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Abstract

Decoding non-invasive cognitive signals to nat-
ural language has long been the goal of build-
ing practical brain-computer interfaces (BClIs).
Recent major milestones have successfully de-
coded cognitive signals like functional Mag-
netic Resonance Imaging (fMRI) and electroen-
cephalogram (EEG) into text under open vo-
cabulary setting. However, how to split the
datasets for training, validating, and testing in
brain-to-text decoding still remains controver-
sial. Additionally, the issue of data contami-
nation observed in prior research persists. In
this study, we undertake a comprehensive anal-
ysis on current dataset splitting strategies and
discover that data contamination significantly
overstates the performance of models. Specifi-
cally, first we find the leakage of test subjects’
cognitive signals corrupts the training of a ro-
bust encoder. Second, we prove the leakage
of text stimuli causes the auto-regressive de-
coder to memorize seen information in test set.
To eliminate the influence of data contamina-
tion and fairly evaluate different models’ gen-
eralization ability, we propose a new splitting
method for different types of cognitive dataset
(e.g. fMRI, EEG). We also evaluate the perfor-
mance of SOTA brain-to-text decoding models
under the proposed dataset splitting paradigm
as baselines for further research.

1 Introduction

Brain-computer interface (BCI) builds connections
between human brain and external devices (e.g.
computer). It has been widely researched in the
field of neuroscience and has gained remarkable
success like repairing damaged sight or restoring
movement of disabled people (Polikov et al., 2005;
Hochberg et al., 2012; Bouton et al., 2016). How-
ever, when subjects (people involved in data collec-
tion) read or hear text stimuli and convey cognitive
signals, it is still challenging in decoding those cog-
nitive signals to corresponding natural language
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Figure 1: General frameworks of brain-to-text decoding
and possible situations of data contamination.

chunks (brain-to-text decoding), especially for non-
invasive cognitive signals like functional Magnetic
Resonance Imaging (fMRI) or electroencephalo-
gram (EEG) which are noisy and of low resolution
(Mridha et al., 2021).

Recent methods (Makin et al., 2020; Wang and
Ji, 2022; Xi et al., 2023; Tang et al., 2023) typically
viewed brain-to-text decoding as machine transla-
tion (Sutskever et al., 2014; Bahdanau et al., 2015)
and adopted an encoder-decoder framework, where
the encoder is responsible for converting cognitive
signals into low-dimensional representations and
the decoder learns to map the representations to
natural language. As shown in Figurel, the en-
coder usually consists of a spatial and time series
feature extractor. It can be trained either in an end-
to-end manner with decoder (Figure 1 (a)) or first
pre-trained through a signal reconstruction task and
then applied in decoder training (Figure 1 (b)). De-
spite recent success in model design, it still remains
controversial in how to split the dataset for training,
validating, and testing (Xi et al., 2023). Addressing
this issue is urgent and meaningful, as fair eval-
uation of models is impossible without a widely
recognized dataset splitting paradigm.

A cognitive dataset is usually formatted in signal-
sentence pair. In most cases for brain-to-text decod-



ing task, each sentence belongs to a certain task,
so signal-sentence pair can be further divided into
signal-task and task-sentence pair. Current dataset
splitting methods (Wang and Ji, 2022; Xi et al.,
2023) can be summarized into five categories: (1)
split by subjects, (2) split by tasks, (3) split by ran-
domly picking signal frames, (4) split by randomly
picking signal frames under certain task, (5) split
by randomly picking consecutive signal frames un-
der certain task. However, all these methods suffer
from data contamination on encoder side, decoder
side, or both. As shown in Figure 1, for the encoder
component, if subjects’ cognitive signals in test set
are mixed into training set, the encoder will become
overfitted and fail to well represent unseen subjects’
cognitive signals. As to decoder, situation gets
worse if text stimuli are leaked. Since the decoder
generates token by token in an auto-regressive man-
ner, during the teacher-forcing training stage, data
contamination will cause the decoder to memorize
seen paragraphs and probability distribution, which
means given the first few tokens the decoder is
able to predict next token regardless of encoded
cognitive signal representations.

To address the above-mentioned problems, we
propose a new dataset splitting method that erad-
icates data contamination from both encoder and
decoder sides. We focus on fMRI and EEG sig-
nals in experiments, although the proposed splitting
method could be applied to any cognitive signals
satisfying the given format. In our method, the
dataset is split according to subject-stimuli pairs
with the following rules: (1) Cognitive signals col-
lected from specific subject in validation set and
test set will not appear in training set, which means
the trained encoder cannot get access to any brain
information belonging to subject in test set. (2)
Text stimuli in validation set and test set will not
appear in training set. The decoder learns the map-
ping between cognitive signal representation and
token embedding instead of memorizing seen text.

Our contributions can be summarized as follows:

* We investigate current dataset splitting meth-
ods and analyze their influence on popular
frameworks in brain-to-text decoding.

* We prove the existence of data contamination
in current dataset splitting methods through
analysis and experiments, which seriously ex-
aggerates model performance.

* We propose the first splitting method with-
out data contamination on public cognitive
datasets. We also release a fair benchmark to

evaluate different models’ generalization per-
formance for further research in this domain.

2 Related Work

Cognitive Signal Cognitive signals can be clas-
sified into three categories: invasive, partially in-
vasive, and non-invasive according to how close
electrodes get to brain tissue. Due to the high cost
and complexity of invasive and partially invasive
methods, it’s hard to apply them in building generic
and practical BCIs. In this paper, we mainly fo-
cus on non-invasive signals EEG and fMRI. EEG
signal is electrogram of the spontaneous electrical
activity of the brain. Its frequencies usually range
from 1 to 30 Hz, divided into several groups like
alpha (4-13 Hz), beta (13-30 Hz), delta (0.5-4 Hz),
theta (4-7 Hz). EEG is of high temporal resolution
and relatively tolerant of subject movement, but its
spatial resolution is low and it can’t display active
areas of the brain directly. fMRI measures brain
activity by detecting changes of blood flow. Blood
flow of a specific region increases when this brain
area is in use. The spatial resolution of fMRI is
measured by the size of voxel, which is a three-
dimensional rectangular cuboid ranging from 3mm
to Smm (Vouloumanos et al., 2001; Noppeney and
Price, 2004). Unlike EEG which samples brain sig-
nals continuously, fMRI samples based on a fixed
time interval named TR, usually at second level.

Brain-to-text Decoding Previous research on
brain-to-text decoding (Herff et al., 2015; Anu-
manchipalli et al., 2019; Zou et al., 2021; Moses
et al., 2021; Défossez et al., 2023) mainly focused
on word-level decoding in a restricted vocabulary
with hundreds of words (Panachakel and Ramakr-
ishnan, 2021). These models typically apply re-
current neural network or long short-term memory
(Hochreiter and Schmidhuber, 1997) network to
build mapping between cognitive signals and words
in vocabulary. Despite relatively good accuracy,
these methods fail to generalize to unseen words.
Some progress (Sun et al., 2019) has been made
by expanding word-level decoding to sentence-
level through encoder-decoder framework, or use
less noisy ECoG data (Burle et al., 2015; Anu-
manchipalli et al., 2019). However, these models
struggle to generate accurate and fluent sentences
limited by decoder ability. Wang and Ji (2022)
introduced the first open vocabulary EEG-to-text
decoding model by leveraging the power of pre-
trained language models. Xi et al. (2023) improved
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Figure 2: Different splitting methods for cognitive dataset. (Color printing is preferred.)

the model design and proposed a unified framework
for decoding both fMRI and EEG signals.

3 Methodology

In this section, we will first introduce the definition
of brain-to-text decoding and the general descrip-
tion of dataset format. Then we systematically
analyze current dataset splitting methods and point
out that all existing methods suffer from two kinds
of data contamination issues: cognitive signal leak-
age and text stimuli leakage. Finally, a new dataset
splitting method is proposed to avoid the above-
mentioned two kinds of data contamination.

3.1 Task Definition

Given the cognitive signal Fj; stimulated by i-
th subject .S; hearing or reading certain text 77},
brain-to-text decoding aims to decode F;; back
to text 7} and make 7; as similar as possible
to Tj. The composition of Fj; and Tj is dif-
ferent as to fMRI and EEG. The former sam-
ples brain information discretely with a fixed
time interval TR, while the latter samples con-
tinuously. To fMRI, consistent sentence seg-
ments s; with corresponding fMRI frames f;;
are concatenated to form a sample pair (Fj;, 7)),
where T; = concat(sj, Sj41,-..,5j+1—1) and
Fij concat(fij, fi,j—f—l) ey fi,jJrLfl)’ and
|Tj| = |Fij| = L. To EEG, since signals corre-
sponding to a complete sentence are available and

they are continuous, we bond sentence 77 (i.e. text
stimuli) and EEG signal Fj; together to form a
sample pair (Fj;, 7). Under most scenarios, each
sentence T belongs to one certain task M. So the
signal-sentence pair (Fj;,T;) can be further split
into (Fj;, M) and (My, Tj;).

In brain-to-text decoding, the ultimate goal of
trained BCI models is to generalize to unseen sub-
jects with unseen text stimuli (Huang et al., 2010;
Handiru and Prasad, 2016; Gao et al., 2021). As
a result, if cognitive signal Fj; appears in test set
Stest, any signal Fj, belongs to subject ¢ should
not appear in training set Sy.qin. Similarly, text
stimuli Tj; in Sies should not appear in Sipqin.
The dataset splitting rules for training set can be
formally defined by Cartesian product:

Strain = Firain X Ttrain, (1)
Fyrain = {Fijli € I}, )

I = {i|Fsj & Svai, Stest: 7} 3)
Tirain = {Tkj|Tkj & Svals Stest }- “4)

Similar rules can also be applied to validation set
and test set splitting.

3.2 Dataset Splitting Methods

Current dataset splitting methods can be summa-
rized as five categories according to classifying
objectives S;, My, Ty, F;;. More specifically, the
five dataset splitting methods are characterised as
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Figure 3: The process of our proposed dataset splitting method. (Color printing is preferred.)

(1) split by subjects, (2) split by tasks, (3) split
by randomly picking signal frames, (4) split by
randomly picking signal frames under certain task,
(5) split by randomly picking consecutive signal
frames under certain task, corresponding to image
(a), (b), (c), (d), (e) in Figure 2. Figure 2 vividly
displays the differences between current dataset
splitting methods. For simplicity of expression, we
choose 4 subjects with 3 tasks each containing 4,
3, 4 sentences respectively. The line connecting
two symbols indicates they are related to one sam-
ple. Take path S7, M1, 711, Fi11 for example, it is
one sample where subject S listens to text stimuli
711 belonging to task M; and S;’s corresponding
brain signal is recorded as F71. Some symbols are
connected with several lines. For example, the four
lines between S7 and M; correspond to (M7, T711),
(My,Tha), (My,Th3), (My,T14) counting from
left to right. Similarly, the three lines between
M and Ty; correspond to (S1, M1), (Sa, Mi),
(Ss, M) respectively. The same rules can be ex-
tended to other lines and symbols. The green lines
and orange lines stand for training samples and
testing samples. The grey dotted line means the
sample is abandoned, which will be introduced in
our dataset splitting method. As the splitting of
validation set is similar to test set, we only consider
training set and test set in this section.

We will use method (a), (b), (c), (d), (e) to rep-
resent five current dataset splitting methods in the
rest of the paper. Method (a) splits the dataset
according to subjects, which can be described as

Strain = {(Fij, Tkj) |Si & Sval, Stest} (5)

for training set. Method (b) splits the dataset ac-
cording to tasks, which is described as

{<Fija Tk:g> ’Mk ¢ Svala Stest} (6)

for training set. Method (c), (d), and (e) all split
the dataset according to cognitive signal frames

Strain = {<F137Tk]> ‘-sz ¢ Svala Stest}- (7)

St’rain =

However, there are slight differences between these
three methods. Method (c) views all the cogni-
tive signal frames in dataset as a whole and splits
according to the default proportion (e.g. 8:1:1).
Method (d) views signal frames under certain task
M, as a whole and splits proportionally, and then
union all training sets under different tasks to form
a complete set for training. Method (e) is similar
to method (d). They both first split training, valida-
tion, and test set under certain task proportionally
and then union them. The difference lies in that
method (d) randomly picks signal frames while
method (e) picks consecutive signal frames.

The goal of brain-to-text decoding models is to
generalize to unseen subjects with unseen text stim-
uli, which means both subject’s brain information
and received text stimuli are new to the trained
model. In this sense, we define two kinds of data
contamination: cognitive signal leakage and text
stimuli leakage. The data contamination situation
of different methods is reflected in Figure 2. If lines
associated with S; or T}; are of different colours,
data in test set leaks into training set. Lines be-
tween S; and M}, indicate cognitive signal leakage
situation and lines between Tj; and M, indicate
text stimuli leakage situation. Remind the com-
position of samples differs as to fMRI signal and
EEG signal, so the dataset splitting methods are
different for two cognitive signals too. Since fMRI
signals need to be sampled continuously with a
certain length L, the path of a sample shown in Fig-
ure 2 is actually the first part of one fMRI sample,
with L — 1 continuous part following. In this sense,
for EEG cognitive signal leakage doesn’t exist in
method (a), but method (a) suffers from text stimuli
leakage. The situation of method (b) is opposite
to that of method (a), where there’s no text stimuli
leakage but cognitive signal leakage. Method (c)
and method (d) are similar. They suffer from both
cognitive signal leakage and text stimuli leakage.
Method (e) is in the same situation as method (b).



Narratives / ZuCo

Type Method Average
seedl seed?2 seed3 seed4
(a) 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
(b) 6.73 /- 6.32/- 7.7/ - 17.93 /- 9.67/ -
CSLR(%) (©) 12.55/12.52  12.52/12.55 12.48/12.48 12.44 /12.46 12.50/12.50
(d) 12.81/12.60 12.8/12.58 12.78/12.56  12.79/12.61 12.795/12.59
(e) 12.28 / - 12.27/ - 12.26/ - 12.27/ - 12.27/ -
) 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
(a) 100.00/23.43 100.00/20.25 100.00/23.38 100.00/22.95 100.00/22.50
(b) 0.00/ - 0.00/ - 0.00/ - 0.00/ - 0.00/ -
TSLR(%) (©) 100.00/13.21 100.00/13.06 100.00/12.91 100.00/13.1 100.00/13.07
(d) 99.93/0.00 99.81/0.00 99.54/0.00 99.99/0.00 99.82/0.00
(e) 9.19/- 9.31/- 9.36/ - 9.29/- 9.29/-
) 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00

Table 1: Results of Cognitive Signal Leakage Rate (CSLR) and Text Stimuli Leakage Rate (TSLR).

For fMRI, method (c), (d), and (e) which seem the
same for EEG are actually different splitting ways.
The situation of data contamination for different
methods is similar to EEG, except for method (e)
there still exists slight text stimuli leakage in the
overlap between training samples and test samples.

3.3 Our Method

To eliminate data contamination from both cogni-
tive signal leakage and text stimuli leakage, we
split the dataset by (S;, 7)) pairs as shown in (f) of
Figure 2. Since EEG and fMRI are different in the
composition of dataset, we treat them separately
and propose two dataset splitting methods. As to
EEG dataset where F;; and T); form a sample, we
consider a bipartite graph G, = (U, V), E) where
U=1{S1¥,,v= {Tj}jj\il. € is the edge be-
tween node in ¢/ and node in V, indicating (S;, 7))
pair in the dataset. NN is the total number of sub-
jects and M is the total number of unique text
stimuli. We assert M > N, soe = (u,v) € &
exists for every v € V, as each text stimuli is lis-
tened or read by at least one subject. As shown
in step 2 of Figure 3, first we pick one edge for
each node v € V and build a new bipartite graph
Go = (U, V,E"). Then we split graph G, by sub-
ject U with the given splitting ratio and form three
disjoint graphs Girain, Gval, Gtest- In step 4, some
edges satisfying zero data contamination condition
are not included in the graph. We add these edges
to corresponding graphs, extending each graph
Gtrain, Gvals Gtest 10 its maximally scalable state
and finishing the dataset splitting process.

Fij = concat(fij, fij+1,---, fij+r—1) and

T; = concat(s;j, Sj+1,---,Sj+1—1) form a sam-
ple pair in fMRI dataset. If we follow the same pro-
cess as EEG, text stimuli leakage will occur in the
overlapping part of two samples, when one sample
is assigned to training set and the other is assigned
to validation or test set. We propose a simple solu-
tion that achieves the balance between abandoning
as little data as possible and ensuring zero data con-
tamination. Instead of (S;,T;) pair, we consider
(S, M},) pair and apply the above-mentioned algo-
rithm. More details and pseudo-code are available
in Appendix B.

4 Experimental Settings

We test state-of-the-art brain-to-text decoding mod-
els on two popular cognitive datasets. Compre-
hensive experiments are conducted to prove the
existence of the following phenomena: (1) Cog-
nitive signals and text stimuli in test set leak into
training set in all current dataset splitting methods.
(2) The model’s generalization ability, particularly
that of the auto-regressive decoder, has been over-
estimated due to data contamination. Because the
number of tasks in EEG dataset is too small and
method (e) makes no difference to EEG as method
(d), we only consider method (a), (c¢), (d).

4.1 Datasets

We apply the “Narratives” (Nastase et al., 2021)
dataset for fMRI-to-text decoding and the ZuCo
(Hollenstein et al., 2018) dataset for EEG-to-text
decoding in experiments. The “Narratives” dataset
contains fMRI data from 345 subjects listening to



BLEU-N (%)

ROUGE-1 (%)

Model Epoch-+lr+Method
N=1 N=2 N=3 N=4 F P R
10+1e-3+(a) 4956 3049 21.07 1549 44.83 5041 40.65
10+1e-3+(b) 2637 750 248 099 2228 2599 19.62
UniCoRN 10+1e-3+(c) 50.24 30.83 2123  15.60 44.68 49.44 41.01
10+1e-3+(d) 49.63 3029 2085 1532 45.06 5047 41.03
10+1e-3+(e) 2894 939 407 153 21.68 24.64 19.49
20+1e-d+(a) 50.19 3425 2598 21.00 4659 5036 43.62
30+1e-4+(a) 5546 4099 3285 27.56 52.08 55.02 49.68
20+1e-4+(b) 2591 880 384  1.66 20.65 2774 16.57
30+1e-4+(b) 2591 880 384  1.66 20.65 27.74 16.57
UniCoRN* 20+1e-4+(c) 7244  60.84 5335 4788 7052 74.10 67.53
30+le-d+(c) 7282 6142 5395 4844 7124 7441 68.57
20+1e-4+(d) 6531 5102 4254 3672 6276 67.09 59.29
30+1e-4-+(d) 66.56 53.00 4475 39.02 63.89 67.51 60.95
20+1e-d+(e) 3215 1234 557 245 2428 3043 20.35
30+1e-4-+(e) 3215 1234 557 245 2428 3043 2035

Table 2: Generation quality of UniCoRN model for fMRI under different training settings. Here UniCoRN*
indicates the encoder of UniCoRN is randomly initialized instead of pre-trained through signal reconstruction task.

27 diverse stories. Since the data collection pro-
cess involves different machines, we only consider
fMRI data with 64 x 64 x 27 voxels. The ZuCo
dataset includes 12 healthy adult native English
speakers reading English text for 4 to 6 hours. It
contains simultaneous EEG and Eye-tracking data.
The reading tasks include Normal Reading (NR)
and Task-specific Reading (TSR) extracted from
movie views and Wikipedia. Both datasets are split
into training, validation, and test set with a ratio of
80%, 10%, 10% in all experiments.

4.2 Implementation

We follow the same settings of UniCoRN (Xi et al.,
2023) and EEG2Text (Wang and Ji, 2022), except
all the datasets are split to the ratio of 8:1:1 for
fair comparison. All experiments are conducted on
NVIDIA A100-SXM4-40GB GPUs. More details
are shown in Appendix A.

4.3 Data Contamination Metrics

We have analyzed two kinds of data contamination,
cognitive signal leakage and text stimuli leakage in
Methodology section. In this part, we will quantify
data contamination situation through experiments.

To better illustrate the extent of data contamina-
tion across different dataset splitting methods, we
design two novel evaluation metrics named Cogni-

tive Signal Leakage Rate (CSLR) and Text Stim-
uli Leakage Rate (TSLR) for detecting cognitive
signal leakage and text stimuli leakage. Note that
the situation for validation set is similar as test set,
we only consider test set in experiments. CSLR
indicates the average percentage of each subject’s
cognitive signals in test set appearing in training
set, which could be formulated as

N
1 . |{E]’FZ] S Stest N StrainH
— ) min(1, ) (8)
N ; [{F3j|Fj € Sirain}|

where N stands for the total number of subjects
in test set. | - | stands for the cardinality of a set.
Function min(+, -) is applied to make sure for each
subject the data leakage rate is less than 1.

The definition of TSLR is somewhat different
for EEG signal and fMRI signal. As to EEG signal
where cognitive signals are sampled continuously,
it’s easy to match certain sentence stimuli with cor-
responding signals. Its TSLR is similar to CSLR,
which indicates the average percentage of certain
text in test set appearing in training set. TSLR for
EEG data can be calculated through

M
1 . |{Eg‘ﬂ] € Stest N Strain}‘
— % min(1, ) ©)
M ; {T35|Tij € Strain}

where M stands for the total number of unique text



BLEU-N (%)

ROUGE-1 (%)

Model Epoch+lr+Method
N=1 N=2 N=3 N=4 F P R
50+1e-4+(a) 58.09 4923 4323 3843 63.88 61.12 67.50
80+1e-4+(a) 60.88 50.52 4342 37.84 65.17 e61.16 70.72
UniCoRN 50+1e-4+(c) 5230 42.89 36.80 32.17 57.39 51.09 67.29
80+1e-4+(c) 60.78 5592 53.18 51.10 84.64 63.16 71.50
50+1e-4+(d) 22.90 7.36 2.71 095 17.73 1990 17.33
80+1e-4+(d) 22.90 7.36 2.71 095 17.73 1990 17.33
50+1e-4+(a) 5122 3383 2299 16.05 4640 46.85 46.58
80+1e-4+(a) 63.32 5252 4519 39.50 6596 64.74 68.01
EEG2Text 50+1e-4+(c) 53.83 3899 2957 23.01 53.64 54.19 53.56
80+1e-4+(c) 6542 5756 5256 48.60 73.00 69.99 77.01
50+1e-4+(d) 23.92 8.16 3.21 1.20 20.78 19.96 23.89
80+1e-4+(d) 23.92 8.16 3.21 1.20  20.78 19.96 23.89

Table 3: Generation quality of UniCoRN and EEG2Text model for EEG under different training settings.

periods in test set and 7;; stands for j-th period of
text stimuli received by ¢-th subject.

The fMRI signal is sampled discretely with a
deterministic interval TR, making it hard to acquire
signals corresponding to sentences. Previous meth-
ods instead concatenated continuous fMRI frames
of certain length with their corresponding sentence
segments as training samples. As a result, we con-
sider the average percentage of the same sentence
segments in test set appearing in training set as
TSLR of fMRI signal. It can be formulated as

(10)

M
i Z - HE]’,TZJ S Stest N Strain}|
M = |Stest| x L

where 7 = 0 if {T};|T5; € Stest N Strain} = 0 else

{13155 € Sirain}|
’ ‘{sz‘Tz] S Stest N Stram}‘

). (1D

7 = min(1

5 Results and Analysis

5.1 Verification for Data Contamination

We test current dataset splitting methods and our
method on fMRI dataset “Narratives” and EEG
dataset ZuCo. Considering the influence of ran-
domness in splitting, we select four seeds for ex-
periments. The results are shown in Table 1 and
are consistent with theoretical analysis. For fMRI,
current methods apart from method (a) suffer from
cognitive signal leakage, while method (a) has se-
rious text stimuli leakage. Method (b) gets no text

stimuli leakage but has slight cognitive signal leak-
age. The situation for EEG is similar to that of
fMRI. Apart from our proposed method (f), there
is no way to achieve zero cognitive signal leakage
and text stimuli leakage at the same time.

5.2 Damage of Data Contamination

Cognitive signal leakage and text stimuli leakage
will damage brain-to-text decoding models from
both encoder side and decoder side.

Effect on Encoder As shown in Figure 1, en-
coder in current models is trained in two different
ways: either jointly trained with decoder or solely
trained through a reconstruction task. In the former
end-to-end training scenario, it is hard to evalu-
ate encoder performance separately. So we mainly
focus on the latter, in which case the encoder is
trained through an encoder-decoder framework to
reconstruct input cognitive signals. The decoder
here does not refer to the decoder for text gener-
ation. It is similar to the structure of the encoder
and will be abandoned once the encoder is trained.
Since a proper evaluation index of the encoder’s
representation ability is missing, validation loss is
used to measure the effect of data contamination.
We test different splitting methods on two cog-
nitive datasets. The validation loss of encoder
is shown in Figure 4. For fMRI, influenced by
leakage of cognitive signals, the validation loss
of method (b), (c¢), (d), (e) keeps dropping even
with long training epochs. The encoder is actually



BLEU-N (%)

ROUGE-1 (%)

Dataset Model
N=1 N=2 N=3 N=4 F P R
Narratives UniCoRN  22.83 5.69 1.43 048 15.55 24.80 19.04
ZuC UniCoRN  23.32 7.78 3.01 1.09 18.47 20.00 17.92
w0 EEG2Text 24.49 7.49 2.28 0.62 2398 2395 25.74

Table 4: A fair benchmark for evaluating brain-to-text decoding.
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Figure 4: Validation loss of encoder under different
dataset splitting methods in two datasets.

overfitting and degrading. For method (a) and (f)
without cognitive signal leakage, the validation loss
quickly rises after reaching the lowest point with
a few epochs, satisfying the basic rule of machine
learning. For EEG, we find validation loss keeps
dropping for all methods even with very long train-
ing epochs, regardless of cognitive signal leakage
or not. We think the poor spatial resolution of EEG
signal might lead to this phenomenon.

Effect on Decoder All state-of-the-art models
choose pre-trained language model BART (Lewis
et al., 2020) as decoder. On one hand, the powerful
auto-regressive decoder is able to achieve fluent
sentence-level open vocabulary text generation. On
the other hand, if data contamination occurs, due
to the feature of auto-regressive generation, the
decoder will generate memorized text given the first
few words, which is obviously an act of cheating.
The influence of text stimuli leakage on decoder
is detected through BLEU scores (Papineni et al.,
2002) and ROUGE-1 scores (Lin, 2004), which
measure text similarity between generated text and
ground truth. If evaluation indicators keep improv-
ing as training epochs increase, we believe part of
the test set is leaked into training set and the model
is overfitting. For fMRI signal, we test five current
dataset splitting methods under different training
settings. As shown in Table 2, we test two kinds
of UniCoRN models. One is UniCoRN with finely
tuned hyper-parameters claimed in the original pa-
per, and the other is UniCoRN* with a randomly

initialized encoder. Empirically, the former will
perform much better than the latter. However, in
method (a), (c), (d), due to text stimuli leakage,
if we reduce the learning rate and extend training
epochs, UniCoRN* performs much better than Uni-
CoRN and its performance keeps rising with longer
training epochs. As to method (b) and (e) with
no text stimuli leakage, changing training epochs
or learning rates makes no obvious difference to
model performance. For EEG signal, the conclu-
sion is similar as shown in Table 3. For method
(a) and (c) with text stimuli leakage, model per-
formance keeps rising with longer training epochs.
For method (d) without text stimuli leakage, both
models reach optimal performance after the first
few rounds of training epochs.

5.3 A Fair Benchmark

We evaluate current SOTA models for brain-to-text
decoding under our dataset splitting method and
release a fair benchmark. UniCoRN is tested for
both fMRI and EEG decoding, EEG2Text model
is tested for EEG decoding. The results are listed
in Table 4. For EEG dataset, UniCoRN achieves
higher results in BLEU-2,3,4 while EEG2Text is
better in BLEU-1 and ROUGE-1.

6 Conclusion

In this paper, we explore a controversial topic: Due
to the complexity of cognitive datasets, no consen-
sus has been reached on how to split the dataset for
training, validating, and testing in brain-to-text de-
coding. We analyze current dataset splitting meth-
ods and find data contamination largely exaggerates
model performance and leads to poor generaliza-
tion. Sufficient experiments and analysis are con-
ducted to verify the data contamination issues. We
also propose a new dataset splitting method which
can avoid both cognitive signal and text stimuli
leakage. Current state-of-the-art models are reeval-
uated under this setting and a fair benchmark is
released for further research in the domain.



Limitations

The “Narratives” dataset and the ZuCo dataset pro-
vide researchers with precise cognitive signal re-
sources stimulated by text or voice. However, in
brain-to-text decoding task, both subject’s cogni-
tive signals and text stimuli in validation and test
set need to be invisible to training set, which makes
splitting these public datasets difficult. Our pro-
posed dataset splitting method meets the above re-
quirements at the expense of discarding some data
in the dataset. We recommend future datasets in
this domain follow these guidelines. The division
of the training set, validation set, and test set should
be provided when the dataset is released. Besides,
we suggest hiring new subjects with unique stimuli
for validation set and test set, which is good for
testing the generalization ability of models with-
out loss of data (Tang et al., 2023). What’s more,
we find existing models rely more on the strong
auto-regressive decoder to achieve good generation
quality. The encoder is of limited use in all SOTA
models, which might become a research point in
the future.

Ethics Statement

In this paper, we introduce a new dataset splitting
method to avoid data contamination for decoding
cognitive signals to text task. Experiments are con-
ducted on public accessible cognitive datasets “Nar-
ratives” and ZuCo1.0 with the authorization from
their respective maintainers. Both datasets have
been de-identified by dataset providers and used
for researches only.
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A Implementation Details

More details in experiments are supplemented in
this section. We perform the same filtering steps to
“Narratives” dataset as UniCoRN paper (Xi et al.,
2023) and the same filtering steps to ZuCol.0 as
EEG2Text paper (Wang and Ji, 2022). In CSLR
and TSLR calculation, the number of four differ-
ent seeds are set as 1, 2, 3, 4 respectively. In signal
reconstruction task for encoder of UniCoRN, the
batch size of EEG and fMRI data is 512 and 320
respectively. The learning rate is set as 1le-4 and
le-3 separately as the author claimed in the original
paper. In the fair benchmark, for fMRI data, en-
coder of UniCoRN is trained through 1e-4 learning
rate and decaying to le-6 finally for 30 training
epochs. Decoder is trained through le-4 learning
rate and decaying to le-6 finally for 10 training
epochs with 90 batch size. Sample length L is set
as 10 for all experiments related to fMRI. For EEG
data, EEG2Text model is trained with 1e-6 learning
rate for 80 epochs. UniCoRN model is trained with
the same settings as fMRI data.
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B Our Dataset Splitting Method

In this part, we release the pseudo-code of two
dataset splitting methods for EEG and fMRI signal.
As shown in Figure 3, our proposed dataset split-
ting method consists of four steps. The blue lines
stand for the situation of original dataset. The main
difference between two methods lies in the how Go
is generated. We always choose the side with fewer
nodes in bipartite graph G; to perform G genera-
tion. For example, in Algorithm 1 where we assert
|U| < |V, the adjacency matrix is initialized as
M x N. In Algorithm 2 where |V| < |U|, the adja-
cency matrix is initialized as N x K. All hypothe-
ses are based on analysis of cognitive datasets.

One more thing to notice is that in Line 14 of
both pseudo-code, the loop indicates extending
training set, validation set, and test set respectively.
So the names of variable should be alternated in the
repeat loop and the displayed part in pseudo-cod is
a case example of extending training set. We write
it in this way for simplicity of expression.
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Algorithm 1: Dataset splitting method for EEG signal

1 Initialize: Bipartite graph G = (U, V,E), Go = (U, V,E') where U = {S;} | and V = {Tj}fil,

Adjacency matrix A; of G; where A;[i][j] = 1 if node 7 and node j is connected else A;[i][j] = 0,
Adjacency matrix Ag of Go where As[i][j] = 0, Array C where len(C') = len(U) and C[i] = 0;

2 for u < Uj to Uy do

3 Ceopy < C;

4 | forv <« Ai[u][0] to A;[u][M] do

5 if v = 0 then

6 ‘ Ceopylv-index] < oo;

7 Minimum = min(Ceopy );

8 Az [u][Minimum.index] < 1;

9 C[Minimum.indezx| < C[Minimum.indez| + 1; // Make degree of nodes balanced

10 Split by subjects I/ according to default ratio;
11 Go = Girain U Guar U Giest, Utrain N Upar N Usest = @, Virain 0 Val N Viest = 0;

12 repeat // To three sets respectively, below is for training set
13 for v in U/ do

14 for vin) do

15 L ife=(u,v) e Eande = (u,v) ¢ & ., and u ¢ Uyq UUscs then

16 ‘ gL{rain A Igrain U {6};

17 until Gyrqin, Gual, Grest are all extended;
18 return gtrainv gvala gtest;

Algorithm 2: Dataset splitting method for fMRI signal

1 Initialize: Bipartite graph G; = (U, V, &), Go = (U, V,E') where U = {S;}¥ 1,V = {M}E_|,
Adjacency matrix A; of G; where A;[i][j] = 1 if node 7 and node j is connected else A;[i][j] = 0,
Adjacency matrix Ay of Ga where As[i][j] = 0, Array C where len(C') = len(V) and C[i] = 0;

20 for v < V; to Vi do

21 Ceopy < C;

2 | foru < A;[v][0] to A;[v][K] do

23 if v = 0 then

L ‘ Creopy|u-index] < oo;

25 Minimum = min(Ceopy);
2 As[v][Minimum.indez| < 1,
27 CMinimum.index) < C[Minimum.indezx] + 1, // Make degree of nodes balanced

28 Split by tasks V according to default ratio;
29 Gy = gtrain U gval U gtest7 Usrain N Upar N Usest = @, Virain N Voal N Viest = Q);

30 repeat // To three sets respectively, below is for training set
31 for vin) do

k%) for v in I/ do

33 L ife=(u,v) e Eande = (u,v) ¢ &, and v & Vg U Vs then

34 ‘ gzgrain A L{Tain U {6};

35 until Grin, Goals Giest are all extended;
36 return G qin, Gual, Gtests
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