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Abstract

Decoding non-invasive cognitive signals to nat-001
ural language has long been the goal of build-002
ing practical brain-computer interfaces (BCIs).003
Recent major milestones have successfully de-004
coded cognitive signals like functional Mag-005
netic Resonance Imaging (fMRI) and electroen-006
cephalogram (EEG) into text under open vo-007
cabulary setting. However, how to split the008
datasets for training, validating, and testing in009
brain-to-text decoding still remains controver-010
sial. Additionally, the issue of data contami-011
nation observed in prior research persists. In012
this study, we undertake a comprehensive anal-013
ysis on current dataset splitting strategies and014
discover that data contamination significantly015
overstates the performance of models. Specifi-016
cally, first we find the leakage of test subjects’017
cognitive signals corrupts the training of a ro-018
bust encoder. Second, we prove the leakage019
of text stimuli causes the auto-regressive de-020
coder to memorize seen information in test set.021
To eliminate the influence of data contamina-022
tion and fairly evaluate different models’ gen-023
eralization ability, we propose a new splitting024
method for different types of cognitive dataset025
(e.g. fMRI, EEG). We also evaluate the perfor-026
mance of SOTA brain-to-text decoding models027
under the proposed dataset splitting paradigm028
as baselines for further research.029

1 Introduction030

Brain-computer interface (BCI) builds connections031

between human brain and external devices (e.g.032

computer). It has been widely researched in the033

field of neuroscience and has gained remarkable034

success like repairing damaged sight or restoring035

movement of disabled people (Polikov et al., 2005;036

Hochberg et al., 2012; Bouton et al., 2016). How-037

ever, when subjects (people involved in data collec-038

tion) read or hear text stimuli and convey cognitive039

signals, it is still challenging in decoding those cog-040

nitive signals to corresponding natural language041
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Figure 1: General frameworks of brain-to-text decoding
and possible situations of data contamination.

chunks (brain-to-text decoding), especially for non- 042

invasive cognitive signals like functional Magnetic 043

Resonance Imaging (fMRI) or electroencephalo- 044

gram (EEG) which are noisy and of low resolution 045

(Mridha et al., 2021). 046

Recent methods (Makin et al., 2020; Wang and 047

Ji, 2022; Xi et al., 2023; Tang et al., 2023) typically 048

viewed brain-to-text decoding as machine transla- 049

tion (Sutskever et al., 2014; Bahdanau et al., 2015) 050

and adopted an encoder-decoder framework, where 051

the encoder is responsible for converting cognitive 052

signals into low-dimensional representations and 053

the decoder learns to map the representations to 054

natural language. As shown in Figure1, the en- 055

coder usually consists of a spatial and time series 056

feature extractor. It can be trained either in an end- 057

to-end manner with decoder (Figure 1 (a)) or first 058

pre-trained through a signal reconstruction task and 059

then applied in decoder training (Figure 1 (b)). De- 060

spite recent success in model design, it still remains 061

controversial in how to split the dataset for training, 062

validating, and testing (Xi et al., 2023). Addressing 063

this issue is urgent and meaningful, as fair eval- 064

uation of models is impossible without a widely 065

recognized dataset splitting paradigm. 066

A cognitive dataset is usually formatted in signal- 067

sentence pair. In most cases for brain-to-text decod- 068
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ing task, each sentence belongs to a certain task,069

so signal-sentence pair can be further divided into070

signal-task and task-sentence pair. Current dataset071

splitting methods (Wang and Ji, 2022; Xi et al.,072

2023) can be summarized into five categories: (1)073

split by subjects, (2) split by tasks, (3) split by ran-074

domly picking signal frames, (4) split by randomly075

picking signal frames under certain task, (5) split076

by randomly picking consecutive signal frames un-077

der certain task. However, all these methods suffer078

from data contamination on encoder side, decoder079

side, or both. As shown in Figure 1, for the encoder080

component, if subjects’ cognitive signals in test set081

are mixed into training set, the encoder will become082

overfitted and fail to well represent unseen subjects’083

cognitive signals. As to decoder, situation gets084

worse if text stimuli are leaked. Since the decoder085

generates token by token in an auto-regressive man-086

ner, during the teacher-forcing training stage, data087

contamination will cause the decoder to memorize088

seen paragraphs and probability distribution, which089

means given the first few tokens the decoder is090

able to predict next token regardless of encoded091

cognitive signal representations.092

To address the above-mentioned problems, we093

propose a new dataset splitting method that erad-094

icates data contamination from both encoder and095

decoder sides. We focus on fMRI and EEG sig-096

nals in experiments, although the proposed splitting097

method could be applied to any cognitive signals098

satisfying the given format. In our method, the099

dataset is split according to subject-stimuli pairs100

with the following rules: (1) Cognitive signals col-101

lected from specific subject in validation set and102

test set will not appear in training set, which means103

the trained encoder cannot get access to any brain104

information belonging to subject in test set. (2)105

Text stimuli in validation set and test set will not106

appear in training set. The decoder learns the map-107

ping between cognitive signal representation and108

token embedding instead of memorizing seen text.109

Our contributions can be summarized as follows:110

• We investigate current dataset splitting meth-111

ods and analyze their influence on popular112

frameworks in brain-to-text decoding.113

• We prove the existence of data contamination114

in current dataset splitting methods through115

analysis and experiments, which seriously ex-116

aggerates model performance.117

• We propose the first splitting method with-118

out data contamination on public cognitive119

datasets. We also release a fair benchmark to120

evaluate different models’ generalization per- 121

formance for further research in this domain. 122

2 Related Work 123

Cognitive Signal Cognitive signals can be clas- 124

sified into three categories: invasive, partially in- 125

vasive, and non-invasive according to how close 126

electrodes get to brain tissue. Due to the high cost 127

and complexity of invasive and partially invasive 128

methods, it’s hard to apply them in building generic 129

and practical BCIs. In this paper, we mainly fo- 130

cus on non-invasive signals EEG and fMRI. EEG 131

signal is electrogram of the spontaneous electrical 132

activity of the brain. Its frequencies usually range 133

from 1 to 30 Hz, divided into several groups like 134

alpha (4-13 Hz), beta (13-30 Hz), delta (0.5-4 Hz), 135

theta (4-7 Hz). EEG is of high temporal resolution 136

and relatively tolerant of subject movement, but its 137

spatial resolution is low and it can’t display active 138

areas of the brain directly. fMRI measures brain 139

activity by detecting changes of blood flow. Blood 140

flow of a specific region increases when this brain 141

area is in use. The spatial resolution of fMRI is 142

measured by the size of voxel, which is a three- 143

dimensional rectangular cuboid ranging from 3mm 144

to 5mm (Vouloumanos et al., 2001; Noppeney and 145

Price, 2004). Unlike EEG which samples brain sig- 146

nals continuously, fMRI samples based on a fixed 147

time interval named TR, usually at second level. 148

Brain-to-text Decoding Previous research on 149

brain-to-text decoding (Herff et al., 2015; Anu- 150

manchipalli et al., 2019; Zou et al., 2021; Moses 151

et al., 2021; Défossez et al., 2023) mainly focused 152

on word-level decoding in a restricted vocabulary 153

with hundreds of words (Panachakel and Ramakr- 154

ishnan, 2021). These models typically apply re- 155

current neural network or long short-term memory 156

(Hochreiter and Schmidhuber, 1997) network to 157

build mapping between cognitive signals and words 158

in vocabulary. Despite relatively good accuracy, 159

these methods fail to generalize to unseen words. 160

Some progress (Sun et al., 2019) has been made 161

by expanding word-level decoding to sentence- 162

level through encoder-decoder framework, or use 163

less noisy ECoG data (Burle et al., 2015; Anu- 164

manchipalli et al., 2019). However, these models 165

struggle to generate accurate and fluent sentences 166

limited by decoder ability. Wang and Ji (2022) 167

introduced the first open vocabulary EEG-to-text 168

decoding model by leveraging the power of pre- 169

trained language models. Xi et al. (2023) improved 170
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Figure 2: Different splitting methods for cognitive dataset. (Color printing is preferred.)

the model design and proposed a unified framework171

for decoding both fMRI and EEG signals.172

3 Methodology173

In this section, we will first introduce the definition174

of brain-to-text decoding and the general descrip-175

tion of dataset format. Then we systematically176

analyze current dataset splitting methods and point177

out that all existing methods suffer from two kinds178

of data contamination issues: cognitive signal leak-179

age and text stimuli leakage. Finally, a new dataset180

splitting method is proposed to avoid the above-181

mentioned two kinds of data contamination.182

3.1 Task Definition183

Given the cognitive signal Fij stimulated by i-184

th subject Si hearing or reading certain text Tj ,185

brain-to-text decoding aims to decode Fij back186

to text T ′
j and make T ′

j as similar as possible187

to Tj . The composition of Fij and Tj is dif-188

ferent as to fMRI and EEG. The former sam-189

ples brain information discretely with a fixed190

time interval TR, while the latter samples con-191

tinuously. To fMRI, consistent sentence seg-192

ments sj with corresponding fMRI frames fij193

are concatenated to form a sample pair ⟨Fij , Tj⟩,194

where Tj = concat(sj , sj+1, . . . , sj+L−1) and195

Fij = concat(fij , fi,j+1, . . . , fi,j+L−1), and196

|Tj | = |Fij | = L. To EEG, since signals corre-197

sponding to a complete sentence are available and198

they are continuous, we bond sentence Tj (i.e. text 199

stimuli) and EEG signal Fij together to form a 200

sample pair ⟨Fij , Tj⟩. Under most scenarios, each 201

sentence Tj belongs to one certain task Mk. So the 202

signal-sentence pair ⟨Fij , Tj⟩ can be further split 203

into ⟨Fij ,Mk⟩ and ⟨Mk, Tkj⟩. 204

In brain-to-text decoding, the ultimate goal of 205

trained BCI models is to generalize to unseen sub- 206

jects with unseen text stimuli (Huang et al., 2010; 207

Handiru and Prasad, 2016; Gao et al., 2021). As 208

a result, if cognitive signal Fij appears in test set 209

Stest, any signal Fi∗ belongs to subject i should 210

not appear in training set Strain. Similarly, text 211

stimuli Tkj in Stest should not appear in Strain. 212

The dataset splitting rules for training set can be 213

formally defined by Cartesian product: 214

Strain = Ftrain × Ttrain, (1) 215
216

Ftrain = {Fij |i ∈ I}, (2) 217
218

I = {i|Fij /∈ Sval, Stest,∀j}, (3) 219
220

Ttrain = {Tkj |Tkj /∈ Sval, Stest}. (4) 221

Similar rules can also be applied to validation set 222

and test set splitting. 223

3.2 Dataset Splitting Methods 224

Current dataset splitting methods can be summa- 225

rized as five categories according to classifying 226

objectives Si,Mk, Tkj , Fij . More specifically, the 227

five dataset splitting methods are characterised as 228
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Figure 3: The process of our proposed dataset splitting method. (Color printing is preferred.)

(1) split by subjects, (2) split by tasks, (3) split229

by randomly picking signal frames, (4) split by230

randomly picking signal frames under certain task,231

(5) split by randomly picking consecutive signal232

frames under certain task, corresponding to image233

(a), (b), (c), (d), (e) in Figure 2. Figure 2 vividly234

displays the differences between current dataset235

splitting methods. For simplicity of expression, we236

choose 4 subjects with 3 tasks each containing 4,237

3, 4 sentences respectively. The line connecting238

two symbols indicates they are related to one sam-239

ple. Take path S1,M1, T11, F11 for example, it is240

one sample where subject S1 listens to text stimuli241

T11 belonging to task M1 and S1’s corresponding242

brain signal is recorded as F11. Some symbols are243

connected with several lines. For example, the four244

lines between S1 and M1 correspond to ⟨M1, T11⟩,245

⟨M1, T12⟩, ⟨M1, T13⟩, ⟨M1, T14⟩ counting from246

left to right. Similarly, the three lines between247

M1 and T11 correspond to ⟨S1,M1⟩, ⟨S2,M1⟩,248

⟨S3,M1⟩ respectively. The same rules can be ex-249

tended to other lines and symbols. The green lines250

and orange lines stand for training samples and251

testing samples. The grey dotted line means the252

sample is abandoned, which will be introduced in253

our dataset splitting method. As the splitting of254

validation set is similar to test set, we only consider255

training set and test set in this section.256

We will use method (a), (b), (c), (d), (e) to rep-257

resent five current dataset splitting methods in the258

rest of the paper. Method (a) splits the dataset259

according to subjects, which can be described as260

Strain = {⟨Fij , Tkj⟩ |Si /∈ Sval, Stest} (5)261

for training set. Method (b) splits the dataset ac-262

cording to tasks, which is described as263

Strain = {⟨Fij , Tkj⟩ |Mk /∈ Sval, Stest} (6)264

for training set. Method (c), (d), and (e) all split265

the dataset according to cognitive signal frames266

Strain = {⟨Fij , Tkj⟩ |Fij /∈ Sval, Stest}. (7)267

However, there are slight differences between these 268

three methods. Method (c) views all the cogni- 269

tive signal frames in dataset as a whole and splits 270

according to the default proportion (e.g. 8:1:1). 271

Method (d) views signal frames under certain task 272

Mk as a whole and splits proportionally, and then 273

union all training sets under different tasks to form 274

a complete set for training. Method (e) is similar 275

to method (d). They both first split training, valida- 276

tion, and test set under certain task proportionally 277

and then union them. The difference lies in that 278

method (d) randomly picks signal frames while 279

method (e) picks consecutive signal frames. 280

The goal of brain-to-text decoding models is to 281

generalize to unseen subjects with unseen text stim- 282

uli, which means both subject’s brain information 283

and received text stimuli are new to the trained 284

model. In this sense, we define two kinds of data 285

contamination: cognitive signal leakage and text 286

stimuli leakage. The data contamination situation 287

of different methods is reflected in Figure 2. If lines 288

associated with Si or Tkj are of different colours, 289

data in test set leaks into training set. Lines be- 290

tween Si and Mk indicate cognitive signal leakage 291

situation and lines between Tkj and Mk indicate 292

text stimuli leakage situation. Remind the com- 293

position of samples differs as to fMRI signal and 294

EEG signal, so the dataset splitting methods are 295

different for two cognitive signals too. Since fMRI 296

signals need to be sampled continuously with a 297

certain length L, the path of a sample shown in Fig- 298

ure 2 is actually the first part of one fMRI sample, 299

with L− 1 continuous part following. In this sense, 300

for EEG cognitive signal leakage doesn’t exist in 301

method (a), but method (a) suffers from text stimuli 302

leakage. The situation of method (b) is opposite 303

to that of method (a), where there’s no text stimuli 304

leakage but cognitive signal leakage. Method (c) 305

and method (d) are similar. They suffer from both 306

cognitive signal leakage and text stimuli leakage. 307

Method (e) is in the same situation as method (b). 308
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Type Method Narratives / ZuCo Average
seed1 seed2 seed3 seed4

CSLR(%)

(a) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
(b) 6.73 / - 6.32 / - 7.7 / - 17.93 / - 9.67 / -
(c) 12.55 / 12.52 12.52 / 12.55 12.48 / 12.48 12.44 /12.46 12.50 / 12.50
(d) 12.81 / 12.60 12.8 / 12.58 12.78 / 12.56 12.79 / 12.61 12.795 / 12.59
(e) 12.28 / - 12.27 / - 12.26 / - 12.27 / - 12.27 / -
(f) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00

TSLR(%)

(a) 100.00 / 23.43 100.00 / 20.25 100.00 / 23.38 100.00 / 22.95 100.00 / 22.50
(b) 0.00 / - 0.00 / - 0.00 / - 0.00 / - 0.00 / -
(c) 100.00 / 13.21 100.00 / 13.06 100.00 / 12.91 100.00 / 13.1 100.00 / 13.07
(d) 99.93 / 0.00 99.81 / 0.00 99.54 / 0.00 99.99 / 0.00 99.82 / 0.00
(e) 9.19 / - 9.31 / - 9.36 / - 9.29 / - 9.29 / -
(f) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00

Table 1: Results of Cognitive Signal Leakage Rate (CSLR) and Text Stimuli Leakage Rate (TSLR).

For fMRI, method (c), (d), and (e) which seem the309

same for EEG are actually different splitting ways.310

The situation of data contamination for different311

methods is similar to EEG, except for method (e)312

there still exists slight text stimuli leakage in the313

overlap between training samples and test samples.314

3.3 Our Method315

To eliminate data contamination from both cogni-316

tive signal leakage and text stimuli leakage, we317

split the dataset by ⟨Si, Tj⟩ pairs as shown in (f) of318

Figure 2. Since EEG and fMRI are different in the319

composition of dataset, we treat them separately320

and propose two dataset splitting methods. As to321

EEG dataset where Fij and Tj form a sample, we322

consider a bipartite graph G1 = (U ,V, E) where323

U = {Si}Ni=1, V = {Tj}Mj=1. E is the edge be-324

tween node in U and node in V , indicating ⟨Si, Tj⟩325

pair in the dataset. N is the total number of sub-326

jects and M is the total number of unique text327

stimuli. We assert M > N , so e = (u, v) ∈ E328

exists for every v ∈ V , as each text stimuli is lis-329

tened or read by at least one subject. As shown330

in step 2 of Figure 3, first we pick one edge for331

each node v ∈ V and build a new bipartite graph332

G2 = (U ,V, E ′). Then we split graph G2 by sub-333

ject U with the given splitting ratio and form three334

disjoint graphs Gtrain,Gval,Gtest. In step 4, some335

edges satisfying zero data contamination condition336

are not included in the graph. We add these edges337

to corresponding graphs, extending each graph338

Gtrain,Gval,Gtest to its maximally scalable state339

and finishing the dataset splitting process.340

Fij = concat(fij , fi,j+1, . . . , fi,j+L−1) and341

Tj = concat(sj , sj+1, . . . , sj+L−1) form a sam- 342

ple pair in fMRI dataset. If we follow the same pro- 343

cess as EEG, text stimuli leakage will occur in the 344

overlapping part of two samples, when one sample 345

is assigned to training set and the other is assigned 346

to validation or test set. We propose a simple solu- 347

tion that achieves the balance between abandoning 348

as little data as possible and ensuring zero data con- 349

tamination. Instead of ⟨Si, Tj⟩ pair, we consider 350

⟨Si,Mk⟩ pair and apply the above-mentioned algo- 351

rithm. More details and pseudo-code are available 352

in Appendix B. 353

4 Experimental Settings 354

We test state-of-the-art brain-to-text decoding mod- 355

els on two popular cognitive datasets. Compre- 356

hensive experiments are conducted to prove the 357

existence of the following phenomena: (1) Cog- 358

nitive signals and text stimuli in test set leak into 359

training set in all current dataset splitting methods. 360

(2) The model’s generalization ability, particularly 361

that of the auto-regressive decoder, has been over- 362

estimated due to data contamination. Because the 363

number of tasks in EEG dataset is too small and 364

method (e) makes no difference to EEG as method 365

(d), we only consider method (a), (c), (d). 366

4.1 Datasets 367

We apply the “Narratives” (Nastase et al., 2021) 368

dataset for fMRI-to-text decoding and the ZuCo 369

(Hollenstein et al., 2018) dataset for EEG-to-text 370

decoding in experiments. The “Narratives” dataset 371

contains fMRI data from 345 subjects listening to 372
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Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)

N = 1 N = 2 N = 3 N = 4 F P R

UniCoRN

10+1e-3+(a) 49.56 30.49 21.07 15.49 44.83 50.41 40.65
10+1e-3+(b) 26.37 7.50 2.48 0.99 22.28 25.99 19.62
10+1e-3+(c) 50.24 30.83 21.23 15.60 44.68 49.44 41.01
10+1e-3+(d) 49.63 30.29 20.85 15.32 45.06 50.47 41.03
10+1e-3+(e) 28.94 9.39 4.07 1.53 21.68 24.64 19.49

UniCoRN∗

20+1e-4+(a) 50.19 34.25 25.98 21.00 46.59 50.36 43.62
30+1e-4+(a) 55.46 40.99 32.85 27.56 52.08 55.02 49.68

20+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57
30+1e-4+(b) 25.91 8.80 3.84 1.66 20.65 27.74 16.57

20+1e-4+(c) 72.44 60.84 53.35 47.88 70.52 74.10 67.53
30+1e-4+(c) 72.82 61.42 53.95 48.44 71.24 74.41 68.57

20+1e-4+(d) 65.31 51.02 42.54 36.72 62.76 67.09 59.29
30+1e-4+(d) 66.56 53.00 44.75 39.02 63.89 67.51 60.95

20+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35
30+1e-4+(e) 32.15 12.34 5.57 2.45 24.28 30.43 20.35

Table 2: Generation quality of UniCoRN model for fMRI under different training settings. Here UniCoRN∗

indicates the encoder of UniCoRN is randomly initialized instead of pre-trained through signal reconstruction task.

27 diverse stories. Since the data collection pro-373

cess involves different machines, we only consider374

fMRI data with 64 × 64 × 27 voxels. The ZuCo375

dataset includes 12 healthy adult native English376

speakers reading English text for 4 to 6 hours. It377

contains simultaneous EEG and Eye-tracking data.378

The reading tasks include Normal Reading (NR)379

and Task-specific Reading (TSR) extracted from380

movie views and Wikipedia. Both datasets are split381

into training, validation, and test set with a ratio of382

80%, 10%, 10% in all experiments.383

4.2 Implementation384

We follow the same settings of UniCoRN (Xi et al.,385

2023) and EEG2Text (Wang and Ji, 2022), except386

all the datasets are split to the ratio of 8:1:1 for387

fair comparison. All experiments are conducted on388

NVIDIA A100-SXM4-40GB GPUs. More details389

are shown in Appendix A.390

4.3 Data Contamination Metrics391

We have analyzed two kinds of data contamination,392

cognitive signal leakage and text stimuli leakage in393

Methodology section. In this part, we will quantify394

data contamination situation through experiments.395

To better illustrate the extent of data contamina-396

tion across different dataset splitting methods, we397

design two novel evaluation metrics named Cogni-398

tive Signal Leakage Rate (CSLR) and Text Stim- 399

uli Leakage Rate (TSLR) for detecting cognitive 400

signal leakage and text stimuli leakage. Note that 401

the situation for validation set is similar as test set, 402

we only consider test set in experiments. CSLR 403

indicates the average percentage of each subject’s 404

cognitive signals in test set appearing in training 405

set, which could be formulated as 406

1

N

N∑
i=1

min(1,
|{Fij |Fij ∈ Stest ∩ Strain}|
|{Fij |Fij ∈ Strain}|

) (8) 407

where N stands for the total number of subjects 408

in test set. | · | stands for the cardinality of a set. 409

Function min(·, ·) is applied to make sure for each 410

subject the data leakage rate is less than 1. 411

The definition of TSLR is somewhat different 412

for EEG signal and fMRI signal. As to EEG signal 413

where cognitive signals are sampled continuously, 414

it’s easy to match certain sentence stimuli with cor- 415

responding signals. Its TSLR is similar to CSLR, 416

which indicates the average percentage of certain 417

text in test set appearing in training set. TSLR for 418

EEG data can be calculated through 419

1

M

M∑
j=1

min(1,
|{Tij |Tij ∈ Stest ∩ Strain}|
|{Tij |Tij ∈ Strain}|

) (9) 420

where M stands for the total number of unique text 421
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Model Epoch+lr+Method BLEU-N (%) ROUGE-1 (%)

N = 1 N = 2 N = 3 N = 4 F P R

UniCoRN

50+1e-4+(a) 58.09 49.23 43.23 38.43 63.88 61.12 67.50
80+1e-4+(a) 60.88 50.52 43.42 37.84 65.17 61.16 70.72

50+1e-4+(c) 52.30 42.89 36.80 32.17 57.39 51.09 67.29
80+1e-4+(c) 60.78 55.92 53.18 51.10 84.64 63.16 71.50

50+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33
80+1e-4+(d) 22.90 7.36 2.71 0.95 17.73 19.90 17.33

EEG2Text

50+1e-4+(a) 51.22 33.83 22.99 16.05 46.40 46.85 46.58
80+1e-4+(a) 63.32 52.52 45.19 39.50 65.96 64.74 68.01

50+1e-4+(c) 53.83 38.99 29.57 23.01 53.64 54.19 53.56
80+1e-4+(c) 65.42 57.56 52.56 48.60 73.00 69.99 77.01

50+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89
80+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89

Table 3: Generation quality of UniCoRN and EEG2Text model for EEG under different training settings.

periods in test set and Tij stands for j-th period of422

text stimuli received by i-th subject.423

The fMRI signal is sampled discretely with a424

deterministic interval TR, making it hard to acquire425

signals corresponding to sentences. Previous meth-426

ods instead concatenated continuous fMRI frames427

of certain length with their corresponding sentence428

segments as training samples. As a result, we con-429

sider the average percentage of the same sentence430

segments in test set appearing in training set as431

TSLR of fMRI signal. It can be formulated as432

1

M

M∑
j=1

τ
|{Tij |Tij ∈ Stest ∩ Strain}|

|Stest| × L
(10)433

where τ = 0 if {Tij |Tij ∈ Stest ∩Strain} = ∅ else434

τ = min(1,
|{Tij |Tij ∈ Strain}|

|{Tij |Tij ∈ Stest ∩ Strain}|
). (11)435

5 Results and Analysis436

5.1 Verification for Data Contamination437

We test current dataset splitting methods and our438

method on fMRI dataset “Narratives” and EEG439

dataset ZuCo. Considering the influence of ran-440

domness in splitting, we select four seeds for ex-441

periments. The results are shown in Table 1 and442

are consistent with theoretical analysis. For fMRI,443

current methods apart from method (a) suffer from444

cognitive signal leakage, while method (a) has se-445

rious text stimuli leakage. Method (b) gets no text446

stimuli leakage but has slight cognitive signal leak- 447

age. The situation for EEG is similar to that of 448

fMRI. Apart from our proposed method (f), there 449

is no way to achieve zero cognitive signal leakage 450

and text stimuli leakage at the same time. 451

5.2 Damage of Data Contamination 452

Cognitive signal leakage and text stimuli leakage 453

will damage brain-to-text decoding models from 454

both encoder side and decoder side. 455

Effect on Encoder As shown in Figure 1, en- 456

coder in current models is trained in two different 457

ways: either jointly trained with decoder or solely 458

trained through a reconstruction task. In the former 459

end-to-end training scenario, it is hard to evalu- 460

ate encoder performance separately. So we mainly 461

focus on the latter, in which case the encoder is 462

trained through an encoder-decoder framework to 463

reconstruct input cognitive signals. The decoder 464

here does not refer to the decoder for text gener- 465

ation. It is similar to the structure of the encoder 466

and will be abandoned once the encoder is trained. 467

Since a proper evaluation index of the encoder’s 468

representation ability is missing, validation loss is 469

used to measure the effect of data contamination. 470

We test different splitting methods on two cog- 471

nitive datasets. The validation loss of encoder 472

is shown in Figure 4. For fMRI, influenced by 473

leakage of cognitive signals, the validation loss 474

of method (b), (c), (d), (e) keeps dropping even 475

with long training epochs. The encoder is actually 476
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Dataset Model BLEU-N (%) ROUGE-1 (%)

N = 1 N = 2 N = 3 N = 4 F P R

Narratives UniCoRN 22.83 5.69 1.43 0.48 15.55 24.80 19.04

ZuCo
UniCoRN 23.32 7.78 3.01 1.09 18.47 20.00 17.92
EEG2Text 24.49 7.49 2.28 0.62 23.98 23.95 25.74

Table 4: A fair benchmark for evaluating brain-to-text decoding.
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Figure 4: Validation loss of encoder under different
dataset splitting methods in two datasets.

overfitting and degrading. For method (a) and (f)477

without cognitive signal leakage, the validation loss478

quickly rises after reaching the lowest point with479

a few epochs, satisfying the basic rule of machine480

learning. For EEG, we find validation loss keeps481

dropping for all methods even with very long train-482

ing epochs, regardless of cognitive signal leakage483

or not. We think the poor spatial resolution of EEG484

signal might lead to this phenomenon.485

Effect on Decoder All state-of-the-art models486

choose pre-trained language model BART (Lewis487

et al., 2020) as decoder. On one hand, the powerful488

auto-regressive decoder is able to achieve fluent489

sentence-level open vocabulary text generation. On490

the other hand, if data contamination occurs, due491

to the feature of auto-regressive generation, the492

decoder will generate memorized text given the first493

few words, which is obviously an act of cheating.494

The influence of text stimuli leakage on decoder495

is detected through BLEU scores (Papineni et al.,496

2002) and ROUGE-1 scores (Lin, 2004), which497

measure text similarity between generated text and498

ground truth. If evaluation indicators keep improv-499

ing as training epochs increase, we believe part of500

the test set is leaked into training set and the model501

is overfitting. For fMRI signal, we test five current502

dataset splitting methods under different training503

settings. As shown in Table 2, we test two kinds504

of UniCoRN models. One is UniCoRN with finely505

tuned hyper-parameters claimed in the original pa-506

per, and the other is UniCoRN∗ with a randomly507

initialized encoder. Empirically, the former will 508

perform much better than the latter. However, in 509

method (a), (c), (d), due to text stimuli leakage, 510

if we reduce the learning rate and extend training 511

epochs, UniCoRN∗ performs much better than Uni- 512

CoRN and its performance keeps rising with longer 513

training epochs. As to method (b) and (e) with 514

no text stimuli leakage, changing training epochs 515

or learning rates makes no obvious difference to 516

model performance. For EEG signal, the conclu- 517

sion is similar as shown in Table 3. For method 518

(a) and (c) with text stimuli leakage, model per- 519

formance keeps rising with longer training epochs. 520

For method (d) without text stimuli leakage, both 521

models reach optimal performance after the first 522

few rounds of training epochs. 523

5.3 A Fair Benchmark 524

We evaluate current SOTA models for brain-to-text 525

decoding under our dataset splitting method and 526

release a fair benchmark. UniCoRN is tested for 527

both fMRI and EEG decoding, EEG2Text model 528

is tested for EEG decoding. The results are listed 529

in Table 4. For EEG dataset, UniCoRN achieves 530

higher results in BLEU-2,3,4 while EEG2Text is 531

better in BLEU-1 and ROUGE-1. 532

6 Conclusion 533

In this paper, we explore a controversial topic: Due 534

to the complexity of cognitive datasets, no consen- 535

sus has been reached on how to split the dataset for 536

training, validating, and testing in brain-to-text de- 537

coding. We analyze current dataset splitting meth- 538

ods and find data contamination largely exaggerates 539

model performance and leads to poor generaliza- 540

tion. Sufficient experiments and analysis are con- 541

ducted to verify the data contamination issues. We 542

also propose a new dataset splitting method which 543

can avoid both cognitive signal and text stimuli 544

leakage. Current state-of-the-art models are reeval- 545

uated under this setting and a fair benchmark is 546

released for further research in the domain. 547
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Limitations548

The “Narratives” dataset and the ZuCo dataset pro-549

vide researchers with precise cognitive signal re-550

sources stimulated by text or voice. However, in551

brain-to-text decoding task, both subject’s cogni-552

tive signals and text stimuli in validation and test553

set need to be invisible to training set, which makes554

splitting these public datasets difficult. Our pro-555

posed dataset splitting method meets the above re-556

quirements at the expense of discarding some data557

in the dataset. We recommend future datasets in558

this domain follow these guidelines. The division559

of the training set, validation set, and test set should560

be provided when the dataset is released. Besides,561

we suggest hiring new subjects with unique stimuli562

for validation set and test set, which is good for563

testing the generalization ability of models with-564

out loss of data (Tang et al., 2023). What’s more,565

we find existing models rely more on the strong566

auto-regressive decoder to achieve good generation567

quality. The encoder is of limited use in all SOTA568

models, which might become a research point in569

the future.570

Ethics Statement571

In this paper, we introduce a new dataset splitting572

method to avoid data contamination for decoding573

cognitive signals to text task. Experiments are con-574

ducted on public accessible cognitive datasets “Nar-575

ratives” and ZuCo1.0 with the authorization from576

their respective maintainers. Both datasets have577

been de-identified by dataset providers and used578

for researches only.579
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A Implementation Details 739

More details in experiments are supplemented in 740

this section. We perform the same filtering steps to 741

“Narratives” dataset as UniCoRN paper (Xi et al., 742

2023) and the same filtering steps to ZuCo1.0 as 743

EEG2Text paper (Wang and Ji, 2022). In CSLR 744

and TSLR calculation, the number of four differ- 745

ent seeds are set as 1, 2, 3, 4 respectively. In signal 746

reconstruction task for encoder of UniCoRN, the 747

batch size of EEG and fMRI data is 512 and 320 748

respectively. The learning rate is set as 1e-4 and 749

1e-3 separately as the author claimed in the original 750

paper. In the fair benchmark, for fMRI data, en- 751

coder of UniCoRN is trained through 1e-4 learning 752

rate and decaying to 1e-6 finally for 30 training 753

epochs. Decoder is trained through 1e-4 learning 754

rate and decaying to 1e-6 finally for 10 training 755

epochs with 90 batch size. Sample length L is set 756

as 10 for all experiments related to fMRI. For EEG 757

data, EEG2Text model is trained with 1e-6 learning 758

rate for 80 epochs. UniCoRN model is trained with 759

the same settings as fMRI data. 760
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B Our Dataset Splitting Method761

In this part, we release the pseudo-code of two762

dataset splitting methods for EEG and fMRI signal.763

As shown in Figure 3, our proposed dataset split-764

ting method consists of four steps. The blue lines765

stand for the situation of original dataset. The main766

difference between two methods lies in the how G2767

is generated. We always choose the side with fewer768

nodes in bipartite graph G1 to perform G2 genera-769

tion. For example, in Algorithm 1 where we assert770

|U| < |V|, the adjacency matrix is initialized as771

M ×N . In Algorithm 2 where |V| < |U|, the adja-772

cency matrix is initialized as N ×K. All hypothe-773

ses are based on analysis of cognitive datasets.774

One more thing to notice is that in Line 14 of775

both pseudo-code, the loop indicates extending776

training set, validation set, and test set respectively.777

So the names of variable should be alternated in the778

repeat loop and the displayed part in pseudo-cod is779

a case example of extending training set. We write780

it in this way for simplicity of expression.781
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Algorithm 1: Dataset splitting method for EEG signal

1 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1 and V = {Tj}Mj=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(U) and C[i] = 0;

2 for u← U1 to UN do
3 Ccopy ← C;
4 for v ← A1[u][0] to A1[u][M ] do
5 if v = 0 then
6 Ccopy[v.index]←∞;

7 Minimum = min(Ccopy);
8 A2[u][Minimum.index]← 1;
9 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

10 Split by subjects U according to default ratio;
11 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
12 repeat // To three sets respectively, below is for training set
13 for u in U do
14 for v in V do
15 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and u /∈ Uval ∪ Utest then
16 E ′train ← E ′train ∪ {e};

17 until Gtrain,Gval,Gtest are all extended;
18 return Gtrain,Gval,Gtest;

Algorithm 2: Dataset splitting method for fMRI signal

19 Initialize: Bipartite graph G1 = (U ,V, E), G2 = (U ,V, E ′) where U = {Si}Ni=1, V = {Mk}Kk=1,
Adjacency matrix A1 of G1 where A1[i][j] = 1 if node i and node j is connected else A1[i][j] = 0,
Adjacency matrix A2 of G2 where A2[i][j] = 0, Array C where len(C) = len(V) and C[i] = 0;

20 for v ← V1 to VK do
21 Ccopy ← C;
22 for u← A1[v][0] to A1[v][K] do
23 if u = 0 then
24 Ccopy[u.index]←∞;

25 Minimum = min(Ccopy);
26 A2[v][Minimum.index]← 1;
27 C[Minimum.index]← C[Minimum.index] + 1; // Make degree of nodes balanced

28 Split by tasks V according to default ratio;
29 G2 = Gtrain ∪ Gval ∪ Gtest, Utrain ∩ Uval ∩ Utest = ∅, Vtrain ∩ Vval ∩ Vtest = ∅;
30 repeat // To three sets respectively, below is for training set
31 for v in V do
32 for u in U do
33 if e = (u, v) ∈ E and e = (u, v) /∈ E ′train and v /∈ Vval ∪ Vtest then
34 E ′train ← E ′train ∪ {e};

35 until Gtrain,Gval,Gtest are all extended;
36 return Gtrain,Gval,Gtest;
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