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Abstract
Numerous optimization algorithms have a time-
varying update rule thanks to, for instance, a
changing step size, momentum parameter or, Hes-
sian approximation. Often, such algorithms are
used as solvers for the lower-level problem in
bilevel optimization, and are unrolled when com-
puting the gradient of the upper-level objective. In
this paper, we apply unrolled or automatic differ-
entiation to a time-varying iterative process and
provide convergence (rate) guarantees for the re-
sulting derivative iterates. We then adapt these
convergence results and apply them to proximal
gradient descent with variable step size and FISTA
when solving partly-smooth problems. We test the
convergence (rates) of these algorithms numeri-
cally through several experiments. Our theoretical
and numerical results show that the convergence
rate of the algorithm is reflected in its derivative
iterates.

1. Introduction
For some parameter u ∈ U , we consider the following
parametric iterative process

x(k+1)(u) := A(x(k)(u),u) , (R)

for k ≥ 0, where x(0) ∈ X is the initial iterate and
A : X×U → X is the update mapping. The iterates x(k)(u)
generated by (R) depend on u due to the dependence of A
on u. The goal of performing the iterations (R) is mainly
to solve the non-linear fixed-point equation

x = A(x,u) , (Re)

with respect to x for each parameter u. A simple exam-
ple is gradient descent with appropriate step size α > 0
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where we define A(x,u) := x− α∇xF (x,u) for solving
a parametric optimization problem of the form

min
x∈X

F (x,u) , (P)

with a smooth objective F : X × U → R. In this case (Re)
reduces to the optimality condition ∇xF (x,u) = 0.

There is a wide range of practical applications in which,
problems of type (Re) or (P) appear as a constraint within
a minimization problem with respect to the parameter u.
Usually, for some smooth ℓ : X × U → R, this can be
compactly stated as

min
u∈U

ℓ(ψ(u),u) , (1)

where, given any u ∈ U , ψ(u) is a solution of (Re) or (P).
This kind of optimization, formally known as bilevel opti-
mization (Dempe et al., 2015; Dempe & Zemkoho, 2020)
has emerged as a crucial tool in machine learning, playing a
foundational role in various applications such as hyperpa-
rameter optimization (Bengio, 2000; Domke, 2012; Maclau-
rin et al., 2015), implicit neural networks (Amos & Kolter,
2017; Agrawal et al., 2019; Bai et al., 2019; 2020; Winston
& Kolter, 2020), meta-learning (Hospedales et al., 2021),
and neural architecture search (Liu et al., 2019).

Solving (1) through gradient-based methods requires com-
puting the gradient of the upper objective ℓ(ψ(u),u) with
respect to u which, in turn, requires computing the deriva-
tive of the solution mapping u 7→ ψ(u), that is, Dψ(u)
by using the chain rule. When ℓ and F (or A) satisfy cer-
tain smoothness and regularity assumptions, this can be
achieved by two different methods. (i) One is known as
Implicit Differentiation (ID) which leverages the classical
Implicit Function Theorem or IFT (Dontchev & Rockafellar,
2009, Theorem 1B.1) applied to (Re) to estimate

Dψ(u) = (I −DxA(x,u))
−1
DuA(x,u)

= −∇2
xF (x,u)

−1Du∇xF (x,u) ,
(2)

where x := ψ(u) (see Theorem A.10 for more details).
The key assumption for IFT is the strict bound on the spec-
tral radius ρ(DxA(ψ(u),u)) < 1, which we call the con-
traction property since it is a sufficient condition for A
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to be 1-Lipschitz or contractive. A direct consequence is
the linear convergence of x(k)(u) to ψ(u) (Polyak, 1987,
Section 2.1.2, Theorem 1). The output of ID (2) depends
on accurately solving (Re) — possibly through (R) — and
solving the linear system efficiently. (ii) The other technique
is known as Unrolled, Iterative or Automatic Differentia-
tion (AD) or simply Unrolling where Dψ(u) is estimated
by applying automatic differentiation (Wengert, 1964; Lin-
nainmaa, 1970; Griewank & Walther, 2008) to the output
x(K)(u) of (R) after K ∈ N iterations. The update rule for
forward mode AD applied to x(K) is given by

Dx(k+1)(u) := DxA(x(k)(u),u)Dx(k)(u)

+DuA(x(k)(u),u) ,
(DR)

for 0 ≤ k < K where we may assume Dx(0)(u) = 0. The
effective use of AD relies on the guarantee that Dx(K)(u)
accurately estimatesDψ(u) for a preferably smallK. More
formally, we require the convergence of Dx(K)(u) to
Dψ(u) as K → ∞, with a convergence rate comparable to
that of x(k)(u).

The reverse mode AD or Backpropagation (Rumelhart et al.,
1986; Baydin et al., 2018) has a different update rule, how-
ever, the result computed is the same in the end (Griewank
& Walther, 2008). Due to the nature of the iterations (DR),
we will use x(K) and x(k) interchangeably. The reverse
mode AD has a memory overhead since it requires storing
the iterates (x(k))0≤k<K . Even though this is in contrast
with ID which only depends on x(K), AD is still a popular
choice for estimating Dψ(u). A crucial advantage of AD is
that it provides a nice blackbox implementation thanks to
the powerful autograd libraries included in PyTorch (Paszke
et al., 2019), TensorFlow (Abadi et al., 2016), and JAX
(Bradbury et al., 2018) whereas ID requires either a custom
implementation (Bolte et al., 2023, see Remark 2) or using
special libraries (Blondel et al., 2022; Ren et al., 2023, etc.).

1.1. Convergence of Automatic Differentiation

The convergence of the derivative sequence Dx(k)(u) for
AD of (R) were studied classically for linear (Fischer, 1991)
and general iteration maps (Gilbert, 1992). More recently,
the convergence analysis was provided for gradient descent
(Lorraine et al., 2020; Mehmood & Ochs, 2020), the Heavy-
ball method (Mehmood & Ochs, 2020), proximal gradient
descent for lasso-like problems (Bertrand et al., 2022), the
Sinkhorn-Knopp algorithm (Pauwels & Vaiter, 2023), the
super-linearly convergent algorithms (Bolte et al., 2023),
and stochastic gradient descent (Iutzeler et al., 2024). The
convergence results were extended to non-smooth iterative
processes by Bolte et al. (2022) using conservative calculus
(Bolte & Pauwels, 2020; 2021). Ablin et al. (2020) theoreti-
cally established the better convergence rate for computing
the gradient of the value function through AD and ID. Usu-

ally, the proof of convergence of Dx(k)(u) relies on the
contraction property in each of the above works with an
exception of Pauwels & Vaiter (2023). The linear rate of
convergence requires (local) Lipschitz continuity of DA.
A slightly different line of study on the problematic be-
haviour of automatic differentiation in the earlier iterations
was carried out by Scieur et al. (2022).

1.2. Iteration-Dependent Updates

Most iterative algorithms for solving (P) which include gra-
dient descent with line search, Nesterov’s accelerated gradi-
ent (Nesterov, 1983), and Quasi-Newton methods (Davidon,
1959; Fletcher & Powell, 1963; Broyden, 1970; Fletcher,
1970, etc.) cannot be modelled by (R). This happens be-
cause the update mapping is changing at every iteration; A
in (R) is replaced by Ak : X ×U → X giving us the update

x(k+1)(u) := Ak(x
(k)(u),u) . (Rk)

For example, for gradient descent with line search,
Ak(x,u) := x− αk∇xF (x,u). When Ak is C1-smooth
for all k ∈ N, the modified update rule for performing
forward mode AD on (Rk) reads:

Dx(k+1)(u) := DxAk(x
(k)(u),u)Dx(k)(u)

+DuAk(x
(k)(u),u) .

(DRk)

Beck (1994) studied this problem for the C1-smooth se-
quence of functions Ak with uniformly bounded derivatives
and DAk converging to DA pointwise. They showed that
for such a sequence, when (x(k)(u))k∈N is generated by
(Rk) to solve the system (Re), then (Dx(k)(u))k∈N gener-
ated by (DRk) converges toDψ(u) defined in (2). However,
their results cannot account for the linear convergence of
Dx(k)(u) in their given setting (see Section A.3). More-
over, their setting excludes the more general cases where
Ak does not converge, for instance, gradient descent with
line search.

Griewank et al. (1993) studied the special setting for solv-
ing the non-linear system G(x,u) = 0 with respect
to x through preconditioned Picard iterations, that is,
Ak(x,u) := x−Pk(u)G(x,u). The parameter-dependent
preconditioner Pk : U → L(X ,X ) is changing at every it-
eration and may not converge. They demonstrated linear
convergence ofDx(k)(u) for aC1-smoothG : X×U → X
with bounded maps DxG and (x,u) 7→ DxG(x,u)

−1 and
Lipschitz continuous map DG. The map Pk is assumed to
be C1-smooth with bounded (potentially 0) derivative for
every k ∈ N.

Riis (2020); Mehmood & Ochs (2022) considered apply-
ing AD when Ak denotes the update mapping of FISTA
(Beck & Teboulle, 2009) (which we will call Accelerated
Proximal Gradient or APG) applied to (P) for non-smooth
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F := f + g with step size αk and extrapolation parameter
βk. They adapted the results of Beck (1994) and demon-
strated the convergence of Dx(k)(u) to Dψ(u) when f is
C2-smooth with a Lipschitz continuous gradient, g is partly
smooth (Lewis, 2002), the sequences (αk)k∈N and (βk)k∈N
converge and F additionally satisfies restricted injectivity
and non-degeneracy conditions (see, for example, Lewis,
2002). Dψ(u) is computed by applying the Implicit Func-
tion Theorem for partly smooth functions (Lewis, 2002,
Theorem 5.7). Partly smooth functions are a class of spe-
cial non-smooth functions which exhibit smoothness when
restricted to a low-dimensional manifold M and model var-
ious practical regularization functions (Vaiter et al., 2017).
The non-smooth or sharp behaviour occurs only when we
move orthogonal to M. The combination of restricted injec-
tivity and non-degeneracy assumptions induces the contrac-
tion property in proximal gradient descent or PGD (Liang
et al., 2014) and APG (Liang et al., 2017) near the solution.
The results of Riis (2020); Mehmood & Ochs (2022) do not
explain the linear convergence of AD of APG or even the
convergence of AD of PGD with non-converging variable
step size.

Iutzeler et al. (2024) tackle the problem of applying AD
on Stochastic Gradient Descent or SGD and ensure conver-
gence of the derivative sequence by considering the deriva-
tive recursion as a so-called ”inexact SGD” applied to solve
a stochastic quadratic problem whose solution is the de-
sired derivative of the solution mapping. Although, our
deterministic and their stochastic settings both work with
time-varying algorithms, we can not simply deduce one
from the other in a trivial manner.

1.3. Contributions

In this paper, we aim to resolve the theoretical gaps pre-
sented in Section 1.2 and therefore reinforce the usefulness
of AD. In particular, the main contributions of this paper are
the following:

(i) We strengthen the results of Beck (1994) by providing
a convergence rate analysis for Dx(k)(u) generated
by (DRk) after equipping their setting with an addi-
tional assumption that is satisfied by most optimization
algorithms (see Assumption 2.1(ii) and Remark 2.1).

(ii) We establish (linear) convergence ofDx(k)(u) beyond
the setting in (i) without the pointwise convergence
condition of Ak to A (see Assumption 2.2 and 2.3).

(iii) We demonstrate the convergence of Dx(k)(u) for
Proximal Gradient Descent (Lions & Mercier, 1979) or
PGD with variable step size and Accelerated Proximal
Gradient (Beck & Teboulle, 2009) or APG by adapting
the results for (ii) and (i) respectively. In contrast to
Riis (2020) and Mehmood & Ochs (2022), which rely

on the framework of Beck (1994), our results provide
convergence and convergence rate guarantees for PGD
with variable step size and convergence rate guaran-
tees for APG. We show that the rate of convergence
of x(k)(u) is reflected in that of Dx(k)(u) for both
algorithms.

1.4. Notation

In this paper, X and U are Euclidean spaces and R :=
[−∞,∞]. With a slight abuse of notation, ∥ · ∥ denotes
any norm on each of the spaces X and U including the
one induced by the inner product ⟨·, ·⟩. The space of linear
operators from U to X is denoted by L(U ,X ). Any operator
norm on the spaces L(U ,X ) and L(X ,U) is also denoted by
∥ · ∥. We say that w(k) = o(z(k)) iff ∥w(k)∥ = o(∥z(k)∥)
and w(k) = O(z(k)) iff ∥w(k)∥ = O(∥z(k)∥).

The affine hull of a set C ⊂ X is denote by aff C whereas
parC = aff C − aff C is a linear subspace parallel to C.
The relative interior of a convex set C (Rockafellar, 1970, p.
44) is denoted by riC and is always non-empty whenever
C is non-empty (Rockafellar, 1970, Theorem 6.2). For any
α > 0 and proper and lower semi-continuous g : X × U →
R where g(·,u) is convex for all u ∈ U ⊂ U , we define
Pαg : X × U → X by Pαg(·,u) = proxαg(·,u), that is,

Pαg(w,u) := argmin
x∈X

αg(x,u) +
1

2
∥x−w∥2 . (3)

In this paper we use the notion of regular subdifferential
(Rockafellar & Wets, 1998, Definition 8.3) of g. When
U is open and for any x ∈ X , g(x, ·) is differentiable at
u ∈ U , we obtain ∂g(x,u) = ∂xg(x,u)× {∇ug(x,u)}
(Mehmood & Ochs, 2022, Lemma 1).

We use standard notions of Riemannian Geometry, which
we define in Section A.4 in the appendix. We refer a Ck-
smooth m-dimensional submanifold by simply Ck-smooth
manifold. Furthermore, the natural embedding of M in
X allows us to define a Riemannian metric on M, mak-
ing it a Riemannian manifold. For any x ∈ M, the map
Π: M → L(X ,X ) outputs the orthogonal projection onto
the tangent space of M at x, that is, Π(x) := projTxM
while Π⊥ : M → L(X ,X ) gives us the orthogonal projec-
tion onto the normal space of M at x, that is, Π⊥(x) :=
projNxM. For a function g : X × U → R with values
g(x,u) which is C2-smooth when restricted to M × U
where M ⊂ X is a C2-smooth manifold and U ⊂ U is
an open set, we respectively denote by ∇Mg and ∇2

Mg,
the Riemannian gradient and Hessian of g relative to M
with respect to x. We follow Mehmood & Ochs (2022, Re-
mark 22(iv)) to express the Riemannian gradient ∇M×Ug
and Hessian ∇2

M×Ug of g.
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2. Differentiation of Iteration-Dependent
Algorithms

In this section, we lay down the assumptions on the sequence
(Ak)k∈N and provide convergence and convergence rate
guarantees for the derivative iterations defined in (DRk). In
particular we establish (i) convergence rates when Ak has
a pointwise limit A, and (ii) convergence and convergence
rates when Ak does not have a pointwise limit. For a better
comparison and understanding, this section is adapted to
follow the same pattern as Section A.3, which summarizes
the results by Beck (1994).

2.1. Problem Setting

For a given u∗, we assume that x∗ is the solution that we
are trying to estimate through (Rk). Because the pointwise
limit A of Ak may not exist, we assume that x∗ is a fixed
point of Ak(·,u∗) for every k ∈ N. This seemingly restric-
tive assumption is satisfied by the optimization algorithms
highlighted in Section 1.2. The application of the Implicit
Function Theorem on this sequence of fixed-point equations
requires the contraction property, that is, the strict bound on
some operator norm ∥DxAk(x

∗,u∗)∥ < 1 eventually for
all k ∈ N. Furthermore, we assume that the sequence of
affine maps (X 7→ DxAk(x

∗,u∗)X+DuAk(x
∗,u∗))k∈N

share a common fixed-point X∗ ∈ L(X ,X ) — the reason
will become clear shortly. Finally, to show the convergence
of the derivative sequence (Dx(k)(u∗))k∈N, we assume that
the sequence (x(k)(u∗))k∈N converges to x∗. More for-
mally, given (x(0),x∗,u∗, X∗) ∈ X ×X × U × L(X ,X ),
V ∈ N(x∗,u∗), (Ak)k∈N0 , and a norm ∥ · ∥ on L(X ,X )
induced by some vector norm, we assume that the following
conditions hold.

Assumption 2.1. (i) Ak|V is C1-smooth for all k,

(ii) x∗ = Ak(x
∗,u∗) and X∗ = DxAk(x

∗,u∗)X∗ +
DuAk(x

∗,u∗) for all k,

(iii) lim supk→∞ ∥DxAk(x
∗,u∗)∥ < 1, and

(iv) x(k)(u∗) generated by (Rk) has limit x∗ such that
(x(k)(u∗),u∗) ∈ V for all k.

Remark 2.1. (i) Unlike Assumption A.1 from Beck
(1994), where the existence of A gives us both the
fixed-point and its derivative at u∗ (see A.1(ii)), our
Assumption 2.1 does not require the existence of such
a limit which allows us to work directly with the family
(Ak)k∈N, each of which provides the solution and its
derivative at u∗ (see 2.1(ii)). Moreover, the spectral
radius condition is imposed on the lim sup of the spec-
tral radii of derivative of Ak (see 2.1(iii)) rather than
on the derivative of A (see A.1(iii)).

(ii) A special case of Assumption 2.1(iii) arises when
for some C1-smooth mapping A : V → X , we have

x∗ = A(x∗,u∗), DAk(x
∗,u∗) → DA(x∗,u∗) and

ρ(DxA(x∗,u∗)) < 1.

2.2. Implicit Differentiation

Combining Assumptions 2.1((i)–(iii)) allows us to invoke
the Implicit Function Theorem on x∗ = Ak(x

∗,u∗) for
every k large enough and obtain a C1-smooth fixed-point
map ψk on a neighbourhood Uk ∈ Nu∗ . In particular, we
have the following result.

Lemma 2.2. Let (x∗,u∗, X∗) ∈ X × U × L(X ,X ),
V ∈ N(x∗,u∗) (Ak)k∈N0

, and ∥ · ∥ be such that Assump-
tion 2.1 ((i)–(iii)) is satisfied. Then there exists K ∈ N such
that ∀k ≥ K, there exists Uk ∈ Nu∗ and a C1-smooth
ψk : Uk → X such that ∀u ∈ Uk, ψk(u) = Ak(ψk(u),u),
and

Dψk(u) =
(
I −DxAk(ψk(u),u)

)−1
DuAk(ψk(u),u) ,

(4)
so that Dψk(u

∗) = X∗.

Proof. The proof is in Section B.1 in the appendix.

Remark 2.3. If we replace Assumptions 2.1(ii) and 2.1(iii)
by a slightly stronger assumption, that is, “there exists U ∈
Nu∗ such that for any (x,u) ∈ X × U , x = Ak(x,u)
for some k ∈ N implies x = Ak(x,u) for every k ∈ N,
and lim supk→∞ ∥DxAk(x,u)∥ < 1”, we obtain a shared
C1-smooth fixed-point map ψ : U → X , such that, Uk = U
and ψk = ψ for all k ∈ N.

2.3. Automatic Differentiation

In Lemma 2.2, we just showed that under Assumption 2.1,
the common fixed-point X∗ of the mappings X 7→
DxAk(x

∗,u∗)X + DuAk(x
∗,u∗) for k ∈ N represents

the derivative of the solution at u = u∗. We now show that
the derivative sequence generated by (DRk) for u = u∗

converges to X∗. Instead of assuming a pointwise limit for
DAk, we assert that DAk(x

(k)(u∗),u∗)−DAk(x
∗,u∗)

tends to 0.

Assumption 2.2. The sequence (DAk(x
(k)(u∗),u∗) −

DAk(x
∗,u∗))k∈N0

converges to 0.

Remark 2.4. (i) In Assumption A.2 of Beck (1994),
where A exists, the sequence (DAk(x

(k)(u∗),u∗)−
DA(x∗,u∗))k∈N0 is assumed to converge to 0.
Rewriting

DAk(x
(k)(u∗),u∗)−DA(x∗,u∗)

= DAk(x
(k)(u∗),u∗)−DAk(x

∗,u∗)

+DAk(x
∗,u∗)−DA(x∗,u∗) .

(5)

suggests that this convergence follows, for instance,
when our Assumption 2.2 holds and DAk converges
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pointwise to DA at (x∗,u∗). We demonstrate this
difference for Gradient Descent with variable step size
in Example A.2.

(ii) Combining Assumption 2.2 with the special case of
Remark 2.1, we obtain the setting of Assumption A.2
(see Remark 2.4(i)).

(iii) A sufficient condition for Assumption 2.2 is equiconti-
nuity (see Section A.1 for definition and an example)
of (Ak)k∈N0 at (x∗,u∗).

We are now ready to establish the convergence of the
derivative sequence (Dx(k)(u∗))k∈N to X∗ when Assump-
tions 2.1 and 2.2 hold.

Theorem 2.5. Let (x(0),x∗,u∗) ∈ X × X × U , V ∈
N(x∗,u∗), and (Ak)k∈N0

be such that Assumptions 2.1 and
2.2 are satisfied. Then the sequence (Dx(k)(u∗))k∈N0

generated by (DRk) converges to X∗ which is equal to
(I −DxAk(x

∗,u∗))
−1
DuAk(x

∗,u∗) for all k ∈ N (see
Assumption 2.1(ii)).

Proof. The proof is in Section B.2 in the appendix.

The derivative iterates Dx(k)(u∗) additionally converge
with a linear rate when the sequences x(k)(u∗) and
DAk(x

(k)(u∗),u∗)−DAk(x
∗,u∗) converge linearly.

Assumption 2.3. The sequence (x(k)(u∗))k∈N0 converges
linearly to x∗ and

DAk(x
(k)(u∗),u∗)−DAk(x

∗,u∗) = O(x(k)(u∗)−x∗) .
(6)

Remark 2.6. (i) Assumptions A.3 (from the appendix)
and 2.3 (ours) both require the corresponding se-
quences in Assumptions A.2 and 2.2, respectively,
to converge linearly. From (5), we see that As-
sumption A.3 holds when Assumption 2.3 holds and
DAk(x

∗,u∗) → DA(x∗,u∗) converges linearly (see
also Example A.4). Since the latter condition is not
practical in general, Assumption A.3 does not appear in
Beck (1994) and is given here only for completeness.

(ii) A sufficient condition for Assumption 2.3 is the Lip-
schitz continuity of (DAk)k∈N0 in x uniformly in u
and k (see Section A.1 for definition and an example).

Theorem 2.7. Let (x(0),x∗,u∗) ∈ X × X × U , V ∈
N(x∗,u∗), and (Ak)k∈N0 be such that Assumptions 2.1 and
2.3 are satisfied. Then the sequence (Dx(k)(u∗))k∈N0 gen-
erated by (DRk) converges linearly to X∗. In particular,
for all δ ∈ (0, 1 − ρ), there exist ξ1, ξ2, and K ∈ N, such
that for all k ≥ K, we have

∥Dx(k)(u∗)−X∗∥ ≤ ξ1(ρ+ δ)k−K

+ ξ2(k −K)max(ρ+ δ, qx)
k−K ,

(7)

where ρ := lim supk→∞ ρ(DxAk(x
∗,u∗)), and qx < 1 is

the convergence rate of (x(k)(u∗))k∈N0 .

Proof. The proof is in Section B.3 in the appendix.

Remark 2.8. In (7), ξ1 depends on the derivative error
Dx(K)(u∗)−X∗ while ξ2 depends on the derivative errors
Dx(K)(u∗)−X∗, DAK(x(K)(u∗),u∗)−DAK(x∗,u∗),
and the derivative of the solution X∗. All of these terms are
computed at k = K and therefore, are fixed. The explicit
expressions can be found in the proof.

Owing to Corollary A.7 and our discussion in Remark 2.1,
the following result shows that the work of Beck (1994) is re-
produced and strengthened with a convergence rate guaran-
tee under the additional requirement of Assumption 2.1(ii).

Corollary 2.9. The conclusions of Theorems 2.5 and 2.7
also hold when, in their respective hypotheses, Assump-
tion 2.1(iii) is replaced by “there exists a C1-smooth
A : V → X , such that DAk(x

∗,u∗) converges to
DA(x∗,u∗) and ρ(DxA(x∗,u∗)) < 1”.

Remark 2.10. The conclusions of Theorems 2.5 and 2.7
and Corollary 2.9 do not require the neighbourhood V
of (x∗,u∗) to be a connected set as long as Assump-
tions 2.2 and 2.3 are respectively satisfied along with As-
sumption 2.1(iv).

3. Differentiation of Proximal Gradient-type
Methods

We now turn our attention to unrolling PGD with variable
step size and APG when solving

min
x∈X

F (x,u) , F := f + g , (8)

and aim at providing convergence (rate) guarantees for the
corresponding derivative sequences. The idea is to con-
sider the class of partly smooth functions (Lewis, 2002)
which models a wide range of non-smooth regularizers and
constraints appearing in practice (Vaiter et al., 2017). Fur-
thermore, this setting (see Assumption 3.1) under some ad-
ditional assumptions (see Assumptions 3.2 and 3.3) yields a
more general IFT (see Theorem 3.1) for differentiating the
solution mapping of (8). This in turn allows us to differen-
tiate the update mappings of PGD (see Theorem 3.4) and
APG (see Theorem 3.10), since they are also the solution
mappings of partly smooth functions (see Equations 3, 10
and 13).

Examples of partly smooth functions include norms defined
on vector space including ℓ1, ℓ2, and ℓ∞ norms, as well as
their combinations. These norms are commonly used as
regularizers in machine learning: ℓ1 and ℓ∞ promote spar-
sity and anti-sparsity, respectively, while the combined ℓ2,1
norm induces group sparsity. Analogous norms defined on
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matrix space which include nuclear norm, Frobenius norm,
and spectral norm and their combinations are also partly
smooth and promote similar forms of strcutred-sparsity for
matrices. The formal definition of partial smoothness is
provided in Section A.5 in the appendix.

3.1. Problem Setting

We first define our setting in a more precise manner. Let M
be a C2-smooth manifold and Ω ⊂ U be an open set, we
need f and g to satisfy the following assumption.

Assumption 3.1 (Convex Partly Smooth Objective).
f : X × U → R is C2-smooth, g : X × U → R is partly
smooth relative to M×Ω and for every u ∈ Ω, f(·,u) and
g(·,u) are convex, f(·,u) has an L-Lipschitz continuous
gradient, and g(·,u) has a simple proximal mapping.

When Assumption 3.1 is satisfied, we use Mehmood & Ochs
(2022, Remark 22(iv)) to denote the Riemannian gradient
and Hessian of F . Let x∗ ∈ M be a solution of (8) at
u∗ ∈ Ω. When g = 0, IFT requires ∇2

xf(x
∗,u∗) ≻ 0

which is also a sufficient condition for the linear con-
vergence of gradient descent and the Heavy-ball method
(Polyak, 1987). When g is partly smooth, IFT requires posi-
tive definiteness of ∇2

MF (x∗,u∗) (Lewis, 2002) while the
linear convergence of PGD and APG is established by the
positive definiteness of Π(x∗)∇2

xf(x
∗,u∗)Π(x∗) (Liang

et al., 2014; 2017).

Assumption 3.2 (Restricted Positive Definiteness). Let
(x∗,u∗) ∈ M× Ω be a given point.

(i) The Hessian ∇2
MF (x∗,u∗) is positive definite on

Tx∗M, that is,

∇2
MF (x∗,u∗) ≻ 0 . (RPD-i)

(ii) Moreover, Π(x∗)∇2
xf(x

∗,u∗) is positive definite on
Tx∗M, that is,

Π(x∗)∇2
xf(x

∗,u∗)
∣∣
Tx∗M ≻ 0 . (RPD-ii)

Finally, for partly smooth problems, IFT and linear con-
vergence of PGD and APG also require a non-degeneracy
assumption to hold which ensures that the solution stays in
M for any u near u∗.

Assumption 3.3 (Non-degeneracy). The non-degeneracy
condition is satisfied at (x∗,u∗) ∈ M× Ω, that is,

0 ∈ ri ∂xF (x
∗,u∗) . (ND)

In (ND), ri denotes the relative interior of a convex set.

3.2. Implicit Function Theorem

The following theorem is thanks to Lewis (2002) which
furnishes a C1-smooth solution map for (8) near u∗. The
expression for the derivative can be found in Vaiter et al.
(2017); Mehmood & Ochs (2022).

Theorem 3.1 (Differentiation of Solution Map). Let f and g
satisfy Assumption 3.1 and (x∗,u∗) ∈ M×Ω be such that
Assumptions 3.2(i) and 3.3 are satisfied. Then there exist
an open neighbourhood U ⊂ Ω of u∗ and a continuously
differentiable mapping ψ : U → M such that for all u ∈ U ,

(i) ψ(u) is the unique minimizer of F (·,u)|M,

(ii) (ND) and (RPD-i) are satisfied at (ψ(u),u), and

(iii) the derivative of ψ is given by

Dψ(u) = −∇2
MF (ψ(u),u)†Du∇MF (ψ(u),u) ,

(9)
where ∇2

MF (ψ(u),u)† denotes the pseudoinverse of
∇2

MF (ψ(u),u).

3.3. The Extrapolated Proximal Gradient Algorithm

Although Theorem 3.1 is not practical when computing the
derivative of the solution map, it allows us to differentiate
the update mappings of PGD and APG as we will see shortly.
Algorithm 1 provides the update procedure for proximal
gradient with extrapolation where Pαg is defined in (3). This
algorithm reduces to (i) PGD when βk = 0 for all k ∈ N,
and (ii) APG when the sequence βk ensures acceleration in
PGD (Beck & Teboulle, 2009; Chambolle & Dossal, 2015).

Algorithm 1 Proximal Gradient with Extrapolation

• Initialization: x(0) = x(−1) ∈ X , u ∈ U , 0 < α ≤
ᾱ < 2/L.

• Parameter: (αk)k∈N ∈ [α, ᾱ] and (βk)k∈N ∈ [0, 1].

• Update k ≥ 0:

y(k) := (1 + βk)x
(k) − βkx

(k−1)

w(k) := y(k) − αk∇xf(y
(k),u)

x(k+1) := Pαkg(w
(k),u) .

(APG)

3.4. Proximal Gradient Descent

We first extend our results from Section 2 and provide con-
vergence rate guarantees for AD of PGD. For a given step
size α > 0, we write the update mapping for PGD in a more

6
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compact manner through the map Aα : X ×Ω → X defined
by

Aα(x,u) := Pαg(x− α∇xf(x,u),u) , (10)

Liang et al. (2014) established that under Assumptions 3.1,
3.2(ii) and 3.3, all the iterates x(k)(u∗) of PGD lie on M
after a finite number of iterations and exhibit a local linear
convergence behaviour as summarized by the following
lemma.

Lemma 3.2 (Activity Identification and Linear Conver-
gence of PGD). Let f and g satisfy Assumption 3.1
and (x∗,u∗) ∈ M × Ω be such that Assumption 3.3
is satisfied. For αk ∈ [α, ᾱ] and βk := 0, let the
sequence (x(k)(u∗))k∈N generated by Algorithm 1 con-
verges to x∗. Then there exists K ∈ N, such that
x(k)(u∗) ∈ M for all k ≥ K. Moreover when As-
sumption 3.2(ii) is also satisfied and ᾱ < 2M/L2 where
M := λmax(Π(x

∗)∇2
xf(x

∗,u∗)Π(x∗)), then x(k)(u∗)
converge linearly to x∗.

Remark 3.3. The precise rate of convergence of PGD can
be found in Liang et al. (2014, Theorem 3.1).

Mehmood & Ochs (2022, Theorem 34) provide a foundation
for proving the following crucial differentiablity result for
Aα by combining Theorem 3.1 and Lemma 3.2. However,
the result below is novel since it establishes differentiabil-
ity of Aαk

at the iterates x(k)(u∗) of PGD for all k ∈ N
and also shows that the derivative sequence DAαk

is well-
behaved.

Theorem 3.4. Let f and g satisfy Assumption 3.1 and
(x∗,u∗) ∈ M × Ω be such that Assumption 3.3 are sat-
isfied. For αk ∈ [α, ᾱ] and βk := 0, let the sequence
(x(k) := x(k)(u∗))k∈N generated by Algorithm 1 converges
to x∗. Then there exists K ∈ N, such that,

(i) the mapping (x,u, α) 7→ Aα(x,u) defined in (10) is
C1-smooth near (x(k),u∗, αk) and (x∗,u∗, αk) for
all k ≥ K,

(ii) (DAαk
(x(k),u∗)−DAαk

(x∗,u∗))k≥K converges to
0, and

(iii) additionally, when M is C3-smooth, ∇Mg, ∇2
xf ,

∇2
Mg, Du∇xf , and Du∇Mg are locally Lipschitz

continuous near (x∗,u∗) and (x(k))k∈N converges
linearly, then DAαk

(x(k),u∗) − DAαk
(x∗,u∗) =

O(x(k) − x∗).

Proof. The proof is in Section C.1 in the appendix.

Remark 3.5. The C3-smoothness of M is a sufficient con-
dition for the local Lipschitz continuity of the Weingarten
map (x,v) 7→ Wx(·,v).

3.4.1. IMPLICIT DIFFERENTIATION

Under Assumptions 3.1–3.3, Mehmood & Ochs (2022, The-
orem 34) provided an IFT for the fixed-point equation of
PGD which is more practical for using ID than (9) and is
restated below.

Theorem 3.6. Let f and g satisfy Assumption 3.1 and
(x∗,u∗) ∈ M × Ω be such that Assumptions 3.2(ii)
and 3.3 are satisfied. Then for any α ∈ [α, ᾱ],
ρ(DxAα(x

∗,u∗)Π(x∗)) < 1. Additionally when Assump-
tion 3.2(i) is also satisfied, the (possibly reduced) neigh-
bourhood U and the mapping ψ from Theorem 3.1 satisfy
x = Aα(x,u) and

Dψ(u) = (I −DxAα(x,u)Π(x))
−1
DuAα(x,u) ,

(11)
for all u ∈ U and x := ψ(u).

3.4.2. AUTOMATIC DIFFERENTIATION

Using Theorems 3.4, and 3.6 and our results from Section 2,
we obtain the convergence (rate) guarantees for AD of PGD.

Theorem 3.7. Let f and g satisfy Assumption 3.1 and
(x∗,u∗) ∈ M × Ω be such that Assumptions 3.2 and
3.3 are satisfied. Let αk ∈ [α, ᾱ], βk := 0, the se-
quence (x(k)(u∗))k∈N generated by Algorithm 1 con-
verges to x∗ with x(0) sufficiently close to x∗, and
lim supk→∞ ρ(DxAαk

(x∗,u∗)) < 1. Then the se-
quence (Dx(k)(u∗))k∈N converges to Dψ(u∗). Addition-
ally (Dx(k)(u∗))k∈N converges linearly with rate max(ρ+
δ, qx) where ρ := lim supk→∞ ρ(DxAαk

(x∗,u∗)), when
x(k)(u∗) converges linearly with rate qx < 1, M is C3-
smooth, and ∇Mg, ∇2

xf , ∇2
Mg, Du∇xf , and Du∇Mg

are locally Lipschitz continuous near (x∗,u∗). In partic-
ular, for all δ ∈ (0, 1 − ρ), there exist ξ1, ξ2, and K ∈ N,
such that for all k ≥ K, we have

∥Dx(k)(u∗)−Dψ(u∗)∥ ≤ ξ1(ρ+ δ)k−K

+ ξ2(k −K)max(ρ+ δ, qx)
k−K .

(12)

Proof. The proof is in Section C.2 in the appendix.

Remark 3.8. (i) The constants ξ1 and ξ2 in (12) de-
pend on derivative errors Dx(K)(u∗) − Dψ(u∗),
DAαK

(x(K)(u∗),u∗) − DAαK
(x∗,u∗), and the

derivative of the solution Dψ(u∗) in the same manner
as described in Remark 2.8.

(ii) Because x(0) is not close enough to x∗ in practice, one
may resort to late-starting (Mehmood & Ochs, 2022,
Section 1.4.2).

(iii) In practice, we do not need x(0) to be close enough
to x∗ because even when the update map Aαk

is not
differentiable in the earlier iterations of Algorithm 1,

7
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the autograd libraries still yield a finite output as the
derivative (Bolte & Pauwels, 2020; 2021). Hence, AD
of Algorithm 1 can still recover a good estimate of
Dψ(u) as long as Algorithm 1 is run for sufficiently
large number of iterations (see also Mehmood & Ochs,
2022, Remark 45(i)).

(iv) When αk is generated through line-search methods, it
also depends on u in a possibly non-differentiable way.
Therefore, the total derivative of x(k) with respect to u
may not make sense. However computing Dx(k)(u)
by ignoring this dependence — for instance, in practice,
through routines like stop_gradient (Bradbury
et al., 2018; Abadi et al., 2016) and detach (Paszke
et al., 2019) — the true derivative is still recovered in
the limit provided that conditions of Theorem 3.7 are
met. This fact was first explored in Griewank et al.
(1993).

(v) All of the non-smooth functions provided in, for in-
stance, Vaiter et al. (2017) satisfy the local Lipschitz
continuity condition of ∇Mg, and ∇2

Mg and the C3

smoothness of M.

(vi) The conditions like the linear convergence of x(k)(u∗)
and lim supk→∞ ρ(DxAαk

(x∗,u∗)) < 1 are not re-
quired if the step size sequence αk is bounded as in the
hypothesis of Lemma 3.2.

3.5. Accelerated Proximal Gradient

We similarly compute AD of APG and show (linear) con-
vergence of the corresponding derivative iterates. Given
step size α > 0 and extrapolation parameter β ∈ [0, 1], we
define the update mapping Aα,β : X × X × U → X × X
by

Aα,β(z,u) := (Aα (x1 + β(x1 − x2),u) ,x1) , (13)

for z := (x1,x2) ∈ X × X . Just like PGD, APG also
exhibit activity identification property and local linear con-
vergence under Assumptions 3.1, 3.2(ii), and 3.3 (Liang
et al., 2017).

Lemma 3.9 (Activity Identification and Linear Conver-
gence of APG). Let f and g satisfy Assumption 3.1 and
(x∗,u∗) ∈ M × Ω be such that Assumption 3.3 is satis-
fied. For αk ∈ [α, ᾱ] and βk ∈ [0, 1], let the sequence
(x(k)(u∗))k∈N generated by Algorithm 1 converges to x∗.
Then there exists K ∈ N, such that x(k)(u∗) ∈ M for all
k ≥ K. Moreover when Assumption 3.2(ii) is also satis-
fied, αk → α∗ and βk → β∗ such that −1/(1 + 2β∗) <
λmin(DxAα∗(x

∗,u∗)), then x(k)(u∗) converge linearly to
x∗ with rate ρ(DzAα∗,β∗(x

∗,x∗,u∗)Π(x∗,x∗)).

Using Theorem 3.1, and Lemma 3.9, we can differentiate
Aαk,βk

near (x∗,x∗,u∗) for all k ∈ N. The following

result is mostly derived from Mehmood & Ochs (2022,
Theorem 39).

Theorem 3.10. Let f and g satisfy Assumption 3.1 and
(x∗,u∗) ∈ M×Ω be such that Assumption 3.3 are satisfied.
For [α, ᾱ] ∋ αk → α∗ and [0, 1] ∋ βk → β∗, let the
sequence (x(k) := x(k)(u∗))k∈N generated by Algorithm 1
converges to x∗. Then there exist Vα∗ ∈ N(x∗,x∗,u∗,α∗)

and K ∈ N, such that

(i) the mapping (z,u, α) 7→ Aα,β(z,u) defined in (13)
is C1-smooth on Vα∗ and (z(k),u∗, αk) ∈ Vα∗ for all
k ≥ K,

(ii) (DAαk,βk
(z(k),u∗) − DAαk,βk

(z∗,u∗))k≥K con-
verges to 0, and (DAαk,βk

(z∗,u∗))k≥K converges
to DAα∗,β∗(z

∗,u∗), and

(iii) additionally, when M is C3-smooth, ∇Mg, ∇2
xf ,

∇2
Mg, Du∇xf , and Du∇Mg are locally Lipschitz

continuous near (x∗,u∗) and (x(k))k∈N converges lin-
early, thenDAαk,βk

(z(k),u∗)−DAαk,βk
(z∗,u∗) =

O(x(k) − x∗),

where z := (x1,x2), z(k) := (x(k),x(k−1)), and z∗ :=
(x∗,x∗)

Proof. The proof is in Section C.3 in the appendix.

3.5.1. IMPLICIT DIFFERENTIATION

Similarly Theorems 3.1, and 3.10 can be used to yield an
IFT for the fixed-point equation of APG (Mehmood & Ochs,
2022, Theorem 39), which we recall below.

Theorem 3.11. Let f and g satisfy Assumption 3.1 and
(x∗,u∗) ∈ M × Ω be such that Assumptions 3.2(ii)
and 3.3 are satisfied. Then for any α ∈ [α, ᾱ] and
β ∈ [0, 1] with −1/(1 + 2β) < λmin(DxAα(x

∗,u)), we
have ρ(DzAα,β(x

∗,x∗,u∗)Π(x∗,x∗)) < 1. Additionally
when Assumption 3.2(i) is also satisfied, the (possibly re-
duced) neighbourhood U and the mapping ψ from Theo-
rem 3.1 satisfy z = Aα,β(z,u) and[
Dψ(u)
Dψ(u)

]
= (I −DzAα,β(z,u)Π(z))

−1
DuAα,β(z,u) ,

(14)
for all u ∈ U and z := (ψ(u), ψ(u)).

3.5.2. AUTOMATIC DIFFERENITATION

Mehmood & Ochs (2022, see Theorem 44) established the
convergence of the derivative iterates of APG. We strengthen
their results by providing convergence rate guarantees in
our final result below.
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Theorem 3.12. Let f and g satisfy Assumption 3.1 and
(x∗,u∗) ∈ M × Ω be such that Assumption 3.3 are sat-
isfied. For [α, ᾱ] ∋ αk → α∗ and [0, 1] ∋ βk → β∗
such that −1/(1 + 2β∗) < λmin(DxAα∗(x

∗,u∗)), let the
sequence (x(k)(u∗))k∈N generated by Algorithm 1 con-
verges to x∗ with x(0) sufficiently close to x∗. Then
the sequence (Dx(k)(u∗))k∈N converges to Dψ(u∗). Ad-
ditionally, (Dx(k)(u∗))k∈N converges linearly with rate
max(ρ + δ, qx) where ρ := ρ(DzAα∗,β∗(x

∗,u∗)), when
x(k)(u∗) converges linearly with rate qx < 1, M is C3-
smooth, and ∇Mg, ∇2

xf , ∇2
Mg, Du∇xf , and Du∇Mg

are locally Lipschitz continuous near (x∗,u∗). In partic-
ular, for all δ ∈ (0, 1 − ρ), there exist ξ1, ξ2, and K ∈ N,
such that for all k ≥ K, we have

∥Dx(k)(u∗)−Dψ(u∗)∥ ≤ ξ1(ρ+ δ)k−K

+ ξ2(k −K)max(ρ+ δ, qx)
k−K .

(15)

Proof. The proof is in Section C.4 in the appendix.

Remark 3.13. The arguments made in Remark 3.8 naturally
extend to Theorem 3.12.

4. Experiments
To test our results, we provide numerical demonstration on
a few examples from classical Machine Learning. These
include lasso regression, that is,

min
w∈RN

1

2
∥Xw − y∥22 + λ∥w∥1 , (16)

with parameters u := (X,y, λ), binary classification using
ℓ2-regularized logistic regression, that is,

min
w∈RN

1

M

M∑
i=1

log
(
1 + exp(−yixT

i w)
)
+
λ

2
∥w∥22 , (17)

with parameters u := (X,λ), and finally multiclass classifi-
cation using ℓ2-regularized multinomial logistic regression,
that is,

min
W∈RN×C

− 1

M

M∑
i=1

log(pyi
(xi)) +

λ

2
∥W∥2F , (18)

with parameters u := (X,λ). In (18), ∥·∥F is the Frobenius
norm and pj(x) denotes the jth element of the predicted
output p(x) := σ(WTx) for each input x ∈ RN with σ
being the softmax activation function. In all the problems,
X ∈ RM×N and y ∈ RM represent the dataset and the
parameters are selected in such a way that Assumptions 3.1–
3.3 are satisfied.

We solve the three problems through PGD with four differ-
ent choices of step sizes and APG with fixed step size and

PGD PGDk1 PGDk2 PGDk3 APG
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0 150 300 450
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10 2
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0 150 300 450

10 3

10 2
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0 150 300 450

100

101

102
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10 2

Figure 1. Error plots of iterates (top row) of PGD and APG for
lasso (left column), logistic (middle column), and multinomial lo-
gistic (right column) regression along with their derivative iterates
(bottom row). Similarity in the convergence rates of the original
and the derivative iterates is clearly visible.

βk := (k−1)/(k+5) (depicted by APG in Figure 1). This
generates five different algorithm sequences (x(k)(u))k∈N
for each problem. In Figure 1, PGD represents step size
αk set to fixed optimal value α∗, whereas PGDki

repre-
sents varying step size αk drawn from uniform distribution
with parameters 2(i−1)

3L , and 2i
3L for all k ∈ N and for all

i ∈ {1, 2, 3}. We solve (16) for 50 randomly generated
datasets, (17) for 50 perturbed instances of MADELON
dataset (Dua & Graff, 2017), and (18) for a single instance
of CIFAR10 dataset (Krizhevsky, 2009). For each problem,
we initialize w(0) ∈ B10−2(w∗) by first solving it partially.

In Figure 1, the top row shows the median error plots of the
five algorithms and the bottom row shows the errors of the
corresponding derivatives with the same colour. The three
columns correspond to the error plots for (16), (17), and (18)
respectively. The figure clearly shows that the derivative
error decays as fast as the algorithm error for each problem.
In particular, the linear convergence behaviour of AD of
APG for all the problems and PGDki

with i ∈ {1, 2, 3} for
the lasso problem are only explained by our results.

5. Conclusion
We applied automatic differentiation on the iterative pro-
cesses with time-varying update mappings. We strengthened
a previous result (Beck, 1994) with convergence rate guar-
antee and extended them to a new setting. As an example
for each setting, we adapted our results to proximal gradient
descent with variable step size and its accelerated counter-
part, that is, FISTA. We showed that the convergence rate
of the algorithm is simply mirrored in its derivative iterates
which was supported through experiments on toy problems.
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A. Preliminaries & Related Work
Before we move on to the proofs of our main results, we present some preliminary results which will be useful later. We
also provide a recap of the results of Beck (1994) for a better understanding of our work.

A.1. Real Analysis

In Section 2, we refer to equicontinuity and uniform Lipschitz continuity as cases where Assumptions 2.2 and 2.3 respectively
hold. In this section, we provide defintion along with an example for each of these notions. Note that, in the definitions and
examples below, x∗ is not necessarily the fixed-point of any of Ak(·,u∗). Let X , U be Euclidean spaces as in Section 1.4
and Ω ⊂ U be an open set. We first define equicontinuity of a sequence of functions.

Definition A.1 (Equicontinuity). A sequence of functions (Bk : X × Ω → X )k∈N with values Bk(x,u) is equicontinuous
in x at some (x∗,u∗) ∈ X × Ω if for any ε > 0, there exists a δ > 0 such that ∥Bk(x,u

∗) − Bk(x
∗,u∗)∥ < ε for all

k ∈ N and for all x ∈ X such that ∥x− x∗∥ < δ. The sequence (Bk)k∈N is equicontinuous in x if it is equicontinuous in
x at every (x∗,u∗) ∈ X × Ω.

Intuitively speaking, an equicontinuous sequence of functions behaves uniformly in terms of continuity because the
neighbourhood {x : ∥x − x∗∥ < δ} in Definition A.1 does not depend on k ∈ N. Below, we provide an example for
equicontinuous functions.

Example A.2. Let F in (P) be C2-smooth. Given (αk)k∈N such that αk ≤ ᾱ for all k ∈ N and some ᾱ > 0, we define
Ak : X × Ω → X by

Ak(x,u) := x− αk∇xF (x,u) , (19)

and Bk : X × Ω → X by
Bk(x,u) := DAk(x,u) =

[
I 0

]
− αkD(∇xF )(x,u) , (20)

where D(∇xF ) ∈ L(X × U ,X ) is the derivative (with respect to both x and u) of ∇xF and
[
I 0

]
∈ L(X × U ,X )

defines the canonical projection onto X . Essentially, (19) defines Ak as the update mapping of gradient descent with
bounded step size sequence while (20) defines Bk as its derivative with respect to x and u. For any x,x∗ ∈ X and u∗ ∈ U ,
we find that

Bk(x,u
∗)− Bk(x

∗,u∗) = −αk

(
D(∇xF )(x,u

∗)−D(∇xF )(x
∗,u∗)

)
. (21)

But since the sequence (αk)k∈N is bounded andD(∇xF ) is continuous, for any ε > 0, we can easily find δ > 0 independent
of k ∈ N such that ∥Bk(x,u

∗) − Bk(x
∗,u∗)∥ < ε whenever ∥x − x∗∥ < δ. Moreover, we also find from (21) that, for

any sequence (x(k))k∈N converging to x∗, the sequence Bk(x
(k),u∗)− Bk(x

∗,u∗) converges to 0 therefore satisfying our
Assumption 2.2 for Gradient Descent. Note that, when additionally, the step size sequence converges, Assumption A.2 of
Beck (1994) is also satisfied.

We similarly define the notion of uniformly Lipschitz continuous sequence of functions.

Definition A.3 (Uniform Lipschitz Continuity). A sequence of functions (Bk : X × Ω → X )k∈N with values Bk(x,u)
is Lipschitz continuous in x uniformly in u and k, if for all u ∈ Ω and k ∈ N, there exists L ∈ R, such that, Bk(·,u) is
L-Lipschitz continuous. That is, for all x, x∗ ∈ X ,

∥Bk(x,u)− Bk(x
∗,u)∥ ≤ L∥x− x∗∥ .

Example A.4. Consider the setting of Example A.2 where D(∇xf) is additionally M -Lipschitz continuous. Clearly, from
(21), for every k ∈ N and u ∈ U , Bk(·,u) is ᾱM -Lipschitz continuous. Therefore, (Bk)k∈N is Lipschitz continuous in x
uniformly in u, and k and for any sequence (x(k))k∈N converging to x∗, Gradient Descent with bounded step size sequence
satisfies Assumption 2.3 because

∥Bk(x
(k),u)− Bk(x

∗,u)∥ ≤ ᾱM∥x(k) − x∗∥ .

Finally, Assumption A.3 is satisfied when the step size sequence converges linearly which does not happen in general when
employing line-search strategies for Gradient Descent.

13



Automatic Differentiation of Optimization Algorithms with Time-Varying Updates

A.2. Matrix Analysis

This section provides a few preliminary results on Matrix Analysis. We start by recalling a classical result from Linear
Algebra which forms the foundation for the implicit differentiation applied to (Re) when combined with the Implicit
Function Theorem (Dontchev & Rockafellar, 2009, Theorem 1B.1).

Lemma A.5. For any linear operator B : X → X with ρ(B) < 1, the linear operator I −B is invertible.

We now provide some results which will be used in the proofs of convergence of automatic differentiation of the fixed-point
iterations. In particular, we provide convergence guarantees of sequences generated through linear iterative procedures
including (26), and (22) which bear strong resemblance with (DR) and (DRk) (see the proofs of Theorems A.12 and 2.5 for
a more detailed comparison). These convergence results are mainly derived from Polyak (1987, Section 2.1.2, Theorem 1),
Riis (2020, Proposition 2.7), and Mehmood & Ochs (2022, Theorem 8). The following theorem will be used to prove
convergence results in Section 2.

Theorem A.6. Let (Bk)k∈N0 , (Ck)k∈N0 and (d(k))k∈N0 be sequences in L(X ,X ), L(X ,X ) and X respectively such that
Ck → 0, d(k) → 0 and ρ := lim supk→∞ ∥Bk∥ < 1 where ∥ · ∥ is a norm on L(X ,X ) induced by some vector norm. Then
the sequence (e(k))k∈N0

, with e(0) ∈ X , generated by

e(k+1) := Bke
(k) + Cke

(k) + d(k) , (22)

converges to 0. The convergence is linear when Ck and d(k) converge linearly with rates qC and qd respectively. In fact, for
all ε ∈ (0, 1− ρ), there exist K ∈ N, such that for all k ≥ K, we have

∥e(k)∥ ≤ ξ1(ρ+ ε)k−K + ξ2(k −K)qk−K , (23)

where

q := max(ρ+ ε, qC , qd)

ξ1 := ∥e(K)∥
ξ2 := ∥CKe(K) + d(K)∥/q .

(24)

Proof. From classical analysis, given ε ∈ (0, 1− ρ), there exists K ∈ N such that ∥Bk∥ < ρ+ ε/2 for all k ≥ K. Also,
with K large enough we have ∥Cke

(k)∥/∥e(k)∥ ≤ ε/2 since Ck → 0. Therefore, from (22), we get

∥e(k+1)∥ ≤ (ρ+ ϵ/2)∥e(k)∥ + ∥Cke
(k)∥ + ∥d(k)∥

≤ (ρ+ ϵ)∥e(k)∥ + ∥d(k)∥ .

The convergence of e(k) then follows from the arguments following Equation 34 in the proof of Theorem 8 in Mehmood &
Ochs (2022).

For the rate of convergence, we note that ε(k) := Cke
(k) + d(k) converges linearly to 0 with rate max(qC , qd) and for

K ∈ N sufficiently large we can write ∥ε(k)∥ ≤ max(qC , qd)
k−K∥ε(K)∥ for all k ≥ K. Thus, for any k ≥ K, we expand

the expression e(k+1) = Bke
(k) + ε(k) to obtain

e(k+1) = Bk:Ke(K) +
k∑

i=K

Bk:i+1ε
(i)

where Bk:i denotes the ordered product BkBk−1 · · ·Bi+1Bi when i ≤ k and identity operator I when i > k. Observe that,
for any ε ∈ (0, 1− ρ) and K ∈ N large enough, ∥Bk∥ < ρ+ ε for all k ≥ K and therefore for any K ≤ i ≤ k + 1, we
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have ∥Bk:i∥ ≤ (ρ+ ε)k−i+1. Therefore, setting q := max(ρ+ ε, qC , qd), we end up with

∥e(k+1)∥ ≤ ∥Bk:K∥∥e(K)∥ +

k∑
i=K

∥Bk:i+1∥∥ε(i)∥

≤ ∥e(K)∥(ρ+ ε)k−K+1 +

k∑
i=K

(ρ+ ε)k−i∥ε(K)∥max(qC , qd)
i−K

≤ ∥e(K)∥(ρ+ ε)k−K+1 + ∥ε(K)∥
k∑

i=K

qk−K

≤ ∥e(K)∥(ρ+ ε)k−K+1 + ∥ε(K)∥(k −K + 1)qk−K

= ξ1(ρ+ ε)k−K+1 + ξ2(k −K + 1)qk−K+1 ,

(25)

where ξ1 := ∥e(K)∥, and ξ2 := ∥ε(K)∥/q.

The result below is a direct consequence of the above theorem and will find its use when proving Corollary 2.9.

Corollary A.7. The conclusion of Theorem A.6 also holds when the assumptions on the sequence (Bk)k∈N0
are replaced

with Bk → B ∈ L(X ,X ) and ρ(B) < 1.

Proof. This is a special case of Theorem A.6 because for any δ ∈ (0, 1− ρ(B)), there exists a norm on L(X ,X ) induced
by some vector norm, both denoted by ∥ · ∥δ , such that ∥B∥δ ≤ ρ(B)+ δ and ρ := limk→∞ ∥Bk∥δ = ∥B∥δ ≤ ρ(B)+ δ <
1.

The following result is a special case of the setting of Corollary A.7 and is straightforward to show.

Corollary A.8. The conclusion of Theorem A.6 also holds when the assumptions on the sequence (Bk)k∈N0 are replaced
with Bk := B ∈ L(X ,X ) for all k ∈ N and ρ(B) < 1.

Using Corollary A.8, we can prove the following statement which will be useful in the convergence proofs of Section A.3.

Theorem A.9. Let (Bk)k∈N0
and (b(k))k∈N0

be sequences in L(X ,X ) and X with limits B and b, respectively. If
ρ = ρ(B) < 1, the sequence (x(k))k∈N0

, with x(0) ∈ X , generated by

x(k+1) := Bkx
(k) + b(k) , (26)

converges to x := (I −B)−1b. The convergence is linear when (Bk)k∈N0 and (b(k))k∈N0 converge linearly with rates qB
and qb, respectively. In fact, for all δ ∈ (0, 1− ρ), there exist C1(δ), C2(δ) and K ∈ N, such that for all k ≥ K, we have

∥x(k) − x∥ ≤ C1(δ)(k −K)qk−K + C2(δ)(ρ+ δ)k−K , (27)

where q := max(ρ+ δ, qB , qb).

Proof. The expression x = (I −B)−1b is well-defined thanks to Lemma A.5 and solves the linear equation x = Bx+ b
for x. By setting e(k) := x(k) − x, Ck := Bk −B, and d(k) := (Bk −B)x+ b(k) − b, we obtain,

e(k+1) = (Bkx
(k) + b(k))− (Bx+ b)

= Be(k) + Cke
(k) + d(k) .

Since the above recursion matches (22) and the setting of Corollary A.8 applies, the result follows.

A.3. Differentiation of Iteration-Dependent Algorithms: Classical Results

In this section, we briefly recap the results of Beck (1994) in a way that aligns with those of Section 2, allowing for a clearer
comparison between the two sets of results. We first lay down the assumptions on the sequence of mappings Ak in (Rk)
and the mapping A in (Re) which will ensure the convergence of the sequence Dx(k)(u) generated by (DRk). The main
requirement in the work of Beck (1994) is that of the pointwise convergence of the sequence DAk to DA.
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A.3.1. PROBLEM SETTING

Given u∗ ∈ X , we assume that x∗ solves (Re) for x with u = u∗ and is the desired limit of x(k)(u∗) generated by (Rk).
Furthermore, we assume that for all k, Ak and A are C1-smooth near (x∗,u∗) and the contraction property holds for
DxA at (x∗,u∗). In particular, given (x(0),x∗,u∗) ∈ X × X × U , V ∈ N(x∗,u∗), (Ak)k∈N0

, and A we assume that the
following assumption holds.

Assumption A.1. (i) Ak|V and A|V are C1-smooth for all k,

(ii) x∗ = A(x∗,u∗),

(iii) ρ(DxA(x∗,u∗)) < 1, and

(iv) x(k)(u∗) generated by (Rk) has limit x∗ such that (x(k)(u∗),u∗) ∈ V for all k ∈ N.

A.3.2. IMPLICIT DIFFERENTIATION

From Assumption A.1, Lemma A.5, and (Dontchev & Rockafellar, 2009, Theorem 1B.1), we obtain the Implicit Function
Theorem for (Re).

Theorem A.10 (Implicit Function Theorem). For some (x∗,u∗), let A be C1-smooth near (x∗,u∗), x∗ = A(x∗,u∗) and
ρ(DxA(x∗,u∗)) < 1. Then ∃ U ∈ Nu∗ and a C1-smooth mapping ψ : U → X such that ∀u ∈ U , ψ(u) = A(ψ(u),u),
and

Dψ(u) =
(
I −DxA(ψ(u),u)

)−1
DuA(ψ(u),u) . (28)

A.3.3. AUTOMATIC DIFFERENTIAION

As stated in Section A.2, the update procedure to generate the derivative iterates in (DRk) takes after the iterative process
defined by (26) in Theorem A.9. That is, for some u∗ ∈ U and u̇ ∈ U , if we set Bk := DxAk(x

(k)(u∗),u∗) and b(k) :=
DuAk(x

(k)(u∗),u∗)u̇, the resulting sequence is y(k) = Dx(k)(u∗)u̇. Similarly, the limit y∗ := (I − B)−1b of the se-
quence y(k) generated by (26) matchesDψ(u∗)u̇ from (28), if we setB := DxA(ψ(u∗),u∗) and b := DuA(ψ(u∗),u∗)u̇.
One way to prove the convergence of Dx(k)(u∗)u̇ to Dψ(u∗)u̇ is by asserting that DAk(x

(k)(u∗),u∗) converges to
DA(ψ(u∗),u∗).

Assumption A.2. The sequence (DAk(x
(k)(u∗),u∗))k∈N0

converges to DA(x∗,u∗).

Remark A.11. When the sequence of functions (DAk)k∈N is equicontinuous at (x∗,u∗) and has a pointwise limit DA
near (x∗,u∗), then Assumption A.2 naturally holds thanks to (5).

The main result of Beck (1994) can then be stated below.

Theorem A.12. Let (x(0),x∗,u∗) be such that Assumptions A.1 and A.2 are satisfied by Ak and A. Then the sequence
(Dx(k)(u∗))k∈N0

generated by (DRk) converges to Dψ(u∗).

Proof. The proof is a direct consequence of Assumptions A.1 and A.2, Theorem A.9 and the arguments following
Theorem A.9.

For linear convergence we require a stronger assumption on DAk. That is, it is linear convergence as given below.

Assumption A.3. The sequence (x(k)(u∗))k∈N0
converges linearly to x∗ and

DAk(x
(k)(u∗),u∗)−DA(x∗,u∗) = O(x(k)(u∗)− x∗) . (29)

Theorem A.13. Let (x(0),x∗,u∗) be such that Assumptions A.1 and A.3 are satisfied by Ak and A. Then the sequence
(Dx(k)(u∗))k∈N0

generated by (DRk) converges linearly to Dψ(u∗). In particular, when the sequence (x(k))k∈N0

converges with rate qx < 1, then for all δ ∈ (0, 1− ρ), there exist C1(δ), C2(δ) and K ∈ N, such that for all k ≥ K, we
have

∥Dx(k)(u∗)−Dψ(u∗)∥ ≤ C1(δ)(k −K)qk−K + C2(δ)(ρ+ δ)k−K , (30)

where ρ := ρ(DxA(x∗,u∗)) and q := max(ρ+ δ, qx).
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Proof. Assumption A.3 asserts that the sequences DxAk(x
(k)(u∗),u∗) and DuAk(x

(k)(u∗),u∗)u̇ respectively converge
to DxA(x∗,u∗) and DuA(x∗,u∗)u̇ for any u̇ ∈ U . Furthermore, the rate of convergence of the two sequences is
linear and is the same as that of x(k), that is, qx. Therefore, the proof follows by simply invoking the second part of
Theorem A.9.

Remark A.14. Assumption A.3 is not practical and therefore we rarely see any application of the above result in practice.
For instance, for gradient descent with line search, it requires linear convergence of the step size sequence which does not
hold in general.

A.4. Riemannian Geometry

We briefly recall a few definitions and results from Riemannian Geometry. For further details, the reader is referred to
standard texts such as Lee (2003); Chavel (2006).

Definition A.15 (Manifold, Tangent and Normal Spaces). For any k ∈ N, we say that M ⊂ X is a Ck-smooth m-
dimensional submanifold of X , if for every x ∈ M there exist an open set X ⊂ X and a Ck-smooth map Φ: X → RN−m

such that x ∈ X , the derivative DΦ(x) is surjective, and X ∩M = Φ−1(0) = {y ∈ X : Φ(y) = 0}. We call Φ, the local
defining function of M at x. We say that v ∈ X is a tangent vector of M at x if there exist ϵ > 0 and a C1-smooth curve
γ : (−ϵ, ϵ) → M on M with γ(0) = x and γ̇(0) = v. The set of all tangent vectors of M at x constitute TxM, the tangent
space of M at x. We define the normal space of M at x by NxM := (TxM)⊥, the orthogonal complement of TxM.

For any x ∈ M and a local defining function Φ for M at x, we have TxM = kerDΦ(x).

Definition A.16 (Riemannian Gradient). For any k ∈ N, let M ⊂ X be a Ck-smooth manifold, f : M → R be a
function and x ∈ M. We say that f is Ck-smooth at x if there exist a neighbourhood X ⊂ X of x and a Ck-smooth
function f̃ : X → R such that f̃ agrees with f on M ∩ X . In this case, we call f̃ a smooth extension of f around x.
We call ∇Mf(x) ∈ TxM, the Riemannian gradient of f at x if for all v ∈ TxM, ⟨∇Mf(x),v⟩ = (f ◦ γ)′(0), where
γ : (−ϵ, ϵ) → M is any C1-curve with γ(0) = x and γ̇(0) = v.

The Riemannian Gradient of f can also be expressed in terms of the gradient of the smooth extension f̃ of f by

∇Mf(x) = Π(x)∇f̃(x) .

Note that this gradient neither depends on the choice of the curve γ nor the smooth extension f̃ .

Definition A.17 (Riemannian Hessian). Let M ⊂ X be a C2-smooth manifold, f : M → R be a C2-smooth function and
x ∈ M. We call ∇2

Mf(x) : TxM → TxM, the Riemannian Hessian of f at x if for all v ∈ TxM,
〈
∇2

Mf(x)v,v
〉
=

(f ◦ γ)′′(0), where γ : (−ϵ, ϵ) → M is any C1-curve with γ(0) = x and γ̇(0) = v.

We can similarly express the Riemannian Hessian ∇2
Mf(x) ∈ L(TxM, TxM) by using the smooth extension f̃ , that is,

∇2
Mf(x) = Π(x)∇2f̃(x) +Wx(·,Π⊥(x)∇f̃(x)) , (31)

where the mapping Wx(·,w) ∈ L(TxM, TxM) for w ∈ NxM is called the Weingarten map. It is defined by

v 7→ Wx(v,w) := −Π(x)dW [v] ,

where W is a local extension of w to a normal vector field on M. Wx(·,w) is independent of the choice of normal field
W (Chavel, 2006, Proposition II.2.1) and caters for the change of the tangent space as we move away from x. It vanishes
when the manifold is affine, that is, M = x+ TxM or linear, that is, M = TxM. The Hessian expression then reduces to
∇2

Mf(x) = Π(x)∇2f̃(x).

A.5. Partial Smoothness

Introduced by Lewis (2002), partial smoothness describes a broad class of non-smooth functions, including many commonly
used loss and regularization functions in Machine Learning. It extends ideas like active set methods which were originally
developed for smooth constrained optimization to a more general setting that includes non-smooth functions, by identifying
smooth behavior along certain submanifolds.

Definition A.18 (Partial Smoothness). Let f : X → R be proper and lower semi-continuous and M ⊂ X be a set. We say
that f is partly smooth at a point x ∈ M relative to M if the following conditions hold:
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(i) (Regularity:) f is regular at every point close to x and ∂f(x) ̸= ∅.

(ii) (Smoothness:) M is a C2-smooth manifold and f |M is C2-smooth around x.

(iii) (Sharpness:) NxM = par ∂f(x).

(iv) (Continuity:) ∂f is continuous at x relative to M.

We call f partly smooth relative to M if f is partly smooth at every x ∈ M relative to M.

B. Proofs of Section 2
B.1. Proof of Lemma 2.2

Proof. From Assumption 2.1(iii), given ε ∈ (0, 1 − ρ), there exists K ∈ N such that ρ(DxAk(x
∗,u∗)) ≤

∥DxAk(x
∗,u∗)∥ < ρ + ε for all k ≥ K, where ρ := lim supk→∞ ∥DxAk(x

∗,u∗)∥. The existence of the neigh-
bourhood U and the C1-smooth mapping ψ : U → X is guaranteed by Theorem A.10 applied to An for some n ≥ K,
thanks to Assumption 2.1 ((i)–(ii)). In particular, for all u ∈ U , ψ(u) = An(ψ(u),u) and Dψ(u) is given by (28) with
A replaced by An. From Assumption 2.1(ii), for any k ≥ K and u ∈ U , we have ψ(u) = An(ψ(u),u) = Ak(ψ(u),u)
and with U possibly reduced, ρ(DxAk(ψ(u),u)) < 1. Therefore, by using the Chain rule and Lemma A.5, we obtain the
expression in (4).

B.2. Proof of Theorem 2.5

Proof. From Lemma 2.2 and Remark 2.3, there exists K ∈ N such that for any k ≥ K, the fixed-point mapping ψk of
Ak(·,u) is C1-smooth near u∗ and Dψk(u

∗) = X∗ (see Assumption 2.1(ii)). We denote x(k) := x(k)(u∗) for simplicity
and define

e(k) :=
(
Dx(k)(u∗)−X∗

)
u̇

Bk := DxAk(x
∗,u∗)

Ck := DxAk(x
(k),u∗)−DxAk(x

∗,u∗)

d(k) :=
(
DAk(x

(k),u∗)−DAk(x
∗,u∗)

)[
X∗u̇
u̇

]
,

(32)

to obtain
e(k+1) =

(
DxAk(x

(k),u∗)Dx(k)(u∗)u̇+DuAk(x
(k),u∗)u̇

)
−(

DxAk(x
∗,u∗)X∗u̇+DuAk(x

∗,u∗)u̇
)

= Bke
(k) + Ckz

(k) + d(k) .

(33)

From Assumption 2.2 and the definitions of Ck and y(k), we note that Ck → 0 and d(k) → 0. Therefore, from Theorem A.6,
(Dx(k)(u∗)u̇)k∈N0

converges to X∗u̇ for any u̇ ∈ U .

B.3. Proof of Theorem 2.7

Proof. From Assumption 2.3, we have DAk(x
(k)(u∗),u∗)−DAk(x

∗,u∗) → 0 and the rate of convergence of the two
sequences is qx. For any u̇ ∈ U , by using the definitions in (32), we note that both Ck and y(k) converge linearly with rate
qx. Thus, invoking the second part of Theorem A.6, we obtain the convergence rate of (Dx(k)(u∗)u̇)k∈N0

. In particular,
from (23), we obtain the bound in (7). The expressions for ξ1 and ξ2 can be computed from (24) using CK , d(K) and e(K)

defined in (32).

C. Proofs of Section 3
C.1. Proof of Theorem 3.4

The proof of Theorem 3.4 relies on the following preliminary result from set-valued analysis.
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Lemma C.1. Given a sequence of non-empty, closed, convex sets Ck ⊂ X which converges to C ⊂ X such that aff Ck also
converges to aff C. Let x(k) ∈ Ck be a sequence with limit x ∈ riC. Then there exists K ∈ N such that x(k) ∈ riCk for
all k ≥ K.

Proof. Because x(k) → x and x ∈ riC, there exists a compact set V and K ∈ N such that x(k),x ∈ intV ̸= ∅ for all
k ≥ K and V ∩ aff C ⊂ C. Moreover, aff Ck → aff C implies V ∩ aff Ck → V ∩ aff C (Mosco, 1969, Lemma 1.4). Once
we show that V ∩ aff Ck ⊂ Ck eventually, we are done. Assume for contradiction, that there exists a subsequence (Cki

)i∈N
such that for all i ∈ N, y(i) ∈ V ∩ aff Cki

and y(i) /∈ Cki
. The compactness of V and convergence of V ∩ aff Cki

implies
the existence of y ∈ V ∩ aff C such that y(i) → y, possibly through a subsequence. We define the bounded sequence
b(i) := a(i)/∥a(i)∥ where a(i) := y(i) − projCki

(y(i)) which lies in parCki
and has limit 0 ̸= b ∈ parC, again, possibly

through a subsequence. For all i ∈ N and for all w ∈ Cki
,〈

b(i),w − y(i)
〉
=

〈
b(i),w − projCki

(y(i))
〉
−
〈
b(i),y(i) − projCki

(y(i))
〉

=
〈
b(i),w − projCki

(y(i))
〉
− 1

∥a(i)∥

〈
a(i),a(i)

〉
=

〈
b(i),w − projCki

(y(i))
〉
− ∥a(i)∥

≤ 0 ,

where the inequality follows because a(i) and therefore b(i) lie in NCki
(projCki

(y(i))). The above inequality leads to
⟨b,w − y⟩ ≤ 0 for all w ∈ C. In other words, we obtain 0 ̸= b ∈ NC(y) ∩ parC which is a contradiction because
y ∈ riC.

Remark C.2. The condition aff Ck → aff C is necessary for the conclusion of Lemma C.1 to hold. To see why, we define
the sequence of closed intervals (Ck := [−1/k, 1/k])k∈N in R which converges to C := {0}. Consider the sequence
xk := 1/k which converges to x := 0. Notice that, aff Ck = R for all k ∈ N, aff C = {0} and even though x ∈ C = riC,
x(k) /∈ riCk for all k ∈ N.

Proof of Theorem 3.4. (i) From the convergence of x(k) := x(k)(u∗), Lemma 3.9 ensures that for δ > 0 small enough,
there exists K ∈ N, such that x(k) ∈ M∩Bδ(x

∗) for all k ≥ K. We define the maps G : X ×Ω× (0, 2/L) → X by
G(x,u, α) = x− α∇xf(x,u) and H : X × X × Ω× (0, 2/L) → R by

H(y,x,u, α) := αg(y,u) +
1

2
∥y − x+ α∇xf(x,u)∥2 ,

and note that x(k+1) = Aαk
(x(k),u∗) = argminyH(y,x(k),u∗, αk), which, from Fermat’s rule, is equivalent to

0 ∈ ∂yH(x(k+1),x(k),u∗, αk) or µ(k) ∈ ∂xF (x
(k+1),u∗), where

µ(k) :=
1

αk

(
G(x(k),u∗, αk)−G(x(k+1),u∗, αk)

)
. (34)

Notice that µ(k) → 0 because G(·,u∗, α) is non-expansive when α ∈ (0, 2/L) and we have ∥µ(k)∥ ≤
1
α∥x

(k) − x(k+1)∥. Moreover, aff ∂xF (x(k+1),u∗) = µ(k) + par ∂xF (x
(k+1),u∗) = µ(k) + Tx(k+1)M con-

verges to aff ∂xF (x
∗,u∗) = par ∂xF (x

∗,u∗) = 0 + Tx∗M (Mosco, 1969, Lemma 1.6). Therefore, from (ND)
and Lemma C.1, we have µ(k) ∈ ri ∂xF (x

(k+1),u∗) or 0 ∈ ri ∂yH(x(k+1),x(k),u∗, αk), for all k ∈ N large
enough. Since H is partly smooth relative to M × X × Ω × (0, 2/L) and H(·,x,u, α) is strongly convex for all
(x,u, α) ∈ X × Ω × (0, 2/L), and non-degeneracy condition holds, the C1-smoothness of the update map near
(x(k),u∗, αk) follows by invoking Theorem 3.1. The C1-smoothness of Aα near (x∗,u∗, α) under given assumptions
was shown in Mehmood & Ochs (2022, Corollary 32) for any α ∈ [α, ᾱ].

(ii) We define
Qk := ∇2

MH(x(k+1),x(k),u∗, αk) , Q̃k := ∇2
MH(x∗,x∗,u∗, αk)

Pω,k := Dω∇MH(x(k+1),x(k),u∗, αk) , P̃ω,k := Dω∇MH(x∗,x∗,u∗, αk)

Πk := Π(x(k)) , Π∗ := Π(x∗) , Π⊥
k := Π⊥(x(k)) , Π⊥

∗ := Π⊥(x∗) ,
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where ω ∈ {x,u, α} and evaluate Qk to obtain

Qk = αk∇2
Mg(x(k+1),u∗) + Πk+1 +Wx(k+1)(·,Π⊥

k+1(x
(k+1) −G(x(k),u∗, αk)))

= αk∇2
Mg(x∗,u∗) + αkWx(k+1)(·,Π⊥

k+1∇xf(x
(k+1),u∗)) + Πk+1+

Wx(k+1)(·,Π⊥
k+1(G(x

(k+1),u∗, αk)−G(x(k),u∗, αk)))

= αk∇2
MF (x∗,u∗)−Πk+1∇2

xf(x
(k+1),u∗)Πk+1 +Πk+1+

Wx(k+1)(·,Π⊥
k+1(G(x

(k+1),u∗, αk)−G(x(k),u∗, αk))) .

Similarly, Q̃k is given by

Q̃k = αk∇2
MF (x∗,u∗)− αkΠ∗∇2

xf(x
∗,u∗)Π∗ +Π∗ .

From Liang et al. (2017, Lemma 4.3), αk∇2
MF (x∗,u∗) − αkΠ∗∇2

xf(x
∗,u∗)Π∗ is positive semi-definite and the

eigenvalues of Q̃†
k lie in (0, 1]. Moreover, the non-expansiveness of G(·,u∗, αk) and the continuity of (x,v) 7→

Wx(·,v) due to the C2-smoothness of M implies that Wx(k+1)(·,Π⊥
k+1(G(x

(k+1),u∗, αk)−G(x(k),u∗, αk))) → 0.
This entails that Qk − Q̃k → 0 and the eigenvalues of Q†

k are also eventually bounded. Hence, Q†
k − Q̃†

k, which can be
rewritten as

Q†
k − Q̃†

k = Q†
k −Q†

kΠ∗ +Q†
kΠ∗ −ΠkQ̃

†
k +ΠkQ̃

†
k − Q̃†

k

= Q†
kΠk −Q†

kΠ∗ +Q†
kQ̃kQ̃

†
k −Q†

kQkQ
†
∗ +ΠkQ̃

†
k − Q̃†

kΠ∗

= Q†
k (Πk −Π∗)−Q†

k

(
Qk − Q̃k

)
Q̃†

k + (Πk −Π∗) Q̃
†
k ,

also converges to 0. Similarly Pω,k − P̃ω,k → 0 for all ω ∈ {x,u, α} because

Px,k − P̃x,k = Πk+1

(
I − αk∇2

xf(x
(k),u∗)

)
−Π∗

(
I − αk∇2

xf(x
∗,u∗)

)
= (Πk+1 −Π∗)− αk

(
Πk+1∇2

xf(x
(k),u∗)−Π∗∇2

xf(x
∗,u∗)

)
Pu,k − P̃u,k = αk

(
Du∇Mg(x(k+1),u∗) +DuΠk+1∇xf(x

(k),u∗)−Du∇MF (x∗,u∗)
)

Pα,k − P̃α,k = ∇Mg(x(k+1),u∗) + Πk+1∇xf(x
(k),u∗)−∇MF (x∗,u∗)

This concludes the proof because from (9), DAα(x,u) is given by,

DAα(x,u) = −∇2
MH(Aα(x,u),x,u, α)

†D(x,u,α)∇MH(Aα(x,u),x,u, α) . (35)

(iii) The expressions for Qk− Q̃k and Pω,k− P̃ω,k for ω ∈ {x,u, α} clearly indicate that these sequences converge linearly
under the given assumptions.

C.2. Proof of Theorem 3.7

Proof. We again set x(k) := x(k)(u∗) for simplicity. Thanks to Theorem 3.4(i), Aαk
are C1-smooth near (x(k),u∗, αk) for

all k ∈ N provided that x(0) is sufficiently close to x∗. Differentiation of the fixed-point iteration x(k+1) := Aαk
(x(k),u∗)

with respect to u yields

Dx(k+1)(u∗) = DxAαk
(x(k),u∗)Π(x(k))Dx(k)(u∗) +DuAαk

(x(k),u∗) , (36)

and Theorem 3.6 asserts that under the given assumptions, for all k ∈ N,

Dψ(u∗) = DxAαk
(x∗,u∗)Π(x∗)Dψ(u∗) +DuAαk

(x∗,u∗) . (37)

Just like the arguments made in the proof of Theorem A.12, for any u̇ ∈ U , if we define

e(k) := Dx(k)(u∗)u̇−Dψ(u∗)u̇

Bk := DxAαk
(x∗,u∗)Π(x∗)

Ck := DxAαk
(x(k),u∗)Π(x(k))−DxAαk

(x∗,u∗)Π(x∗)

d(k) := (DAk(x
(k),u∗)−DAk(x

∗,u∗))(Dψ(u∗)u̇, u̇) ,

(38)
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and subtract (37) from (36), we obtain the recursion e(k+1) = Bke
(k) + Cke

(k) + d(k). From Theorem 3.6, the continuity
of ρ and DAα , supk∈N ∥Bk∥ < 1 for all k ∈ N and from Theorem 3.4(ii), Ck → 0 and d(k) → 0. Under the additional
assumptions, Ck and d(k) converge linearly with rate qx due to Theorem 3.4(i). Therefore, the (linear) convergence of the
derivative sequence (Dx(k)(u∗))k∈N follows from Theorem A.6. The error bound in (12), as well as the expressions for the
constants ξ1 and ξ2, can be derived from (23) and (24), respectively where CK , e(K), and d(K) are defined in (38).

C.3. Proof of Theorem 3.10

Proof. (i) This part follows from Mehmood & Ochs (2022, Corollary 33) and the convergence of x(k)(u∗) and αk.

(ii) We set z := (x1,x2), and y := x1 + β(x1 − x2) and write the expression for DAα,β(z,u) for (z,u, α, β) ∈
Vα∗ × [0, 1]:

DzAα,β(z,u) =

[
(1 + β)DxAα(y,u) −βDxAα(y,u)

I 0

]
DuAα,β(z,u) =

[
DuAα(y,u)

0

]
DαAα,β(z,u) =

[
DαAα(y,u)

0

]
,

as provided in Mehmood & Ochs (2022, Corollary 33), where DAα(y,u) is given in (35). It is easy to
see that the mapping (z,u, α, β) 7→ DAα,β(z,u) is continuous on Vα∗ × [0, 1]. Therefore, the sequences
(DAαk,βk

(x(k)(u∗),x(k−1)(u∗),u∗))k≥K and (DAαk,βk
(x∗,x∗,u∗))k≥K both converge to DAα∗,β∗(x

∗,x∗,u∗)
and their difference converges to 0.

(iii) Because βk ∈ [0, 1] and under the additional assumptions, DAαk
(y(k),u∗) −DAαk

(x∗,u∗) = O(y(k) − x∗) as
established in Theorem 3.4(iii), where y(k) := x(k)(u∗) + βk(x

(k)(u∗) − x(k−1)(u∗)), the result follows directly
from the expressions of DAα,β .

C.4. Proof of Theorem 3.12

Proof. From Theorem 3.10 the mapping (x1,x2,u, α) 7→ Aαk,βk
(x1,x2,u, α) is C1-smooth on Vα∗ . Therefore, when

x(0) is close enough to x∗, we have (x(k),x(k−1),u∗, αk) ∈ Vα∗ where x(k) := x(k)(u∗) and we obtain the following
recursion for the derivative iterates[

Dx(k+1)(u∗)
Dx(k)(u∗)

]
= DzAαk,βk

(x(k),u∗)Π(x(k),x(k−1))

[
Dx(k)(u∗)
Dx(k−1)(u∗)

]
+DuAαk,βk

(x(k),u∗)

From Theorem 3.11, we have[
Dψ(u∗)
Dψ(u∗)

]
= DzAα,β(x

∗,u∗)Π(x∗,x∗)

[
Dψ(u∗)
Dψ(u∗)

]
+DuAα,β(x

∗,u∗) ,

for β = β∗ and β = βk for all k ∈ N. Therefore, for any u̇ ∈ U , we define

e(k) := (Dx(k)(u∗)−Dψ(u∗), Dx(k−1)(u∗)−Dψ(u∗))u̇

Bk := DxAαk,βk
(x∗,x∗,u∗)Π(x∗,x∗) , B∗ := DxAα∗,β∗(x

∗,x∗,u∗)Π(x∗,x∗)

Ck := DxAαk,βk
(x(k),x(k−1),u∗)Π(x(k),x(k−1))−DxAαk,βk

(x∗,x∗,u∗)Π(x∗,x∗)

d(k) := (DAαk,βk
(x(k),x(k−1),u∗)−DAαk,βk

(x∗,x∗,u∗))(Dψ(u∗)u̇, Dψ(u∗)u̇, u̇)

and obtain the recursion e(k+1) = Bke
(k) +Cke

(k) +d(k). Notice that ρ(B∗) < 1 from Theorem 3.11 and Bk → B∗ from
Theorem 3.10(i). Moreover Ck → 0, and d(k) → 0 owing to Theorem 3.10(ii) and under the additional assumptions, the
convergence of Ck and d(k) is linear with rate qx thanks to Theorem 3.10(iii). Therefore, from Corollary A.7, the sequence
Dx(k)(u∗)u̇ converges (linearly) to Dψ(u∗)u̇ for all u̇ ∈ U .
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D. Experimental Details
In this section, we fill out some missing details from Section 4. We do not perform any feature transformation apart from
batch normalization. For (16), the dataset is artificially generated with 70 ≤ M ≤ 90 and N = 200. In particular, for
each of the 50 problems, we generate X and a sparse vector w′ ∈ RN with only 50 non-zero elements. We sample each
element of X from standard uniform distribution and each non-zero element of w′ from standard normal distribution
respectively. We then generate y by computing Xw + ε where each ε is drawn from normal distibution with mean 0
and covariance matrix 10−3I . The problem has a ρ(XTX)-Lipschitz continuous gradient but is not even strictly convex.
However, for each choice of λ ∼ U(0, 10), X , and y, Assumptions 3.2 and 3.3 were satisfied for each experiment. The
spaces and sets mentioned in Assumption 3.1 are X = RN , U = RM×N × RM × R, Ω = RM×N × RM × (0,+∞),
and M = {w ∈ RN : supp(w) ⊂ supp(w∗)} where supp(w) denotes the support of w. For (17), we use MADELON
dataset with M = 2, 000 samples and N = 501 features. For 50 set of experiments, we sample λ ∼ N (0, 10−3) and
perturb each element of X with a Gaussian noise with standard deviation 10−3. The problem is λ-strongly convex and has a
ρ(XTX)/(4M)+λ-Lipschitz continuous gradient with M = X = RN , U = RM×N ×R and Ω = RM×N ×(0,+∞). For
(18), we use CIFAR10 dataset with M = 50, 000 samples N = 32× 32× 3 features. The problem is λ-strongly convex and
has a ρ(XTX)/M+λ-Lipschitz continuous gradient with M = X = RN×C , U = RM×N×R and Ω = RM×N×(0,+∞).

We obtain a very good estimate of w∗ for (16) by running APG for sufficiently large number of iterations, for (17) by using
Newton’s method with backtracking line search, and for (18) by running the Heavy-ball method with optimal parameters,
also, for large number of iterations. The derivative of the solution Dψ(u∗) is computed by solving the linear system (2)
for (multinomial) logistic regression and solving the reduced system (9) after identifying the support for lasso regression
(Bertrand et al., 2022). For each problem and for each experiment, we run PGD with four different choices of step size,
namely, (i) αk = 2/(L + m) for (17) and αk = 1/L for (16), (ii) αk ∼ U(0, 2

3L ), (iii) αk ∼ U( 2
3L ,

4
3L ) , and (iv)

αk ∼ U( 4
3L ,

2
L ), for each k ∈ N. We also run APG with αk = 1/L and βk = (k − 1)/(k + 5). Before starting each

algorithm, we obtain w(0) ∈ B10−2(w∗) by partially solving each problem through APG. For computational reasons,
instead of generating the sequence Dw(k)(u), we compute the directional derivative Dw(k)(u)u̇. The vector u̇ belongs to
the same space as u and is fixed for the 5 different algorithms being compared for each experiment and problem. For each
problem, we plot the error sequences ∥w(k)(u)− ψ(u)∥ and ∥Dw(k)(u)u̇−Duψ(u)u̇∥.
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