – 47.48 – 69.03 –

Ehan. ∆ ER ∆ ER ∆ ER

ω1 3.92 18.19 8.79 19.58 4.48 21.24
ω2 6.16 28.57 13.15 30.39 7.28 34.51
ω12 15.11 31.05 15.30 34.97 8.02 38.05
ωr 4.57 2.74 7.65 17.79 0.19 0.88

Supp. ∆ SR ∆ SR ∆ SR

ω1 -20.06 32.28 -18.00 38.07 -24.53 38.07
ω2 -29.01 46.70 -24.35 50.78 -39.18 53.03
ω12 -49.53 77.29 -30.32 63.85 -62.59 91.61
ωr -5.78 9.02 -12.12 25.54 -2.52 3.65

Table 2: Results of the controlled experiments after
interventions on ω1, ω2 and ω12 under no CoT setting.
∆ denotes variation in accuracy and ωr is established as
the baseline for enhancing or suppressing KNs of both
facts, with ER/SR values expressed as percentages.

Models Mistral-7B LLaMA2-7B LLaMA3-8B

Enha. ωbase ω12 ωbase ω12 ωbase ω12

No CoT 2.74 31.05 17.79 34.97 0.88 38.05
Zero-shot 7.44 53.50 23.36 56.23 23.97 54.79
Few-shot 2.92 39.60 12.51 48.09 2.04 51.02

Supp. ωbase ω12 ωbase ω12 ωbase ω12

No CoT 9.02 77.29 25.54 63.85 3.65 91.61
Zero-shot 9.76 68.43 10.80 71.80 8.25 74.16
Few-shot 0.11 50.48 5.33 32.09 0.21 65.92

Table 3: ER/SR Results of enhancing and suppressing
the expression of both triplets under both CoT and no
CoT conditions. In the enhancement scenario, the num-
bers represent ER metrics, whereas in the suppression
scenario, they denote SR metrics.

Finding 1 In Table 2, more than one-third of417

reasoning failures are caused by issues of factual418

retrieval. The ER values show a consistent and pro-419

gressive increase as the interventions progress from420

targeting ω1, to KNs associated with the second-421

hop ω2, and ultimately to a combined intervention422

on both, ω12. This pattern indicates that many ini-423

tially incorrect answers stem from retrieval failure424

of either the first hop, the second hop, or both dur-425

ing the reasoning process. Additionally, recalling426

the second-hop facts is more challenging for LLMs,427

as shown by the higher ER after enhancing ω2 com-428

pared to ω1. Suppressing factual information sig-429

nificantly harms reasoning performance, with accu-430

racy dropping by over 77% on average when both431

factual elements are suppressed. Therefore, the 432

successful retrieval of factual associations at each 433

reasoning step is crucial for correct reasoning. 434

Finding 2 CoT strengthens a passive internal re- 435

trieval of relevant facts, implicitly prompting the 436

expression of factual triplets. Evidence 1: In Table 437

3, across the scenarios of no CoT, zero-shot CoT, 438

and few-shot CoT, suppression of factual KNs re- 439

sults in SRNo_cot > SRZero_shot and SRNo_cot > 440

SRFew_shot, which indicates that CoT likely stimu- 441

lates the hydra effect (McGrath et al., 2023), which 442

implements actively self-repairing computations to 443

compensate the suppression effects caused by low 444

activation levels of KNs. Evidence 2: Similarly, 445

enhancement of factual KNs results in ERNo_cot < 446

ERZero_shot and ERNo_cot < ERFew_shot, which 447

suggests that CoT further stimulates the internal 448

recall process within LLMs, thus strengthening the 449

enhancement effects of KNs. Therefore, CoT in- 450

deed can contribute to the recalling process. 451

6 Analysis of Shortcuts 452

In this section, we investigate whether successful 453

two-hop reasoning implies the successful recall of 454

factual knowledge. In other words, we examine 455

whether accurate reasoning outcomes stem from a 456

thorough grounding in multi-hop knowledge rea- 457

soning or are facilitated by alternative shortcuts. 458

459

6.1 Experiment 460

Setup We investigate the utilization of individual 461

fact triplets in correctly answered two-hop ques- 462

tions by analyzing the KN Scores for each triplet. 463

We compare these scores with those observed dur- 464

ing single-hop queries to establish a threshold, de- 465

noted as τ , which serves as a benchmark for iden- 466

tifying the effective use of facts in the reasoning 467

process. If the activation level of KNs falls signifi- 468

cantly below this threshold in comparison to single- 469

hop queries, this indicates an under-utilization of 470

the corresponding fact. Conversely, if it exceeds the 471

threshold, the fact is considered adequately utilized. 472

Using this criterion, we classified the correctly an- 473

swered questions into four distinct categories: (1) 474

FT: Unsuccessful recall of the first-hop fact but 475

successful second-hop recall; (2) TF: Successful 476

first-hop recall but unsuccessful second-hop recall; 477

(3) FF: Neither fact successfully recalled and (4) 478

TT: Both facts successfully recalled. Except for TT, 479

the other three situations are defined as Shortcuts. 480
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Figure 4: An in-depth analysis of shortcut scenarios under no CoT. TT represents successful recall of both facts.

Relational Facts Type Examples

⟨ Middlemarch,
author,
George Eliot⟩

⟨George Eliot,
place of birth,
London⟩

Distraction Context: Carl Sagan works at Cornell University.
Question: Where did the author of Middlemarch pass away? A:

Conflict 1 Context: The author of Middlemarch is Jean Genet.
Question: Where did the author of Middlemarch pass away? A:

Conflict 2 Context: George Eliot died in the city of Atlanta.
Question: Where did the author of Middlemarch pass away? A:

Table 4: Knowledge conflict and knowledge distraction examples

6.2 Results Analysis481

According to Table 5, under normal conditions, a482

considerable proportion of correctly answered ques-483

tions under no CoT setting rely on shortcuts, possi-484

bly due to word associations intrinsic to LLMs,as485

observed by Yang et al. (2024). Notably, the486

Mistral-7B model stands out for its unexpected487

reliance on shortcuts to solve over 44 percent of the488

questions successfully. Even with large-scale mod-489

els possessing 7 billion parameters, LLMs still rely490

on certain segments of the reasoning chain to arrive491

at answers. The introduction of CoT effectively492

decreases the trend of taking shortcuts by forcing493

LLMs to recall more relevant facts and engage in494

multi-hop reasoning. Under few-shot CoT setting,495

all LLMs solve over 90 percent of questions on496

average through multi-hop reasoning, reducing the497

ratio of shortcuts to nearly zero.498

Figure 4 provides a closer look at the shortcut499

phenomenon. The percentage of FF is significantly500

low, illustrating that it is hard for LLMs to fail501

to retrieve any factual information relevant when502

presented with the clues of overlapping entities or503

relational vocabulary in queries. For most instances504

of shortcuts, LLMs prefer to utilize the second-hop505

fact to directly answer reasoning questions, skip-506

ping the intermediate reasoning steps and relying507

on the object o2 in the second-hop to cheat (a high508

ratio for FT). For TF cases, there might exist the di-509

rect associations between the head entity s and the510

tail entity o2 leveraged to derive correct answers.511

Models Mistral-7B LLaMA2-7B LLaMA3-8B

MH SC MH SC MH SC

No CoT 55.75 44.25 60.51 39.49 71.89 28.11
Zero-shot 70.84 29.16 64.26 35.74 95.66 4.34
Few-shot 91.23 8.77 89.02 10.98 97.65 2.35

Table 5: Results of taking shortcuts. MH denotes suc-
cessful retrieval of both facts while others denote by SC.

7 Impact of Contextual Conflict 512

The capacity of utilizing internal factual knowledge 513

is contingent not solely upon the intrinsic properties 514

of LLMs, but is also significantly influenced by the 515

context within which they operate. This section 516

elucidates how the presence of knowledge conflicts 517

within a given context can impact the mechanisms 518

of the retrieval process during reasoning. 519

7.1 Experiment 520

Setup For each data point, we formulate a single- 521

hop conflict fact by devising a set of potential ob- 522

jects denoted as Ocandi for its r. From this set, we 523

deliberately select an object o∗ ̸= o to introduce a 524

knowledge conflict. In contradistinction, we also 525

fabricate an entirely unrelated fact for each data 526

point to serve as a distractor, referred to as knowl- 527

edge distraction. We then respectively append the 528

knowledge conflict and knowledge distraction sen- 529

tences before the two-hop question, which is input 530

into LLMs. Then we observe the values of KN 531

Scores for each-hop fact. The examples of knowl- 532

edge conflict and distraction for the first-hop and 533

the second-hop facts are shown in Table 4. 534
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Figure 5: Results of constructing the knowledge distrac-
tion and knowledge conflict for the first-hop fact.

7.2 Results Analysis535

The presence of knowledge conflict within the536

context consistently augments the faithfulness of537

LLMs in the corresponding fact. According to538

Figure 5 and Figure 6, the context of knowledge539

conflict results in the highest KN Scores of the cor-540

responding hop fact, which indicates counterfactual541

context significantly improves the internal retrieval542

of that corresponding hop fact. It illustrates LLMs543

exhibit greater confidence in their encoded knowl-544

edge when confronted with knowledge conflict, a545

finding that aligns with the studies conducted by546

Zhou et al. (2023) and Li et al. (2023). When the547

knowledge presented in the context conflicts with548

the second-hop fact, it not only reinforces the re-549

trieval of the second-hop fact but also enhances the550

recall of the first-hop fact. It is plausible that the551

introduction of the subject o1 encourages LLMs to552

recall the precise triplet (s, r1, o1). However, this553

effect does not extend to the first-hop fact. The554

occurrence of knowledge distraction appears not to555

cause much obstruction to the factual recall within556

LLMs. On the contrary, it may even stimulate557

LLMs to retrieve more facts sometimes, as evi-558

denced by the high KN Scores for the first-hop559

fact of LLaMA2-7B when the knowledge distrac-560

tor corresponding to the second-hop fact appears561

in Figure 6.562

8 Related Work563

Multi-hop Reasoning Multi-hop reasoning564

poses a significant challenge for LLMs. Several565

studies have endeavored to address this chal-566

lenge through the development of more faithful567

reasoning techniques (Creswell and Shanahan,568

2022; Chen et al., 2023b; Creswell et al., 2023).569

One such approach is CoT, which stimulates570

LLMs to produce deductive intermediate steps,571

fostering a step-by-step analytical process (Chu572

Figure 6: Results of constructing the knowledge distrac-
tion and knowledge conflict for the second-hop fact.

et al., 2024). Another line of research is focused 573

on visualizing the implicit logical structures 574

within LLMs from the perspective of mechanistic 575

interpretability (Yang et al., 2024). For example, 576

a recent study by Hou et al. (2023) recovers the 577

reasoning tree from models’s attention patterns 578

using MechanisticProbe. 579

CoT Mechanism A large body of literature is 580

dedicated to the theoretical and empirical explo- 581

ration of the mechanism underlying CoT (Saparov 582

and He, 2023; Tan, 2023; Feng et al., 2023; Prys- 583

tawski et al., 2023; Xie et al., 2024). Some research 584

endeavors to delve into a reverse-engineering anal- 585

ysis of CoT prompting, uncovering the intricate 586

information pathways that facilitate the generation 587

of responses (Dutta et al., 2024). However, the ma- 588

jority of these studies concentrate on the rationales 589

produced by CoT and have largely overlooked the 590

broader implications for factual retrieval processes. 591

In our current work, we complement this aspect and 592

present compelling evidence that CoT significantly 593

bolsters the internal recall of factual information. 594

9 Conclusions 595

This paper aims to provide a comprehensive under- 596

standing of factual recall behaviors for LLMs. We 597

find that a considerable portion of reasoning fail- 598

ures are due to retrieval failures. Manually enhanc- 599

ing the internal recall within LLMs can improve 600

reasoning performance. For LLMs, they not only 601

rely on multi-hop reasoning but also rely on other 602

inference ways in LLMs such as shortcuts. CoT 603

can significantly stimulate LLMs to recall more 604

facts by compelling models to engage in step-by- 605

step thinking, diminishing the possibilities of tak- 606

ing shortcuts. The knowledge conflict existing in 607

context could improve the confidence of parametric 608

knowledge, therefore enhancing the internal recall. 609
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Limitations610

While our study provides novel insights into the611

internal factual recall behaviors of LLMs during612

reasoning tasks, it is important to acknowledge613

several limitations.614

Generalizability: While the current study is pri-615

marily based on specific LLMs and the TFRKN616

dataset, future research should extend these find-617

ings to verify their generalizability across various618

models and datasets619

Theoretical Analysis: Although empirical evi-620

dence has been provided through targeted interven-621

tions, a deeper theoretical analysis is needed to622

fully comprehend the underlying reasons for the623

observed phenomena.624

Practical Applications: The paper discusses the-625

oretical aspects and potential improvements in rea-626

soning accuracy but does not delve into how these627

findings can be applied in practical scenarios to628

enhance the reasoning capabilities of LLMs.629

Impact of Contextual Factors: While the paper630

touches upon the influence of contextual conflicts631

on knowledge retrieval, a more comprehensive anal-632

ysis of various contextual factors and their impact633

on reasoning is needed.634
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A Details of Dataset Construction 908

A.1 Sampling two-hop factual triples 909

Our dataset is constructed based on Wikidata (Vran- 910

dečić and Krötzsch, 2014), a structurally optimized 911

database covering nearly all domains. First we 912

show manually selected relations that are used to 913

construct two-hop relations: 914

• P30, P36, P35, P1037, 1308, P164, P449, P488, 915

P178, P159, P286, P413, P641, P800, P937 916

• P136, P106, P495, P740, P37, P407, P170, 917

P50,P364,P112, P108, P175, P27, P40, P69, 918

P19 919

While LLMs have been shown to store a vast 920

amount of factual knowledge, studies indicate that 921

they are more likely to recall triplets related to pop- 922

ular entities (Mallen et al., 2023). Therefore, when 923

constructing the dataset, we employ the cumula- 924

tive pageviews count over the past 12 months as 925

a measure and select the top 500 popular entities 926

based on this criterion. Two-hop reasoning chains 927

are then extracted from the sub-graphs consisting 928

solely of the aforementioned relations and entities, 929

like (Holden Caprice, manufacturer, General Mo- 930

tors), (General Motors, chairperson, Mary Barra). 931

A.2 Generating Queries using ChatGPT 932

Having acquired the triplet format of reasoning 933

queries, our current objective is to transform these 934

triplets into natural language expressions in queries. 935

Moreover, for effective integration of the Knowl- 936

edge Neuron technique, it is essential to rephrase 937
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individual triplets into multiple natural language938

expressions. As knowledge neurons demonstrate939

indifference towards specific knowledge represen-940

tations, employing diverse question formats aids in941

identifying authentic knowledge neurons. Whether942

in the formulation of reasoning queries or the gen-943

eration of individual triplet queries, we capitalize944

few-shot learning capabilities of ChatGPT (gpt-3.5-945

turbo) to autonomously generate natural language946

questions. Concretely, we leveraged few-shot ca-947

pabilities in LLMs to generate multiple queries for948

individual fact (s, r, o), as well as reasoning ques-949

tions from two-hop facts ((s1, r1, o1), (o1, r2, o2)).950

For the generation of single-fact queries, we pro-951

vide relation labels and relation definitions as addi-952

tional information for LLMs to generate accurate953

subject-relation queries (Figure 8). For the gen-954

eration of reasoning questions, two-hop relation955

labels and explanations are also provided besides956

four in-context demonstrations (Figure 7).957

An instance from TFRKN is depicted in Table 6.958

This approach not only surpasses the limitations im-959

posed by manual templates but also guarantees the960

production of high-quality and diverse questions.961

Overall, the dataset comprises 4,550 instances span-962

ning 213 unique combinations of relations.

Triples
(Holden Caprice, manufacturer, General
Motors)
(General Motors, chairperson, Mary Barra)

Fact1Query

1. Who or what company manufactures
Holden Caprice?
2. What company created Holden Caprice?
3. Who is responsible for making Holden
Caprice?
4. What entity produces Holden Caprice?
5. Which organization is behind the
production of Holden Caprice?

Fact2Query

1. Who is the chairperson of General
Motors?
2. Who is the head of General Motors?
3. Who presides over General Motors as its
chairperson?
4. Who currently serves as the chairperson
of General Motors?
5. What is the name of the person who
chairs General Motors?

Reason_Q Who is the chairperson of the manufacturer
of Holden Caprice?

Table 6: An instance from TFRKN963

B Knowledge Neurons964

In this part, we detailedly illustrate the method-965

ology of the identification of KNs using the in-966

tegrated gradient method. Given a specific rela-967

tional fact: (s, r, o); A set of knowledge-expressing 968

queries ( Fact1Query and Fact2Query in Table 6): 969

< query1, query2, · · · , queryL >. We define the 970

representation of the i-th neuron in the l-th inter- 971

mediate layer in FFNs as wl
i, 972

P[t1,··· ,tn],y(w
(l)
i ) = P (y| [t1, · · · , tn] , w(l)

i =
∼
w

(l)

i ) (9) 973

where [t1, t2, · · · , tn] represents the token se- 974

quence of inputs,
∼
w

(l)

i represents the constant 975

value assigned to w
(l)
i , and Equation 9 denotes the 976

probability of next token y predicted by LLMs, 977

given the token sequence [t1, t2, · · · , tn] after w(l)
i 978

is assigned the value
∼
w

(l)

i . 979

The attribution scores quantify the contribution 980

of individual neurons to correct predictions. By 981

gradually restoring each neuron’s value from 0 to 982

its original level, the gradients of the probability of 983

the correct token with respect to each neuron are 984

integrated, as shown in Equation 10. 985

986

Attr(w
(l)
i ) = w

(l)
i

∫ 1

β=0

dP[t1,··· ,tn],y(βw
(l)
i )

dw
(l)
i

dβ (10) 987

Equation 10 is applied to the calculation of attribu- 988

tion scores for single-token target o. The method 989

for computing attribution scores for multi-token 990

target o is described in Equation 11. Assuming 991

the tokenized sequence of a relational-fact query 992

and the corresponding ground truth respectively are 993

[q1, q2, · · · , qn] and [gt1, gt2, · · · , gtm] 994

∼
Attr(query, w(l)

i ) =

1

m

m∑
k=1

w
(l)
i,k

∫ 1

β=0

dP[q1,··· ,qn,··· ,ak−1],gtk (βw
(l)
i,k)

dw
(l)
i,k

dβ

(11) 995

where ai represents the generated token with the 996

highest predicted probability at i-th time. Due to 997

the intractability of the continuous integration in 998

Equation 10, an approximation is made using Rie- 999

mann integration (equation 12). Substituting Equa- 1000

tion 12 into Equation 11 yields Equation 13. 1001

Attr(w
(l)
i ) =

w
(l)
i

N

N∑
j=1

∂P[t1,··· ,tn],y(
j
N
w

(l)
i )

∂w
(l)
i

(12) 1002

1003
∼

Attr(query, w
(l)
i ) =

1

m

m∑
k=1

w
(l)
i,k

N

N∑
j=1

∂P[q1,··· ,qn,a1,··· ,ak−1],gtk (
w

(l)
i,k

)

N
)

∂w
(l)
i,k

(13) 1004

Given that knowledge neurons surpass linguistic 1005

expressions and govern the expression of authentic 1006
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System: 
You are a powerful cloze template generator for wikidata relations.
Users will provide 2 Wikidata triples (s1,r1,o1),(o1,r2,o2) and you will help write a 2-hop

question to introduce o2 from s1. Don’t mention any bridge entities. Users will give the
descriptions of relation r1 and r2 to help you construct the template for the question.

input:
Triples:(Amazon Prime Video, developer, Amazon), (Amazon, industry, e-commerce),
Two-hop relations:[ developer, industry],
<developer>: organization or person that developed the item,
<industry>: specific industry of company or organization,

Output:
Question: What is the specific industry of the developer of Amazon Prime Video?
[The other three in-context demonstrations abbreviated]

User :
input:

Triples:(French Revolution, country, French), (French, official language, French)
Two-hop relations:[country, official language],
< country >: sovereign state that this item is in (not to be used for human beings),
< official language >: language designated as official by this item,

Output: xxx

Figure 7: An example of using ChatGPT to generate 2-hop questions from Wikidata triples.

System: 
You are a powerful question generator for wikidata relations. Users will provide a wikidata triple (s, r, o),and you will help 
write complete questions in natural English to ask o from subject s. 
Don't mention o in questions and be as clear and concise as possible. The questions should only 
include the entity s. Users will give the definition of r to help you construct questions.
input:

<triple>: [Al Gore, place of birth, Washington, D.C.]
<relation label>: place of birth
<relation description>: most specific known (e.g. city instead of country, or hospital 
instead of city) birth location of a   
person, animal or fictional character
Write more than 5 possible questions in natural English.

output:
1.Where was Al Gore born?
2.In which city was Al Gore born?
3.What's the place of Al Gore's birth?
4.What is Al Gore's birth city?
5.What is the birth city of Al Gore?
6.Where did Al Gore originate from?
[The other three in-context demonstrations abbreviated]

User : input:
<triple>: [Ellie Kemper, country of citizenship, United States of America]
<relation label>:country of citizenship
<relation description>: the object is a country that recognizes the subject as its citizen
Write more than 5 possible questions in natural English.

Output: xxx

Figure 8: An example of using ChatGPT to generate single-fact queries from triples and relation information(labels
and descriptions).

knowledge, we retain knowledge neurons shared1007

by more than p% queries as Equation 14.1008

KN =
L⋂

k=1

KNqueryk

KNqueryk ={w(l)
i |

∼
Attr(queryk, w

(l)
i ) > τ,∀i, l}

(14)1009

C Peformance of LLMs under CoT 1010

C.1 CoT Results 1011

We present the reasoning accuracy of two addi- 1012

tional models, LLaMA2-7B and LLaMA3-8B, on 1013

the filtered TFRKN dataset across various relations 1014
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Figure 9: The reasoning accuracy of LLaMA2-7B
across different relations under three CoT settings

Figure 10: The reasoning accuracy of LLaMA3-8B
across different relations under three CoT settings.

Figure 11: Distribution of intermediate layers in all
FFNs for Mistral-7B.

Figure 12: Distribution of intermediate layers in all
FFNs for LLaMA2-7B

Figure 13: Distribution of intermediate layers in all
FFNs for LLaMA3-8B.

under three distinct conditions: no CoT, zero-shot1015

CoT, and few-shot CoT. The comparative results1016

are respectively illustrated in Figures 9 and 10. Fig-1017

ure 9 reveals that LLaMA2-7B faces significant1018

challenges in addressing two-hop factual reasoning1019

questions, particularly in comparison to LLaMA3-1020

8B1 and Mistral-7B.1021

Further, Figures 11, 12, and 13 visually depict1022

the activation patterns across the entire neuron spec-1023

1https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

trum of all intermediate layers within Feedforward 1024

Neural Networks (FFNs). Given the extensive neu- 1025

ron count, the heatmaps have been appropriately 1026

scaled for clarity. The vertical axis corresponds 1027

to the layer depth, while the horizontal axis indi- 1028

cates the neuron index within an intermediate layer. 1029

These visual representations effectively highlight 1030

the distribution of Knowledge Nodes (KNs), which 1031

are predominantly concentrated in the uppermost 1032

layers of LLMs. 1033

Additionally, it is observable that the application 1034

of CoT activates a larger set of knowledge neurons 1035

during the factual reasoning process, thereby fa- 1036

cilitating the LLMs’ ability to recall and extract 1037

internal knowledge. This observation reaffirms the 1038

pivotal role of CoT in the factual recall mechanism. 1039

C.2 CoT prompting templates 1040

In our experimental design, we have established 1041

two distinct prompting configurations for CoT: 1042

zero-shot CoT and few-shot CoT. In the case of 1043

zero-shot CoT, we simply precede the reasoning 1044

question with the directive "Let’s think step by 1045

step". Conversely, for few-shot CoT, we provide 1046

n-shot examples to guide the model’s reasoning 1047

process as in Figure 14.

###Questions:
Who is the chairperson of the 
institution
where Harvey Mansfield received his
education?

###Thoughts:
1. Harvey Mansfield received his

education in Harvard University.
2. The chairperson of Harvard

University is Lawrence Bacow.
###Answer:

Lawrence Bacow
[other in-context demonstrations ... ]

Figure 14: The prompt of few-shot CoT.
1048

D Experimental Details 1049

We present a comprehensive overview of our ex- 1050

perimental setup. Our experiments are conducted 1051

using a refined subset of TFRKN dataset. To ensure 1052

that LLMs know each factual element required by 1053

the factual reasoning questions, we meticulously 1054

filtered out unqualified data points for each model. 1055

By taking the intersection of these filtered datasets, 1056

we culled a dataset comprising 1072 qualified data 1057

points. The process of identifying KNs for each 1058
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fact triplet proves to be the most computationally1059

intensive, with each model taking 96 GPU hours to1060

find all KNs. In the context of the location experi-1061

ment, we configured the integrated gradient steps1062

to 20 and set the parameter of the shared percentage1063

of coarse neurons to 0.2. The experiments were ex-1064

ecuted on a system equipped with NVIDIA A1001065

80GB GPUs, and further details of the software1066

environment are available in our code repository.1067

For knowledge conflict experiments, we construct1068

a knowledge distraction sentence pool, randomly1069

assigned to each reasoning question while knowl-1070

edge conflict in cloze task is constructed by a set1071

predefined templates of relations. All experimen-1072

tal results are the mean values of three repetitive1073

experiments.1074
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