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Abstract

We develop policy gradient algorithms with global optimality and convergence
guarantees for reinforcement learning (RL) with proportional-integral-derivative
(PID) parameterized control policies. RL enables learning control policies through
direct interaction with a system, without explicit model knowledge that is typically
assumed in classical control. The PID policy architecture offers built-in structural
advantages, such as superior tracking performance, elimination of steady-state er-
rors, and robustness to model error that have made it a widely adopted paradigm in
practice. Despite these advantages, the PID parameterization has received limited
attention in the RL literature, and PID control designs continue to rely on heuristic
tuning rules without theoretical guarantees. We address this gap by rigorously
integrating PID control with RL, offering theoretical guarantees while maintain-
ing the practical advantages that have made PID control ubiquitous in practice.
Specifically, we first formulate PID control design as an optimization problem
with a control policy that is parameterized by proportional, integral, and derivative
components. We derive exact expressions for policy gradients in these parameters,
and leverage them to develop both model-based and model-free policy gradient
algorithms for PID policies. We then establish gradient dominance properties of
the PID policy optimization problem, and provide theoretical guarantees on conver-
gence and global optimality in this setting. Finally, we benchmark the performance
of our algorithms on the cont rolgym suite of environments.

1 Introduction

Reinforcement learning (RL) for control, particularly policy gradient (PG) methods, have received
significant attention in recent years (see [25] for a comprehensive survey). This has been spurred by
theoretical advances in characterizing the convergence, sample complexity, and global optimality
of PG methods in classical control settings like the linear quadratic regulator (LQR) [[18}, [28}, 31]],
where the underlying problems have challenging, often non-convex optimization landscapes. Further
developments have also extended such theoretical guarantees to additional control problems including
stabilization [36]], H2 and H control [48| [21], noisy LQR [23] 20], output-feedback [17] and
partially observed problems like linear quadratic Gaussian (LQG) control [44}, |16} |30], nonlinear
control [42]], and robust control problems including adversarial disturbances [47, |49].
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The proportional-integral-derivative (PID) control architecture has received surprisingly limited
attention within the RL for control literature, despite its prominent place within control theory and
engineering practice [2, |4]. PID control offers built-in structural advantages due to its control law
being parameterized by three interpretable components: proportional action to shape stability and
transient performance, integral action to eliminate tracking errors, and derivative action based on
anticipated future error to enhance robustness. Due to these properties, PID control is a widely adopted
paradigm in several domains including industrial control, aerospace, and robotics applications [10],
with over 90% controllers used in industry employing PID architectures [22]. Further, the output-
feedback architecture and low-dimensional parameterization of PID control make it a promising
avenue for policy-gradient based exploration. However, most PID control design approaches remain
heuristic, relying on engineering intuition and lacking provable guarantees on performance, optimality,
or even stability [4] 40].

In this paper, we bridge this gap by rigorously integrating PG approaches from RL with the PID
control parameterization, enabling us to obtain convergence and global optimality guarantees enjoyed
by PG methods for control while maintaining the practical advantages that have made PID control
ubiquitous in practice. Specifically, we first provide an optimization-based formulation of the PID
control problem, and derive exact policy gradient expressions in the PID parameters. Based on these
gradient expressions, we develop two new PG algorithms, a model-based approach for PID control
and a model-free approach for PI control. We prove that the objective of these problems enjoys the
gradient dominance property, establish convergence rates to global optimality for our model-based
approach, and characterize the sample complexity needed to achieve approximate global optimality
for our model-free algorithm. Finally, we benchmark the performance of our algorithms on the
controlgym suite of control environments [51]]. We summarize our core contributions as follows:

* Policy optimization framework and algorithms. Our optimization-based formulation of the PID
problem and our proof that its objective enjoys gradient dominance together establish a critical link
between the PID control problem and the literature on PG methods for control. Our derivation of
exact gradient expressions for this problem also paves the way for the development of principled
PG algorithms for tuning PID control policies. Specifically, we develop two new PG algorithms: a
model-based method leveraging system identification to learn PID control policies, and a model-
free method for learning PI control policies. In the model-free setting, we bypass the need for
model knowledge by applying the classic policy gradient theorem, and derive a novel algorithm
that employs stochastic policies during training to provably learn the optimal parameters of an
underlying deterministic PI control policy. This allows us to provably achieve approximate global
optimality in a model-free manner on PI problems, resolving an important open problem.

* Global optimality, convergence, sample complexity. We establish global optimality, convergence,
and sample complexity guarantees for our algorithms. For our model-based approach, we leverage
gradient dominance to establish a linear convergence rate to global optimality. In the model-free
setting, we prove that our optimization objective enjoys weak gradient dominance and establish
convergence rate and sample complexity guarantees to global optimality. In the model-free setting,
the analysis is particularly challenging due to the use of stochastic policies to learn the parameters
of an underlying deterministic policy. To overcome this, we establish weak gradient dominance
under stochastic policies, then use this to derive the algorithm’s sample complexity for achieving
approximate global optimality. While there are some recent results [33]] on theoretical guarantees
for learning deterministic policies via stochastic gradients, these analyses assume global Lipschitz
properties, which are not satisfied by PID control policies. In contrast, we obtain theoretical
guarantees of convergence and sample complexity for a class of problems that only satisfy less
restrictive local Lipschitz properties. In addition, our model-free approach yields a first-order
PG algorithm that is applicable not only to PI control but also to general LQR problems (which
constitute a special case of our framework where the control policy is parameterized only by the
proportional component of the PID policy), whereas only zero-order methods (where gradients are
estimated using only objective function evaluations) were previously available [13]].

1.1 Related Work

While to our knowledge there is no literature integrating policy optimization theory with PID control,
there is a rich literature on PG methods for problems like LQR, as well as attempts from control
theory to introduce optimization objectives into PID control, which we review here.



Policy gradient methods. Convergence of PG methods to global optimality, often referred to as
global convergence in the machine learning community, has received significant attention in recent
years, starting with the fundamental results of [[8 29} |1} 26]. Subsequent works addressed optimal
convergence rates [|32], sample complexity [7], regret [|6,35], and even global convergence for general
utilities [50, [41]] and deterministic policies [33]]. A key feature of these analyses lies in establishing
gradient dominance of the optimization objective, which allows global optimality to be established
despite the typical non-convexity of the problem. Within RL for control, PG methods for a variety
of control problems [25] have been shown to enjoy gradient dominance, particularly LQR and its
variants where model-based and zero-order model-free PG methods have been developed [|18} 28],
PG for least squares problems has been analyzed [[13]], sample complexity results for PG methods
have been provided [14], and system identification-based approaches developed [46[]. Despite the
wide range of works on PG for control, to our knowledge, globally convergent PG methods for PID
control remain unexplored in the literature. We close this gap in this paper.

Optimization in PID Control. While most PID designs rely in practice on heuristic tuning rules and
simplified models, there have been attempts to formalize PID control design as an optimization prob-
lem [3} |5} [24]]. Constrained optimization approaches for PID control with robustness specifications
[34}[19] and linear and bilinear matrix inequality-based tuning for single and multi-variable settings
have also been proposed [[11} 45, |9]. However, all of these methods rely on frequency domain system
descriptions, making them difficult to integrate into RL theory, where state space descriptions are
fundamental. Critically, these approaches lack theoretical guarantees on optimality and convergence.
Recently, [37]] proposed a new optimization framework connecting model-based PID control to the
standard continuous-time LQR problem. We adopt a similar approach to formulate an optimization
problem for PID control design, albeit in the discrete-time setting. Importantly, our work goes far
beyond the scope of [37]] by providing exact policy gradient expressions and rigorous theoretical
guarantees in both the model-based and model-free settings.

2 Problem Formulation

We focus on the following optimal control problem with linear system dynamics and proportional-
integral-derivative (PID) control policies, given by

minimize

E Z ytTYyt + utTRut
=0 (1

subject to x¢41 = Awy + Buy, yr= Cxy, x9~ D,

where x; € R” is the system state at time ¢ > 0, y; € R? represents the output, and u; € R™ denotes
the output of the control policy. We henceforth adopt the scalar input and output setting (m,p = 1)
for ease of exposition, but we note that all of our theory can be extended to the multivariable
setting. The control policy is parameterized by the PID parameters K = [Kp, K1, Kp]T, where
KP,K[,KD € R, as

w = —Kpy, — Kp22 =9 g, Z m ©)

and 7 > 0 is the sampling time of the discrete-time dynamics. The system is initialized at xg ~ D
according to some probability distribution D over the state space, Y € RP*P and R € R™*™ are
positive definite matrices, and A € R"*™ and B € R"™*™ are the system and the input matrices.
Intuitively, for a classical tracking problem, where the objective is to drive the system state to track
an external reference, the proportional parameter K p responds to the current tracking error, the
integral parameter K addresses long-term errors by accumulating the error signal over time, and
the derivative parameter K p predicts future errors by evaluating the rate of change of the error. The
PID control problem presented in equations (I)-(@) in the PID parameters K is equivalent to a related
problem, as formalized in the following proposition. We defer all proofs to the appendix.

Proposition 2.1. The optimization problem (1)) is equivalent to the following problem:
minimize J(K) =R lz 9! Qgi + ul Ruy 3)

t=0

subject to  gi41 = Az, + Buy, go ~ D,
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xo ~ D, zo = 0 with a slight abuse of notation. The control policy in (3) is given by
uy = —Kgy, &)
where the control parameter K is obtained from the PID parameters K = [Kp, K1, Kp|T as
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Proposition 2. extends the continuous-time results in [37]] to our discrete-time PID setting, establish-
ing an equivalence between the PID control problem and an LQR problem in an extended state space.
By (), the parameter K is completely determined given the PID parameters K . For this reason, in
what follows we will abuse notation and use J(K') and J(K) interchangeably, depending on context.
It is important to note that PG methods for LQR (e.g., [18]]) do not apply directly to the PID control
problem, since, though K in (5)) is completely determined given the PID parameters K by (6)), there
does not necessarily exist a feasible decomposition of K in terms of K. For this reason, it is not
possible to use existing PG methods for LQR to solve (3), then translate the resulting policy into a
feasible PID policy. Fortunately, it is possible to perform PG descent directly in the PID parameters.
To achieve this, we derive gradient expressions in the PID parameters in the following section.

3 Algorithms

In this section we develop PG algorithms for optimal tuning of PID and PI controllers. In order to
achieve this, we first derive policy gradient expressions for the objective (3) with respect to the PID
parameters in Theorem [3.1] then build on this result to derive our algorithms. The first algorithm is a
model-based approach that leverages system identification [27] to learn a controller for the full PID
problem. The second algorithm is a model-free approach for learning a PI controller. We assume
throughout that the matrix C' appearing in (I} is known, which is common in practice, since the
output y is typically designed depending on the application at hand.

PID Gradient Expressions. We begin by deriving expressions for the gradients of J(K) with
respect to Kp, K7, Kp. We will use these expressions in the remainder of this section to develop PG
algorithms for performing gradient descent in the PID parameters. In order to obtain closed-form
gradient expressions for .JJ(K) in terms of the PID parameters K, we first develop additional notation
concerning the closed-loop dynamics of (3). First, from g1 = Ag; + Bu; and uy = —K g, we get

941 = Ak gt Ag = A— BK. (N
Expanding the definitions of A, B yields

Ay — |A—BFpKpC — BFpKp“= —BFpK;

g el ®)

where
KDCBrl

For this closed-loop system, the corresponding cost function is given by J (f( )=E [gOT Py go] ,
where Py is the solution to the discrete algebraic Riccati equation

Fp=[1+

©))

T

AL Py A — Pk +Q+ KTRK =0, (10)

and K is obtained from K via (6). We now provide gradient expressions for the objective of (3) in
the PID parameters.



Algorithm 1 PG4PID Algorithm 2 PG4PI

1: Input: Tolerance e, stepsizes ap, ay, ap, 1: Input: Tolerance ¢, stepsizes ap, oy, trajec-
trajectory length NV tory length V, noise parameter o > 0
2: Initialize: K7, K7, K, sett < 0 2: Initialize: Ko := [K% K97, sett « 0
3: Generate zq, ug, - - . , Ty, uy With () 3: repeat
4: Form X, Uy from the above trajectory 4:  Sample gy ~ D
5. Estimate A, B from X, Uy using 5. Generate
6: repeat . 905 U0; €05 -+ -, gN—1, UN—1,CN—1
7. Compute K, from K; = [KL, K¢, K47 with 7z
using (6) 6 CreSn e
8: Estimate PKt USIFIg 7: Compute VKi log TR (uo|go),i =
9:  Compute Eg, using (I4) P, I using (22),
10:  Compute g Ktrl — Kt _
- = ~ : P P
vaP ‘%ﬁth)’ V&]‘](Kﬁ)v VKD J(Kt) OépCtVKP log Wk(uo‘go)
rom Theorem t+1 t
~ . K Kt — 1 -
1 K5 e Kb — apVi, J(K) o K e K= arGiVie log i (wolgo)
122 K« Kb — Vi, J(K;) 11: until HV}.{J(f(t) <e

132 K5« Kb —apVik, J(K;)
14: t+t+1
15: until Hvkj(f(t)

<e

Theorem 3.1. The gradients of the objective J([N() of (3) with respect to Kp, K1, Kp are given by

VipJ(K)=2FpEx STy O, (11
Vi, J(K)=2FpEx ST, (12)
VipJ(K) = 2FpExYk(an T (A—1)TCT — anas), (13)
where T, = [I, 0px1].T. = [0ixn 1, s = (1 4+ KpCB)™', as = (7 +
KpCB) Y(rTICTKp + THA - DNTCTKp + 7TYKp), ag = CB, and
Ex = (R+ B"PxB)K — B"PcA, (14) Sk =E> g9t - (15)
t=0

Recall that Ec and X are functions of K and therefore of K by (6). Equipped with the explicit
gradient expressions provided by Theorem 3.1] we turn next to developing algorithms using them.

3.1 Model-based Policy Gradient

We now derive our model-based PG algorithm for solving (I). Our approach is model-based in
the sense that it relies on explicitly estimating the system matrices A and B and the solution Py
to the Riccati equation (T0) from collected trajectory data. Our algorithm builds on the approach
proposed in [46]], with the key difference that our procedure for gradient estimation procedure requires
estimation of fewer system matrices, thereby enjoying superior computational efficiency.

To estimate A and B, we follow a least-squares system identification approach similar to that proposed
in [27]. Given trajectory data xg, ug, 1, u1,- .., T¢+1, Ut+1 collected from the system, for some
t > 0, and taking k <t,let Xy = [vg 1 ... xx—1],Ur = [uo u1 ... uk—1] denote matrices whose
columns are formed, respectively, by the states xg, ..., xx—1 and inputs uo, . .., ug—1. Using this
trajectory data, we can estimate A and B by simply computing the least-squares estimator of the error
| X¢41 — (AX, + BU,)||” in terms of A and B, as described in Section |A.2.2]in the Appendix. To
estimate Py, for K; at time ¢ > 0, we use the iterative Riccati equation solution approach described
in Section[A.2.2)in the appendix. Combining the above procedures for estimating A, B, and Px with
the gradient expressions of Theorem [3.1] we provide the model-based PG algorithm in Algorithm I}




3.2 Model-free Policy Gradient

Though the model-based Algorithm [|achieves a globally optimal PID controller as shown in Section
direct estimation of A, B, and Pk can be computationally burdensome in practice. To address
this, we now propose a model-free PG approach to learn globally optimal PI controllers without
the need to estimate the system dynamics. The key to our approach is to use a stochastic policy
centered around the deterministic PID policy (3)), whose form allows us to apply the PG theorem [43]]
to perform model-free learning of optimal PI control policies. While the use of Gaussian policies is
widespread in the RL literature, the key innovation in our work is the use of the PID parameterization
(3) for the mean. This allows us to combine the PG expressions of Theorem [3.1 with the PG theorem
[43] to directly tune the parameters of our control policy in a model-free manner.

For a state g in the augmented state space of problem (3)), consider the deterministic policy p 5 (g) =
—Kg of (5). We define a stochastic policy based on this deterministic controller by

g T (u—p g (9))

202 ) (16)

1
o2

T (ulg) =

where o > 0 is a user-specified constant. Notice that (T6) is simply the probability density function
corresponding to N ( z (g), %I, a Gaussian random variable with mean /i (¢) and covariance 021,
where I is the identity matrix. Sampling a control input v ~ 7z (-|g) is thus equivalent to using the
control 1z (g) plus zero-mean Gaussian noise. Since the policy in (I6)) is stochastic, it can be used in
the policy gradient theorem, which states in the finite-horizon case that, for initial gy and horizon N,

N-1

VJ(f() = JE[ Z c(gt7ut)Vlog7rl~((uo|go)}, (17)
t—0

where c(g,ut) := g Qg +ul Ruy. This expression enables truly model-free approaches to solving

, since it provides a way to minimize costs given access only to information about costs and the
policy 7. Note that, in order for to be well-defined, it is critical that 7 ; (u|g) > 0, for all
g, u. The stochastic policy 7(-|g) satisfies this property, while the deterministic controller (3 (g),
which can be viewed as the limiting case of (T6) as o — 0, does not. This highlights the necessity of
introducing the stochastic policy (T6) in order to apply (I7).

Notice that holds whether the gradient is taken with respect to K or K, again by equation
(). In our setting, if the score function Vg, log 7z (uo|go) is well-defined and efficiently com-
putable, for each ¢ = P,I, D, then can be used to approximate Vg, JJ(K) by sampling
go ~ D,ug ~ mi(-|go), then collecting an N-length trajectory go, %o, g1, U1, -, N—1, UN—1,
where NV is sufficiently large. We therefore need expressions for computing V g, log 7z (u|g), for
i = P, I, D. First notice that, for i = P, I, D, equation (I6) and the chain rule give

Vi, logm(ulg) = 2= (u — g (9) Vi, ki (9)- (18)
Thus, to apply (I7), all we need are the following expressions for Vg, 1z (9), i = P, I, D.
Theorem 3.2. For K defined in (6), we have

Viphg(g) = —7(r+ KpCB) ' CT.g (19)
Vi hg(g) = —T(T+KDCB)_1ng (20)
Viphi(9) = —(7+ KpCB) ' (C(A - I)Tzg — KgCB). @1)

It is clear from Theorem [3.2| that V. 11z (9) and Vg, 1z (g) depend on B, while Vi, 11z (9)
depends on both A and B. Due to the presence of K in the denominator, however, we note that
fixing Kp = 0 eliminates this dependence on A and B in (T9)-(20), allowing us to estimate gradients
for PI policies in a truly model-free way. Combining (I8) with Theorem[3.2] we immediately have:

Corollary 3.3. For PI control, with Kp = 0, we have

9" T; C" (ng(g) —w)

9" T (ni(9) —u)

o2

Vkplogmg(ulg) = , 22) Vg, logmg(ulg) = (23)
In the convergence results of the following section, o in (22)-(23)) is chosen to be small enough that

suitable gradient dominance and convergence results can still be recovered. In practice, the choice of



o comes down to ensuring numerical stability, and in our experiments we observed that Algorithm 2]
remained stable for a wide variety of ¢ values. Pseudocode for our model-free PI approach based on
Corollary [3.3]is provided in Algorithm 2] Though our model-free algorithm provides only PI instead
of PID control, we emphasize that it is still broadly applicable, since active tuning of the derivative
component of PID controllers is uncommon in practice [4].

4 Convergence Analysis

In this section, we provide convergence and global optimality guarantees for Algorithms [I]and[2] We
first provide a detailed overview of our results. Denote the expected costs under the deterministic
policy (B) and the stochastic, Gaussian policy (16)), respectively, by

TOR) =By [ Y ul Yyt ul Ru|, @b JZE) =B [S oYy +ulRu),  @9)
t=0 t=0

and let K* and K, denote the global minimizers of (24) and {23), respectively. Note that, due to
the structure of problem (3)), such optimal parameters are guaranteed to exist and to be unique [18].
In what follows, we first establish that the objective (24)) enjoys the gradient dominance property
in the PID parameters K, which implies that any first-order stationary point of [24) is globally
optimal. This key result, which leverages Proposition [2.T] and our PID policy gradient results of
Theorem [3.1] lays the foundation for the global optimality guarantees for both algorithms. Second,
we establish the convergence rate of Algorithm |l{to the global minimizer K* of (24). Finally, we
provide convergence rate and sample complexity results demonstrating that Algorithm 2] achieves an
approximately globally optimal solution of (24). We highlight that existing analyses of PG for LQR
[18] and global optimality of stochastic PG methods for learning deterministic policies [33]] require
gradient dominance and globally Lipschitz system dynamics, whereas we improve on these results in
our analysis by requiring only weak gradient dominance [32] and locally Lipschitz system dynamics.

PID Gradient Dominance. We now establish gradient dominance of the objective (3)) in the PID pa-

rameters K, which implies that any algorithm that achieves a first-order stationary point of the problem
in fact achieves global optimality. For any matrix M, let p(M ) and o p,;,, (M) denote its spectral radius

and minimal singular value, respectively, and let Mp;p = [(Vx Kp)T (VkK[)T (VkKp)T] T
Finally, define the set of stabilizing PID parameters as

K :={(Kp,K;,Kp) € R®: p(A — BK) < 1, K satisfies (&)} (26)
We have the following result.
Theorem 4.1. Let K* = ming g J(K). Then

‘J(f() — J(KY) * fralKeFR, 27)

< def(J(f{)‘

where & = ||Z g+ || [omin(Cx)?* R~ | Mprp 2 K* is obtained using (6) with K = K*, and, Y i~

is obtained from (13) with K = K*.

As mentioned above, Theorem implies that any first-order stationary point of J (f( ) is in fact
globally optimal, i.e., that if K’ satisfies V zJ(K') = 0, then K’ is optimal, since J(K') =
J(K™). For this reason, the development of PG algorithms for (3] is well-motivated: PG algorithms

performing gradient descent in K on this problem can be reasonably expected to achieve global
optimality. We next leverage Theorem .| to show that Algorithms|[T]and [2]do precisely this.

4.1 Model-based policy gradient for PID

We now establish the convergence rate of Algorithmto the global minimizer K* of 24). As we
will see, Algorithm [T]achieves global optimality due to two factors: (i) the algorithm directly learns
the parameters of the deterministic controller (3)), and (ii) the problem (3) enjoys gradient dominance
in the PID parameters, as established in Theorem [4.1]above. The following result, which partially
extends the result [[13| Theorem 3] to the PID setting, establishes the convergence rate of Algorithm|[T]
to the globally optimal objective function value.



Theorem 4.2. Let 1) > 0 be as in Section[A.3.1] Fixn' € (0,7), let Algorithm[I|be run with stepsizes

ap,ar,ap = 1, and let {f(t} denote the sequence of parameters generated. Then there exist
k € (0,1) such that

TR = 2K < v (7 (Ro) = J2(K)). 28)
This theorem establishes linear convergence of Algorithm [I]to a globally optimal solution in the
case where A, B and Pk, are estimated perfectly at each step. This result can be generalized to
incorporate estimation error in the system identification procedure by following analysis techniques
such as those in [46]]. Since we focus on the development of globally convergent PG methods for PID
control in this paper, we leave this for future work.

4.2 Model-free policy gradient for PI

We now turn to providing convergence and global optimality guarantees for Algorithm[2] Specifically,
we establish convergence rate and sample complexity results for achieving within 3 > 0 of an
e-global solution of (24)), where 3 is controlled by choice of variance o2 and rollout length N in
Algorithm 2} It is important to observe that, despite the fact that Algorithm [2] actually optimizes (23,
it is nonetheless able to achieve near-optimality for (24)) for appropriate choice of o and N. This is
because the objective (23) enjoys weak gradient dominance, as we prove in Theorem[4.4} Similar to
[33]], the reason that approximate instead of exact e-optimality is achieved is due to the use of the
stochastic version (16)) of the deterministic controller (3).

We now establish that the objective of Algorithm [2]enjoys the weak gradient dominance property
studied in [33]], which is critical to establishing the global optimality guarantee below. We prove
this result under the following mild assumption, which is a technical condition ensuring that the
difference between the costs (24) and (25) remains bounded.

Assumption 4.3. The variance of the stochastic policy (T6) at time ¢t > 0 is 07 = 02 /(1 + t)2.

Assumption [4.3]is akin to technical assumptions on decreasing step size that are common across most
gradient-based algorithms, including stochastic gradient descent (SGD). This assumption can likely
be relaxed in practice, since we observe across all our experiments in Section [5]that PG4PI achieves
convergence even with a constant oy, that is o, = o, V¢t > 0. In addition, our experimental ablation
studies in[A.4.2) also demonstrate convergence for a wide range of fixed values of .

Theorem 4.4. Let Assumption hold and let K}, be a minimizer of (23). We have

JE ) — IS ()| < [|avesg | + s, 9)

forall K € K, where K is as in and = M.

With Theorem [4.4]in hand, we turn to our main result. Denote the estimate obtained from by
o B N-1
Vide (K) =" c(ge,us)V g log 7 (uolgo)- (30)
t=0
We will need the following conditions on (30).

Assumption 4.5. There exists finite V' > 0 such that, for all K, go,up and N € N, we have
Var|[V . JS(K) || < V/N.

Assumption 4.6. For {K,} generated by Algorithmwe have ||§\I~{Jf (K,)|| <1,forallt <T.

Assumption [£.5]is a mild condition also assumed in [33], and can likely be shown to hold under
reasonable conditions on ¢ and mild continuity and differentiability properties of J<. In practice,
we can enforce this assumption by choosing a sufficiently long rollout length, which is a common
strategy to decrease variance of PG estimates in RL. Assumption [4.6]is for technical convenience
in Corollary [A.9[s proof and can be dispensed with by using appropriate gradient normalization
in Algorithm 2| We observed in our experiments in Section [3] that the proposed algorithm PG4PI
achieves convergence even without such gradient normalization, indicating that Assumption 4.6 can
be relaxed in practice. We are now ready to provide our sample complexity result for Algorithm
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Figure 1: Reward curves for Algorithm [1{(PG4PID), Algorithm |2{ (PG4PI), and PPO-based PID on
the 8-dimensional Chemical Reactor and 48-dimensional LA University Hospital environments. Plots
show mean and one standard deviation over multiple independent training runs.

PG4PI on a Chemical Reactor Model Free LQR on a Chemical Reactor Model Free LQR vs. PG4PI on a Chemical Reactor

States
States

- —— Unit Step Reference
3.0 — LOR Controller
f PID Controller

Figure 2: Stabilization and reference tracking curves for Algorithm (PG4PI) and model-free LQR,
on the 8-dimensional Chemical Reactor environment. Plots show that both PG4PI and LQR stabilize
the states to origin; however, LQR fails to track the unit-step reference input in contrast to the perfect
tracking obtained with PG4PL.

Theorem 4.7. Let Assumptions and .6 hold. Let Algorithm 2] run for T > 0 iterations

. ~2 ~2
with rollout length N > 0 and stepsizes ap = ay = n satisfying n < mln{lTL7 Cg—o, ZIIYO‘V }. Let

{K\}i=o... 1 denote the sequence of iterates generated and 3 = 2 || R|| o®7%. Then, we have

—\ T —
31T T 2

E[JS(Kr)] — J2(K*) < B+er (1_\/4d2N e

where ¢ = max{0, T (Ky) - JG(K*) — B/3} for 0 < k < T, and, 1%, =
max{l(Ky),...,l(Kr)}, where [(K) is the local Lipschitz constant defined in Corollary
Moreover, to guarantee E[JG (Kr)] — J/?(K*) < €+ B, for € > 0, setting the stepsize to be

n= (ed)’N
4T,V

yields sample complexity at most

NT

_ 16&413;”6‘7 log (CT) . (32)

€3

Theorem [.7] provides a useful tool for striking a balance between suboptimality and sample com-
plexity: choosing o sufficiently small and N sufficiently large improves the convergence rate and
suboptimality as quantified in (31)), while (32) quantifies the corresponding increase in sample com-
plexity. We emphasize that [[33[] assumes the objective and its gradient are globally Lipschitz, while
the objective of (3)) is known to only satisfy local Lipschitz properties [18][28]|. To overcome this, we
quantify the maximum possible deviation that can occur given the local Lipschitz properties over the
entire sequence of parameter iterates, then incorporate this into the bounds (31)-(32)). See Appendix
[A3]for details.



5 Experiments

Experiment setup. We evaluate the performance of Algorithms [I)and [2]and compare with baseline
methods on two environments from the cont rolgym library [51]: the 8-dimensional state-space
Chemical Reactor and a 48-dimensional state-space LA University Hospital environments. Both
environments are tracking problems, where the objective is to stabilize the system and ensure that the
output tracks the reference input. On each environment we ran independent replications (see appendix
for details) of Algorithms 1 and 2, the PG method for LQR from [18§]], and the StableBaselines3
[38]] implementation of PPO [39]] with a policy parameterization mapping states to PID parameters.
We collected rewards (i.e., negative costs), tracking error, time-domain tracking information, and state
evolutions encountered during training. For our figures, we plotted reward, tracking performance,
tracking error, and state evolution as a function of the number of samples used, i.e., the number of
interactions the algorithm performed in the environment during training. We provide experiments
illustrating reward performance for Algorithms [T} 2} and PPO in Fig. [I] tracking performance
and error in Appendix ablation studies comparing various values of o for Algorithm 2]in
Appendix [A.4.2] and comparison with model-free LQR in Appendix [A.4.3] We also compare the
tracking performance of our proposed model-free PG4PI algorithm with model-free LQR, on the
Chemical Reactor environment, in Figure[2] The code for this implementation is publicly available at
https://github.com/sharmal256/RL-optimal-pidl

General discussion. As illustrated in Fig. [T} for Algorithms|I]and 2} the rewards accumulated during
training rapidly converge to zero on both environments, indicating that both algorithm rapidly learn to
stabilize the system and track the reference output. PPO, on the other hand, requires a large number
of samples before it begins to learn to stabilize the system, and its tracking performance remains far
worse than that of our proposed methods. The superior performance of Algorithms [I]and [2]is due to
the fact that they directly search over the space of PID parameters and are guaranteed to converge
to global optimality, while PPO searches over the much larger space of all policy parameterizations
mapping states to PID control parameters and may only achieve a local optimum or saddle point of
this much larger, highly nonconvex problem where gradient dominance likely does not hold. Finally,
our ablation experiments studying the impact of ¢ on performance of Algorithm 2]indicate that the
choice of o does not have a noticeable impact on convergence in practice.

Benchmarks vs. LQR. We implement PG-based LQR algorithms from [ 18] on both the environments.
From Figures [2]and [6]in the Appendix, we see that the PID control policy achieves zero steady-state
tracking error in contrast to non-zero tracking error with the LQR policy, due to the inclusion of the
integral parameter in the PID control policy. Importantly, LQR/LQG variants are known to be fragile
to model error [15]]. In contrast, PID policies can yield higher robustness margins in practice due to
the output-feedback structure and low dimensionality. We demonstrate this in Fig. [7]in the Appendix,
where a very small perturbation of the matrix A (||AA|| = 0.5) breaks stability even in model-based
LQR, while our model-free PI policy maintains stability and tracking.

6 Conclusion

In this paper, we proposed and studied a new optimization framework bridging the gap between PG
methods for control and the PID control architecture. Building on this framework, we developed
model-based and model-free PG methods for learning PID and PI control policies, respectively,
then established convergence, global optimality, and sample complexity guarantees. Important
future directions include extending our mathematical framework to encompass multi-objective
trade-offs arising from classical control specifications or through mixed PID H,/H, controller
parameterizations, as well as incorporating hard constraints on system states or outputs, which
will involve extending our theoretical framework to constrained optimization settings via safety-
constrained exploration [42] or safety filters [12] to obtain safe PID policies.
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A Appendix
Here, we present proofs of all the results in the paper, and additional details for each section.

A.1 Proofs and Additional Details for Section
Proof of Theorem 2.1} From y, = C'z;, we can write
ytTYyt = a:tTC'TYC'xt = xtTC'TYC’xt = gtTQgt. (33)
Now, the PID control policy from (2) can be expressed as
up = —KpCay — KDC@ — Kz (34)

Substituting 2441 = Az, + Buy, () can be further written as
Ax; + Bu; — @

u = —KpCry — KpO—t1 "1t K,z (35)
T
Rearranging the above equation, we get
KpCB- - CA-1T
up=—[1+ DT ] 1((KPC+ KD¥):M + Kfzt). (36)

Substituting the control policy u; from (36)) into the dynamics x++; = Azy + Buy, we can write

KpCB C(A—T)
T

Ti41 :Axt —B[l—f— }71<(KPC+KD ).’L't+K[Zt) (37)

t—1 .
From z; = Zi:O Yi, We can write z¢41 = 4y + 2t = Czy + z;. Now, we have

g = ] = [ = Bl 822 (K s S k)
11 = =
* At+1 Cl‘t + 2
_ Axy i —B[l—i—K%(’YB]_IGKPC’—FKDM)%-FK[&)
_Cl’t + 2 0 )
[ Ax B KpCB,-1 CA-1)
= _C.’L‘t‘ith:| — |:O:| [1+ - ] ((KPC+KD7)ZEt+K]Zt).
(38)
Recalling from () that
[ KpCB]™!
K=K } [KpC+KpCU=D ], (39)
we can write ~ ~
gt+1 = Agr + Buy, (40)
- [A 0] 5 _[B .
where A = c I ,B = 0 ,and u; = — K g;. Finally, from (33), we have that
J(K)=E[> y/ Yy +uf Ru) =E[ > g/ Qg: + ul Ruy], (41)
t=0 t=0

whence the PID control problem can be rewritten as

e}
minimize J(K) =E lz 9t Qgi + ul Ruy

par (42)
subject to  gi41 = Az + Buy, go~ D,
with u; = — K g; where K is obtained from PID parameters K using (6). O
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A.2 Proofs and Additional Details for Section[3]

In this section, we provide a detailed proofs of each of the results of Section[3] We begin by defining
the cost-to-go at a fixed initial state gy by

Vic(90) = 9 Prcgo- (43)
From (T0), the cost-to-go can also be written as
Vic(90) = 90 (Ak P A + Q + KT RK)go. (44)

Notice that J(K) = Ey ~p [Vk(g0)]. This cost-to-go expression will be useful when calculating
gradients with respect to the the individual PID control parameters K p, K7, Kp in the following
gradient expressions.

A.2.1 Proof in subsection[3.1]

En route to proving Theorem [3.1] we establish the following helper lemmas that provide derivatives
with respect to the parameters in K of certain expressions involving Ax and K7 RK that arise in the
main results to follow. We first begin with the derivative of the expression v’ A go, where v is an
arbitrarily chosen vector with appropriate dimensions and gy is the initial state.

Lemma A.1 (Helper Lemma for Theorem [3.1). Let v be a vector of suitable dimensions such that
T . . o e, o, . . . T

v Ak go is a scalar, where gq is the initial condition. Then, the matrix derivatives V i, v* Ak 9o, for

alli € {P,I, D} are given as

Vi, vl Aggo = —FDBTvgngCT, (45)
VKIUTAKgO =— FDBTUggTZT, (46)
VKDUTAKQO = [BTvgoT(azas - TzT(A - I)TCT)]v (47)
where, T, = [I, Onx1],T. = [0ixn 1, a1 = (r + KpCB)™, ay = (7 +

KpCB) '(rTICTKp + TF(A—D)TCTKp +7TT Kp), a3 = CB, and Fp = [1 + X211,

Proof. From (8), we know that gy = Ak go, and therefore

C(A—T)

I :(A—BFDKPC—BFDKD )l'o—BFDK[ZO,

(43)
z1 =Czxg + 2g.

We note that the variables F')p, Kp, K, Kp are scalars, and, that the matrix Py is symmetric. Since
we know that z; does not contain any of the Kp, K, Kp parameters, we can write

Vvl Axggo = Vi, vl a1, foralli € {P,I, D}, (49)
where v1.,, denotes the the first n-elements of v. Then, we can write
Vvl o1 = -V, (vl BFpKpCuxo),
where
Vi, (v, BFpKpCux) = vl BFpCux,

due to the fact that Kp is a scalar. Observe that, v1,, B = vT B. Thus,

Vvl Axgo = —vT BFpCio. (50)
Since the above expression is a scalar, we transpose the right hand side to obtain
Vvl Aggo = —FpBTval CT. (51)
From the fact that xy = T, go, we can write
Vvl Aggo = —FpBTugl TICT. (52)

Similarly, from @9), we can write

VKIU?:nIl = —VKI(UEHBFDK]ZO). (53)
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Then, since zg = T gg, we can obtain the gradient
Vi, vl Aggo = —FpBTogl TT. (54)
We can further expand the above as

1 CA-1
C(A— 1) 1
= *[U{nB(KPCIOKfoEO + K[Zo)]VKD . K,CB
1 CA-1
— [U{nBil n KLCB (VKD (KPCJJ()KD ( )LIL‘O — [([Z’())H7
_ C(A-T) OB 1
_ T
= ('U B(KPCI}COKD*QCO - KIZO))TW
1 cA-I
T
~ 07 By (o)
Simplifying the above expression, we obtain
VipvT Axgo = a1 [BTvg) (awas — T (A—1)TCT)]. (55)

O

We next provide derivatives of the expression g¢ K7 RK go with respect to K, where go is the initial
state.

Lemma A.2 (Helper Lemma for Theorem [3.1). The matrix derivatives V ¢, gt KT RK gq, for each
i€ {P1,D}are

Vir9t K'RK gy = 2FpRK gogd TX C7, (56)
Vi, 90 K"RKgy = 2FpRK gogd TY (57)
Vo9 K" RK gy = 201 [RK gogy [T (A—1)TCT — asas)]],

where, T, = [, Onxi1],T. = [0ixn 1, a» = (7 + KpCB)™!, ay = (7 +

KpCB) Y (+TICTKp + T (A— NTCTKp + 7TT Kp), az = OB, and Fp = [1 + 52CB]~1,

T

Proof. We begin by noting that Fp, Kp, K;, Kp, R are scalars. Now, for all i € {P, I, D}, we can
write

V.9 KT RK go = 2V ic,w” K go, (58)
where w is given by w = RT Kgy = RKgo. Then, from Kgy = Fp (KPC’ + KDM)Q:O -
FpKrzg, we get

Vi,w! Kgo = Vi,w! FpKpCrg = w! FpCxo = gd KT RFpC. (59)
Since the above gradient is a scalar, we take transpose on the right hand side and get
Vipw! Kgo = FpRK gozd CT. (60)
We note that ¢ = T, g9, and, therefore we can write
Vi,w! Kgo = FpRK gogt TLC™. (61)

Similarly, we can write
Vi, w' Kgo = FpRKgogl TY . (62)

We now calculate V g, w? K go. We first expand the gradient as follows:

C(A-1
Vip,w Kgo = wT((KPC + KD%)xO — FpK120) Vi, Fp
CA-1
+ FDVKD’LUT((KPC + K[)%):L‘O — K[ZU)
CA-T) +CB
:*U}T((KPC‘FKD T )xO*FDKIZO) (T+CB)2
CA-1T
+wTFD(¥).TO
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Expanding these terms, we finally get the following expression
Vi, w Kgo = [RTKgOgOT[TmT(A -nToe” - ozgozg)]]7

where the expressions for a1, a2, a3 are as defined in statement of Theorem [3.1]
We are now ready to prove the Theorem[3.1]

Proof of Theorem 31| Foreachi € {P,I, D}, we have
Vi, Vi (90) =V, 90 Pxgo
=Vk,90 Ak Px Ak go + Vi,95 Qg0 + Vi, 95 KT RK go.
In the above expression, we first focus on V g, g A% Pic A go, which we can rewrite as
Vk.90 Ak Pk Ak go = 2V kv  Aggo + Vi, 91 Prgi,
where v = PE Ay go and g1 = Ak go.
However, we note that Vi (g1) = g7 Pxg; and thus
V.96 Ak P A go = 2V 0" Arcgo + Vi, Vi (g1).-
Then, from Lemma@ we obtain
VKPUTAKQO —FpBT Pr Ak gogp TTCT
Vi, vl Axgo = —Fp BT P Arcgogs T,
VKDvTAKgO = [BTPKAKgogg(agag — TE(A — I)TCT)]
Moreover, we know from Lemma[A.2] that
Vi, 9t K'RK go = 2FpRK gogl T C7,
Vi, 90 K"RK gy = 2FpRK gogy T

z

Vingo KT RK gy = 201 [RK gogg [T} (A—1)TCT — azas)]].

Combining these expressions, we can write

Vi Vic(go) = —2Fp BT P Ak gogy Ty CT + Vi, Vic (1) + 2FpRK gogd T C™.

Note that V i, Vi (91) can again be written as

Vi, Vi(g1) = —2FpBT P Ak g1gT TTCT + Vi, Vic(92) + 2FpRK g1 gl TTCT.

Proceeding in this manner, we have

Vi Vi (g0) Z{ 2Fp BT Py A gigt T CT + 2Fp RK g;97 TT CT'}.
1=0
In light of this, we can write
Vi, J(K)=2(-FpBT Pk Ag + FpRK)S TTCT.

Noting that ~ ~ ~ ~ ~
Ex = (R+ B"PxB)K — B"PxA = —-B" Pk Ag + RK,

we obtain

Vi, J(K) =2FpEgXTTCT.

Similarly, we can obtain
Vi, J(K) =2FpEgYTT,
Vi, J(K)=2FpEx Sk (T (A —DTCT — azag).
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A.2.2 Estimation of Matrices (A, B, P) in Algorithm|[l|

In the next two subsections, we provide details regarding the estimation of matrices (A, B, Pk ). We
begin by describing a standard system identification approach that we use to obtain matrices (A, B),
which are required to estimate the gradients utilized in the update rules of Algorithm|[I}

System Identification for (A, B). We follow the standard least squares system identification ap-
proach in [27] to estimate the matrices A and B. Given trajectory data xg, tg, £1, U1, . - -, Te41, Utt1
collected from the system, for some ¢ > 0, and taking & < ¢, we first consider the following
dynamical equation

Xiy1 = AXy, + BU, (72)
where
Xk = [.CC() 1 ... xk_ﬂ, (73)
Uk = [’LLO Uy ... uk_ﬂ. (74)
We then define the least squares estimation error as
E(A,B) = || Xx11 — (AXy + BUL) | (75)
Defining
0:=[A B, M = | X (76)
9 Uk‘ )

and noting that X, = M, we obtain the following estimate
0 =X MT(MMT)™! (77)

for the system matrices (A, B). With the estimation technique for (A, B) described, we estimate
the matrix Pk, by the method described in the next section to ultimately estimate the gradients

Vi, J(K), foreachi € {P, I, D}.

Iterative Method for Estimating Py. Consider the following Riccati equation for our reformulated
system in Proposition where K is obtained from K using (6):

Py = (A— BK)"Px(A— BK)+Q+ K"RK. (78)
Right multiplying the above equation by g7, and left multiplying it by g;, we can write
9¢ Prge = 9{ (A~ BK)" Px(A~ BK)g + g/ Qge + 9{ K" RKgy. (79)
Using gi+1 = Ag; + Buy, uy = —K g, we rearrange the above expression and write
9F Prcgi — 9111 Pr g1 = 97 Qg + 9f KT RK g,. (80)

We can now use to estimate the matrix P by collecting sufficient samples of g;. Consider
4 = 9{ Qg: + 9{ K" RK g, @81)

and the vector Py € R™+D? is obtained by vertically concatenating the column vectors of Pg.
Before defining the data set for the estimation Pg, we review some preliminary results from matrix
theory.

For a vector w € R™ and a matrix U € R™*", we know that wl Uw = Z?jol Z?Jrol Ui jwiwj,

where U ; is the (4, j)-th element of U, and w; is the i-th element of the vector w. Consequently, we

2
can write w ' Uw = > Ufw?, where U} and w} are the i-th elements of the vectorized version
of matrix U and the Kronecker product w ® w, respectively.

Using the above facts, we can write

T T _ T
9i Prgt — 9i11Prgi1 = P (9t @ gt — Ge1 @ ge41), (82)

from which we obtain
(9t ® 9t — G141 ® gi1)" Pl = qu- (83)
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We now define matrices Gy and Oy, for k > @ +n+1,as

Ge=[90®gt 1 ®g1 + gr—1 @ ge-1], (84)
Ok =1lgoq1 - qu-1]. (85)
Observe that these matrices can be constructed from the set X}, defined in (73). Then, we can write
Grv =y, (86)

where v = P}’(f7 G = (Gy, — Ggy1)T, and yp = Oy,. Finally, we minimize the squared error
E(v) = |lyx — Grol|?, (87)

to obtain o .

v=(GyGr) "' GL s (88)

In this manner, we estimate the vectorized version of Py .

A.2.3 Proofs in Subsection[3.2]

In this subsection, we provide proofs of results in Subsection [3.2] on calculating policy gradients
in the model-free setting that are used in the update rules of Algorithm[2] We first begin with the
proof of Theorem [3.2] where expressions for the score functions with respect to each of the PI.D
parameters are provided.

Proof of Theorem[3.2] Given ui(g) = —Kg=—[1+ @]‘W(KPC + W)x - Kiz],
it immediately follows that

Viptr(g) = —7(1 + KpCB) 'CT,g (89)
Vi, ux(g) = —7(7 + KpCB) ™ 'T.g. (90)
To compute Vi, i (g), we first write
KpCB KpC(A—-1
1+ =22k (g) = —(KpC + %))erKzz.
Then, applying the operator V g, on both the sides, we obtain
KpCB C(A-1I)x
Vil + B2 gy = - CAZD
or, equivalently,
CB KpCB C(A—Ix
L(i) + (1 + =) Vi (9) = A De = -

Rearranging the above expression, we get
Viph(g) = —(7+ KpCB) " (C(A — I)x + ux (9)OB).
O

We now move on to proving Corollary [3.3] where we establish expressions for the score function
with respect to PI parameters that do not require the knowledge of matrices (A, B).

Proof of Corollary[3.3] From (I8), we know that

Vi, ogmc(ulg) = D0, ), o

Vi, logmie(ulg) = KD (). ©2)
From Theorem [3.2] with Kp = 0, we get

Vicp log i (ulg) = f%f@gTTE cr, (93)

Vi, log i (ulg) = —%f@gTTZT. (94)
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A.3 Proofs and Additional Details for Section

We begin with proving that the objective of problemenjoys the gradient dominance property in K.

Proof of Theorem We first define the set of stabilizing control parameters as
K= {KERM"'H :p(A—BK)<1}. (95)

Then, we know from Lemma 3 in [18]] that the objective in Proposition|2.1| with the control policy in
(), enjoys the gradient dominance property in K, that is,

|J(K) — J(K*)| < | VkJ(K)|?, forall K € K, (96)
where K, K* are obtained from K, K* using (6), and, o = [|S e || [omin (Sx)2R] .

Since, we can replace J(K) with J(K) Further, we note that VzJ(K) =
Vi, J(K) Vg, J(K) Vi, J(K)]T. We can rewrite d{l(]?) , using the chain rule, as
dJ(K)
dK
or, equivalently,

= (VKKP)VKPJ(K) + (VKKI)VKIJ(R) + (VKKD)VKDJ(R),

ViJ(K) = mPVKpJ(K) +m;Vi, J(K ) + mDVKDJ(f(),

where the matrices mp, my, mp are given by mp = Vg Kp, m; = Vg Ky and mp = Vg Kp.
Then, we can write the following:

ViJ(K)=VgJ(EK) Mprp,

where
mp
Mpip=|mr|. CH)
mp
Applying the norm operator on both sides, we obtain ||V J(K)| = HV (K)T"Mprp H Then,

~ 2
using the face that ||V xJ (K)||* < [|Mprpl|? HVKJ(K) , we have

[J(K) = J(K")| < al|Mpro|* |V & J ()|
Finally, from the equivalence .J(K) = J(K), we have

J(K) = J(K7)| < a||Mprp|* |V £ J (K)]%.

A.3.1 Proofs in subsection [4.1]

In this section, we present the proof of Theorem@ First, we define relevant variables from Theorem
3 in [13]] for our formulation and then adapt their sample complexity result for our setting. We begin
with the following conditions on the step size n. Let 7 > 0 be such that

p(A— BK,) <1
Tr(EgViJP(K)Sk, (1 —nalk)) > 0,.
where K, = K — Vg J?(K) and a = e (R + BT Pk B).

(98)

Proof of Theoremd.2] We note that Vi J? (K) = 2Ex ¥k, where X = E Y ° gig] and Ex
is given (I4). Comparing to the gradient of the function f(X) from [[13, Proposition 1], we have
Y =%k, Y, =Yg, Ak, = A— BK, and ¢, = 3Tr(E, Vg JP(K)Sk, (1 —na¥g)) in our
setting. Then from [13 Theorem 3], for allt >0,

JP(Ky) — JP(K*) < k! (JP(Ko) — TP (K™)).
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We note that K is a function of K by (@), and, K* := [K5 K; K3]” corresponds to K*, the
global minimizer of J f (K). Thus, with a slight abuse in notation, we can write

JP(R) = I (K*) <k (JP (o) = JP(KY))

We now move on to convergence results for model-free case.

A.3.2 Proofs in Subsection

First, recall that for the model-free PI algorithm where Kp = 0, we modify the P control parameter

to be
K= [gﬂ . (99)
Consequently, from (6) with Kp = 0, we get
K =[KpC Ky, (100)
or equivalently, y
K =SK, (101)
where
S=[C 1]. (102)
Further, we define the matrix Mpy as
Mp; = [gﬁ{(ﬂ . (103)

Second, under Assumption[4.3] the stochastic policy in (I6) becomes

1 _u—pg (g (u—p g (g1))

i (u|gr) = W@ 2(:%7)? 7 (104)

t+1

that is, uy ~ N (uz(ge), 0%/ (t +1)?), for all ¢ > 0. We can also write the following:
ur = pi(ge) + N (105)

where 7; ~ N(0,02/(t 4+ 1)?), for all t > 0. We note that the {;}3°, are i.i.d. random variables
and independent of gg.
We now present helper results that we will use in the proof of Theorem[4.7] We begin by obtaining a

uniform bound over the magnitude | J& (K) — JP (K) ’

Theorem A.3. The costs Jx and JE satisfy

| o [1Bllw?0
‘ <

‘Jf(f() — JE(K)| < EE forall K € K. (106)

Proof. Since the control input u; depends on gy through g; and {7;}5°,, the expectation in (23]
will be with respect to {n;}52, and go. Furthermore, by (6) we can write J&(K) = J¢(K) and
JP(K) = JP(K). We expand the expression for J& (K) to get

TE(K) =By Boy Dy Yy + (ur(95) +n5) " Rlur (95) + ;)] (107)
§=0
Further expanding this expression gives

JE(K) = Egyyee By D vl Yy + pire(9;)" Rurc (9) + 20 Ruxc(g;) + ) R (108)
=0
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We observe that the expectation in Jf (f( ) is with respect to iz = —Kg, with K given by (),
which implies that the expectation is taken with respect to gg ~ D, and thus

oo

T(K) =Eg Yyl Yy, + ng(95)" Rug (95)]. (109)
=0

Thus, we can further write the following:

o0
JE(K) = J2(K) + Eppyee Boo > 207 R (g5) + nf Bny)- (110)
§=0

First, since {n; }s are independent of gy, we have

oo

o0
Egnye Eao Y0t Ryl = Egy, > n) Byl (111)
7=0 3=0

Then, from definition of variance and the fact the E, [n;] = 0, for all j > 0, we get

T T 5
. T 1 . g
A Bz 2 Bl = R Jim D Gy 12
Since lim7_, oo ZtT:O ﬁ = %2, we therefore have
T
. Ro?7n?

TILII;OE{W = [Zn;ernj] =—% (113)

7=0

Second, we examine the expression limr 00 Efy, 300 Eg, [Z;‘LO 21 Rui (g;)] and focus on the
j-th term, that is, B,y By, [20] Ry (95)]-

We note that {n; } are i.i.d. and that the control input 3 (g;) only depends on the first j — 1 random
variables. We therefore have

E iy Eoo 2] Ruige(97)] = 2B, [0 [E g, -1 Egy [Rug (95)]- (114)

However, since &, [17] ] = 0, we conclude that By, 1 g, [2n] Ry (g;)] = 0 and thus

T
Jim By By, [ZO 20} Ry (9;)] = 0. (115)
‘7:
Therefore we can rewrite (T10) using (T12) and (T13) as
~ ~ R 2.2
JEE) = TP (K) = JE(K) = I (K) = = (116)

Taking norms on both sides in (TT6) and applying the triangle inequality finally establishes that

|R]jo*n
< -

<5 , forall K € K. (117)

™

JE(R) = JP(R)|
O

‘We now show that the added noise in the stochastic policy has no effect on the gradient.

Theorem A.4. The gradients V 3z J 5 and V RJS are equivalent for all K e I€ that is,

VP (K) = VIS (K). (118)
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Proof. From (I16)), we know that

N Ro*n?
6 )
forall K € K. Applying the operator V 3 on both sides, we immediately obtain the desired equality
as

(119)

Vel —ViJ¢ =0, forall K € K. (120)
O

Leveraging the last two results, we now bound the optimality gap arising due to use of the stochastic
policy (T6).

Theorem A.5. Suppose K, € argmin{JS(K)} and K* € argmin JD(K) We have

2,2
S(kg) - P ()| < T (121

Proof. Consider the following:
THKE) = T2 (K| = |JF(KE) = JF(KE) + I (KE) = 7,0 (K7 122)

FKG) = T (KE)

o (KG) = T2 (K",

From the definition of J& (K), we have that J&(K%) < JS(K*). Moreover, since J& (Kg,) =
JG(Kg) + o we have JO(Kg) > JG(K). We thus have J(K*) > JE(Kg) > JG(KE).
Combining the above two results and then applying Theorem[A.3] we get that

n (123)

. . | Rllo*x
JO(RE) — IR < e

T (KG) = I (Kg)

FK") = TP (K| <

O
We are now ready to prove Theorem establishing weak gradient dominance of the cost J& (f( ).

Proof of Theorem We first rewrite

FK) = 7 (Kg)| =

N e ) (124)
= JOKE) + I (K7) = TP (K") = 7 (KE)
Rearranging terms gives
Y(K) = JZ(KE) | = |JE(K) = 2 (K) + T2 (K) = J2(K*) 125)
— JKE) + T (K") + I (KE) — JZ(KE)|-
Using the triangle inequality, we obtain
(R) - IS (K| < [IE(R) = a2 (R + [P (R) - TP (R
b b D ~ (126)
| IR (RE) + PR + ‘JM (Kg) - JS(Ry)|.
From Theorems [A.3]and [A23] we have
. |R||o*n? 2 woy| |1 Bllom? 2| R]|o*n
JE(R) = JE(Rg)| < T 4 [JP(R) - gP (k)| + S a2
From Theorem 1] we can write
2 o [Rlo*x® = [P [Bllo*n? | 2[|R]o*x?
JE(R) = IS ()| < BT 4 a ||V )| R+ S a28)
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or, equivalently,

B B 2R 2,2
(k) - JO(Rg)| < ARl

- 2
& HVKJI?(K)H : (129)

Then, following Theorem[A-4] we finally get
2||R||o?m?
3

G() - IO (Rg)| < valveag@)| (130)

O

We are now ready to present a result on the local Lipschitzness of the LQR problem from [2§]],
adapted for our PID control formulation. Recall that the equivalent problem in our setting is given by
Proposition with control parameter K, where K is obtained from K using (6).

Lemma A.6. There exist constants (m(K),l(K)) for a given control parameter K such that for
every K’ satisfying | K' — K|| < m(K), we have

VIS (K') = Vi JZ(K)| <UK)| K~ K. (131)

Proof. Since we know that J”(K') = J(K), the proof follows from Theoremcombined with
Lemma 5 from [28]]. O

We establish a similar local Lipschitzness result for our cost gradient V - J¢ (f{ ) in terms of the
parameter K.

Proposition A.7. We have that ¢, (Mpr) > 0.

Proof. From (I0T)), we can write

Kp :KCCTTECT (132)
K;=KTT. (133)
Taking derivatives of K p and K with respect to K, we get
ViKp = i CT, (134)
VeKr=1T,. (135)
Therefore, we can write M p; as
e CT,
Mp; = [chz ] , (136)
and, consequently,
MprMp; = [CCJT“CT ] [eer (CT)T T.] = {( e CTTTT (137)
2 ccT T.(CT,)T T.T,
From the definition of T}, and T, we have
T,7! =1, T.T] = 1,T,T] =0,
which yields
Mpr ML, = {wcmoz cor ﬂ . (138)

Finally, we establish that

1
Onin(Mpr) = \[Amin (MprMEy) = \[min{ 7. 1} > 0, (139)

where \,,;,, represents the minimum eigenvalue. O
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Corollary A.8. The gradient V RJS (f( ) is locally Lipschitz in parameter K, that is, for all K’ such
that Hff’ - f(H < m(K), we have

(VIR =V IE ()| < UR) & - K], (140)
Proof. Consider the left hand side of (T40) and write
hi=|VgJZ(K') = VIS (K)| (141)
Then, from Theorem we know that Vi J¢(K) = Vi J D(K). Therefore, we get
h=|VgJP(K') = VJD(K)| (142)
Applying the chain rule on Vg J, f (K), we get
ViJP(K) = VKpVik, JP(K) + VK[ Vi, TP (K), (143)
which can be rewritten as
Vi, JP(K)
D _ T T Kpdp \ 5
ViJ)(K)=|[VkK} ViKY [VK, (&) (144)

VipJP(K)

w

Note that V 2 JP (K) = |:VK bR
Ypu )

} , then and therefore Vi JP (K) = ME,V 2 JP(K). Con-
sequently, we have

h= MBI P(R') = MEV P (K. (145)
Let 0nin (Mpr) represent the minimum singular value of M p;. Then, we can write

h> Omin(ME)) "VKJf(K’) - VRJ,?(K)“ . (146)

Since Omin(Mpr) = Oumin(Mp;) and that o, (Mpr) > 0 from Proposition (A7), we can write

|VaIP(R") = Va2 ()| < mz‘(m K~ K] (147)
Now, defining VK = K’ — K and VK = K’ — K, then we can write
AK = [AKpC  AK[], (148)
or, equivalently, .
AK = SAK. (149)
Applying the Cauchy-Schwarz inequality, we have
|V P& w2 < S |& - &]|. (150)

= omin(Mpr)
From Theorem[A-4] we can finally write

VIS (") =V IS ()| < 1) K- K| (151)
where )
UK) = ——U(K) |19, 152
(K) = oS () 9] (152)
which completes the proof. O

Before moving on to proving Theorem[4.7] we present a weak gradient dominance result in parameter
K, from Theorem
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Corollary A.9 (Weak Gradient Dominance). Suppose that Assumption .6l holds for the gradient
Vi JG(K). Then the following version of weak gradient dominance holds

2||RH0’27T

‘Jf(f()—Jf(f{g) < = Hv JS(K)||, forall K € K, (153)
where & = | Sg- || [omin(Ex)?R) " | Mpr]|.
2
Proof. The above claim immediately follows from the fact that HV JE (K H HV 7 JG(K) H

due to Assumption [4.6]and the fact that & > 0.
We now provide proof of the sample complexity result of Theorem 4.7

Proof of Theorem Using the fact that < ||x|| and Corollarym we can write
JE(R) — IS (Kg) <6 |V IS ()| + 873 (154)
Define JC(K,) := JE(K) + /3. Then, from (T54), we have the following:
émax{o, JG — JE(KE)} < HV[(JE(K)H . (155)
We note that, for time-step ¢ > 0,
T (Ken) = JEKE) = I3 (Kei) = TS (Ke) + 5 (Ke) + T7 (KE). (156)
Using the local Lipschitz property from Corollary [A-8]and the second-order Taylor expansion gives

- - S - UK, . - -
TE(Rrn) — IS () < (VIS K — )+ Sy — B3, 0157

and we therefore have that
IS (Kiyr) = J2(KE) < JE(K) — J9(KE) + (Ve IR (K, Kipr — Ky)

UE (158)
O

Recalling the update rule K 41 = K, — ntﬁJf (f( +), by the unbiasedness of the gradient estimator
we have

JE(Kypa) — JE(KE) < IS (Ky) — IS (KE) — 77t<V JE(K),V g IS (Ky))
WKy
B) Un

t) denote the o-algebra generated by all randomness in the system up
| Fi—1]. Taking expectations over the foregoing yields

(159)
_|_

KYm (Rt)

Let F; = O'(f(k,nk, 0<k<
until time ¢, and let Et[] = ]E[
By [JE (Ripn) = JE(RE)] < B [JE () = TE(KE) = m(V g IS (R0), Vg IS (Ro))
(160)

I _ o2
B 2 |Frosc| .

Given E; [6\1% JE(K)] = V z JE(K;) from the fact the our estimator is unbiased, and recalling the
definition of the variance of a random variable, we can write the following

B |JE (K1) — JE(KE)| < JE(K) — JE(KE) — NV g I (Ky), V 2 IS (Ky))
1(Ky)

+ l(ft)n?Var(ﬂJf(Kt)) + 5 ?(Et[ ‘@JE(K}) })2’
— IR — IE () — (1 By ) [T |

+ B ovar (T 6 (),
(161)
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Using Assumption[4.5] we finally obtain

B [79 (Rass) — I (5] < 18R — 7)1~ B0y S|
Uk 7 "o
2 "N

For a sequence of Lipschitz constants {I(K;)}, suppose that the largest Lipschitz constant is given by
Ime- Further, suppose that we pick a step size 7y < %; then it follows that (1 — 17'2”” Ny > %) We
can then re-write the above inequality as follows ‘

I(Ky) LV
2 "N

(163)
At this point, we can now follow the proof of Theorem 6.1 in [33] with Lo = [,,,, to obtain the bound

—\ 7 —
- - 8TV 1L Va2
E[JC(Kr)] — JE(KE) < B/3+ cr (1 - ”4&”;;\[ ) + \/%, (164)

where we note that, for finite 7", we can replace the [,,,,, by Iz .- From Theorem we have

2| R||o?7?

6
Note that, by (IT6), we have JS(K%) = JP(KE) + R"TQ”Z. Furthermore, since J?(K() >
JP(K*), we obtain

~ _ ~ ~ _ ~ — ~ 2
By [JE (Riun) = JE(RE)] < IE () — IE(RE) - T |V eag(&o)|| +

TS (KE) = T (K7)| < =28/3. (165)

Ro*n?
6
In other words, we have that .J 5 (K’ *) is the global minimum. Noisily perturbing the function
JP(K) to yield J&(K) leads to a minimum that satisfies J2(K*) < J¢(K), or, equivalently,

JE(Kg) — JP(K*) > 0. From the fact that < |||, this implies

JE(KE) > JP(K™) +

(166)

TP (KG) = 0,0 (K) < 28/3, (167)
i.e., that ~ ~
—JZ(Kg) > —JP(K*) —283/3. (168)
We therefore finally obtain

—\ 7 —
G D/ 3TV [T Vna?
]E[J7T (KT)} — JH (K ) < 6 +cr (1 - \/ 4;;;7 + 7L£N )

The remainder of Theorem[4.7|now follows in a straightforward manner from the rest of the proof of
[33, Theorem 6.1]. O
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A.4 Experiment Details

We note that both the environments rea and 1ah have scalar input and output spaces. In our
experiments, we set & = Y = 1.0, where matrices R and Y are as in . Further, the cost
accumulated over each length- NV rollout, at time ¢, is given by

t+N-1
= > (97 Qgi+uf Ruy). (169)
i=t
For the experiments generating reward curves in Figures [I] we ran 100 trials of our proposed
algorithms and 4 trials of the PPO algorithm. The simulation hyperparameters for our experiments

are provided in Tables[I] 2] B]and[4] Finally, we ran our experiments on a Windows laptop, configured
with a 6-core i7-8750H, 2.20GHz CPU, an NVIDIA GeForce RTX 2070 GPU, and 32GB RAM.

Table 1: Simulation Parameters for PG4PID Table 2: Simulation Parameters for PG4PI

[ Parameters [ Values | l Parameter. s | Values |
No. of episodes T’ 10 No. of episodes T 10
Rollout length N 100 Rollout length NV 100
Step sizes {ap,ar,ap} | 0.0001 Step sizes {ap, a7, ap} | 0.0001
Tolerance e 0.001 Noise variance o 0.1
Sampling time 7 0.1 sec Tolerance 0.001

Sampling time 7 0.1 sec

Table 4: Simulation Parameters for PPO

Table 3: Simulation Parameters for Policy learr}lng rate | 0.0003
Model-free LQR Palue learning rate 0.0003
Entropy coefficient | 0.0
| Parameters | Values | Clip range 02
No. of episodes 7' | 10 Weight decay 0.0
Rollout length N | 100 Layer size 2
Step size « 0.0001 Batch size 2
Tolerance € 0.001 Buffer size 60000
Sampling time 7 0.1 sec Number of epochs | 10
Rollout length 8
Discount factor 0.99

A.4.1 Validation on rea and lah

We present the state, input tracking, and tracking error trajectories for our experiments on the
Chemical Reactor (rea) and the LA University Hospital (1ah) cont rolgym environments. Recall
that we consider the unit step tracking task which entails two subtasks: i) system output tracking
unit step input, and ii) stabilizing the closed loop system. The step tracking performance is shown
in Figures [3a) and 3b] with the model-based PID Algorithm PG4PID, and Figures 3¢/ and [3d| with
the model-free PI Algorithm PG4PI. We also plot corresponding trajectories for the tracking error
(deviation from reference step input) in Figures [3¢|and [3f] with PG4PID, and Figures[3g|and [3h] with
PGA4PI. Finally, we illustrate the efficacy of our model-based and model-free algorithms for the task
of system stabilization. The corresponding state trajectories are illustrated in Figures fa] and [4b| with
PG4PID, and Figures[dc]| and 4d] with PG4PIL.

A.4.2 Ablation Studies

We carry out ablation studies on the impact of the variance parameter o on the convergence of our
Model-free PI Algorithm, PG4PI, on both the Chemical Reactor and LA Hospital environments. The
results are presented in Figure[5] We find that varying the o does not have a significant impact on
algorithm performance for small o (between 0.0001-2); however, some performance degradation
occurs for larger variances (o = 3). In general, o is chosen to be small enough that suitable gradient
dominance and convergence results can still be recovered. In practice, the choice of o comes down
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to ensuring numerical stability, and we find from our ablation study that Algorithm2]is stable for a
wide range of o values.

A.4.3 Benchmarking vs. PG based LQR

We present the results of our benchmarking experiment where we implement both a model-free
(zero-order optimization method) PG method and model-based (using exact gradient expressions)
method for tuning LQR control policies from [18] in Figures [§]and [7|respectively. In model-based
LQR, we use estimates of matrices (A, B) to compute the policy gradient, while we use their
Algorithm 1 in [18] to estimate the gradient in the model-free method. The experimental parameters
for model-free LQR are presented in Table 3] We note that our proposed model-free Algorithm 2]
follows a first-order optimization method, that our model-free PID control policy outperforms both
model-based and model-free LQR control policies in both tracking behavior and robustness to model
errors, as discussed in Section[3]

A.5 Broader Impacts

This work is primarily theoretical and pertains to the development of policy gradient based algorithms
to design PID control policies, and does not have any direct societal impact.
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PG4PID on an LA Unversity hospital
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(a) Tracking performance for unit step refer-
ence in lah environment with PG4PID.

PG4PI on an LA University hospital
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(c) Tracking performance for unit step refer-
ence in 1ah environment with PG4PI.

PG4PID on an LA Unversity hospital
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(e) Tracking error with unit step reference in
lah with PG4PID.
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Figure 3: Output trajectories and tracking errors in response to unit step reference input signal, and

illustrating perfect tracking with PG4PID and PG4PI.
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Figure 4: State trajectories for the 1ah and rea environments illustrating stabilization with PG4PID

and PG4PI.
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Figure 5: Reward curves for the PG4PI Algorithm on the 8-dimensional Chemical Reactor and the
on the 48-dimensional LA University Hospital environments. Plots contain two sets of experiments,
run for a smaller set and a larger set of variances o. While smaller variances (o < 2) have negligible
effect on the convergence rates, slower convergence is observed for some larger variances (o = 3).
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Model Free LQR on a Chemical Reactor Model Free LQR vs. PG4PI on a Chemical Reactor
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Figure 6: State stabilization trajectories and tracking performance for a unit step reference with model-
free PG with LQR policy and model-free PG4PI on the Chemical Reactor and LA University Hospital
environments. While the Model-free LQR controller stabilizes the states for both the environments,
there is a non-zero steady state tracking error for the unit step input, while the model-free PI controller
achieves both stabilization and perfect tracking with zero steady-state error.
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Figure 7: Comparison of model-based PG with LQR policy and model-free PG4PI with small model
error for the Chemical Reactor environment. LQR is highly fragile and exhibits instability with a
model error of ||AA|| = 0.05 even with a model-based implementation, while our model-free PI
controller achieves stabilization and perfect tracking with zero steady-state error.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in our abstract and introduction accurately reflect the paper’s
scope and contributions. All the theoretical and experimental results are aligned with the
claims made in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly discuss all the theoretical and experimental assumptions behind our
work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the assumptions behind the theoretical results in Sections 2, 3 and
4. The detailed proofs of all results are provided in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the experimental details are described in Section 5 and in the Appendix,
and all the code and data are submitted along with the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All the code and data are submitted along with the paper, and will be open-
sourced upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the paper details the experimental setting and benchmarks in Section 5
and the Appendix.

Guidelines:
* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report the mean and one standard deviation of all reward curves in our
experiments over 100 independent training runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources utilized for the experiments are provided in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and ensured that our paper
conforms to these regulations.

Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper is primarily theoretical, and does not have any immediate societal
impact. We discuss this in the Appendix A.S5.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose any such risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: All the datasets, environments, and the benchmarks to evaluate our algorithms
are cited in the main text and in our code.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

» For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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Justification: All the code and data are submitted along with the paper, and will be released
publicly with detailed documentation upon publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper is mainly theoretical and does not involve crowdsourcing or human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper is mainly theoretical and does not involve crowdsourcing or human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We have not utilized LLLMs in any of the research described in this paper.
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Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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