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ABSTRACT

We present a scalable framework designed to craft efficient lightweight models for video object
detection utilizing self-training and knowledge distillation techniques. We scrutinize methodologies
for the ideal selection of training images from video streams and the efficacy of model sharing
across numerous cameras. By advocating for a camera clustering methodology, we aim to diminish
the requisite number of models for training while augmenting the distillation dataset. The findings
affirm that proper camera clustering notably amplifies the accuracy of distilled models, eclipsing
the methodologies that employ distinct models for each camera or a universal model trained on the
aggregate camera data.

Keywords Object Detection, Knowledge Distillation, Active Learning, Neural Network Deployment.

1 Introduction

Traditional training methodologies for Deep Neural Networks (DNNs) face substantial barriers, including significant
time, financial investment, and labor for dataset preparation and training Beyer et al. [2022]. These challenges create
limitations in operating and scaling ever-evolving video-analytics systems such as city-scale CCTV because 1) DNNs
need to be regularly fine-tuned to maintain performance and 2) update costs increase with the number of cameras.

To address these issues, we propose a large general-purpose model fine-tuning compact DNNs on subsets of cameras.
Our method facilitates localized consistent updates, which are crucial for maintaining local DNN performance in
individual cameras Manjah et al. [2023] and promoting cost-efficient training and scalability Hill [1990], Hossfeld
et al. [2023], Fox et al. [1997]. This paper builds on the Stream-Based Active Distillation (SBAD) mechanism, initially
presented in Manjah et al. [2023], which selects images from a single stream on-the-fly for training a low-complexity
DNN optimized for local conditions. We propose a novel multi-stream SBAD approach based on clustering camera
nodes in a multi-camera environment. This method rests on the premise that models fine-tuned on a specific camera
domain are likely to transfer effectively to other domains with similar characteristics.

Our cluster-based fine-tuning (Fig. 1) reduces the marginal cost of training additional units and enhances DNN accuracy
by striking a balance between specificity (allocating a model for each camera) and universality (utilizing a larger, diverse
training set). In other words, stream aggregation not only reduces the requirement for numerous student models but
also improves their prediction accuracy compared with training a separate model for each stream with only its specific
images. Moreover, this method achieves higher accuracy than training a universal student model with images from all
streams, indicating that employing multiple clusters leads to superior accuracy.
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is funded by the National Fund for Scientific Research (FNRS). Davide Cacciarelli is affiliated with Imperial College London.
16/04/2024 - This manuscript is currently under review at IEEE Transactions on Circuits and Systems for Video Technology.

ar
X

iv
:2

40
4.

10
41

1v
1 

 [
cs

.C
V

] 
 1

6 
A

pr
 2

02
4

https://orcid.org/0000-0001-9034-0794
https://orcid.org/0000-0001-6664-9038
https://orcid.org/0000-0001-5049-2929
https://orcid.org/0000-0002-7243-4778


Camera clustering for scalable stream-based active distillation A PREPRINT

C2

C1

Teaching 
Server

C5

C6

C3 St
ud

en
t 1

Student 3

Student 2
C2 C5

C6
C7

C4

C1

C3

C7C4
Legend
Images Transmission DataCam Model

Figure 1: Updates of video analytics models: Cameras (C1 to C7) send selected image data to a central server, which
pseudo-labels, trains and updates specialized Students models for groups of similar cameras. These updated models are
then sent back to their associated cameras.

Our key contributions include:

1. The validation of active distillation in a multi-camera setup. We showed that selecting the frames obtaining the
highest confidence score by local models results in the most accurate DNN. This includes an analysis of the
potential biases of model-based pseudo-annotations.

2. Introduction of a novel camera-clustering based on model cross-performance, coupled with an in-depth analysis
of its impact on model accuracy. This dual contribution showcases model compactness improvements without
sacrificing accuracy and explores how various clustering strategies affect training complexity and model
performance.

3. Novel data and codebase available at https://github.com/manjahdani/CSBAD/ to support further re-
search.

2 Related Work

We previously introduced Stream-Based Active Distillation (SBAD), a technique combining Knowledge Distillation
(KD) with Active Learning (AL) to train compact DNN models tailored for their video-stream Manjah et al. [2023].
We had developed sampling techniques for unlabeled streaming data, mitigating labeling inaccuracies and aiming to
assemble the smallest training set that achieves the best local performance. This paper expands upon this by proposing
Clustered Stream-Based Active Distillation (CSBAD), which organizes cameras’ data into clusters; balancing training
complexity and improving model accuracy. This section delves into foundational principles of SBAD — specifically,
KD and AL — and reviews the existing literature on scene clustering.

2.1 Knowledge Distillation

KD is a process where a compact Student model learns from a more complex Teacher model Hinton et al. [2015]. It is
used to create lightweight models that are suited to limited storage and computational capacities Cheng et al. [2018],
as encountered on edge devices Mishra and Gupta [2023], Tanghatari et al. [2023]. Through regular updates, it can
ensures that the Student model continues to perform effectively even when operating on changing data distributions
Saito et al. [2019].

Recently, KD has supported innovative applications in video analytics, particularly through Online Distillation Cioppa
et al. [2019], Mullapudi et al. [2019], where a compact model’s weights are updated in real time to mimic the output
of a larger, pre-existing model. Other notable applications include Context- and Group-Aware Distillation Rivas et al.
[2022], Habibian et al. [2022], Vilouras et al. [2023], which accounts for context and/or sub-population shifts when
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delivering student models. Finally, Active Distillation Baykal et al. [2022] combines AL with KD to train students with
a reduced number of appropriately selected samples, while Robust Distillation Goldblum et al. [2020] explores the
transfer of adversarial robustness from Teacher to Student.

In our work, we studied the impact of using KD instead of a human annotator on Students’ accuracy.

2.2 Active Learning

AL aims to select and label the most informative data points to reduce the number of samples required to train a model
Settles [2009]. AL can be implemented offline (Pool-Based AL) or on-the-fly (Stream-Based AL), from continuous
streams.

Stream-Based AL is the most relevant for video-based systems, where vast amounts of unlabeled data arrive continuously,
making data storage impractical. However, most of the AL methods developed for Deep Neural Networks (DNNs)
have been focused on the pool-based scenario Sener and Savarese [2017], Yoo and Kweon [2019], Ash et al. [2019],
Elhamifar et al. [2013], Agarwal et al. [2020], Prabhu et al. [2020], Sinha et al. [2019], Yuan et al. [2021]. Stream-based
AL has mostly been studied in conjunction with classification or regression models Cacciarelli et al. [2022a, 2023,
2022b], with traditional statistical models Rožanec et al. [2022], Narr et al. [2016]. Those methods do not generalize to
DNNs. In contrast, our work considers AL to train a DNN with images labeled by a Teacher model (and not a human).
As an original contribution, we show that the confidence associated with automatic labeling of training samples plays a
crucial role in the AL selection process.

2.3 Scene Clustering

In multi-camera systems, the technique of scene clustering plays a crucial role in aggregating and synthesizing
information from diverse sources effectively. This technique supports video summarization Aner and Kender [2002],
anomaly detection Sun and Gong [2023], and content recommendation Wang et al. [2013], with hierarchical methods
addressing redundancy in tracking and overlapping scenes Li et al. [2023], Szűcs et al. [2023], Wang et al. [2008],
Specker et al. [2021], Patel et al. [2021], Simon et al. [2010]. Despite advances in techniques such as multiview
clustering Peng et al. [2023], Huang et al. [2023], a significant challenge persists in selecting representative frames
for each video and, to the best of our knowledge, no previous work has studied the aggregation of views to reduce
the number and improve the accuracy of student models serving a multi-camera system. Our research introduces a
novel scene-clustering approach that groups videos based on the cross-dataset performance of models with the aim of
improving model training and system efficiency in multi-camera environments.

3 Problem Statement

We focus on large-scale networks where nodes, equipped with compact DNNs, analyze video-streams such as city-scale
CCTVs. All nodes are connected to a central training server. In our system, the central unit collects the images from
the nodes, annotates them, and trains the DNNs to be deployed on the nodes. In practice, DNNs may require periodic
updates or adjustments when underperforming due to changes in the operating conditions. Furthermore, the system can
grow with the deployment of additional sources of video. Therefore, we seek a cost-effective scalable Hill [1990],
Hossfeld et al. [2023] training methodology for DNNs suited to the visual specificity of their video streams.

Since automatic management of the system is desired Fox et al. [1997], annotation of the collected data is implemented
using a large, general purpose Teacher model instead of human annotators. In practice, the Teacher may be inaccurate,
potentially causing Students DNNs to overfit to incorrect pseudo-labels. This phenomenon is generally referred to as
confirmation bias Arazo et al. [2020], and is further studied in Section 6.2.

Obviously, the amount of data collected per stream and the number of trained DNNs directly affect the maintenance
(DNNs update) costs and system scalability. To mitigate training complexity in large-scale systems, we propose to
cluster streams based on their similarities and to train a single model for each cluster. Choosing the right number
of clusters is not trivial. Indeed, fewer but larger clusters allow models to train on a broader diversity, enhancing
adaptability Chen et al. [2023]. Conversely, numerous but smaller clusters fine-tune models to the nuances of individual
streams but are trained with less data Manjah et al. [2023].

Given a fixed number of training images per stream, the partitioning in clusters also calls for reevaluation of the training
management. Indeed, in DNN training, the number of times a model updates its weights in one epoch depends on
the amount of training images. Hence, with a fixed number of training epochs, models trained over smaller clusters
update their weights less frequently. This disadvantages those models compared with those trained on larger clusters.
Therefore, in scenarios where computational power is abundant, we could investigate increasing the number of epochs
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to reach the model’s peak accuracy even when the training set gets smaller. In this context, our work addresses four
research questions:

1. How can we select images from each stream to maximize the resulting model’s accuracy?

2. To what extent does the quality of pseudo-labels affect downstream models’ performance? How can we
mitigate the impact of inaccurate pseudo-labels and reduce the risk of confirmation bias?

3. Given a constant number of epochs per model, thereby keeping the overall training complexity constant, which
partitioning results in the highest model performance?

4. Given a constant number of iterations (gradient descents) per model, which partitioning results in the highest
model performance?

4 Methodology

Consider a set S of N video streams {X1, · · · ,XN}, with each Xi linked to a compact Student model, θi for object
detection. To maintain Students up-to-date, models are fine-tuned on a central server using selected samples from the
videos. The two-level system, encompassing Students and a Teaching Server, is detailed below.

4.1 Student-level

Students operate on cost-effective hardware and use a SELECT (I) function to decide whether an image I is informative
to train the model. SELECT functions must be efficient. Efficiency is crucial; if SELECT takes longer than the frame
interval to make decisions, a buffer must be used to store incoming images. This increases the demand for data
storage, thus conflicting with scalability goals. Additionally, to reduce training cost, the set of selected frames and their
associated pseudo-labels, which constitutes the training set Li, must not exceed a frame budget B per student, hence,
|Li| ≤ B, for all i = 1, · · · , N .

4.2 Teaching Server

To moderate annotation costs, the images are pseudo-labeled by a universal but imperfect model Θ referred to as
Teacher Buciluundefined et al. [2006]. Upon receiving an image I from a stream Xi, Θ pseudo-labels it by generating a
set of bounding boxes P̃ and then adds the pair (I, P̃ ) to the image stream’s database Li, associated to the ith student.
This process results in a collection of sets L1, · · · ,LN . Next, the server employs a CLUSTER method that partitions
the databases {Li}i=1,...,N into K ≤ N training sets {E1, . . . , EK}. The CLUSTER approach builds on the premise
that models are transferable between similar streams and is detailed in Section 4.4. We also define a mapping function,
map(·), linking Students to their clusters, thus enabling the appropriate updating of their weights post-training.

K models are then trained on each Ek, with k = 1, · · · ,K, and deployed on associated cameras. Algorithm 1 provides
the pseudo-code of the method.

This research aims to explore the trade-offs involved in choosing K. On one hand, a small K implies models trained
with a broad diversity and good applicability across various students, potentially with improved generalization. On the
other hand, a K approaching N may tailor models to the nuances of individual cameras.

4.3 Our SELECT Strategy

Our investigation into video sampling strategies underscored the superiority of the TOP-CONFIDENCE approach. In
this method, the local DNN Student θ begins with a warm-up phase by inferring on w frames, without selecting any
for training. For each frame It, where t ∈ {1, · · · , w}, it produces a set of L bounding boxes P̃t = {p̃1t, · · · , p̃Lt}
along with their associated confidence score Ct = {c1t, · · · , cLt} predictions, computed as Redmon et al. [2016]. Each
frame is then scored C(It) based on the highest confidence score, that is, C(It) = maxl clt, where l ∈ {1, ..., L}.
This process establishes a threshold ∆ as the (1− α)-upper percentile of C(It), aiming for an α selection rate where
P(C(It) ≥ ∆) = α. Subsequently, for t > w, a frame It is forwarded to the Server if C(It) ≥ ∆. The pseudo-code is
presented in Algorithm 2.

Note that α can be carefully increased to allow more permissive selection, meeting the image budget. This was applied
in our experiments (see Section 5.4).
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Algorithm 1 CSBAD Framework

Require: pre-trained student model θ, a general purpose teacher model Θ, a training frame budget B, a SELECT
strategy, image streams {X1, · · · ,XN}, a mapping rule CLUSTER, K partitions.

Ensure: B ≥ 1, 1 ≤ K ≤ N .
▷ INITIALIZATION & SAMPLING

1: for Xi ∈ S do ▷ i = 1, · · · , N
2: θXi ← θgeneral

3: Li ← ∅
4: t← 0 ▷ Timestamp
5: while |Li| ≤ B do
6: Observe current frame It
7: if SELECT(It) = TRUE then
8: P̃t ← Θ(It) ▷ Infer pseudo-labels
9: Li ← Li ∪ (It, P̃t)

10: end if
11: t← t+ 1
12: end while
13: end for

▷ CLUSTERING
14: {E1, · · · , Ek} ← CLUSTER(L1, · · · ,LN ;K)

▷ STUDENTS FINE-TUNING
15: for k = 1, · · · ,K do
16: θEk ← train(θ,Ek)
17: end for

▷ UPDATE MODELS
18: for i ∈ 1, · · · , N do
19: θi ← θEmap(i)

20: end for
21: return {θi}i=1,··· ,N ▷ Return updated models

Algorithm 2 TOP-CONFIDENCE Thresholding for Object Detection

Require: model θ, budget B, warm-up period w, selection rate α.

1: Initialize confidence score array C with size w
▷ Collect Confidence Scores

2: for t = 1 to w do
3: P̃t, C̃t ← θ(It) ▷ Infer boxes and scores
4: C[t]← max(C̃t) ▷ Max score for It
5: end for

▷ Compute selection threshold ∆
6: ∆← percentile(C, 1− α)

▷ Forward frames meeting ∆ until budget is met
7: i← 0 ▷ Selected frames counter
8: while i < B and more frames available do
9: Ct ← max(θ(It)) ▷ Get max score for new It

10: if Ct ≥ ∆ then ▷ If meets ∆, forward
11: Forward It to server; i← i+ 1
12: end if
13: t← t+ 1 ▷ Next frame
14: end while
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4.4 Clustering

We propose a node clustering method for DNN training. Our method is based on the premise that once a model is
fine-tuned on a particular camera domain, it will likely transfer effectively to other camera domains with similar features.
Conversely, significant performance drops are expected across dissimilar domains.

CLUSTER uses a Hierarchical Clustering Algorithm after the initial training of N stream-specific Student models.
This algorithm does not need a pre-specified number of clusters. Instead, the resulting dendrogram can be cut at the
appropriate level to obtain an appropriate number of clusters.

Before discussing our method, we define the validation set Vi as the set of image and pseudo-label pairs (Ivalit , P̃it)
from a stream Xi. We also define the function f(θ,V) measuring the quality of a model θ on a set V .

STEP 1 – Train N Stream-specific Models: We fine-tune N 2 stream-specific models, denoted by θLi . They will
subsequently be grouped according to their validation performance on the sets {V1, . . . ,VN}. From an operational
standpoint, the choice of B and number of epochs for this step should align with your specific constraints and use case.
Generally, a higher training budget B allows for better capture of the stream’s distribution, thus the transferability (or
not) of models will be more pronounced, hence leading to more effective clustering.

STEP 2 – Compute Cross-Domain Performance: We compute the cross-domain performance matrix M ∈ RN×N ,
with each element Mij representing the performance metric f

(
θLi ;Vj

)
, which indicates how a model trained on

domain Xi performs on the validation set of Xj . The matrix is defined in Eq.1.

M :=

 f
(
θL1 ;V1

)
· · · f

(
θL1 ;VN

)
...

. . .
...

f
(
θLN ;V1

)
· · · f

(
θLN ;VN

)
 (1)

STEP 3 – Compute Distance Matrix: To quantify the dissimilarities between the models trained on different domains,
we calculate the distance matrix D. This matrix is computed using the pairwise Euclidean distances between the models’
performance vectors, derived from the cross-domain performance matrix M .

The distance matrix D is defined as:

Dij =

√√√√ N∑
k=1

(Mik −Mjk)2 for i, j = 1, . . . , N (2)

STEP 4 – Apply Single Linkage Clustering: Using Sibson [1973], we construct a dendrogram, i.e., a tree diagram
depicting how clusters merge based on minimum distance. Formally, for two clusters A and B, the single linkage
distance L(A,B) is given by Eq. 3

L(A,B) = min{Dij : i ∈ A, j ∈ B} (3)
where Dij is defined as in Eq. 2. This linkage criterion tends to merge clusters with their nearest elements.

STEP 5 – Define Clusters: We define the clusters by selecting a cut-off distance t on the dendrogram (see Fig. 3b),
guided by expertise, statistical methods, or visual analysis.

5 Materials And Methods

This section elaborates on the datasets, models, and evaluation metrics employed in our study.

5.1 Dataset

The Watch and Learn Time-lapse (WALT) dataset Reddy et al. [2022] features footage from nine cameras over several
weeks, offering a variety of viewpoints, lighting and weather conditions, including snow and rain. Data collection spans
periods ranging from one to four weeks per camera, resulting in a weekly range of 5,000 to 40,000 samples due to
asynchronous recordings and differing sampling rates (details can be found in the GitHub repository). Notwithstanding,
some instances of burst phenomena are observed, presenting cases of strong temporal redundancy.

2When N is too large, we can randomly select a small subset of the streams to conduct this step. This bounds the number of
stream-specific models to train, while providing sufficient diversity. The resulting cluster models are then deployed based on their
performance on the node’s validation set.
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5.2 Evaluation

System performance was evaluated by the accuracy of Student models on their respective camera.

5.2.1 Test sets

We had nine test sets, two from the original paper and seven that we annotated by selecting a week of footage from each
camera, which we excluded from training. These sets, now publicly available, facilitate further research (details and
links can be found in Supplementary Materials and Github repository).

5.2.2 Detection accuracy

In object detection model evaluation, the mAP50-95 metric signifies the mean Average Precision (mAP) across various
Intersection over Union (IoU) thresholds, spanning from 0.50 to 0.95 in increments of 0.05.

5.2.3 Adjusted Training cost

We define the training cost T as the total number of training iterations, which equates to the number of weight updates
within a model. To facilitate fair comparisons among models trained on clusters of varying sizes, we introduce an
adjusted training cost TN for a specified number of streams N . Considering the number of samples per stream B, we
adjust the epoch count to ensure that the iteration count remains consistent regardless of the cluster count K. This
calibration for models trained on any given cluster k, with k ∈ {1, . . . ,K}, is encapsulated in Eq. 4:

TN
k =

B

batch size
×

epochs|K=1 ×N

nk
(4)

Here, nk represents the stream count in cluster k, B is the number of images collected per stream, batch size is the
number of samples processed in one forward and backward pass, and epochs|K=1 denotes the number of epochs for the
universal model, i.e., when K = 1.

5.3 Models, Training and Distillation Implementation

We utilize models pretrained on the COCO dataset Lin et al. [2014] to ensure a broad foundational understanding of
the object detection task. We employ YOLOv8x6COCO as the Teacher ΘCOCO and YOLOv8nCOCO as the Student:
θCOCO. The architectures have 68.2 and 3.2 million parameters, respectively. Both models serve as the evaluation
benchmark. No preprocessing was done, but for post-processing, similar COCO object classes (bikes, cars, motorcycles,
buses, and trucks) were grouped into a "vehicle" category. The Student is then fine-tuned by default on 100 epochs,
which can vary according to the experiment. The batch size remains constant at 16. All other training parameters are
defaults as configured in Jocher et al. [2023].

5.4 SELECT an Parameters

Our investigation evaluates, alongside Top-Confidence, three other SELECT strategies:

• Uniform-Random: a frame is chosen if s ∼ U(0, 1) ≥ 1− α. To ensure statistical reliability, we conducted
six iterations with six different seeds. The variability in performance is quantified by the Margin of Error
(MoE), calculated as MoE = z × σ√

n
, where z represents the 1.96 z-score correlating with a 95% confidence

level, σ is the standard deviation of the scores, and n is the effective sample size.

• Least-Confidence: targets frames with minimal prediction confidence to present the model with challenging
instances. This method mirrors the Top-Confidence algorithm (2), albeit with a reversed selection criterion,
shifting from C(It) ≥ ∆ to C(It) ≤ ∆.

• N-First: opts for the initial B frames from the stream, establishing an unbiased baseline.

Standard parameters are set to α = 0.1 and w = 720. Relaxation was done in high-budget scenarios for cameras 3 and
9 due to data constraints, increasing α to 0.55 for camera 9 and 0.25 for camera 3, thus facilitating expedited frame
selection to fulfill our image budget.
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6 Results

Section 6.1 assesses the efficacy of various SELECT sampling strategies and examines how the number of images per
stream (B) affects the performance of individual Student models.

Next, we analyzed the correlation between the complexity of Teacher models and their tendency to induce confirmation
bias, as detailed in Section 6.2.

Section 6.3 considers the clustering of cameras. Sections 6.4 and 6.5 investigate the influence of cluster count and
training complexity on model performance.

6.1 Impact of SELECT and B

16 32 48 64 80 96 128 216 256
Samples Budget B

0.35

0.40

0.45

0.50

0.55

m
AP

50
-9

5

Low Budget - Mean mAP50-95 per Samples

N-First
Least-Confidence
Top-Confidence
YOLOv8nCOCO

YOLOv8x6COCO

uniform-random
95% Margin of Error Random

(a) Low Budget
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m
AP
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-9

5

High Budget - Mean mAP50-95 per Samples

N-First
Least-Confidence
Top-Confidence
YOLOv8nCOCO

YOLOv8x6COCO

uniform-random
95% Margin of Error Random

(b) High Budget

Figure 2: Average mAP50-95 scores for different training sample sizes, using four SELECT models. The number
of epochs is 100. Key observation are: 1) Top-Confidence is the best sampling strategy and 2) fine-tuned compact
models can outperform a Teacher YOLOv8x6COCO.

Student θCOCO is fine-tuned using B samples from a camera, selected on-the-fly according to the SELECT strategies
(detailed in Section 5.4). The resulting model is then evaluated on the camera’s test set. The low budget B ≤ 256
experiments were conducted across all cameras for each week, resulting in eighteen pairs per experiment. For the high
budget B > 500 scenario, we combined weekly data from each camera to reach the budget count, forming nine pairs
per experiment.

Figure 2 presents the average mAP50-95 scores as a function of B across different SELECT strategies, maintaining a
consistent 100 epochs for all tests. Key observations include the following:

1. Top-Confidence is the best sampling strategy. Conversely, N-First was catastrophic and performed worse
than the student when a small B was considered.

2. Using Top-Confidence, we outperformed the unfine-tuned models θCOCO and ΘCOCO with sample budgets
exceeding 48 and 750, respectively.

3. As B increases, the model quality improves but at a slower rate, suggesting the achievement of peak accuracy.

The findings emphasize the need for careful design of SELECT, particularly when the budget is limited. We observe that
when B is small, a bad selection can severely disrupt learning. Methods such as N-First and Random are ill-suited for
the redundant nature of video streams and tend to select frames with little or no relevant activity, penalizing the
learning process. Conversely, the Top-Confidence approach tends to select frames containing objects. Furthermore,
opting for higher-confidence frames can enhance the accuracy of pseudo-labels in a distillation scheme, while selecting
the least confident frames tends to amplify the teacher’s inaccuracies. The section 6.2 delves into this phenomenon,
known as confirmation bias.
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Although DNNs generally benefit from larger training sets, our observations reveal a plateau, indicating that beyond
B = 1500, adding more images from the same stream and acquisition period does not increase model performance
further.

6.2 Confirmation bias

Confirmation bias in semi-supervised or unsupervised learning can lead to significant errors by reinforcing incorrect
predictions and thereby misleading learning Arazo et al. [2020]. To identify strategies mitigating it, we conducted two
experiments exploring the interplay of Least/Top-Confidence with varying i) Teacher and ii) Student sizes. Model
size (Params) is quantified by the number of parameters in millions. In both experiments, models were trained for 100
epochs.

6.2.1 Impact of Teacher Size

In this experiment, we manually annotated 96 images sampled by a θCOCO Student utilizing the
Least/Top-Confidence approach and subsequently compared the performance of these Students against scenarios in
which a Teacher model pseudo-annotated the same set of images. This experiment was conducted across three camera
streams3, employing various model sizes for the Teachers.

Table 1: mAP50-95 values, and percentage increase per annotator for Least/Top-Confidence. The Student is
YOLOv8nCOCO with B = 96 samples and 100 epochs.

Annotator Params (M) Least Top % Increase
yolov8n 3.2 0.28 0.45 56%
yolov8s 11.2 0.35 0.49 37%
yolov8m 25.9 0.37 0.52 40%
yolov8l 43.7 0.40 0.51 30%
yolov8x6 68.2 0.40 0.52 31%
human N/A 0.40 0.52 27%

The results, detailed in Table 1, reveal that less complex Teachers tend to yield inferior Students, a situation that
the Least-Confidence sampling strategy exacerbates. Intriguingly, human annotations did not offer improvements.
This suggests the Least-Confidence’s tendency to choose ambiguous or challenging samples, thereby reinforcing
confirmation bias. Conversely, Top-Confidence significantly improves pseudo-label quality and, consequently, model
performance, highlighting the critical need for selecting high-quality, clear images for training. Moreover, this finding
reiterates the effectiveness of pseudo-labeling, indicating that it nearly matches the performance enhancements provided
by human-generated labels.

6.2.2 Impact of Student Size

We explored the influence of Student model size on performance, utilizing B = 256 images from nine cameras,
pseudo-labeled by ΘCOCO.

Our observations, detailed in Table 2, yield two key insights, namely, 1) a general enhancement in performance with the
increase in Student model size, and 2) a growing disparity in the effectiveness of Least/Top-Confidence strategies
as the model size expands. These findings indicate that larger models are better equipped to regularize and generalize,
a crucial aspect in correcting the inaccuracies inherent in pseudo-labels generated through the Least-Confidence
strategy. Furthermore, the Top-Confidence strategy appears to leverage the advanced capabilities of bigger models
more efficiently.

6.3 Cluster Definition

The cross-domain performance matrix M in Figure 3a, displays the mAP50-95 score of a model θCOCO fine-tuned
on source cami and tested on target camj , where i and j are the nine cameras from the WALT dataset. The analysis
utilized the first week’s data from each camera, sampling B = 256 images using Top-Confidence.

Key observations from Figure 3a are:

3Namely, Camera 1 from Week 1, Camera 2 from Week 1, and Camera 3 from Week 5. Links to the manual annotations can be
found in the GitHub repository.
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Table 2: Comparison of mAP50-95 Values and Percentage Increase per Student for Different Strategies. The Teacher is
YOLOv8x6COCO and B = 256 samples and 100 epochs were used.

Student Params (M) Least Top % Increase
yolov8n 3.2 0.52 0.53 +2.8%
yolov8s 11.2 0.56 0.58 +2.4%
yolov8m 25.9 0.56 0.59 +4.6%
yolov8l 43.7 0.57 0.60 +4.3%
yolov8x 68.2 0.57 0.60 +5.0%

1. Models perform best within their own domain.
2. The transfer of models results in performance degradation. The severity is variable.

The variance in the model’s transferability across the stream can be used to group the streams. Having verified our
premises, we apply Hierarchical Clustering with minimum linkage to detect subtle similarities. Note that in this particular
scenario the application of other linkage methods (i.e., max, average or ward) leads to the same clustering. Cluster
definition involved experimenting with various threshold values and observing emerging groups in the dendogram
(Figure 3b). The clustering obtained for the nine WALT cameras is presented in Table 3 in Appendix.
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Figure 3: Clustering Definition. Fig. 3a depicts the cross-performance matrix M , where each element Mij , i, j =
1, · · · , 9, represents the mAP50-95 score of a model θi retrained on source domain cami and evaluated on target domain
camj . The setting is based on B = 256 images sampled using Top-Confidence. Fig 3b is the associated dendogram.

6.4 Clustering vs Samples Budget

Figure 4 presents mAP50-95 scores as a function of the amount of images per stream B for different numbers of clusters
K. The clusters’ definition follows Fig. 3b. The observations are as follow:

1. On smaller budgets, training one model for all streams is superior. In fact, the smaller K is, the better are the
models.

2. On larger budgets, K = 2 and K = 3 are dominating while the scenario K = N = 9 is underperforming.
3. For all K ∈ (1, · · · , 9), the models reach their peak accuracy around B = 1500 samples per stream equivalent

to total amount of iterations T = 84375, irrespective of K.

The amount of images per stream B dictates the best K. Training a single model for all streams proves most effective
for a low sample budget B, reflecting the data-hungry nature of DNN. However, for a larger B, clustering increases
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performance. In fact, there is a a “sweet spot” between stream-specific and universal models. This suggest that clustering
offers robustness by leveraging more samples and a more specific distribution facilitating the learning, particularly in
less complex architectures. Yet, there’s a potential downside to excessive clustering, as it might overlook the need for a
model of diversity.

16 64 96 216 256
Samples Budget Per Stream B

0.44

0.46

0.48

0.50

0.52

0.54

0.56

m
AP

50
-9

5

Low Sample Budget: Constant Complexity Cluster Performance

K = 1
K = 2
K = 3
K = 5
K = 9
YOLOv8nCOCO

YOLOv8x6COCO

(a) B = {16, 32, 48, 64, 80, 96, 216, 256}
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Figure 4: Mean mAP50-95 scores per sample budget per stream (B) for varying numbers of clusters were observed.
Models underwent training for 100 epochs with a batch size of 16. Key findings indicate that, at a constant complexity,
a universal model (K = 1) is preferable for lower B values. However, for larger B values, segmenting the system into
two or three clusters yields superior outcomes.

6.5 Clustering vs Constant Iteration per Model

Since a larger K induces more models trained with smaller training sets, we also investigated the relationship between
K and the number of training epochs.

Figure 5 illustrates the mAP50-95 scores as a function of the number of iterations TK=1
1 in a log-scale for the universal

model. Models for clusters with K > 1 adjust their epoch counts, in accordance with Eq. 4, to maintain a consistent
number of training iterations (i.e., model updates) across all models, regardless of K. The figure uses distinct markers
to represent sample sizes of B = 16, 96 and 256 per stream, and vertical lines to mark the epoch counts when K = 1.

The key observations are:

1. Increasing B from 16 to 96, and further to 256, results in substantial improvements outpacing gains from
extended epoch counts.

2. In comparison with Figure 4, smaller clusters (K = 5, 9) bridged the performance gap with larger-cluster
scenarios, particularly as iteration counts increased.

3. Performance tends to plateau and even decline after reaching a base epoch (epochsK=1) of 80 epochs,
suggesting the onset of overfitting beyond a base 100 epochs.

We conclude that careful escalation of the epochs enabled smaller K values to optimize model performance while
minimizing the risk of overfitting.

7 Discussion

7.1 Insights

The CSBAD framework performance is determined by the number of images per stream (B), active learning strategies
(SELECT), number of clusters (K), number of epochs, and dimensions of the Students along with the complexity of the
Teacher.
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Figure 5: Mean mAP50-95 scores are presented over log-scaled iterations (T ) for each model. Markers denote sample
sizes per stream (B = 16, 96, 256). Vertical lines indicate the epochs for K = 1. For K > 1, the epoch count is
adjusted to maintain constant iteration counts across models, following Equation 4. Our analysis reveals that an increase
in epoch counts benefits smaller cluster configurations (K = 3, 5, 9), enabling them to achieve comparable or superior
performance to more universal configurations (K = 1, 2).

Our analysis confirms the expected significance of B. We found that satisfactory results could be achieved with B > 64,
with performance gains plateauing beyond B ≥ 1500. The epoch count, while relevant, proved to be of secondary
importance (see Fig. 5). Increasing B means more images are used for training, potentially boosting performance
but requiring more resources. Naturally, the success of the Top-Confidence strategy highlights the importance of
selecting clear, well-lit images with identifiable instances for training in order to minimize the budget.

As for the optimal number of clusters (K), there is no one-size-fits-all answer. The choice depends on the system
size (N ), available hardware, and budget B constraints. A smaller B or N requires a smaller K to create larger
clusters, providing sufficient samples and training iterations for model training. Conversely, a larger N , B, or number
of iterations per model T shifts the constraint to hardware capabilities, encouraging model tailoring. Essentially, K
acts as an “adjusting variable" within the system to achieve both a specificity-diversity trade-off and sufficient
training iterations per model.

Finally, the superior performance of compact fine-tuned Students over a large general-purpose Teacher demonstrates
the distillation’s effectiveness, simultaneously reducing complexity and boosting domain-specific performance without
the need for a human annotator. Regarding model size, we observe that larger Teacher or Student models generally
yield better outcomes.

7.2 Limitations and perspectives

7.2.1 Scalability

Inherently, large-scale systems exhibit irregularity and unpredictability. Therefore, the applicability of current K results
is limited to comparable scales, and determining system behaviors for higher order systems (e.g., N > 100) requires
experimentation at much higher scales.

7.2.2 Continuous Deployment

Sustaining a budget b, where b ≤ B, for each Li through successive deployment cycles (i.e., integration of a new
device or regular updates), can have advantages. First, this strategy saves resources, as only B − b new images and
annotations are required in the next deployment cycle. Second, this approach could mitigate catastrophic forgetting
French [1999], a scenario where models perform well in new classes but decline in older ones Cheng et al. [2022],
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French [1999]4. As this require further assumptions on the frequency of fine-tuning and the use case, we considered
b = 0 in our experiments. The extension can be done by changing Line 3 in Algorithm 1 to Li ← RECYCLE(Li), where
RECYCLE manages the storage of {Li}i=1,...,N for subsequent deployment.

7.2.3 Non-optimal Resource Management

Our approach necessitates initiating model training from a general-purpose model with each iteration of the framework,
leading to suboptimal resource utilization. This process neglects the potential advantages of leveraging previously
trained models. For instance, in the CLUSTER approach, although N stream-specific models are initially developed, they
are not utilized in subsequent training for cluster-specific models when K < N , resulting in their underutilization.

Future research should investigate incremental deployment, with the effective utilization of pretrained models,
potentially through methods like weight aggregation Pillutla et al. [2022] and fine-tuning for fewer epochs, to boost
learning efficiency and reduce training costs.

8 Conclusions

We developed a scalable framework aimed at streamlining model deployment across various video streams. This
framework includes collecting video stream samples, utilizing general-purpose models for pseudo-labelling, and
performing data clustering to enhance retraining efficiency. When it is applied to object detection in CCTV streams,
CSBAD yields significant improvements. The Top-Confidence SELECT function, focusing on high-confidence
samples from compact DNN models, significantly increases model accuracy with minimal labeling effort. This method
addresses the challenges associated with active distillation, particularly in minimizing pseudo-label inaccuracies. The
introduction of K, a variable representing the number of clusters, is crucial for adapting CSBAD to diverse system
configurations, emphasizing the importance of balancing specificity, diversity, sample volume, and training epochs
to boost the framework’s flexibility. In this sense, CSBAD advocates for the clustering of camera domains to move
beyond the constraints of specialized or universal networks, enhancing adaptability and performance.

Appendix - Clustering Table for WALT

Table 3: Clusters based on cutting the dendogram for different thresholds.
Thresh. K Clust. No. Cams

1.2 2 1 1, 2, 3, 9
2 4, 5, 6, 7, 8

1.05 3 1 4, 5, 6, 7, 8
2 1, 3
3 2, 9

0.95 4 1 5, 6, 7, 8
2 1, 3
3 2, 9
4 4

< 1 5 1 6, 7, 8
2 4
3 2, 9
4 5
5 1, 3

4The causes behind catastrophic forgetting include (1) network drift, where the neural network’s superior data fitting ability leads
it to drift quickly from the feature space learned from the old class training data to that of the new class data and (2) inter-class
confusion, where the boundaries between new and old classes are not well established because they have never been trained on
together Wang et al. [2023].
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