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Abstract— Recent advances in deep learning led to sev-
eral algorithms for the accurate diagnosis of pneumonia
from chest X-rays. However, these models require large
training medical datasets, which are sparse, isolated, and
generally private. Furthermore, these models in medical
imaging are known to over-fit to a particular data domain
source, i.e., these algorithms do not conserve the same
accuracy when tested on a dataset from another medical
center, mainly due to image distribution discrepancies.
In this work, a domain adaptation and classification tech-
nique is proposed to overcome the over-fit challenges on
a small dataset. This method uses a private-small dataset
(target domain), a public-large labeled dataset from another
medical center (source domain), and consists of three steps.
First, it performs a data selection of the source domain’s
most representative images based on similarity constraints
through principal component analysis subspaces. Second,
the selected samples from the source domain are fit to the
target distribution through an image to image translation
based on a cycle-generative adversarial network. Finally,
the target train dataset and the adapted images from the
source dataset are used within a convolutional neural net-
work to explore different settings to adjust the layers and
perform the classification of the target test dataset. It is
shown that fine-tuning a few specific layers together with
the selected-adapted images increases the sorting accu-
racy while reducing the trainable parameters. The proposed
approach achieved a notable increase in the target dataset’s
overall classification accuracy, reaching up to 97.78 % com-
pared to 90.03 % by standard transfer learning.

Index Terms— Chest X-ray, deep learning,domain adapta-
tion, generative adversarial network, pneumonia diagnosis.
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I. INTRODUCTION

P
NEUMONIA is a lung infection that affects 7% of
the world population and is the leading cause of death

worldwide in children under five years, with about 1.4 million
deaths every year [1], [2]. Furthermore, every year are diag-
nosed two billion people with pneumonia. This respiratory
disease can be treated with antibiotics or antivirals, and
the success of the treatment strongly depends on its early
detection [3].

Expert analysis of chest X-ray images is currently the
most widely medical imaging technique used world-wide to
diagnose pneumonia and a wide variety of diseases. The
popularity of X-rays is due to their relatively low cost, low
irradiation, and the easy access to the acquisition equipment.
Consequently, an estimated of 2 billion X-ray images are
acquired each year worldwide [4].

Nevertheless, the image quality of chest X-ray has some
limitations, such as low contrast, overlapping organs and
blurred boundaries, which seriously affect pneumonia detec-
tion [5], [6]. Especially in children, accurately diagnosing
pneumonia from chest X-rays remains a time-consuming task
even for experienced radiologists [7]. Another important prob-
lem is the lack of radiologists trained in low-income and
developing countries, even more in rural areas.

Due to advances in computing of recent decades, computer-
aided diagnosis (CAD) has emerged to support medical staff in
decision-making [8], [9]. In this sense, multiple computational
strategies such as generic, probabilistic, population-based, and
surface learning models have been developed to help health
professionals in the analysis of medical images, whether
for disease prediction, diagnosis or treatment. Specifically,
these strategies include Gaussian mixture models, conditional
random fields, statistical atlases, logistic regression, nearest-
neighbor methods, support vector machines, random forests,
among others [10]–[13].

More recently, the use of deep learning (DL) models
has revolutionized the field of medical imaging computing
[14]–[16]. Due to its ability to process large amounts of
data with high speed, and to extract complex characteristics
not visible to the human eye, this area of research became
the most appealing for the analysis of medical images in
recent years [17]. Deep learning approaches include recur-
rent neural networks, convolutional neural networks (CNN),
auto-encoders, and deep reinforcement learning techniques,
among others [18]–[20]. Precisely, recent advances in the
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application of deep learning and computer vision in health-
care have allowed to attain radiologist-level performance for
pneumonia diagnosis from chest X-ray images. For instance,
authors in [21]–[23] achieved an overall accuracy of 98%,
98.43% and 99.41%, respectively, in the classification of a
public pneumonia dataset with 5, 849 labeled images acquired
in the Guangzhou Women and Children’s Medical Center,
China [24]. Despite these accurate results, deep learning clas-
sifiers are well-known to over-fit to a particular data domain
source in medical imaging. That is, a deep learning model
trained on a large dataset originating from one medical center
does not conserve the same precision when tested on a dataset
from another medical center. This challenge is mainly related
to discrepancies in the appearance of the images, to differences
in acquisition protocols and/or device technologies. Specifi-
cally, as we will show in this work, a model trained on the
previously mentioned dataset with an overall accuracy of 98%
only achieves 88% accuracy when classifying 173 non-public
chest X-ray images acquired at a different clinical center. This
represents a major challenge limiting the clinical applicability
of such technologies.

In this context, domain adaptation (DA) has emerged as
a transfer learning alternative to address the lack of massive
amounts of labeled data and the difficulty of deep learning
methods to obtain high performance when applied to small
datasets different from the one used during the training phase
[25], [26]. Precisely, DA is the area of machine learning
that enables knowledge to be transferred from one source
domain to a different but related target domain to increase the
learning models’ capability on the latter [27]. DA applications
mainly focus on natural images [28], telecommunication prob-
lems [29], and, to a lesser extent, on medical applications [30].

It should be noted that other approaches related to the
relatively new DA concept already exist. In particular, one may
cite two large categories according to the modified domain:
domain transformation (DT-DA) which translates images from
one domain to another such that a specific task can be applied
directly to the transformed images; and latent feature-space
transformation (LFST-DA) which aligns the images from both
domains in a hidden common feature space in which the task
model is to be trained [31]. Both perspectives have recently
been addressed separately in the literature to analyze lung
X-rays using images from different demographic sources or
disease states. In [26] and [32], the authors proposed DT-DA
strategies for semi-supervised and unsupervised classification,
respectively. Other DT-DA works for the study of lungs have
been presented in the literature, based on feature transfer from
one imaging modality to another (cross-modality). However,
these works were mainly focused on image segmentation.
For instance, in [33] and [34], DA was performed from
computed tomography (CT) to X-rays. In [35], the authors
used histopathological images to transfer characteristics from
cytokeratins to PD-L1. Furthermore, a few unsupervised lung
X-ray imaging works based on the LFST-DA approach have
been studied, also focused on image segmentation [36], [37].

Considering the challenge discussed above on the scarcity of
labeled medical data and the difficulty of deep learning models
to generalize from one dataset to another, the main scientific

question addressed here is how to improve the classification
of a small dataset acquired in one center, taking advantage of
information from a larger public dataset acquired in a different
hospital?

This paper proposes a new DA technique to classify a
small chest X-ray dataset taking advantage of a large pub-
lic dataset acquired in another clinical center. The resulting
algorithm is referred to as CX-DaGAN meaning Chest X-rays
Domain adaptation with Generative Adversarial Network. The
proposed technique is composed of three stages. First, a data
selection from a source dataset through similarity constraints
with the target dataset is performed. Then, a translation of the
selected source images to the target domain with a generative
adversarial network approach is processed. Finally, training of
a CNN using both sets, target and translated sets, is performed
in order to classify the target set. For testing, a sub-set from
the target set is used. This work is a substantial improvement
from the previous research published in [38].

II. METHODOLOGY

Overall, the proposed approach consists of three stages: first,
it selects from the source dataset the images which are the
most similar to the ones of the target domain; these images
are chosen based on a similarity function that measures the
subspace-projection error obtained by projecting the source
data onto the target subspaces of each class: pathological and
normal images. Second, it uses the selected source images
as input for a Cycle-GAN to generate images in the target
domain. This second step uses images from the train target
set to discriminate between the real and generated images
generated by the GAN. Finally, in the third stage, the translated
images and the small target train set are used to feed a
CNN pneumonia/normal classification network, and test it on
the test set from the target dataset. The network parameters
are further reduced by proposing a fine-tuning strategy. The
overall proposed method is depicted in Fig. 1. The following
sections provide more details of each stage (A, B, and C). Note
that stages A and B are preprocessing steps before training
a CNN network for pneumonia/normal classification of the
X-ray images in step C.
Notation. Table I summarizes the main notations used in this
paper.

A. Proposed Similarity-Constrained Data Selection

This section introduces the step A of the proposed method
shown in Fig. 1 and detailed in Fig. 2. Let us denote by S the
set of medium to large labeled dataset (source), and by T the
small labeled dataset (target). Throughout the paper, we refer
to “small” a dataset with less than 1,000 images, “medium”
a dataset containing between 1,000 and 5,000 images, and
“large” a dataset with more than 5,000 images. This choice is
based on the number of images needed to train a X-ray-based
pneumonia classifier from scratch with excellent (98%), good
(95%) and insufficient (90%) accuracy [39]. Furthermore, let
us denote by SP ⊆ S, and SN ⊆ S the subsets of images
labeled as pneumonia and normal, respectively, in the source
domain. Similarly, TP ⊆ T and TN ⊆ T denote the subsets of
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Fig. 1. Proposed domain adaptation and classification framework. First, the chest X-rays images from the source and training target domains are fed
into step (A) for the similarity-constrained data selection process. In step (A), images from the source domain are selected using a similarity function
that measures the subspace-projection error obtained by projecting the source data onto the training target data domain. Then, the selected source
images and the train target set are used as input to the proposed GAN-based image-to-image translation (Step B). The output of step (B) consists
of synthetic images generated from the GAN that follows the target image distribution. Finally, we fine-tune a pretrained CNN-based classification
network for pneumonia diagnosis using the generated images in step (B) and the training target set as input. The performance of the proposed
workflow is evaluated on the testing target set.

TABLE I

SUMMARY OF MAIN NOTATIONS

images labeled as pneumonia and normal in the target domain,
respectively. ySP ∈ R

D×1 represents an image sample from
the SP subset after reshaping it in a D-dimensional vector
form, i.e., D corresponds to the total amount of pixels in the
image. Similarly, ySN ∈ SN , yTP ∈ TP , and yTN ∈ TN denote
vectorized images from the corresponding subsets.
First, every source and target data from TP and TN is nor-
malized to have zero mean and unit standard deviation. Then,
principal component analysis (PCA) is applied to select, for
each domain, d eigenvectors corresponding to the d largest
eigenvalues. These eigenvectors are used as bases of the
subspace for each subset. Specifically, the matrices UP ∈

R
D×d and UN ∈ R

D×d are obtained, used as the subspaces.
Note that UP and UN are semi-orthonormal, thus U 0

PUP = Id

and U 0
N UN = Id , where Id is the identity matrix of size

d2 and 0 denote the transpose of the matrix. Furthermore,
two types of projections are performed: (1) project every
image from each source class onto the target subspace of
the same class, i.e., ySP is projected onto UP and ySN onto
UN ; (2) project every image from each source class onto the

target subspace of the opposite class, i.e., ySP is projected
onto UN and ySN onto UP . Based on these projections, the
following similarity functions considering the projection errors
are defined:

E P(y) = kUPU 0
Py − yk2, (1)

EN (y) = kUN U 0
N y − yk2, (2)

where k ∗ k2 stands for the `2-norm. (1) and (2) are
used to project all images in SP and SN and build four
error vectors: q1 ∈ R

n1 , q2 ∈ R
n2 , q3 ∈ R

n1 and
q4 ∈ R

n2 . Specifically, the vector q1 is built as q1 =
{

E P(y1
SP

), · · · , E P(y
n1
SP

)
}

using all images (n1) from SP .

Similarly, q2 =

{

EN (y1
SN

), · · · , EN (y
n2
SN

)
}

is formed using

all images (n2) from SN ; q3 =

{

EN (y1
SP

), · · · , EN (y
n1
SP

)
}

;

and q4 =

{

E P(y1
SN

), · · · , E P (y
n2
SN

)
}

.

The vectors q1 and q2 are sorted in ascending order, and
vectors q3 and q4 in descending order. Finally, considering
the first k values from each error vector, the corresponding
k images from the source domain (SN and SP ) are selected
and used as input for the proposed cycle-GAN-based network
shown in step (B) of Fig. 1. Note that in this document, “sim-
ilarity” is named for the minimum mathematical difference
between pixel values of two spatial sets. A human inspection
of the images was not considered to establish the similarity.
This way of selecting images from the source set is guided
by the idea of choosing the images that are the most similar
intra-class to those from the target set, and the most different
inter-class between the two domains.

B. Proposed GAN-Based Image-to-Image Translation

After selecting the most similar images from the source
dataset (with respect to the target domain images) using
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Fig. 2. Step A of Fig 1. Similarity-constrained data selection via subspace projection error. The circled blue numbers represent the order of the
stages in the figure. First, we calculate a subspace basis for each target class using principal component analysis (PCA). Second, the images from
each class in the source domain are projected onto the subspaces of T within their corresponding classes. Third, the results of these projections
are obtained. Fourth, each source image is projected onto the opposite class subspace basis, and the results are obtained in the fifth lines. Sixth,
for each case, we calculate the projection error between the projected and original corresponding image through the similarity functions shown in
Eq. (1)-(2). Finally, we select the images with the lowest projection error when projecting the images onto subspaces of the same classes and the
largest error when projecting the images onto the subspaces of the opposite classes.

Fig. 3. Step B of Fig 1. Proposed GAN-based I2I architecture used to translate chest X-ray images from the source domain (Normal or Pneumonia)
to its corresponding class in the target domain. The network also translates back the generated images to the source domain to maintain the
cycle consistency. To ensure the generated synthetic images maintain the high-level semantics after the transformation and improve classification
accuracy, a classification model was incorporated to guide the training by considering the classification loss. The training set of target domain was
used to measure the adversarial loss during training.

the proposed subspace-based approach, a multi-domain and
unpaired image-to-image (I2I) translation network is used
to generate images following the target domain distribution.
Specifically, Step B generates the same number of images that
were selected from the source dataset by Step A. The proposed
network is depicted in Fig. 1 (step B) and detailed in Fig. 3.
Specifically, the I2I translation strategy [40] is adopted to map
images from the two domains corresponding to the same class
(ySP ⇄ yTP , ySN ⇄ yTN ).

In this work, the Cycle-GAN [40] is adopted to learn two
mappings: S → T , and T → S, with generators GS→T (yS)

and GT →S(yT ), so that discriminators DT and DS cannot
distinguish between real and synthetic images generated by
the generators. In a Cycle-GAN network, GS→T and its

discriminator DT are used to define the adversarial learning
objective loss as

Ladv (GS→T ,DT ) = Eys∼yS

[

log(1 − DT (GS→T (ys))
]

+ Eyt∼yT

[

log DT (yt )
]

, (3)

where E denotes the expected value over the data instances
specified in the subindex.

A similar adversarial loss can be designed for
mapping GT →S and its discriminator DS as well,
i.e., minGT →S maxDS Ladv(GT →S, DS). To preserve sufficient
low-level content information, we use the cycle-consistency
loss [40] to force the reconstructed synthetic images y 0

s and

Authorized licensed use limited to: Universidad Industrial de Santander. Downloaded on November 03,2022 at 12:02:24 UTC from IEEE Xplore.  Restrictions apply. 



3282 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 4. Step C of Fig 1. It starts by using the pretrained weights of the Xception architecture on ImageNet and investigate different fine-tuning
settings to achieve the highest accuracy while training fewer parameters. It uses the generated images obtained by following steps (A) and (B) of
the proposed workflow as input to this architecture.

y 0
p to resemble their inputs ys and yt :

Lcyc(GS→T , GT →S) = Eys∼yS

[

ky 0
s − ysk1

]

+ Eyt∼yT

[

ky 0
t − ytk1

]

, (4)

where y 0
s = GT →S(GS→T (ys)), y 0

t = GS→T (GT →S(yt )), and
k · k1 is the `1-norm. The generative adversarial training with
cycle-consistency enables synthesizing realistic-looking radi-
ographs across domains. However, there is no guarantee that
high-level semantics would be preserved during translation,
thus decreasing the classification accuracy.

To improve the classification accuracy on the generated
synthetic target images, a classification model F was included
in the GAN-based network to guide the training by considering
the classification loss. Specifically, the classification model F
is learned on the synthetic target data T̄ = {GS→T (yS), L̄S},
where L̄S represent the corresponding labels (Normal or
Pneumonia) of the synthetic T̄ data. The binary cross-entropy
loss was used to classify the two categories:

Lcls(F , T̄ ) = −Et̄∼T̄

C
∑

c=1

�c log
(

σ(F (c)(yt̄)
)

, (5)

where σ is the softmax function, �c = 1 if an input image yt̄

belongs to class c ∈ C = {Normal, Pneumonia}, otherwise
�c = 0. The final objective of our proposed GAN-based
network for synthetic target images generation is the sum
of adversarial learning losses, cycle consistency loss, and
classification loss:

L = Ladv (GS→T ,DT ) + Ladv (GT →S,DS)

+ λLcyc(GS→T , GT →S) + Lcls(F , T̄ ). (6)

It is worth mentioning that, for ease of notation, the above
equations were developed without distinguishing between the
two classes. However, during implementation, four genera-
tors described the mappings from source/target images with
pneumonia/normal to target/source images, respectively. Sim-
ilarly, four discriminators were associated with each generator
output. Also, the same classification network (F ) was used
in the last step of the proposed framework shown in Fig. 1,
which is described in the following section.

C. CNN-Based Classification

The augmented training dataset obtained following the steps
A and B detailed in the previous sections is used to feed

a convolutional neural network (CNN) trained to perform
the final classification. In this work, the Xception CNN
was adopted as backbone to extract features and used a
fully connected layer at the end of the network to perform
the classification. The Xception [41] is an extension of the
Inception architecture which replaces the standard Inception
modules with depthwise separable convolutions. Instead of
partitioning input data into several compressed chunks, it maps
the spatial correlations for each output channel separately, and
then performs a 1 ×1 depthwise convolution to capture cross-
channel correlation. This is essentially equivalent to an existing
operation known as a “depthwise separable convolution”,
which consists of a depthwise convolution (a spatial convo-
lution performed independently for each channel) followed by
a pointwise convolution (a 1×1 convolution across channels).
The Xception architecture is shown in Fig. 4. In general, the
network can be divided in three sections: the entry, middle and
exit flow, where the middle flow is repeated eight times. Given
the limited size of the training dataset, pre-trained weights
from ImageNet dataset were used to initialize the network
and fine-tuned the layers of the Xception to adapt them to the
specific task of pneumonia detection. Section III-C investigates
different fine-tuning settings to achieve high accuracy while
training less parameters.

III. RESULTS

This section illustrates the efficiency of the proposed
CX-DaGAN classification algorithm for normal and pneumo-
nia images on a small chest X-rays dataset. All simulations
were implemented in Python with Tensorflow 2.3 and ran on
an Nvidia Quadro RTX 6000 GPU with 24 GB of memory.

A. Datasets and Metrics

Datasets. The proposed CX-DaGAN algorithm was tested
using two datasets for domain adaptation: a large source
dataset (S) from which we extracted and transformed a
selected number of images; second, a small target dataset (T )
from which we performed the classification. In this work,
a private dataset was used as T and a publicly available
dataset as S.

Specifically, the “Chest X-ray Images (Pneumonia)
dataset”1 was used as S which consists of 5, 849 labeled

1The dataset is available for free download at https://www.kaggle.com/
paultimothymooney/chest-xray-pneumonia
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images acquired in the Guangzhou Women and Children’s
Medical Center in China [24]. The 8-bit X-ray grayscale
images are separated into 4, 266 pneumonia (SP ) and
1, 583 normal (SN ).

On the other hand, 573 chest X-ray images acquired at the
Toulouse University Hospital in France were used as target
dataset T . Each image of T was labeled as pneumonia or
normal class by two expert radiologists. The dataset T is
divided into 275 normal and 298 pneumonia images. In the
following experiments, we split T in 400 images for training
and the remaining 173 for testing, which corresponds to
69, 8% and 30, 2% of the data, respectively. To train and
evaluate the proposed CX-DaGAN method, images with a
fixed size of 224 × 224 pixels were considered.

Metrics. To quantitatively evaluate the performance of the
proposed method, three metrics [42] were computed: Accuracy
(ACC), F1 score (F1), and Area under the ROC curve (AUC).

B. Quantitative Classification Results

For the testing chest X-ray images, the CX-DaGAN algo-
rithm was used to predict the probability of pneumonia.
By comparing with the binary ground-truth labels, the overall
accuracy of the proposed method was calculated in extensive
simulations, as shown in Table III. In this table, each value
corresponds to the average and standard deviation of 10 real-
izations of the proposed method, evaluated on 173 images
from the target dataset. In this Table III, the number of images
used for training throughout the entire framework was varied.
Specifically, between columns and rows, the number of images
from target and source, respectively, changes. Note that due
to the small-size of the target dataset, the maximum number
of target images used for training was 400 (see columns in
Table III). On the other hand, the number of images from
the source domain chosen by the similarity-constrained data
selection step was simultaneously varied. It is worth noting
that this method was designed for selecting the same amount of
images from each class in S, i.e., after the similarity phase (A),
the proposed method ensures 50% of normal (disease-free)
and 50% of pneumonia images to feed the step B. Thus,
considering the composition of the unbalanced public dataset
used in these experiments, the maximum number of X-rays
from S was 2400, which corresponds to 1200 images of each
class (see rows in Table III).

In deep learning, specially for CNNs, it is well known that
a greater number of labeled training samples leads to better
classification [39], [43]. In general terms, Table III shows that
the classification accuracy is lower using fewer target images
for training the CX-DaGAN algorithm. Conversely, the best
results are concentrated in the right area of the Table, where
we used more images from the target dataset. However, it can
also be observed vertically that using more images from source
domain does not necessarily imply better accuracy. Instead,
there is a central area with combinations of data that are
particularly interesting.

In the highest case of average precision, the data showed
that the pneumonia prediction accuracy obtained by the
CX-DaGAN proposed algorithm is higher than 97% when

Fig. 5. Twenty highest overall accuracy results from Table III in
descending order and their STD.

Fig. 6. Histogram of the error values from the results presented in
Table III.

training using 250 images from the target and 400 images
from the source set. Similarly, high accuracy results can be
achieved by training the algorithm with 400 images from the
target and 200 images from the source. For a deeper analysis
of results in Table III, Fig. 5 presents the 20 highest average
classification results, without considering their standard devi-
ation (STD), organized in descending order and graphed with
their respective STD. Note that the best classification average
value is 97,78. However, its corresponding STD is 0,7. On the
other hand, the third highest average rating in this plot is 96,75.
In this case, the STD is lower (0,4), which can be interpreted
as a statistically more stable and reliable result. Therefore, it is
not possible to select only one combination of target/source
data as the “best” since results can vary between the ranges
defined by the STD. Please note that this table aims to provide
results with different source/target data combinations to allow
the user select the best combination according to the data
availability.
Figure 6 shows a histogram with all the error values of
Table III to visualize their behavior. Note that the mean of
the error values is 0,732 and the standard deviation of the
error values is 0,231.

The ten highest average accuracy results from Table III, their
STD, and the corresponding target/source data combination for
training are shown in Fig. 7. Note that the “x” and “y” axis
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TABLE II

CLASSIFICATION RESULTS IN TERMS OF OVERALL ACCURACY (OA) OF

THE CX-DAGAN ALGORITHM FOR DIFFERENT VALUES OF d IN

STEP A (AVERAGE OVER 10 REALIZATIONS)

Fig. 7. Ten highest overall accuracy average results achieved with the
proposed method (dot size), STD (dot color), and their corresponding
data combinations of target/source in the training, presented in the “x”
and “y” axis, respectively.

correspond to the number of “target” and “source” images used
for training, respectively. The size of each dot is associated
with the accuracy value: larger dots indicate better precision,
as conventions dictate; the color of the dot indicates the value
of the standard deviation, where red corresponds to a higher
STD and green to a lower one. The aim of this plot is to expose
the most accurate options achieved by the proposed method,
according to the required number of images for training, and
their STD.

The results shown in Tables III, IV, and V were
obtained using d = 200 in step A. Conversely, OA results
of CX-DaGAN method using other values of d =

60, 100, 140, 180 for the step A are presented in Table II.
Note that subspaces UP and UN have dimensions R

D×d and
consequently the upper bound of d in this example is 298 for
UP and 275 for UN , corresponding to TP and TN , respectively.
One may remark from the OA values in Table II that the choice
of d has limited influence on the accuracy of CX-DaGAN
method. This observation is sustained by the fact that 88%
of the images selected from S within step A were the same
for all d values evaluated. Accordingly, d = 200 eigenvectors
(≈ 70%) were chosen, to run the following simulations given
that this value leads to the best balance between classification
accuracy and algorithm performance.

C. Ablation Studies

Two ablation experiments were conducted to evaluate the
configuration of the proposed training pipeline. The first

Fig. 8. Mean results when fine-tuning different blocks of Xception. Fine-
tuning the middle flow block of the Xception architecture leads to a very
similar performance compared to fine-tuning all the network.

ablation study (Ablation study 1) evaluates the influence of
the fine-tune training in the step C of the proposed approach.
The second ablation study (Ablation study 2) validates the
importance of each step of the CX-DaGAN algorithm in the
training procedure, evaluating the separate use of one or two
of the three steps. Furthermore, in the Ablation study 2, the
number of training images of the two sets, target and source,
are updated simultaneously.

1) Ablation Study 1: In this experiment, the fine-tune training
on the Xception architecture shown in Section II-C was
performed. The pre-trained weights from the ImageNet dataset
were first loaded and then each block (entry, middle, and
exit flow) fine-tuned while freezing the other layers. The
network was trained using Adam optimizer with a learning
rate of 0.0001, a batch size of 16, a dropout of 0.2 before
the decision layer, and 100 epochs. The mean F1-score
results when fine-tuning different blocks of the Xception
are shown in Fig. 8. One may observe that, fine-tuning the
middle flow block of the Xception architecture leads to a
very similar performance compared to fine-tuning all the
network; hence, it is unnecessary to retrain all the Xcep-
tion network. Consequently, in the following experiments,
only the middle flow was fine-tuned as it provides the best
results.

2) Ablation Study 2: For this experiment, combinations of
number of images from target/source data were selected from
Table III to perform an ablation study presented in Table II.
Specifically, the accuracy results of the proposed method
were calculated for seven target/source data combinations by
eliminating one or two of the three main steps (A, B, and C)
of our proposed CX-DaGAN algorithm.
The column Step C, which gives the worst results in Table IV,
presents the classification of the test images of the small/target
dataset through the Xception neural network. For this, the
CNN was fine-tuned with the number of source and target
images indicated in each row. In this case, source images used
to complement the training dataset are randomly selected. Note
that the most accurate result is obtained in this column with
the largest number of images from each dataset. It should be
noted that although 400 images from the target dataset are
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TABLE III

QUANTITATIVE CLASSIFICATION RESULTS FOR DIFFERENT DATA COMBINATIONS (TARGET/SOURCE)

IN THE TRAINING (AVERAGE OVER 10 REALIZATIONS)

TABLE IV

QUANTITATIVE CLASSIFICATION RESULTS OF THE ABLATION STUDY 1.

IMPORTANCE OF EACH STEP IN THE PERFORMANCE OF THE

CX-DAGAN ALGORITHM (AVERAGE

OVER 30 REALIZATIONS)

used in two cases, the highest precision is obtained when more
images (350) are incorporated from the source dataset. Thus,
combining a total of 750 tagged images for retraining, the
accuracy was of 88.78%.
On the other hand, the results are better when we use two
steps of our method. For instance, in “Steps A + C”, the
similarity-constrained stage selects the source images to train
the CNN. In this way, an increase of up to 7.91% in the
average accuracy was achieved.
Then, the “Steps B + C” column shows the results of
randomly selecting images from target and source, generating
synthetic source images based on Cycle-GAN, and training the
Xception. In this case, an increase of up to 4.73% compared
to using only stage C was observed. Finally, the last row in
Table IV shows the result using the three steps (A + B + C).
It is evident that the simultaneous combination of all the
steps allows a better performance of our proposed method,
compared to using a part of it, thus proving the importance of
each of these steps. It is worth mentioning that the results
reported in the Tables III, IV, and V include the cross-
validation technique, which is used to evaluate the results of
statistical analysis and ensure that they are independent of the
partition between training and test data. Note that, as indicated
in the table titles, each result in Tables II and III included
10 realizations, and each result in Tables IV and V included
30 realizations.

TABLE V

QUANTITATIVE CLASSIFICATION RESULTS OF FIVE DATA-BASED

METHODS (INCLUDING OUR PROPOSED METHOD) FOR THREE

DIFFERENT CNNS. ALL METHODS INCLUDE 400 IMAGES

FROM THE TARGET DOMAIN FOR TRAINING

(AVERAGE OVER 30 REALIZATIONS)

D. Comparison Results

1) Other Classification Methods: In order to compare the
performance of our proposed CX-DaGAN algorithm with
other state-of-the-art methods, the above reference approaches
were implemented and tested:

• TL: Transfer learning with two chest X-rays datasets.
This approach consists in considering a CNN previously
trained with the ImageNet dataset, and retraining it with
all available source images (5216 samples) + target
images (400 samples). The resulting training network was
used to classify the test target set.

• NO-S: No source images. In this experiment, a CNN
pre-trained with the ImageNet dataset is re-trained with
target images (400 samples), assuming no access to a
second (source) X-ray dataset.

• RAND-S: Random selection of source images. In this
case, the CNN is retrained on a training dataset consisting
in target images and randomly selected source images.
This experiment aims the contrast of increasing the
training dataset randomly compared to our source image
selection method.

• SDASC: Subspace-based Domain Adaptation using Sim-
ilarity Constraints [38], a recent method of augmenting a
target dataset with source images to improve classification
results.
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In all cases, the average over 30 realizations and the clas-
sification of 173 samples from the target dataset are reported.
To ensure a fair comparison, all the methods used the same
network backbone but with different optimization procedures.
However, to broaden the comparison and to evaluate the
consistence of our method, a discussion with other backbones
is included using VGG-16, ResNet-50, and Xception networks.
These results are reported in Table V.

In general, all the methods shown in Table V perform better
using the Xception network for the classification task, except
for the NO-S method. NO-S method provides the best result
by using only the target dataset. Overall, the results shown in
Table V suggest that the classification accuracy is improved
by adding data from another (source) dataset. However, the
samples used to increase the size of the training database
should be adequately selected. In particular, RAND-S method,
consisting in selecting randomly images from the source
dataset, is shown to degrade the classifier’s accuracy. On the
other hand, the methods SDASC and CX-DaGAN achieve
the best results due to careful data selection. Indeed, the
proposed CX-DaGAN method presents a significant advantage
in classification accuracy over the other algorithms in terms
of ACC, F1, and AUC results. It is worth highlighting that
SDASC and the proposed CX-DaGAN method were designed
for binary classification. Therefore, a disadvantage of the
proposed method, specifically for step A, which is based on
data selection through equal and crossed classes projection,
is that it can not be applied directly to a multi-class problem.

E. Visual Results

This section presents visual results of each stage of the
proposed method.

1) Step A: First, images from the source dataset are selected
based on error metrics that account for the similarity between
these images and the target domain when projected on their
subspaces. To get a deeper understanding of our CX-DaGAN,
we visualized some of the images selected by the Step A.
In Fig.9 the best and worst projected images are presented
according to (1) and (2). Therefore, the figure is divided into
four parts, one for each error metric. The two top rows depict
the projection of each class into the same category of the
target PCA subspaces. The first row presents original images
from source domain, while the second row shows the result
of the projections. Specifically, we show the images with the
best (a and c) and the worst (b and d) projection error for
each class, normal (left) and pneumonia (right). Note that
the projected image is visually more distorted when the error
is larger than when the projection error is smaller. On the
other hand, the two bottom rows correspond to the projection
of the source images on the target subspaces with opposite
classes. In this case, the error numbers are similar to those
in the upper part due to the remarkable similarity between all
chest radiographs regardless of their pathology. However, our
proposed method for cross-class projection involves, this time,
selecting the source images with the highest error projection
(b and d) as shown in the pink boxes.

2) Step B: The source samples selected in step A were
used together with the training target images (400 images)

Fig. 9. Selected X-ray images from the source domain considering the
projection error when projected onto target subspaces obtained by PCA.
The selected images are highlighted in each case with pink color. The
first two rows depict the projection of each class into the same category
of the target PCA subspaces. The last two rows depict the projection of
the source images on the target subspaces with opposite classes.

Fig. 10. Input (source domain) and output (synthetic data) examples of
our GAN network.

to train the GAN-based image-to-image translation proposed
in Section II-B. New synthetic images are generated within
the target domain from the transformation of the previously
chosen source images. In such a way, the number of source
images feed the GAN network is equal to the number of output
synthetic images. Fig. 10 shows four random source images
selected by step A that entered the GAN, and in the row below,
their respective transformations to the target domain.
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Fig. 11. Classification results of some chest X-ray images from the
test subset.Correctly classified samples are shown with black labels and
incorrect ones with red.

3) Step C: Synthetic images and the target samples were
used to train the Xception network with a particular proposed
fine-tuning strategy. Fig. 11 depicts some examples of the
classification results obtained when testing our method with
step C on 173 images of the target domain. The correct
predictions are presented with black labels, and erroneous
predictions are shown with a red label.

IV. CONCLUSION

The main contribution of the proposed method is to take
advantage of information from an extensive labeled public
dataset to improve the classification accuracy of a small
X-ray dataset acquired in a different hospital. Specifically,
the main goal of the proposed approach is to select from
a large dataset the images that best fit the small target
dataset in the sense of their intra-class similarity and inter-
class dissimilarity. In addition, a classification improvement is
achieved by generating new images through a GAN network
that follows the target data distribution. This paper introduced
the CX-DaGAN algorithm, an original method to address the
problem of chest X-ray pneumonia diagnosis on a small target
dataset. To achieve this purpose, we propose to use infor-
mation extracted from a larger and publicly available chest
X-ray source dataset. Specifically, our proposed algorithm is a
complete domain adaptation workflow which consists of three
stages. First, we proposed a subspace-based domain adapta-
tion method to select images from the large dataset (source
domain). We then used the selected images and the train set
of the small dataset (target domain) to train our proposed

GAN-based image-to-image translation network. We finally
used the synthetic images generated from GAN, which follow
the target domain distribution, and the training set of the
target dataset to fine-tune a pretrained CNN classification
network to achieve the final classification accuracy. During the
experiments, we observed that training on target data without
performing our proposed domain adaptation workflow led to
an overall accuracy of 88.36%. However, when we used our
proposed workflow to augment the training set of target and
carefully fine-tuning the Xception network, we achieved an
overall accuracy of up to 97.78%. Future studies will consist
in evaluating the performance of this new domain adapta-
tion method for the classification of small datasets in other
related medical tasks and involving other medical imaging
modalities. Furthermore, it would be interesting to address
the fundamental ideas behind the CX-DaGAN algorithm to
extend its scopes to multi-class classification tasks. In this
work, we considered as similarity metric, rather the projection
error using the `2-norm than a human medical inspection.
We will also investigate in our future studies the selection
of the adequate images based on expert radiologists’ decision,
or using criteria specifically designed for medical images.
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