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Abstract

Initializing with pre-trained models when learning on downstream tasks is becoming standard
practice in machine learning. Several recent works explore the benefits of pre-trained
initialization in a federated learning (FL) setting, where the downstream training is performed
at the edge clients with heterogeneous data distribution. These works show that starting from
a pre-trained model can substantially reduce the adverse impact of data heterogeneity on the
test performance of a model trained in a federated setting, with no changes to the standard
FedAvg training algorithm. In this work, we provide a deeper theoretical understanding of
this phenomenon. To do so, we study the class of two-layer convolutional neural networks
(CNNs) and provide bounds on the training error convergence and test error of such a
network trained with FedAvg. We introduce the notion of aligned and misaligned filters at
initialization and show that the data heterogeneity only affects learning on misaligned filters.
Starting with a pre-trained model typically results in fewer misaligned filters at initialization,
thus producing a lower test error even when the model is trained in a federated setting with
data heterogeneity. Experiments in synthetic settings and practical FL training on CNNs
verify our theoretical findings.

1 Introduction

Federated Learning (FL) (McMahan et al., 2017) has emerged as the de-facto paradigm for training a Machine
Learning (ML) model over data distributed across multiple clients with privacy protection due to its no
data-sharing philosophy. Ever since its inception, it has been observed that heterogeneity in client data
can severely slow down FL training and lead to a model that has poorer generalization performance than
a model trained on Independent and Identically Distributed (IID) data (Kairouz et al., 2021; Li et al.,
2020; Yang et al., 2021a). This has led works to propose several algorithmic modifications to the popular
Federated Averaging (FedAvg) algorithm such as variance-reduction (Acar et al., 2021; Karimireddy et al.,
2020), contrastive learning (Li et al., 2021; Tan et al., 2022) and sophisticated model-aggregation techniques
(Lin et al., 2020; Wang et al., 2020), to combat the challenge of data heterogeneity.

A recent line of work (Chen et al., 2022; Nguyen et al., 2022) has sought to understand the benefits of starting
from pre-trained models instead of randomly initializing the global model when doing FL. This idea has
been popularized by results in the centralized setting (Devlin et al., 2019; Radford et al., 2019; He et al.,
2019; Dosovitskiy et al., 2021), which show that starting from a pre-trained model can lead to state-of-the-art
accuracy and faster convergence on downstream tasks. Pre-training is usually done on internet-scale public
data (Schuhmann et al., 2022; Thomee et al., 2016; Raffel et al., 2020; Gao et al., 2020) in order for the
model to learn fundamental data representations (Sun et al., 2017; Mahajan et al., 2018; Radford et al.,
2019), that can be easily applied for downstream tasks. Thus, while it would not be unexpected to see
some gains of using pre-trained models even in FL, what is surprising is the sheer scale of improvement. In
many cases Nguyen et al. (2022); Chen et al. (2022) show that just starting from a pre-trained model can
significantly reduce the gap between the performance of a model trained in a federated setting with non-IID
versus IID data partitioning with no algorithmic modifications. Figure 1 shows our own replication of this
phenomenon, where starting from a pre-trained model can lead to almost 14% improvement in accuracy for
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FL with non-IID data (i.e., high data heterogeneity) compared to 4% for FL with IID data and 2% in the
centralized setting. This observation leads us to ask the question:

Why can pre-trained initialization drastically improve model performance in FL?
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Figure 1: Test accuracy (%) on CIFAR10 with
SqueezeNet model Iandola et al. (2016) under
random and pretrained initializations for FL
and centralized training. Pre-training benefits
FL more than centralized setting and signifi-
cantly reduces the gap between IID and non-
IID FL model performance.

One reason suggested by Nguyen et al. (2022) is a lower value
of the training loss at initialization when starting from pre-
trained models. However, this observation can only explain
improvement in training convergence speed (see Theorem V
in Karimireddy et al. (2021)) and not the significantly im-
proved generalization performance of the trained model. Also,
a pre-trained initialization can have larger loss than random
initialization while continuing to have faster convergence and
better generalization (see Table 1 in Nguyen et al. (2022)).
Chen et al. (2022); Nguyen et al. (2022), also observe some
optimization-related factors when starting from a pre-trained
model including smaller distance to optimum, better condi-
tioned loss surface (smaller value of the largest eigen value of
Hessian) and more stable global aggregation. However, it has
not been formally proven that these factors can reduce the
adverse effect of non-IID data. Thus, there is still a lack of
fundamental understanding of why pre-trained initialization
benefits generalization for non-IID FL.

Our contributions. In this work we provide a deeper theoretical understanding of the importance of
initialization for FedAvg by studying two-layer ReLU Convolutional Neural Networks (CNNs) for binary
classification. This class of neural networks lends itself to tractable analysis while providing valuable insights
that extend to training deeper CNNs as shown by several recent works (Cao et al., 2022; Du et al., 2018; Kou
et al., 2023; Zou et al., 2023; Jelassi & Li, 2022; Bao et al., 2024; Oh & Yun, 2024). Our data generation
model, also studied in Cao et al. (2022); Kou et al. (2023), allows us to utilize a signal-noise decomposition
result (see Proposition 1) to perform a fine-grained analysis of the CNN filter weight updates than can be
done with general non-convex optimization. Some highlights of our results are as follows:
1. We introduce the notion of aligned and misaligned filters at initialization (Lemma 1) and show that data

heterogeneity affects signal learning only on misaligned filters while noise memorization is unaffected by
data heterogeneity (see Lemma 2). A pre-trained model is expected to have fewer misaligned filters, which
can explain the reduced effect of non-IID data.

2. We provide a test error upper bound for FedAvg that depends on the number of misaligned filters at
initialization and data heterogeneity. The effect of data heterogeneity on misaligned filters is exacerbated
as clients perform more local steps, which explains why FL benefits more from pre-trained initialization
than centralized training. To our knowledge, this is the first result where the test error for FedAvg explicitly
depends on initialization conditions (Theorem 2).

3. We prove the training error convergence of FedAvg by adopting a two-stage analysis: a first stage where
the local loss derivatives are lower bounded by a constant and second stage where the model is in the
neighborhood of a global minimizer with nearly convex loss landscape. Our analysis shows a provable
benefit of using local steps in the first stage to reduce communication cost.

4. We experimentally verify our upper bound on the test error in a synthetic data setting (see Section 3 as
well as conduct experiments on practical FL tasks which show that our insights extend to deeper CNNs
(see Section 4).

Related Work. The two-layer CNN model that we study in this work was originally introduced in Zou et al.
(2023) for the purpose of analyzing the generalization error of the Adam optimizer in the centralized setting.
Later Cao et al. (2022) study the same model to analyze the phenomenon of benign overfitting in two-layer
CNN, i.e., give precise conditions under which the CNN can perfectly fit the data while also achieving small

2



Under review as submission to TMLR

population loss. Oh & Yun (2024) use this model to prove the benefit of patch-level data augmentation
techniques such as Cutout and CutMix. Kou et al. (2023) relaxes the the polynomial ReLU activation in Cao
et al. (2022) to the standard ReLU activation and also introduces label-flipping noise when analyzing benign
overfitting in the centralized setting. We do not consider label-flipping in our work for simplicity; however
this can be easily incorporated as future work. To the best of our knowledge, we are only aware of two other
works (Huang et al., 2023; Bao et al., 2024) that analyze the two-layer CNN in a FL setting. The focus
in Huang et al. (2023) is on showing the benefit of collaboration in FL by considering signal heterogeneity
across the data in clients while Bao et al. (2024) considers signal heterogeneity to show the benefit of local
steps. Both Huang et al. (2023) and Bao et al. (2024) do not consider any label heterogeneity and there is no
emphasis on the importance of initialization, making their analysis quite different from ours. We defer more
discussion on other related works to the Appendix.

2 Problem Setup

We begin by introducing the data generation model and the two-layer convolutional neural network, followed
by our FL objective and a brief primer on the FedAvg algorithm. We note that given integers a, b, we denote
by [a : b] the set of integers {a, a + 1, . . . , b}. Also, [n] denotes {1, 2, . . . , n}.

Data-Generation Model. Let D be the global data distribution. A datapoint (x, y) ∼ D contains feature
vector x = [x(1)⊤, x(2)⊤]⊤ ∈ R2d with two components x(1), x(2) ∈ Rd and label y ∈ {+1, −1}, that are
generated as follows:

1. Label y ∈ {−1, 1} is generated as P [y = 1] = P [y = −1] = 1/2.

2. One of x(1), x(2) is chosen at random and assigned as yµ, where µ ∈ Rd is the signal vector that
we are interested in learning. The other of x(1), x(2) is set to be the noise vector ξ ∈ Rd, which is
generated from the Gaussian distribution N (0, σ2

p · (I − µµ⊤ · ∥µ∥−2
2 )).

This data generation model is inspired by image classification tasks Cao et al. (2022) where it has been
observed that only some of the image patches (for example, the foreground) contain information (i.e. the
signal) about the label. We would like the model to predict the label by focusing on such informative image
patches and ignoring background patches that act as noise and are irrelevant to the classification. Note that
by definition, the noise vector ξ is orthogonal to the signal µ, i.e., ξ⊤µ = 0. We assume orthogonality just
for simplicity of analysis and can be easily relaxed as done in . Our theoretical insights will remain the same
with the only difference being that we need a slightly stronger condition on the dimension of the filters (C2).

Measure of Data Heterogeneity. We consider n datapoints drawn from the distribution D, and
partitioned across K clients such that each client has N = n/K datapoints. The assumption of equal-sized
client datasets is made for simplicity of analysis and can be easily relaxed. The data partitioning determines
the level of heterogeneity across clients.

Let D+,k and D−,k denote the set of samples at client k with positive (y = +1) and negative (y = −1) labels
respectively. Define

h :=
∑K

k=1 min
(∣∣D+,k

∣∣ , ∣∣D−,k

∣∣)
n

∈ [0, 1/2]. (1)

Note that a smaller h implies a higher data heterogeneity. In the IID setting, with uniform partitioning
across clients, we expect min(|D+,k| , |D−,k|) ≈ n/2K for all k ∈ [K], and therefore h ≈ 1/2. In the extreme
non-IID setting where each client only has samples from one class, h = 0.

Two-Layer CNN. We now describe our two-layer CNN model. The first layer in our model consists of 2m
filters {wj,r}m

r=1, j ∈ {±1}, where each wj,r ∈ Rd performs a 1-D convolution on the feature x with stride
d followed by ReLU activation and average pooling Lin et al. (2013); Yu et al. (2014). The weights in the
second layer then aggregate the outputs produced after pooling to get the final output and are fixed as 2/m
for j = +1 filters and −2/m for j = −1 filters. Formally, we have,
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f(W, x) = 1
m

m∑
r=1

[σ (⟨w+1,r, yµ⟩) + σ (⟨w+1,r, ξ⟩)]︸ ︷︷ ︸
:=F+1(W+1,x)

− 1
m

m∑
r=1

[σ (⟨w−1,r, yµ⟩) + σ (⟨w−1,r, ξ⟩)]︸ ︷︷ ︸
:=F−1(W−1,x)

. (2)

Here W ∈ R2md parameterizes all the weights of our neural network, W+1, W−1 ∈ Rmd parameterize the
weights of the j = +1 filters and j = −1 filters respectively, and σ(z) = max(0, z) is the ReLU activation.
Intuitively Fj(Wj , x) represents the ‘logit score’ that the model assigns to label j.

FL Training and Test Objectives. Let {(xk,i, yk,i)}N
i=1 be the local dataset at client k. Then the global

FL objective can be written as follows:

min
W∈R2d

{
L(W) = 1

K

∑K
k=1 Lk(W)

}
,

Lk(W) = 1
N

∑N
i=1 ℓ(yk,if(W, xk,i)), (3)

where Lk(W) is the local objective at client k and ℓ(z) = log(1 + exp(−z)) is the cross-entropy loss. We also
define the test-error L0−1

D as the probability that W will misclassify a point (x, y) ∼ D:

L0−1
D (W) := P(x,y)∼D (y ̸= sign(f(W, x))) . (4)

The FedAvg Algorithm. The standard approach to minimizing objectives of the form in Equation (3) is
the FedAvg algorithm. In each round t of the algorithm, the central server sends the current global model
W(t) to the clients. Clients initialize their local models to the current global model by setting W(t,0)

k = W(t),
for all k ∈ [K], and run τ local steps of gradient descent (GD) as follows

Local GD: W(t,s+1)
k = W(t,s)

k − η∇Lk(W(t,s)
k ) (5)

for all s ∈ [0 : τ −1] and for all k ∈ [K]. After τ steps of Local GD, the clients send their local models {W(t,τ)
k }

to the server, which aggregates them to get the global model for the next round: W(t+1) =
∑K

k=1 W(t,τ)
k /K.

While we focus on FedAvg with local GD in this work, we note that several modifications such as stochastic
gradients instead of full-batch GD, partial client participation Yang et al. (2021b) and server momentum
Reddi et al. (2021) are considered in both theory and practice. Studying these modifications is an interesting
future research direction.

3 Main Results

In this section we first introduce our definition of filter alignment at initialization and a fundamental result
regarding the signal-noise decomposition of the CNN filter weights. We then state our main result regarding
the convergence of FedAvg with random initialization for the problem setup described in Section 2 and the
impact of data heterogeneity and filter alignment at initialization on the test-error. Later we discuss why
starting from a pre-trained model can improve the test accuracy of FedAvg.

3.1 Filter Alignment at Initialization

Given datapoint (x, y), for the CNN to correctly predict the label y and minimize the loss ℓ(yf(W, x)), from
equation 2-equation 3, we want yf(W, x) = Fy(Wy, x) − F−y(W−y, x)) ≫ 0. At an individual filter r ∈ [m],
this can happen either with ⟨wy,r, yµ⟩ ≫ 0 or ⟨wy,r, ξ⟩ ≫ 0. However, we want the model to focus on the
signal yµ in x while making the prediction. Therefore, for filter (j, r) we want ⟨wj,r, yµ⟩ ≫ 0 if j = y and
⟨wj,r, yµ⟩ ≪ 0 if j = −y. Depending on the initialization of our CNN, we have the following definition of
aligned and misaligned filters.
Definition 1. The (j, r)-th filter (with j ∈ {±1}, r ∈ [m]) is said to be aligned (with signal) at initialization
if ⟨w(0)

j,r , jµ⟩ ≥ 0 and misaligned otherwise.

We shall see in Section 3.4 that the alignment of a filter at initialization plays a crucial role in how well it
learns the signal and also the overall generalization performance of the CNN in Theorem 2.
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3.2 Signal Noise Decomposition of CNN Filter Weights

One of the key insights in Cao et al. (2022) is that when training the two-layer CNN with GD, the filter
weights at each iteration can be expressed as a linear combination of the initial filter weights, signal vector
and noise vectors. Our first result below shows that this is true for FedAvg as well.

Proposition 1. Let {w(t)
j,r}, for j ∈ {±1} and r ∈ [m], be the global CNN filter weights in round t. Then

there exist unique coefficients Γ(t)
j,r ≥ 0 and {P

(t)
j,r,k,i}k,i such that

w(t)
j,r = w(0)

j,r + jΓ(t)
j,r · ∥µ∥−2

2 · µ︸ ︷︷ ︸
Signal Term

+
∑K

k=1
∑N

i=1 P
(t)
j,r,k,i · ∥ξk,i∥−2

2 · ξk,i︸ ︷︷ ︸
Noise Term

, (6)

where k ∈ [K] and i ∈ [N ] denote the client and sample index respectively.

This decomposition allows us to decouple the effect of the signal and noise components on the CNN filter
weights, and analyze them separately throughout training.

As we run more communication rounds (denoted by t), we expect the weights to learn the signal yµ, hence it
is desirable for Γ(t)

j,r to increase with t. In addition, the filter weights also inevitably memorize noise ξ and
overfit to it, therefore the noise coefficients {P

(t)
j,r,k,i} will also grow with t. We are primarily interested in

the growth of positive noise coefficients P
(t)
j,r,k,i = P

(t)
j,r,k,i1

(
P

(t)
j,r,k,i ≥ 0

)
since the negative noise-coefficients

P
(t)
j,r,k,i := P

(t)
j,r,k,i1

(
P

(t)
j,r,k,i ≤ 0

)
remain bounded (see Theorem 3 in Appendix C) and we can show that∑

k,i P
(t)
j,r,k,i = Θ(

∑
k,i P

(t)
j,r,k,i). Henceforth, we refer to Γ(t)

j,r and
∑

k,i P
(t)
j,r,k,i, as the signal learning and noise

memorization coefficients of filter (j, r) respectively. As we see later in Theorem 2, the ratio of signal learning
to noise memorization Γ(t)

j,r/
∑

k,i P
(t)
j,r,k,i is fundamental to the generalization performance of the CNN.

3.3 Training Loss Convergence and Test Error Guarantee

Next, we state our main result regarding the convergence of FedAvg with random initialization. We assume
the CNN weights are initialized as w(0)

j,r ∼ N (0, σ2
0Id) for all filters, where Id is the (d × d) identity matrix.

We first state the following standard conditions used in our analysis.
Condition 1. Let ϵ be a desired training error threshold and δ ∈ (0, 1) be some failure probability.1

(C1) The allowed number of communication rounds t is bounded by T ∗ = 1
η poly(ϵ−1, m, n, d).

(C2) Dimension d is sufficiently large: d ≳ max
{

n∥µ∥2
2

σ2
p

, n2
}

.
(C3) Training set size n and neural network width m satisfy: m ≳ log(n/δ), n ≳ log(m/δ).
(C4) Standard deviation of Gaussian initialization is sufficiently small: σ0 ≲ min

{ √
n

σpdτ , 1
∥µ∥2

}
.

(C5) The norm of the signal satisfies: ∥µ∥2
2 ≳ σ2

p.
(C6) Learning rate is sufficiently small: η ≲ min

{
nm
σ2

pd , 1
∥µ∥2

2
, 1

σ2
pd

}
.

The above conditions are standard and have also been made in Cao et al. (2022); Kou et al. (2023) for the
purpose of theoretical analysis. (C1) is a mild condition needed to ensure that the signal and noise coefficients
remain bounded throughout the duration of training. Furthermore, we see in Theorem 1 that we only need
T = O

(
mnη−1ϵ−1d−1 log(τ/ϵ)

)
rounds to reach a training error of ϵ, which is well within the admissible

number of rounds. (C2) is used to bound the correlation between the noise vectors and also the correlation
of the initial filter weights with the signal and noise. (C3) is needed to ensure that a sufficient number of
filters have non-zero activations at initialization so that the initial gradient is non-zero. (C4) is needed to
ensure that the initial weights of the CNN are not too large and that it has bounded loss for all datapoints.

1We use ≲ and ≳ to denote inequalities that hide constants and logarithmic factors. See Appendix for exact conditions.
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(C5) is needed to ensure that signal learning is not too slow compared to noise memorization. Finally, a
small enough learning rate in (C6) ensures that Local GD does not diverge. Additional discussion on these
assumptions is provided in Appendix C. With this assumption we are now state our main results.

Theorem 1 (Training Loss Convergence). For any ϵ > 0 under Condition 1, there exists a T = O
(

mn

ησ2
pdτ

)
+

O
(

mn log(τ/ϵ)
ησ2

pdϵ

)
such that FedAvg satisfies L(W(T )) ≤ ϵ with probability ≥ 1 − δ.

Our training error convergence consists of two stages. In the first stage consisting of T1 := O
(

mn
ησ2

pdτ

)
rounds,

we show that the magnitudes of the cross-entropy loss derivatives are lower bounded by a constant, i.e.,
|ℓ′(yk,if(W(t,s)

k , xk,i))| = Ω (1). Using this we can show that the signal and noise coefficients {Γ(t)
j,r, P

(t)
j,r,k,i}

grow linearly and are Θ (1) by the end of this stage. Consequently, by the end of the first stage, the model
reaches a neighborhood of a global minimizer where the loss landscape is nearly convex. Then in the second
stage, we can establish that the training error consistently decreases to an arbitrary error ϵ in O

(
mn log(τ/ϵ)

ησ2
pdϵ

)
rounds.

Note that our analysis does not require the condition η ∝ 1/τ as is common in many works analyzing FedAvg.
Therefore, by setting τ large enough we can make the number of rounds in the first stage as small as O (1),
thereby reducing the communication cost of FL. However, in the second stage we do not see any continued
benefit of local steps; in fact the number of rounds required grows as log(τ). This suggests an optimal strategy
would be to adapt τ throughout training: start with large τ and decrease τ after some rounds, which has also
been found to work well empirically Wang & Joshi (2019).

Theorem 2 (Test Error Bound). Define signal-to-noise ratio SNR := ∥µ∥2
σp

√
d

and Aj := {r ∈ [m] : ⟨w(0)
j,r , jµ⟩ ≥

0} to be the set of aligned filters (Definition 1) corresponding to label j. Then under the same conditions as
Theorem 1, our trained CNN achieves

1. When SNR2 ≲ 1/
√

nd, test error L0−1
D (W(T )) ≥ 0.1.

2. When SNR2 ≳ 1/
√

nd, test error

L0−1
D (W(T )) ≤ 1

2
∑

j∈{±1}

exp
(

− n

d

[ |Aj |
m

SNR2 +
(
1 − |Aj |

m

)
SNR2

(
h + 1

τ
(1 − h)

)]2)
.

Impact of SNR on harmful/benign overfitting. Intuitively, if the SNR is too low (SNR2 ≲ 1/
√

nd),
then there is simply not enough signal strength for the model to learn compared to the noise. Hence, we
cannot expect the model to generalize well no matter how we train it. This generalizes the centralized training
result in (Kou et al., 2023, Theorem 4.2) (with p = 0), which corresponds to τ = 1 in FedAvg. In this case,
the model is in the regime of harmful overfitting. However, if the SNR is sufficiently large (SNR2 ≳ 1/

√
nd),

we enter the regime of benign overfitting, where the model can fit the data and generalize well with the test
error reducing exponentially with the global dataset size n.

Empirical Verification. We now provide empirical verification of the upper bound on the test error in
Theorem 2 in the benign overfitting regime. We simulate a synthetic dataset following our data-generation
model in Section 2, with n = 20 datapoints, K = 2 clients and m = 10 filters. Additional experimental details
can be found in Appendix F. We fix a training error threshold of ϵ = 0.1 and then measure the test error of
our CNN under various settings in Figure 2. Figure 2a shows the test error as a function of the number of
misaligned filters (m − |Aj | in Theorem 2) under different data partitionings with the number of local steps
fixed at τ = 100. While the test error grows with the number of misaligned filters in both data settings, the
rate of growth is much larger in the non-IID setting. Figure 2b shows the test error as a function of local
steps τ under different initializations for fixed h = 0 while Figure 2c shows the test error as a function of
heterogeneity under different initializations for fixed τ = 100. As predicted by our theory, heterogeneity and
the number of local steps do not affect test error when all the filters are aligned at initialization. On the
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Figure 2: Empirical results on synthetic dataset to verify the upper bound on test error in Theorem 2. We fix the
training error ϵ = 0.1. Figure 2a: Test error increases as we increase the number of misaligned filters, with much larger
rate of increase in the non-IID setting. Figures 2b and 2c: Test error increases with local steps and heterogeneity
when m/2 filters are misaligned at initialization, remains constant when all the filters are aligned.

other hand, the test error grows with τ and heterogeneity when the number of misaligned filters is non-zero
(m/2 = 5) for each j ∈ {±1}. Therefore, our empirical results strongly validate our theoretical results showing
the effect of heterogeneity, number of local steps and number of misaligned filters on the test error.

3.4 Impact of Filter Alignment and Data Heterogeneity on Signal Learning and Noise Memorization.

The key results in our analysis are the following lemmas which bound the growth of the signal learning and
noise coefficient during the first stage of training, that is 0 ≤ t ≤ T1 (see discussion under Theorem 1). Using
our definition of Aj := {r ∈ [m] : ⟨w(0)

j,r , jµ⟩ ≥ 0} as the set of aligned filters, we have the following lemma for
growth of the signal learning coefficient in the first stage.

Lemma 1. Under Condition 1, for all 0 ≤ t ≤ T1, we have Γ(t)
j,r = Ω

(
tη ∥µ∥2

2 τ

m

)
if r ∈ Aj and Γ(t)

j,r =

Ω
(

tη ∥µ∥2
2 (1 + h(τ − 1))

m

)
if r /∈ Aj.

This lemma shows that for aligned filters (r ∈ Aj), Γ(t)
j,r does not depend on heterogeneity and grows linearly

with the number of local steps τ . On the other hand, for misaligned filters (r /∈ Aj), the growth depends on
the heterogeneity parameter h. Furthermore, under extreme data heterogeneity (h = 0), for misaligned filters
Γ(t)

j,r does not scale with the number of local steps τ . For the growth of noise coefficients we have the following
corresponding lemma,

Lemma 2. Under Condition 1, for all 0 ≤ t ≤ T1 we have
∑

k,i P
(t)
j,r,k,i = Θ

(
tητσ2

pd

m

)
.

This lemma shows that noise memorization does not depend on data-heterogeneity or filter alignment and
always scales linearly with the number of local steps τ . Intuitively, this can be expected because the noise
vectors are independent of the label information y in a datapoint following our data generation model in
Section 2 and for any given filter we can show there are Ω (N) noise vectors that are aligned with the filter at
initialization for every client with high probability (see Lemma 7).

Using the above two lemmas, we have the following bound on the ratio of signal learning to noise memorization
for filter (j, r) at the end of the first stage of training

Γ(T1)
j,r∑

k,i
P

(T1)
j,r,k,i

≥

{
SNR2, if r ∈ Aj ,

SNR2(h + 1
τ (1 − h)), if r ∈ [m] \ Aj .

(7)

This ratio is key to bounding the generalization performance of the CNN model as we show later in the proof
of Theorem 2 in Appendix D.1. For aligned filters (r ∈ Aj), the ratio is unaffected by data heterogeneity h
and the number of local steps τ . However, for misaligned filters (r ∈ [m] \ Aj), the ratio becomes smaller as

7



Under review as submission to TMLR

0 20 40 60 80
No. of local steps

0.0

0.1

0.2

Γ
(1

)
+

1,
r

r = 1

r = 2

r = 3

r = 4

r = 5

(a) IID Signal Learning

0 20 40 60 80
No. of local steps

0.0

0.1

0.2

∑
k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(b) IID Noise Memorization

0 20 40 60 80
No. of local steps

0.0

0.5

1.0

1.5

2.0

Γ
(1

)
+

1,
r/
∑

k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(c) IID Sig. Learning/Noise Mem.

0 20 40 60 80
No. of local steps

0.0

0.1

0.2

Γ
(1

)
+

1,
r

r = 1

r = 2

r = 3

r = 4

r = 5

(d) NonIID Signal Learning

0 20 40 60 80
No. of local steps

0.0

0.1

0.2

0.3

∑
k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(e) NonIID Noise Memorization

0 20 40 60 80
No. of local steps

0.5

1.0

1.5

Γ
(1

)
+

1,
r/
∑

k
,i
P

(1
)

+
1,
r,
k
,i

r = 1

r = 2

r = 3

r = 4

r = 5

(f) NonIID Sig. Learning/Noise Mem.

Figure 3: Signal learning and noise memorization for our CNN model in the IID (h = 1/2) and NonIID (h = 0)
setting after 1 round. Figures 3a, 3d: In the IID setting signal learning coefficients are similar for all the filters and
increase with the number of local steps τ but in the NonIID setting they saturate (Lemma 1) for misaligned filters
(r = 1, 2, 4, 5). Figures 3b, 3e: Noise memorization is similar for all filters in both settings and grows with τ Lemma 2.
Figures 3c, 3f: in the IID setting, the ratio of signal learning to noise memorization remains independent of τ . But in
the NonIID setting, the ratio decreases to zero as τ increases for misaligned filters (r = 1, 2, 4, 5).

heterogeneity increases (h becomes smaller) or τ increases. Thus, for misaligned filters we see a corresponding
dependence on heterogeneity and local steps in our upper bound on test error in Theorem 2. Note that in
centralized training with τ = 1, we have (h+ 1

τ (1−h)) = 1 and thus we do not see any impact of heterogeneity
at misaligned filters. Therefore, we recover the bound L0−1

D (W(T )) ≤ exp(−nSNR2/d) in (Kou et al., 2023,
Theorem 4.2). It is only in FL training with τ > 1 local steps that we encounter the adverse effect of data
heterogeneity at the misaligned filters.

1 2 3 4 5
r

−0.2

−0.1

0.0

0.1

<
w

(0
)

+
1,
r,
µ
>

Figure 4: Initial alignment of the
filters in Figure 3. Only filter r = 3
is aligned.

Empirical Verification. We empirically verify the results above in the
IID (h = 1/2) and Non-IID (h = 0) setting following the same simulation
setup as done in Figure 2. Figure Figure 3a shows that in the IID setting
signal learning coefficients are similar for all the filters and increases with
the number of local step. However, as shown by Figure 3d, in the NonIID
setting signal learning saturates for misaligned filters. Figures 3b and 3e
show that the growth of noise coefficients for all the filters is similar in
the IID and non-IID case.

In Figure 3c we see that ratio of signal learning to noise memorization is
lower bounded by a constant for all filters in the IID setting whereas in the
Non-IID setting it decays as τ increases for misaligned filters (Figure 3f),
thus verifying our theoretical analysis.

3.5 Impact of Pre-Training on Federated Learning

Given the result in Theorem 2, we return to our question in Section 1, about the effect of pre-trained
initialization on improving generalization performance in FL. We focus on centralized pre-training but our
discussion here can be extended to federated pre-training as well (see Lemma 31 which states a federated
counterpart of the lemma below).
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Suppose we pre-train a CNN model in a centralized manner on a dataset with signal µ(pre) generated according
to the data model described in Section 2. Now if we train for sufficient number of iterations, then we can
show that all filters will be correctly aligned with the pre-training signal.

Lemma 3 (All Filters Aligned After Sufficient Training). There exists T1 = O
(

mn

ησ2
pd

)
such that for all

t ≥ T1, j ∈ {±1}, r ∈ [m] we have ⟨w(pre,t)
j,r , jµ(pre)⟩ ≥ 0.

Now suppose we pre-train for t ≥ T1 iterations to get a model W(pre,∗) and use this model to initialize for
downstream federated training (i.e., W(0) = W(pre, *)) with signal vector µ. Then for all j, r filters, we have
⟨w(0)

j,r , jµ⟩ = ⟨w(pre,*)
j,r , jµ(pre)⟩ + ⟨w(pre,*)

j,r , j(µ − µ(pre))⟩. We also know that ⟨w(pre,*)
j,r , jµ(pre)⟩ ≥ 0 using

Lemma 3. Therefore, if ∥µ − µ(pre)∥2 is small, all the filters {w(0)
j,r } are correctly aligned with the signal jµ.

As a result, in Theorem 2 Aj = [m] for j ∈ {±1} and in the benign overfitting regime (SNR2 ≳ 1/
√

nd), we
recover the centralized result L0−1

D (W(T )) ≤ exp(−nSNR2/d) (Kou et al., 2023, Theorem 4.2). Hence, the
adverse effects of cross-client heterogeneity are mitigated with pre-trained initialization.

4 Experiments

In this section we provide empirical results showing how our insights from Section 3 extend to practical FL
training on real world datasets with deep CNN models. Unless specified otherwise, we use the ResNet18
model He et al. (2016) in all our experiments and split the data across 20 clients using the Dirichlet sampling
scheme Hsu et al. (2019) with non-iid parameter α = 0.3. For pre-training, we use a ResNet18 pre-trained
on ImageNet Russakovsky et al. (2015), available in PyTorch Paszke et al. (2019). Additional experimental
details can be found in Appendix F.

Empirical Measure of Misalignment. Measuring filter alignment for deep CNNs is challenging since we
cannot explicitly characterize the signal information present in real world datasets and furthermore different
layers will learn the signal at different levels of granularity. Nonetheless, our theoretical findings suggest
that given sufficient number of training rounds, filters will be aligned with the signal (see Section 3) and
once a filter is aligned, the sign of the output produced by the filter with respect to the signal does not
change, i.e, if ⟨w(t)

j,r, jµ⟩ > 0 then sign(⟨w(t′)
j,r , µ⟩) = sign(⟨w(t)

j,r, µ⟩), for all t′ ≥ t. Therefore, we propose to
use the sign of the output produced by a filter at the end of training as a reference for alignment at any given
round. Formally, let W(0), W(1) · · · W(T ) be the sequence of iterates produced by federated training and let
F(w, x) = [⟨w, x(1)⟩, ⟨w, x(2)⟩, . . . ⟨w, x(p)⟩] ∈ Rp be the feature map vector generated by filter w for input
x. For a given batch of data B, we define the empirical measure of alignment of filter w(t) relative to w(T ) as
follows:

A(w(t)) :=
∑

x∈B,l∈[p]

sign(Fl(w(t), x))sign(Fl(w(T ), x)). (8)

We say that the weight w(t) at round t is misaligned if A(w(t)) < 0, because this implies that the sign of the
output produced by the filter w at round t eventually changed for a majority of the inputs, hence indicating
that the filter was misaligned at round t. We compute this measure over a batch of data to account for signal
information coming from different classes of data as well as reduce the impact of noise in the data.

Measuring Misalignment on Real World Datasets with Varying Signal Information. In this
experiment our goal is to empirically demonstrate that (a) pre-trained initialization leads to much fewer
number of misaligned filters than random initialization and (b) the number of misaligned filters for random
initialization increases as we increase the complexity of the signal. To demonstrate this, we consider federated
training on the 1. CIFAR-10 Krizhevsky (2009) and 2. TinyImageNet Le & Yang (2015) datasets.
Figure 5 shows the test accuracy and percentage of misaligned filter across training rounds for both datasets
with pre-trained and random initialization. Firstly, we see that the percentage of misaligned filters is 2 − 3×
smaller when starting from a pre-trained initialization compared to a random initialization. Furthermore,
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Figure 5: The percentage of misaligned filters (see Equation (8) and test accuracy for different initializations on
CIFAR-10 (Figure 5a and Figure 5b) and TinyImageNet (Figure 5c and Figure 5d). As the complexity of the signal
information in the data grows from CIFAR-10 to TinyImageNet, we see a sharp increase in the ratio of misaligned
filters for random initialization, explaining why pre-trained initialization offers larger improvements for TinyImageNet.

as the complexity of the signal information in the dataset increases (CIFAR-10 < TinyImageNet), we see a
sharp increase in the percentage of misaligned filters (25% to 40%) for random initialization. In contrast,
with pre-trained initialization, the percentage of misaligned filters remains less than 15% across datasets
leading to a larger improvement in test accuracy for TinyImageNet. These results align with our theoretical
findings: as the ratio of misaligned filters increases, the benefits of pre-training become more pronounced.

Measuring Misalignment with Varying Heterogeneity Levels. We extend the experiment in Figure 5
conducted on CIFAR-10 with α = 0.3 Dirichlet heterogeneity to other levels of heterogeneity 1. α = 0.05
which is an extreme non-IID split and 2. α = 10 which can be thought of as close to IID split. Figure 6
shows the test accuracy and percentage of misaligned filters plots for these two heterogeneity levels with
pre-trained and random initialization. We observe that in both cases the percentage of misaligned filters
remains approximately 25% with random initialization and 10% with pre-trained initialization, regardless of
the level of heterogeneity. However, as heterogeneity increases, the improvement in test accuracy provided by
pre-trained initialization becomes more pronounced. This trend is consistent with our theoretical analysis
in Theorem 2, which suggests that the percentage of misaligned filters will have a greater impact on test
performance as data heterogeneity increases.

5 Conclusion and Future Work

In this work we provide a deeper theoretical explanation for why pre-training can drastically reduce the
adverse effects of non-IID data in FL by studying the class of two layer CNN models under a signal-noise
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Figure 6: The percentage of misaligned filters (see Equation (8)) and test accuracy for different initializations on
CIFAR-10 with α = 0.05 heterogeneity (Figure 6a and Figure 6b) and α = 10 heterogeneity (Figure 6c and Figure 6d).
Although the percentage of misaligned filters does not vary significantly across the two settings for both initializations
(signal information is the same in both settings), pre-training offers more improvement in the higher heterogeneity
setting (α = 0.05), as suggested by our theoretical analysis.

data model. Our analysis shows that the reduction in test accuracy seen in non-IID FL compared to IID FL
is only caused by filters that are misaligned at initialization. When starting from a pre-trained model we
expect most of the filters to be already aligned with the signal thereby reducing the effect of heterogeneity
and leading to a higher ratio of signal learning to noise memorization. This is corroborated by experiments
on synthetic setup as well as more practical FL training tasks. Our work also opens up several avenues for
future work. These including extending the analysis to deeper and more practical neural networks and also
incorporating multi-class classification with more than two labels. Another interesting direction is to see
how pre-training affects other federated algorithms such as those that explicitly incorporate heterogeneity
reducing mechanisms.
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A Additional Related Work

Use of Pre-Trained Models in Federated Learning. Tan et al. (2022) explore the benefit of using
pre-trained models in FL by proposing to use multiple fixed pre-trained backbones as the encoder model at
each client and using contrastive learning to extract useful shared representations. Zhuang et al. (2023) discuss
the opportunities and challenges of using large foundation models for FL including the high communication
and computation cost. One solution to this as proposed by Legate et al. (2024) is that instead of full
fine-tuning as done in Chen et al. (2022); Nguyen et al. (2022), we can just fine-tune the last layer. Specifically
Legate et al. (2024) proposes a two-stage approach to federated fine-tuning by first fine-tuning the head and
then doing a full-finetuning. This approach is inspired by results in the centralized setting Kumar et al. (2022)
which show that in some case fine-tuning can distort the pre-trained features. Fanì et al. (2023) also study
the problem of fine-tuning just the last layer in a federated setting by replacing the softmax classifier with a
ridge-regression classifier which enables them to compute a closed form expression for the last layer weights.

There has also been some recent work on exploring the benefit of pre-training for federated natural language
processing tasks including the use of Large Language Models (LLMs). Wang et al. (2023) discuss how to
leverage the power of pre-trained LLMs for private on-device fine-tuning of language models. Specifically,
Wang et al. (2023) proposes a distribution matching approach to select public data that is closest to private
data and then use this selected public data to train the on-device language model. Zhang et al. (2023) propose
to first pre-train on synthetic data to construct the initialization point followed by federated fine-tuning.
Hou et al. (2024) propose that clients send DP information to the server which then uses this information
to generate synthetic data and fine-tune centrally on this synthetic data. Liu & Miller (2020) discuss the
challenges of pre-training and fine-tuning BERT in federated manner using clinical notes from multiple silos
without data transfer. Tian et al. (2022) propose to pre-train a BERT model in a federated manner in a more
general setting and show that their pre-trained model can retain accuracy on the GLUE (Wang et al., 2018)
dataset without sacrificing client privacy. Xu et al. (2023b) pretrain production on-device language models
on public web data before fine-tuning in federated learning with differential privacy, and Wu et al. (2024)
later replace the pretraining data with data synthesized by LLMs. Gupta et al. (2022) propose a defense
using pre-trained models to prevent an attacker from recovering multiple sentences from gradients in the
federated training of the language modeling task.

Importance of Initialization for Private Optimization. We note that an orthogonal line of work has
explored the benefits of starting from a pre-trained model when doing differentially private optimization
Dwork et al. (2006) and seen similar striking improvement in accuracy De et al. (2022); Li et al. (2022b); Yu
et al. (2022); Xu et al. (2023a), as we see in the heterogeneous FL setting. Ganesh et al. (2023) study this
phenomenon for a stylized mean estimation problem and show that public pre-training can help the model
start from a good loss basin which is otherwise hard to achieve with private noisy optimization. Li et al.
(2022a) study differentially private convex optimization and show that starting from a pre-trained model can
leads to dimension independent convergence guarantees. Specifically Li et al. (2022a) define the notion of
restricted Lipschitz continuity and show that when gradients are low rank most of the restricted Lispchitz
coefficients will be zero. Ye et al. (2023) studies the impact of different random initializations on the privacy
bound when training overparameterized neural networks and shows that for some initializations (LeCun
LeCun et al. (2012), Xavier Glorot & Bengio (2010)) the privacy bound improves with increasing depth while
for other initializations (He He et al. (2015), NTK Allen-Zhu & Li (2023)) it degrades with increasing depth.

Generalization performance in Federated Learning. Several existing works have studied the general-
ization performance of FL in different settings Cheng et al. (2021); Gholami & Seferoglu (2024); Huang et al.
(2023); Yuan et al. (2021). Some of the initial works either provide results independent of the algorithm being
used Mohri et al. (2019); Hu et al. (2022); Sun & Wei (2022), or only study convex losses Chen et al. (2021);
Fallah et al. (2021). Barnes et al. (2022); Sefidgaran et al. (2022) derive information-theoretic bounds, but
these bounds require specific forms of loss functions and cannot capture effects of heterogeneity. Huang et al.
(2021) study the generalization of FedAvg on wide two-layer ReLU networks with homogeneous data. Collins
et al. (2022) studies FedAvg under multi-task linear representation learning setting. In Sun et al. (2024),

18
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the authors have demonstrated the impact of data heterogeneity on the generalization performance of some
popular FL algorithms.

B Theory Notation and Preliminaries

We follow a similar notation as Kou et al. (2023) in most of the analysis.

Table 1: Summary of notation

Symbol Description

j ∈ {−1, 1} Layer index
m Number of filters
d Dimension of filter

r ∈ [m] Filter Index
K Number of clients

k ∈ [K] Client index
N Number of datapoints at each client

i ∈ [N ] Datapoint index
n = KN Global dataset size

yk,i ∈ {1, −1} Label of i-th datapoint at k-th client
µ Signal vector
σ2

p Variance of Gaussian noise
ξk,i Noise vector for k-th client and i-th datapoint
η Local learning rate
τ Number of local steps

ℓ(z) = log(1 + exp(−z)) Cross-entropy loss function
σ(z) = max(0, z) ReLU function
σ′(z) = 1

(
z ≥ 0

)
Derivative of ReLU function

t Round index
s Iteration index
h Heterogeneity parameter

SNR := ∥µ∥2/σp

√
d Signal to Noise Ratio

W(·,·)
k Parameterized weights of the k-th client

w(·,·)
j,r,k (j, r)-th filter weight of the k-th client

γ
(·,·)
j,r,k Local signal co-efficient for k-th client

ρ
(·,·)
j,r,k,i Local noise coefficient for k-th client and i-th datapoint

ρ
(·,·)
j,r,k,i Positive local noise coefficient for k-th client and i-th datapoint

ρ
(t,s)
j,r,k,i Negative local noise coefficient for k-th client and i-th datapoint
ℓ′(·,·)

k,i Shorthand for −1/
(

1 + exp(yk,if(W(·,·)
k , xk,i)

)
which is the

derivative of cross-entropy loss for i-th datapoint at k-th client
W(·) Parameterized weight vector of the global model
w(·)

j,r j, r-th filter weight of the global model
Γ(·)

j,r Global signal co-efficient
P

(·)
j,r,k,i Global noise coefficient for (k, i)-th datapoint

P
(·)
j,r,k,i Positive global noise coefficient for (k, i)-th datapoint

P
(·)
j,r,k,i Negative global noise coefficient for (k, i)-th client datapoint
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B.1 Local Model Update

Using local GD updates in equation 5 to minimize the local loss function in equation 3, the local model
update for the (j, r) filter at client k in round t can be written as,

w(t,τ)
j,r,k = w(t)

j,r − η

Nm

τ−1∑
s=0

∑
i∈[N ]

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, ξk,i⟩
)

· jyk,iξk,i

− η

Nm

τ−1∑
s=0

∑
i∈[N ]

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, yk,iµ⟩
)

· jµ

= w(t)
j,r + jγ

(t,τ)
j,r,k · ∥µ∥−2

2 · µ +
∑

i∈[N ]

ρ
(t,τ)
j,r,k,i · ∥ξk,i∥−2

2 · ξk,i (9)

where, we use w(t,0)
j,r,k ≜ w(t)

j,r. Further, we define

γ
(t,τ)
j,r,k ≜ − η

Nm

τ−1∑
s=0

∑
i∈[N ]

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, yk,iµ⟩
)

· ∥µ∥2
2 , (10)

ρ
(t,τ)
j,r,k,i ≜ − η

Nm

τ−1∑
s=0

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, ξk,i⟩
)

· ∥ξk,i∥2
2 · jyk,i. (11)

which respectively, denote the local signal (γ(t,τ)
j,r,k ) and local noise ({ρ

(t,τ)
j,r,k,i}i) components of w(t,τ)

j,r,k . We also
define ρ

(t,τ)
j,r,k,i = ρ

(t,τ)
j,r,k,i1

(
ρ

(t,τ)
j,r,k,i ≥ 0

)
and ρ

(t,τ)
j,r,k,i = ρ

(t,τ)
j,r,k,i1

(
ρ

(t,τ)
j,r,k,i < 0

)
, where 1

(
·
)

denotes the indicator
function, and which can alternatively be written as

ρ
(t,τ)
j,r,k,i = − η

Nm

τ−1∑
s=0

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, ξk,i⟩
)

· ∥ξk,i∥2
2 · 1

(
yk,i = j

)
, (12)

ρ(t,τ)
j,r,k,i

= η

Nm

τ−1∑
s=0

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, ξk,i⟩
)

· ∥ξk,i∥2
2 · 1

(
yk,i = −j

)
. (13)

B.2 Proof of Proposition 1

The global model update at round t + 1 can be written as

w(t+1)
j,r =

K∑
k=1

1
K

w(t,τ)
j,r,k

= w(t)
j,r + j

K

K∑
k=1

γ
(t,τ)
j,r,k · ∥µ∥−2

2 · µ +
K∑

k=1

∑
i∈[N ]

1
K

ρ
(t,τ)
j,r,k,i · ∥ξk,i∥−2

2 · ξk,i. (14)

Mimicking the signal-noise decomposition in equation 9, we can define a similar decomposition for the global
model as follows.

w(t)
j,r = w(0)

j,r + jΓ(t)
j,r · ∥µ∥−2

2 · µ +
K∑

k=1

∑
i∈[N ]

P
(t)
j,r,k,i · ∥ξk,i∥−2

2 · ξk,i. (15)
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B.3 Co-efficient Update Equations

Comparing with equation 14, we have the following recursive update for the global signal and noise coefficients
using n = KN .

Γ(t+1)
j,r = Γ(t)

j,r +
K∑

k=1

1
K

γ
(t,τ)
j,r,k

= Γ(t)
j,r − η

nm

K∑
k=1

∑
i∈[N ]

τ−1∑
s=0

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, yk,iµ⟩
)

· ∥µ∥2
2 (16)

P
(t+1)
j,r,k,i = P

(t)
j,r,k,i + 1

K
ρ

(t,τ)
j,r,k,i

= P
(t)
j,r,k,i − η

nm

τ−1∑
s=0

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, ξk,i⟩
)

· ∥ξk,i∥2
2 · jyk,i. (17)

Analogously, we can also define the positive and negative global noise coefficients,

P
(t+1)
j,r,k,i = P

(t)
j,r,k,i − η

nm

τ−1∑
s=0

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, ξk,i⟩
)

· ∥ξk,i∥2
2 1
(
yk,i = j

)
(18)

and,

P
(t+1)
j,r,k,i = P

(t)
j,r,k,i + η

nm

τ−1∑
s=0

ℓ′(t,s)
k,i · σ

′(
⟨w(t,s)

j,r,k, ξk,i⟩
)

· ∥ξk,i∥2
2 1
(
yk,i = −j

)
. (19)

Lemma 4. (Measuring local and global signal coefficient)

From equation 9, it follows that

⟨w(t,s)
j,r,k − w(t)

j,r, yk,iµ⟩ = jyk,iγ
(t,s)
j,r,k. (20)

and from equation 15, it follows that

⟨w(t)
j,r − w(0)

j,r , µ⟩ = jΓ(t)
j,r. (21)

Since {Γ(t)
j,r}t are non-negative and non-decreasing in t, the global weights {w(t)

j,r}r become increasing aligned
with the actual signal yk,iµ corresponding to the filters j = yk,i. Similarly, as {γ

(t,s)
j,r,k}t are non-negative and

non-decreasing in s for fixed t, the local weights {w(t,s)
yk,i,r,k}r become increasing aligned with the signal yk,iµ

corresponding to the filters j = yk,i.

C Training Error Convergence of FedAvg with Random Initialization

For the sake of completeness, we state the conditions used in our analysis (Condition 1) in full detail.

Assumptions. Let ϵ be a desired training error threshold and δ ∈ (0, 1) be some failure probability. Let
T ∗ = 1

η poly(ϵ−1, m, n, d) be the maximum admissible rounds.

Suppose there exists a sufficiently large constant C, such that the following hold.
Assumption 1. Dimension d is sufficiently large, i.e.,

d ≥ C max
{

n ∥µ∥2
2 log(T ∗τ)
σ2

p
, n2 log(nm/δ)(log(T ∗τ))2

}
.
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Assumption 2. Training sample size n and neural network width m satisfy

m ≥ C log(n/δ), n ≥ C log(m/δ).

Assumption 3. The norm of the signal satisfies,

∥µ∥2
2 ≥ Cσ2

p log(n/δ).

Assumption 4. Standard deviation of Gaussian initialization is sufficiently small, i.e.,

σ0 ≤ 1
C

min
{ √

n

σpdτ
,

1√
log(m/δ) ∥µ∥2

}
.

Assumption 5. Learning rate is sufficiently small, i.e.,

η ≤ 1
C

min
{

nm
√

log(m/δ)
σ2

pd
,

1
∥µ∥2

2
,

1
σ2

pd

}
.

The assumptions are primarily used to ensure that the model is sufficiently overparameterized, i.e., training
loss can be made arbitrarily small, and that we do not begin optimization from a point where the gradient is
already zero or unbounded. We provide a more intuitive reasoning behind each of the assumptions below:

• Bounded number of communication rounds: This is needed to ensure that the magnitude of filter
weights remains bounded throughout training since they grow logarithmically with the number of
updates (see Theorem 3). We note that this is quite a mild condition since the max rounds can have
polynomial dependence on 1/ϵ where ϵ is our desired training error.

• Dimension d is sufficiently large: This is needed to ensure that the model is sufficiently overparame-
terized and the training loss can be made arbitrarily small. Recall that our input x consists of a
signal component µ ∈ Rd that is common across all datapoints and noise component ξ ∈ Rd that is
independently drawn from N (0, σ2

p · I). Having a sufficiently large d ensures that the correlation
between any two noise vectors, i.e. ⟨ξ, ξ′⟩/∥ξ∥2 is not too large. Otherwise if the correlation between
two noise vectors is large and negative, then minimizing the loss on one data point could end up
increasing the loss on another training point which complicates convergence and prevents loss from
becoming arbitrarily small.

• Training set size and network width is sufficiently large: The condition ensures that a sufficient
number of filters get activated at initialization with high probability (see Lemma 6 and Lemma 7)
and prevents cases where the initial gradient is zero. The condition on training set size also ensures
that there are a sufficient number of datapoints with negative and positive labels (see Lemma 8).

• Standard deviation of Gaussian random initialization is sufficiently small: This condition is needed
to ensure that the magnitude of the initial correlation between the filter weights and the signal and
noise components, i.e |⟨w(0)

j,r , µ⟩|, |⟨w(0)
j,r , ξ⟩| is not too large. This simplifies the analysis and prevents

cases where none of the filters get activated at initialization (see Lemma 21). It also ensures that
after some number of rounds all filters get aligned with the signal (see Lemma 30).

• Norm of signal is larger than noise variance: This condition is needed to ensure that all misaligned
filters at initialization eventually become aligned with the signal after some rounds (see Lemma 30).
This allows us to derive a meaningful bound on test performance that is not dominated by noise
memorization.

• Learning rate is sufficiently small: This is a standard condition to ensure that gradient descent does
not diverge. The conditions are derived from ensuring that the signal and noise coefficient remain
bounded in the first stage of training and that the loss decreases monotonically in every round in the
second stage of training.
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For ease of reference, we restate Theorem 1 below.

Theorem (Training Loss Convergence). Let T1 = O
(

mn
ησ2

pdτ

)
. With probability 1 − δ over the random

initialization, for all T1 ≤ T ≤ T ∗ we have,

1
T − T1 + 1

T∑
t=T1

L(W(t)) ≤
∥∥W(T1) − W∗

∥∥2
2

η(T − T1 + 1) + ϵ.

Therefore we can find an iterate with training error smaller than 2ϵ within T = T1 +
∥∥W(T1) − W∗

∥∥2
2 /(ηϵ) =

O
(

mn
ησ2

pdτ

)
+ O

(
mn log(τ/ϵ)

ησ2
pdϵ

)
rounds.

Proof Sketch. The template follows that of Kou et al. (2023) and is divided into 3 parts. In the first
part (Appendix C.2), we show that the magnitude of the signal and noise memorization coefficients for the
global model is bounded for the entire duration of training (see Theorem 3), where |Γ(t)

j,r| ≤ 4 log(T ∗τ) and
|P (t)

j,r,k,i| ≤ 4 log(T ∗τ) for all 0 ≤ t ≤ T ∗ − 1. Next, we divide our training into two stages. In the first stage
(Appendix C.3), we show (see Lemma 21) that the noise (and also signal) memorization coefficients grow
fast and are lower bounded by some constant after T1 rounds i.e., |P (T1)

j,r,k,i| = Ω (1). In the second stage
(Appendix C.4), the growth of the noise and signal coefficients becomes relatively slower and the model
reaches a neighborhood of a global minimizer where the loss landscape is nearly convex (see Lemma 25).
Using this we can show that our objective is monotonically decreasing in every round (see Lemma 26), which
establishes convergence (in Appendix C.5). We begin by stating (in Appendix C.1) some intermediate results
that we use in the subsequent analysis.

C.1 Preliminary Lemmas

Lemma 5. (Lemma B.4 in Cao et al. (2022)) Suppose that δ > 0 and d = Ω (log(4n/δ)). Then with
probability at least 1 − δ,

σ2
pd/2 ≤ ∥ξk,i∥2

2 ≤ 3σ2
pd/2,

|⟨ξk,i, ξk′,i′⟩| ≤ 2σ2
p

√
d log(6n2/δ),

for all k, k′ ∈ [K], i, i′ ∈ [N ], and (k, i) ̸= (k′, i′).
Lemma 6. (Lemma B.5 in Kou et al. (2023)). Suppose that d = Ω (log(mn/δ)), m = Ω (log(1/δ)). Then
with probability at least 1 − δ,

σ2
0d/2 ≤

∥∥∥w(0)
j,r

∥∥∥2

2
≤ 3σ2

0d/2,

∣∣∣⟨w(0)
j,r , µ⟩

∣∣∣ ≤
√

2 log(12m/δ) · σ0 ∥µ∥2 ,
∣∣∣⟨w(0)

j,r , ξk,i⟩
∣∣∣ ≤ 2

√
log(12mn/δ) · σ0σp

√
d,

for all r ∈ [m], j ∈ {±1}, k ∈ [K] and i ∈ [N ].

Lemma 7. (Lemma B.6 in Kou et al. (2023)). Let S
(0)
k,i =

{
r ∈ [m] : ⟨w(0)

yk,i,r, ξk,i⟩ ≥ 0
}

. Suppose δ > 0 and
m ≥ 50 log(2n/δ). Then with probability at least 1 − δ,∣∣∣S(0)

k,i

∣∣∣ ≥ 0.4m, ∀i ∈ [n].

Lemma 8. (Lemma B.7 in Kou et al. (2023)) Let S̃
(0)
j,r =

{
k ∈ [K], i ∈ [N ] : yk,i = j, ⟨w(0)

j,r , ξk,i⟩ ≥ 0
}

.
Suppose δ > 0 and n ≥ 32 log(4m/δ). Then with probability at least 1 − δ,∣∣∣S̃(0)

j,r

∣∣∣ ≥ n/8, ∀i ∈ [n].
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Lemma 9. Let Dj = {k ∈ [K], i ∈ [N ] : yk,i = j}. Suppose δ > 0 and n ≥ 8 log(4/δ). Then with probability
at least 1 − δ,

|Dj | ≥ n

4 , ∀j ∈ {±1}.

Proof. We have |Dj | =
∑

k,i 1
(
yk,i = j

)
and therefore E |Dj | =

∑
k,i P(yk,i = j) = n/2. Applying Hoeffding’s

inequality we have with probability 1 − 2δ,∣∣∣∣ |Dj |
n

− 1
2

∣∣∣∣ ≤
√

log(4/δ)
2n

.

Now if n ≥ 8 log(4/δ), by applying union bound, we have with probability at least 1 − δ,

|Dj | ≥ n

4 , ∀j ∈ {±1}.

C.2 Bounding the Scale of Signal and Noise Memorization Coefficients

Our first goal is to show that the coefficients of the global model, i.e., Γ(t)
j,r, P

(t)
j,r,k,i and

∣∣∣P (t)
j,r,k,i

∣∣∣ are bounded
as O (log(T ∗τ)). To do so, we look at a virtual iteration index given by v = 0, 1, 2, 3, . . . , T ∗τ − 1. For any v,
we can define the filter weights at virtual iteration v in terms of the filter weights we have seen so far. In
particular,

w̃(v)
j,r,k ≜ w(⌊ v

τ ⌋,v mod τ)
j,r,k .

We also define the following virtual sequence of local coefficients which will be used in our proof. Let
G(0)

j,r,k = 0,P(0)
j,r,k,i = 0,P(0)

j,r,k,i = 0. We have the following update equation for G(v)
j,r,k,P(v)

j,r,k,i and P(v)
j,r,k,i for

v ≥ 1.

G(v)
j,r,k =


G(v−1)

j,r,k − η
Nm

∑
i∈[N ]

ℓ′(v−1)
k,i σ

′(
⟨w̃(v−1)

j,r,k , yk,iµ⟩
)

∥µ∥2
2 , if v (mod τ) ̸= 0,

G(v−τ)
j,r,k − η

nm

τ−1∑
s=0

∑
k′

∑
i∈[N ]

ℓ′(v−τ+s)
k′,i σ

′(
⟨w̃(v−τ+s)

j,r,k , yk,iµ⟩
)

∥µ∥2
2 else,

(22)

where we slightly abuse notation, using ℓ′(v)
k,i to denote ℓ′(⌊ v

τ ⌋,v mod τ)
k,i .

P(v)
j,r,k,i =


P(v−1)

j,r,k,i − η
Nm ℓ′(v−1)

k,i σ
′(⟨w̃(v−1)

j,r,k , ξk,i⟩
)

∥ξk,i∥2
2 1
(
j = yk,i

)
, if v (mod τ) ̸= 0,

P(v−τ)
j,r,k,i − η

nm

τ−1∑
s=0

ℓ′(v−τ+s)
k,i σ

′(
⟨w̃(v−τ+s)

j,r,k , ξk,i⟩
)

∥ξk,i∥2
2 1
(
j = yk,i

)
else.

(23)

P(v)
j,r,k,i =


P(v−1)

j,r,k,i + η
Nm ℓ′(v−1)

k,i σ
′(⟨w̃(v−1)

j,r,k , ξk,i⟩
)

∥ξk,i∥2
2 1
(
j = −yk,i

)
, if v (mod τ) ̸= 0,

P(v−τ)
j,r,k,i + η

nm

τ−1∑
s=0

ℓ′(v−τ+s)
k,i σ

′(
⟨w̃(v−τ+s)

j,r,k , ξk,i⟩
)

∥ξk,i∥2
2 1
(
j = −yk,i

)
else.

(24)

Note that we have the relation G(tτ)
j,r,k = Γ(t)

j,r,P(tτ)
j,r,k,i = P

(t)
j,r,k,i,P

(tτ)
j,r,k,i = P

(t)
j,r,k,i

for all t = 0, 1, 2, . . . , T ∗ − 1. Intuitively, if we can bound the virtual sequence of coefficients, we can also
bound the actual coefficients of the global model at every round.
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C.2.1 Decomposition of Virtual Local Filter Weights

The purpose of introducing the virtual sequence of coefficients is to write the local filter weight at each client
as the following decomposition.

w̃(v)
j,r,k = w(0)

j,r + jG(v)
j,r,k ∥µ∥−2

2 µ +
∑

k′,k′ ̸=k

∑
i′∈[N ]

(P(τ⌊v/τ⌋)
j,r,k′,i′ + P(τ⌊v/τ⌋)

j,r,k′,i′ ) ∥ξk′,i′∥−2
2 ξk′,i′

+
∑

i∈[N ]

(P(v)
j,r,k,i + P(v)

j,r,k,i) ∥ξk,i∥−2
2 ξk,i. (25)

Note that (τ⌊v/τ⌋) denotes the last iteration at which communication happened. If v (mod τ) = 0, then
w̃(v)

j,r,k is the same for all k ∈ [K].

C.2.2 Theorem on Scale of Coefficients

We will now state the theorem that bounds our virtual sequence of coefficients and give the proof below. We
first define some quantities that will be used throughout the proof.

α := 4 log(T ∗τ); β := 2 max
i,j,k,r

{∣∣∣⟨w(0)
j,r , µ⟩

∣∣∣ , ∣∣∣⟨w(0)
j,r , ξk,i⟩

∣∣∣} ; γ̂ = n ∥µ∥2
2

σ2
pd

.

Theorem 3. Under assumptions, for all v = 0, 1, 2, . . . , T ∗τ − 1, we have that,

G(0)
j,r,k = 0,P(0)

j,r,k,i = 0,P(0)
j,r,k,i = 0,

0 ≤ P(v)
j,r,k,i ≤ α, (26)

0 ≥ P(v)
j,r,k,i ≥ −β − 8

√
log(6n2/δ)

d
nα ≥ −α, (27)

0 ≤ G(v)
j,r,k ≤ C ′γ̂α, (28)

for all r ∈ [m], j ∈ {±1}, k ∈ [K], i ∈ [N ], where C ′ is some positive constant.

We will use induction to prove this theorem. The statement is clearly true at v = 0. Now assuming the
statement holds at v = v′ we will show that it holds at v = v′ + 1. We first state and prove some intermediate
lemmas that we will use in our proof.

C.2.3 Intermediate Steps to Prove the Induction in Theorem 3

Lemma 10.

max
{

β, 4
√

log(6n2/δ)
d

nα

}
≤ 1

12 .

Proof. From Lemma 6 we have β = 4σ0 max
{√

log(12mn/δ) · σp

√
d,
√

log(12m/δ) · ∥µ∥2

}
. Now from

Assumptions 1 and 4, by choosing C large enough, the inequality is satisfied.

Lemma 11. Suppose, equation 26, equation 27 and equation 28 holds for all iterations 0 ≤ v ≤ v′. Then for
all r ∈ [m], j ∈ {±1}, k ∈ [K], i ∈ [N ] we have,
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⟨w̃(v′)
j,r,k − w(0)

j,r , µ⟩ = jG(v′)
j,r,k, (29)∣∣∣⟨w̃(v′)

j,r,k − w(0)
j,r , ξk,i⟩ − P(v′)

j,r,k,i

∣∣∣ ≤ 4
√

log(6n2/δ)
d

nα, j = yk,i, (30)∣∣∣⟨w̃(v′)
j,r,k − w(0)

j,r , ξk,i⟩ − P(v′)
j,r,k,i

∣∣∣ ≤ 4
√

log(6n2/δ)
d

nα, j ̸= yk,i. (31)

Proof of equation 29. It follows directly from equation 25 by using our assumption that ⟨µ, ξk,i⟩ = 0 for all
k ∈ [K], i ∈ [N ].

Proof of equation 30. Note that

for yk,i = j we have P(v′)
j,r,k,i = 0. Now using equation 25 for j = yk,i we have,∣∣∣⟨w̃(v′)

j,r,k − w(0)
j,r , ξk,i⟩ − P(v′)

j,r,k,i

∣∣∣
=

∣∣∣∣∣∣
∑

k′,k′ ̸=k

∑
i′∈[N ]

(P(τ⌊v′/τ⌋)
j,r,k′,i′ + P(τ⌊v′/τ⌋)

j,r,k′,i′ ) ⟨ξk,i,ξk′,i′ ⟩

∥ξk′,i′∥2
2

+
∑

i′∈[N ],i′ ̸=i

(P(v′)
j,r,k,i′ + P(v′)

j,r,k,i′) ⟨ξk,i,ξk,i′ ⟩

∥ξk,i′∥2
2

∣∣∣∣∣∣
(a)
≤

 ∑
k′,k′ ̸=k

∑
i′∈[N ]

(∣∣∣P(τ⌊v′/τ⌋)
j,r,k′,i′

∣∣∣+
∣∣∣P(τ⌊v′/τ⌋)

j,r,k′,i′

∣∣∣)+
∑

i′∈[N ]

(∣∣∣P(v′)
j,r,k,i′

∣∣∣+
∣∣∣P(v′)

j,r,k,i′

∣∣∣)
 4
√

log(6n2/δ)
d

(b)
≤ 4

√
log(6n2/δ)

d
nα,

where (a) follows from triangle inequality and Lemma 5; (b) follows from the induction hypothesis.

Proof of equation 31. Note that for

j ̸= yk,i we have P(v′)
j,r,k,i = 0. Using equation 25 for j ̸= yk,i we have,∣∣∣⟨w̃(v′)

j,r,k − w(0)
j,r , ξk,i⟩ − P(v′)

j,r,k,i

∣∣∣
=

∣∣∣∣∣∣
∑

k′,k′ ̸=k

∑
i′∈[N ]

(P(τ⌊v′/τ⌋)
j,r,k′,i′ + P(τ⌊v′/τ⌋)

j,r,k′,i′ ) ⟨ξk,i,ξk′,i′ ⟩

∥ξk′,i′∥2
2

+
∑

i′∈[N ],i′ ̸=i

(P(v′)
j,r,k,i′ + P(v′)

j,r,k,i′) ⟨ξk,i,ξk,i′ ⟩

∥ξk,i′∥2
2

∣∣∣∣∣∣
(a)
≤

 ∑
k′,k′ ̸=k

∑
i′∈[N ]

(∣∣∣P(τ⌊v′/τ⌋)
j,r,k′,i′

∣∣∣+
∣∣∣P(τ⌊v′/τ⌋)

j,r,k′,i′

∣∣∣)+
∑

i′∈[N ]

(∣∣∣P(v′)
j,r,k,i′

∣∣∣+
∣∣∣P(v′)

j,r,k,i′

∣∣∣)
 4
√

log(6n2/δ)
d

(b)
≤ 4

√
log(6n2/δ)

d
nα,

where (a) follows from triangle inequality and Lemma 5; (b) follows from the induction hypothesis.

This concludes the proof of Lemma 10.

Lemma 12. Suppose equation 26, equation 27 and equation 28 hold at iteration v′. Then for all k ∈ [K]
and i ∈ [N ],

1. For j ̸= yk,i, Fj(W̃(v′)
j,k , xk,i) ≤ 0.5.

2. For j = yk,i, Fj(W̃(v′)
j,k , xk,i) ≥ 1

m

∑m
r=1 P

(v′)
j,r,k,i − 0.25.

3. yk,if(W̃(v′)
k , xk,i) ≥ 1

m

∑m
r=1 P

(v′)
yk,i,r,k,i − 0.75.
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Proof of 1. First note that for j ̸= yk,i from Lemma 11 we have,

⟨w̃(v′)
j,r,k, µ⟩ ≤ ⟨w(0)

j,r , µ⟩. (32)

since G(v′)
j,r,k ≥ 0 by the induction hypothesis. Also from Lemma 11 for j ̸= yk,i we have,

⟨w̃(v′)
j,r,k, ξk,i⟩ ≤ ⟨w(0)

j,r , ξk,i⟩ + P(v′)
j,r,k,i + 4

√
log(6n2/δ)

d
nα

(a)
≤ ⟨w(0)

j,r , ξk,i⟩ + 4
√

log(6n2/δ)
d

nα (33)

where (a) follows from P(v′)
j,r,k,i ≤ 0 (induction hypothesis). Now using the definition of Fj(W, x) for j ̸= yk,i

we have,

Fj(W̃(v′)
j,k , xk,i) = 1

m

m∑
r=1

[
σ
(

⟨w̃(v′)
j,r,k, yk,iµ⟩

)
+ σ

(
⟨w̃(v′)

j,r,k, ξk,i⟩
)]

(a)
≤ 3 max

r∈[m]

{∣∣∣⟨w(0)
j,r , µ⟩

∣∣∣ , ∣∣∣⟨w(0)
j,r , ξk,i⟩

∣∣∣ , 4
√

log(6n2/δ)
d

nα

}
(b)
≤ 3 max

{
β, 4
√

log(6n2/δ)
d

nα

}
(c)
≤ 0.5. (34)

Here (a) follows from equation 32 and equation 33; (b) follows from the definition of β; (c) follows from
Lemma 10.

Proof of 2. For j = yk,i we have,

Fj(W̃(v′)
j,k , xk,i) = 1

m

m∑
r=1

[
σ
(

⟨w̃(v′)
j,r,k, yk,iµ⟩

)
+ σ

(
⟨w̃(v′)

j,r,k, ξk,i⟩
)]

(a)
≥ 1

m

m∑
r=1

[
⟨w̃(v′)

j,r,k, yk,iµ⟩ + ⟨w̃(v′)
j,r,k, ξk,i⟩

]
(b)
≥ 1

m

m∑
r=1

[
⟨w(0)

j,r , yk,iµ⟩ + ⟨w(0)
j,r , ξk,i⟩ + P(v′)

j,r,k,i − 4
√

log(6n2/δ)
d

nα

]
(c)
≥ 1

m

m∑
r=1

P(v′)
j,r,k,i − 2β − 4

√
log(6n2/δ)

d
nα

(d)
≥ 1

m

m∑
r=1

P(v′)
j,r,k,i − 0.25. (35)

Here (a) follows from σ(z) ≥ z; (b) follows from Lemma 11 and that G(v′)
j,r,k ≥ 0; (c) follows from the definition

of β; (d) follows from Lemma 10.
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Proof of 3. Combining the results in equation 34 and equation 35 we have,

yk,if(W̃(v′)
k , xk,i) = Fyk,i

(W̃(v′)
yk,i,k, xk,i) − F−yk,i

(W̃(v′)
−yk,i,k, xk,i)

(a)
≥ Fyk,i

(W̃(v′)
yk,i,k, xk,i) − 0.5

(b)
≥ 1

m

m∑
r=1

P(v′)
yk,i,r,k,i − 0.75.

where (a) follows from equation 34; (b) follows from equation 35.

This concludes the proof of Lemma 12.

Lemma 13. Suppose equation 26, equation 27 and equation 28 hold at iteration v′. Then for all j ∈ {±1},
k ∈ [K] and i ∈ [N ],

∣∣∣ℓ′(v′)
k,i

∣∣∣ ≤ exp
(

−Fyk,i
(W̃(v′)

yk,i,k, xi) + 0.5
)

.

Proof. We have, ∣∣∣ℓ′(v′)
k,i

∣∣∣ = 1
1 + exp

(
yk,i

[
F+1(W̃(v′)

+1,k, xk,i) − F−1(W̃(v′)
+1,k, xk,i)

])
(a)
≤ exp

(
−yk,i

[
F+1(W̃(v′)

+1,k, xk,i) − F−1(W̃(v′)
+1,k, xk,i)

])
= exp

(
−Fyk,i

(W̃(v′)
yk,i,k, xk,i) + F−yk,i

(W̃(v′)
−yk,i,k, xk,i)

)
(b)
≤ exp

(
−Fyk,i

(W̃(v′)
yk,i,k, xk,i) + 0.5

)
,

where (a) uses 1/(1 + exp(z)) ≤ exp(−z); (b) uses part 1 of Lemma 12.

Lemma 14. Let g(z) = ℓ′(z) = −1/(1 + exp(z)). Further suppose z2 − z1 ≤ c where c ≥ 0. Then,
g(z1)
g(z2) ≤ exp(c). (36)

Proof. We have,

g(z1)
g(z2) = 1 + exp(z2)

1 + exp(z1) ≤ max{1, exp(z2 − z1)}
(a)
≤ exp(c),

where (a) follows from c ≥ 0.

Lemma 15. Suppose equation 26, equation 27 and equation 28 hold at iteration v′. Then for all k ∈ [K]
and i ∈ [N ],

⟨w̃(v′)
yk,i,r,k, ξk,i⟩ ≥ −0.25, (37)

⟨w̃(v′)
yk,i,r,k, ξk,i⟩ ≤ σ

(
⟨w̃(v′)

yk,i,r,k, ξk,i⟩
)

≤ ⟨w̃(v′)
yk,i,r,k, ξk,i⟩ + 0.25. (38)

Proof of equation 37. From Lemma 11 we have,

⟨w̃(v′)
yk,i,r,k, ξk,i⟩ ≥ ⟨w(0)

yk,i,r,k, ξk,i⟩ + P(v′)
yk,i,r,k,i − 4

√
log(6n2/δ)

d
nα

(a)
≥ −β − 4

√
log(6n2/δ)

d
nα

(b)
≥ −0.25.

Here (a) follows from the definition of β and P(v′)
yk,i,r,k,i ≥ 0 for all v′ ≥ 0; (b) follows from Lemma 10.
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Proof of equation 38. The first inequality of equation 38 follows naturally since σ(z) ≥ z for all z ∈ R. For
the second inequality we have,

σ
(

⟨w̃(v′)
yk,i,r,k, ξk,i⟩

)
=

⟨w̃(v′)
yk,i,r,k, ξk,i⟩ ≤ ⟨w̃(v′)

yk,i,r,k, ξk,i⟩ + 0.25, if ⟨w̃(v′)
yk,i,r,k, ξk,i⟩ ≥ 0

0
(a)
≤ ⟨w̃(v′)

yk,i,r,k, ξk,i⟩ + 0.25, if ⟨w̃(v′)
yk,i,r,k, ξk,i⟩ < 0,

where (a) follows from ⟨w̃(v′)
yk,i,r,k, ξk,i⟩ ≥ −0.25. This completes the proof.

This concludes the proof of Lemma 15.

Lemma 16. Suppose equation 26, equation 27 and equation 28 hold at iteration v′. Then for all k, k′ ∈ [K]
and i, i′ ∈ [N ],∣∣∣∣∣yk,if(W̃(v′)

k , xk,i) − yk′,i′f(W̃(v′)
k′ , xk′,i′) − 1

m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]∣∣∣∣∣ ≤ 1.75.

Proof. We can write,

yk,if(W̃(v′)
k , xk,i) − yk′,i′f(W̃(v′)

k′ , xk′,i′)

= Fyk,i
(W̃(v′)

yk,i,k, xk,i) − F−yk,i
(W̃(v′)

−yk,i,k, xk,i)

− Fyk′,i′ (W̃(v′)
yk′,i′ ,k′ , xk′,i′) + F−yk′,i′ (W̃(v′)

−yk′,i′ ,k′ , xk′,i′)

= F−yk′,i′ (W̃(v′)
−yk′,i′ ,k′ , xk′,i′) − F−yk,i

(W̃(v′)
−yk,i,k, xk,i)

+ Fyk,i
(W̃(v′)

yk,i,k, xk,i) − Fyk′,i′ (W̃(v′)
yk′,i′ ,k′ , xk′,i′)

= F−yk′,i′ (W̃(v′)
−yk′,i′ ,k′ , xk′,i′) − F−yk,i

(W̃(v′)
−yk,i,k, xk,i)︸ ︷︷ ︸

I1

+ 1
m

m∑
r=1

[
σ
(

⟨w̃(v′)
yk,i,r,k, yk,iµ⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k′ , yk′,i′µ⟩
)]

︸ ︷︷ ︸
I2

+ 1
m

m∑
r=1

[
σ
(

⟨w̃(v′)
yk,i,r,k, ξk,i⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k′ , ξk′,i′⟩
)]

︸ ︷︷ ︸
I3

.

Next we bound I1, I2 and I3 as follows.

|I1| ≤ F−yk′,i′ (W̃(v′)
−yk′,i′ ,k′ , xk′,i′) + F−yk,i

(W̃(v′)
−yk,i,k, xk,i)

(a)
≤ 1,

where (a) follows from part 1 of Lemma 12. For |I2| we have the following bound,

|I2| ≤ max
{

1
m

m∑
r=1

σ
(

⟨w̃(v′)
yk,i,r,k, yk,iµ⟩

)
,

1
m

m∑
r=1

σ
(

⟨w̃(v′)
yk′,i′ ,r,k′ , yk′,i′µ⟩

)}
(a)
≤ 2 max

r∈[m]

{∣∣∣⟨w(0)
yk,i,r, µ⟩

∣∣∣ , ∣∣∣⟨w(0)
yk′,i′ ,r, µ⟩

∣∣∣ ,G(v′)
yk,i,r,k,G(v′)

yk′,i′ ,r,k′

}
(b)
≤ 2 max

r∈[m]
{β, C ′γ̂α}

(c)
≤ 0.25.
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Here (a) follows Lemma 11, (b) follows from the definition of β and the induction hypothesis, (c) follows from
Lemma 10 and Assumption 1.

Next we derive an upper bound on I3 as follows.

I3 = 1
m

m∑
r=1

[
σ
(

⟨w̃(v′)
yk,i,r,k, ξk,i⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k′ , ξk′,i′⟩
)]

(a)
≤ 1

m

m∑
r=1

[
⟨w̃(v′)

yk,i,r,k, ξk,i⟩ − ⟨w̃(v′)
yk′,i′ ,r,k′ , ξk′,i′⟩

]
+ 0.25

(b)
≤ 1

m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]
+ 2β + 8

√
log(6n2/δ)

d
nα + 0.25

(c)
≤ 1

m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]
+ 0.5.

Here (a) follows from Lemma 15; (b) follows from Lemma 11; (c) follows from Lemma 10.

Similarly, we can get a lower bound for I3 as follows,

I3 = 1
m

m∑
r=1

[
σ
(

⟨w̃(v′)
yk,i,r,k, ξk,i⟩

)
− σ

(
⟨w̃(v′)

yk′,i′ ,r,k′ , ξk′,i′⟩
)]

(a)
≥ 1

m

m∑
r=1

[
⟨w̃(v′)

yk,i,r,k, ξk,i⟩ − ⟨w̃(v′)
yk′,i′ ,r,k′ , ξk′,i′⟩

]
− 0.25

(b)
≥ 1

m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]
− 2β − 8

√
log(6n2/δ)

d
nα − 0.25

(c)
≥ 1

m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]
− 0.5.

Here (a) follows from Lemma 15; (b) follows from Lemma 11; (c) follows from Lemma 10.

Combining the above results, we have

yk,if(W̃(v′)
k , xk,i) − yk′,i′f(W̃(v′)

k′ , xk′,i′) ≤ |I1| + |I2| + I3

≤ 1
m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]
+ 1.75,

and,

yk,if(W̃(v′)
k , xk,i) − yk′,i′f(W̃(v′)

k′ , xk′,i′) ≥ −|I1| − |I2| + I3

≥ 1
m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]
− 1.75.

This implies,∣∣∣∣∣yk,if(W̃(v′)
k , xk,i) − yk′,i′f(W̃(v′)

k′ , xk′,i′) − 1
m

m∑
r=1

[
P(v′)

yk,i,r,k,i − P(v′)
yk′,i′ ,r,k′,i′

]∣∣∣∣∣ ≤ 1.75.

We will now state and prove a version of Lemma C.7 that appears in Cao et al. (2022). Note that Cao et al.
(2022) only considers the heterogeneity arising due to different datapoints for the same model. Interestingly,
we show that the lemma can be extended to the case with different local models and different datapoints as
long as the local models start from the same initialization.
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Lemma 17. Suppose equation 26, equation 27 and equation 28 hold for all 0 ≤ v ≤ v′. Then the following
holds for all 0 ≤ v ≤ v′.

1. 1
m

∑m
r=1

[
P(v)

yk,i,r,k,i − P(v)
yk′,i′ ,r,k′,i′

]
≤ κ for all k, k′ ∈ [K], i, i′ ∈ [N ].

2. yk,if(W̃(v)
k , xk,i) − yk′,i′f(W̃(v)

k′ , xk′,i′) ≤ C1 for all k, k′ ∈ [K] and i, i′ ∈ [N ].

3.
ℓ′(v)

k′,i′

ℓ′(v)
k,i

≤ C2 = exp(C1) for all k, k′ ∈ [K] and i, i′ ∈ [N ].

4. S
(0)
k,i ⊆ S

(v)
k,i where S

(v)
k,i :=

{
r ∈ [m] : ⟨w̃(v)

yk,i,r,k, ξk,i⟩ ≥ 0
}

, and hence
∣∣∣S(v)

k,i

∣∣∣ ≥ 0.4m for all k ∈ [K], i ∈ [N ].

5. S̃
(0)
j,r ⊆ S̃

(v)
j,r where S̃

(0)
j,r :=

{
k ∈ [K], i ∈ [N ] : yk,i = j, ⟨w̃(v)

j,r,k, ξk,i⟩ ≥ 0
}

, and hence
∣∣∣S̃(v)

j,r

∣∣∣ ≥ n
8 .

Here we take κ = 5 and C1 = 6.75.

Proof of 1. We will use a proof by induction. For v = 0, it is simple to verify that 1 holds since P(0)
j,r,k,i = 0

for all j ∈ {±1}, r ∈ [m], k ∈ [K], i ∈ [N ] by definition. Now suppose 1 holds for all 0 ≤ v ≤ ṽ < v′. Then we
will show that 1 also holds at v = ṽ + 1. We have the following cases.

Case 1: (ṽ + 1) (mod τ) ̸= 0

In this case, from equation 23

P(ṽ+1)
yk,i,r,k,i = P(ṽ)

yk,i,r,k,i − η

Nm
ℓ′(ṽ)

k,i σ
′(

⟨w̃(ṽ)
yk,i,r,k,i, ξk,i⟩

)
∥ξk,i∥2

2 .

Thus,

1
m

m∑
r=1

[
P(ṽ+1)

yk,i,r,k,i − P(ṽ+1)
yk′,i′ ,r,k′,i′

]
= 1

m

m∑
r=1

[
P(ṽ)

yk,i,r,k,i − P(ṽ)
yk′,i′ ,r,k′,i′

]
+ η

Nm2

[∣∣∣S(ṽ)
k,i

∣∣∣ (−ℓ′(ṽ)
k,i ) ∥ξk,i∥2

2 −
∣∣∣S(ṽ)

k′,i′

∣∣∣ (−ℓ′(ṽ)
k′,i′) ∥ξk′,i′∥2

2

]
, (39)

where S
(ṽ)
k,i , S

(ṽ)
k′,i′ are defined in 4.

We bound equation 39 in two cases, depending on the value of 1
m

∑m
r=1

[
P(ṽ)

yk,i,r,k,i − P(ṽ)
yk′,i′ ,r,k′,i′

]
.

i) If 1
m

∑m
r=1

[
P(ṽ)

yk,i,r,k,i − P(ṽ)
yk′,i′ ,r,k′,i′

]
≤ 0.9κ. From equation 39 we have,

1
m

m∑
r=1

[
P(ṽ+1)

yk,i,r,k,i − P(ṽ+1)
yk′,i′ ,r,k′,i′

]
≤ 0.9κ + η

Nm2

∣∣∣S(ṽ)
k,i

∣∣∣ (−ℓ′(ṽ)
k,i ) ∥ξk,i∥2

2

(a)
≤ 0.9κ + η

Nm
∥ξk,i∥2

2

(b)
≤ κ.

(a) follows from
∣∣∣S(ṽ)

k,i

∣∣∣ ≤ m, −ℓ′(·) ≤ 1;(b) follows from Lemma 5 and Assumption 5.
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ii) If 1
m

∑m
r=1

[
P(ṽ)

yk,i,r,k,i − P(ṽ)
yk′,i′ ,r,k′,i′

]
> 0.9κ. From Lemma 16 we know that,

yk,if(W̃(ṽ)
k , xk,i) − yk′,i′f(W̃(ṽ)

k′ , xk′,i′) ≥ 1
m

m∑
r=1

[
P(ṽ)

yk,i,r,k,i − P(ṽ)
yk′,i′ ,r,k′,i′

]
− 1.75

(a)
≥ 0.9κ − 0.35κ

= 0.55κ. (40)

where (a) follows from κ = 5. Also note that since 1
m

∑m
r=1 P

(ṽ)
yk,i,r,k,i ≥ 1

m

∑m
r=1 P

(ṽ)
yk′,i′ ,r,k′,i′ + 0.9κ ≥

0.9κ = 4.5, we have from Lemma 12 that

yk,if(W̃(ṽ)
k , xk,i) ≥ 3.75. (41)

Now from the definition of ℓ(·) we have,

(−ℓ′(ṽ)
k,i )

(−ℓ
(ṽ)
k′,i′)

= 1 + exp(yk′,i′f(W̃(ṽ)
k′ , xk′,i′))

1 + exp(yk,if(W̃(ṽ)
k , xk,i))

(a)
≤

1 + exp(yk,if(W̃(ṽ)
k , xk,i) − 0.55κ)

1 + exp(yk,if(W̃(ṽ)
k , xk,i))

(b)
< 1/7.5. (42)

Here (a) follows from equation 40; (b) follows from equation 41.
Thus, ∣∣∣S(ṽ)

k,i

∣∣∣ ∥ξk,i∥2
2 (−ℓ′(ṽ)

k,i )∣∣∣S(ṽ)
k′,i′

∣∣∣ ∥ξk′,i′∥2
2 (−ℓ

(ṽ)
k′,i′)

(a)
≤ 2.5

∥ξk,i∥2
2 (−ℓ′(ṽ)

k,i )
∥ξk′,i′∥2

2 (−ℓ
(ṽ)
k′,i′)

(b)
≤ 2.5 · 3

(−ℓ′(ṽ)
k,i )

(−ℓ
(ṽ)
k′,i′)

(c)
< 1.

Here (a) follows from
∣∣∣S(ṽ)

k,i

∣∣∣ ≤ m,
∣∣∣S(ṽ)

k′,i′

∣∣∣ ≥ 0.4m using our induction hypothesis; (b) follows from

Lemma 5; (c) follows from equation 42. This implies
∣∣∣S(ṽ)

k,i

∣∣∣ ∥ξk,i∥2
2 (−ℓ′(ṽ)

k,i ) <
∣∣∣S(ṽ)

k′,i′

∣∣∣ ∥ξk′,i′∥2
2 (−ℓ

(ṽ)
k′,i′).

Now from equation 39 we have,

1
m

m∑
r=1

[
P(ṽ+1)

yk,i,r,k,i − P(ṽ+1)
yk′,i′ ,r,k′,i′

]
≤ 1

m

m∑
r=1

[
P(ṽ)

yk,i,r,k,i − P(ṽ)
yk′,i′ ,r,k′,i′

]
≤ κ,

where the last inequality follows from our induction hypothesis.

Case 2: (ṽ + 1) (mod τ) = 0

In this case, using equation 23 we can write our update equation as follows:

1
m

m∑
r=1

[
P(ṽ+1)

yk,i,r,k,i − P(ṽ+1)
yk′,i′ ,r,k′,i′

]
= 1

m

m∑
r=1

[
P(ṽ+1−τ)

yk,i,r,k,i − P(ṽ+1−τ)
yk′,i′ ,r,k′,i′

]
+ 1

n

η

m2

τ−1∑
s=0

(∣∣∣S(ṽ+1−τ+s)
k,i

∣∣∣ (−ℓ′(ṽ+1−τ+s)
k,i ) ∥ξk,i∥2

2 −
∣∣∣S(ṽ+1−τ+s)

k′,i′

∣∣∣ (−ℓ
(ṽ+1−τ+s)
k′,i′ ) ∥ξk′,i′∥2

2

)
︸ ︷︷ ︸

:=I1

= 1
m

m∑
r=1

[
P(ṽ+1−τ)

yk,i,r,k,i − P(ṽ+1−τ)
yk′,i′ ,r,k′,i′

]
+ I1

n
. (43)
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From our induction hypothesis

we know that

1
m

m∑
r=1

[
P(ṽ)

yk,i,r,k,i − P(ṽ)
yk′,i′ ,r,k′,i′

]
≤ κ. (44)

Now unrolling the LHS expression in equation 44 using equation 23, we see that this implies

1
m

m∑
r=1

[
P(ṽ+1−τ)

yk,i,r,k,i − P(ṽ+1−τ)
yk′,i′ ,r,k′,i′

]
+ I1

N
≤ κ (45)

Case 2a): I1 ≥ 0.

In this case it directly follows equation 43 and equation 45 that 1
m

∑m
r=1

[
P(ṽ+1)

yk,i,r,k,i − P(ṽ+1)
yk′,i′ ,r,k′,i′

]
≤ κ since

N ≤ n.

Case 2b): If I1 < 0.

In this case from equation 43 we have,

1
m

m∑
r=1

[
P(ṽ+1)

yk,i,r,k,i − P(ṽ+1)
yk′,i′ ,r,k′,i′

]
≤ 1

m

m∑
r=1

[
P(ṽ+1−τ)

yk,i,r,k,i − P(ṽ+1−τ)
yk′,i′ ,r,k′,i′

]
≤ κ.

where the last inequality follows from our induction hypothesis.

Proof of 2. For any 0 ≤ v ≤ v′ we have,

yk,if(W̃(v)
k , xk,i) − yk′,i′f(W̃(v)

k′ , xk′,i′)
(a)
≤ 1

m

m∑
r=1

[
P(v)

yk,i,r,k,i − P(v)
yk′,i′ ,r,k′,i′

]
+ 1.75

(b)
≤ κ + 1.75 = C1.

Here (a) follows from Lemma 16; (b) follows from 1.

Proof of 3. For any 0 ≤ v ≤ v′ we have,

ℓ′(v)
k′,i′

ℓ′(v)
k,i

(a)
≤ max

{
1, exp

(
yk,if(W̃(v)

k , xk,i) − yk′,i′f(W̃(v)
k′ , xk′,i′)

)} (b)
≤ exp(C1).

Here (a) follows from Lemma 14;(b) follows from 2.

Proof of 4. To prove 4, we will use the result in 3 and show that ⟨w̃(0)
yk,i,r,k, ξk,i⟩ > 0 implies ⟨w̃(v)

yk,i,r,k, ξk,i⟩ > 0
for all 1 ≤ v ≤ v′. We use a proof by induction. Assuming ⟨w̃(v)

yk,i,r,k, ξk,i⟩ > 0 for all 0 ≤ v ≤ ṽ < v′, we will
show that ⟨w̃(ṽ+1)

yk,i,r,k, ξk,i⟩ > 0. We have the following cases.

Case 1: (ṽ + 1) (mod τ) ̸= 0.

Using the fact that ⟨w̃(ṽ)
yk,i,r,k, ξk,i⟩ > 0 we have,
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⟨w̃(ṽ+1)
yk,i,r,k, ξk,i⟩ = ⟨w̃(ṽ)

yk,i,r,k, ξk,i⟩ + η

Nm
(−ℓ′(ṽ)

k,i ) ∥ξk,i∥2
2

+ η

Nm

∑
i′∈[N ],i′ ̸=i

(−ℓ′(ṽ)
k,i′)σ′

(
⟨w̃(ṽ)

yk,i,r,k, ξk,i′⟩
)

⟨ξk,i, ξk,i′⟩

(a)
≥ ⟨w̃(ṽ)

yk,i,r,k, ξk,i⟩ +
ησ2

pd

2Nm
(−ℓ′(ṽ)

k,i ) − η

Nm
2σ2

p

√
d log(4n2/δ)

∑
i′∈[N ],i′ ̸=i

(−ℓ′(ṽ)
k,i′)

(b)
≥ ⟨w̃(ṽ)

yk,i,r,k, ξk,i⟩ +
ησ2

pd

2Nm
(−ℓ′(ṽ)

k,i ) − η

m
2σ2

p

√
d log(4n2/δ)C2(−ℓ′(ṽ)

k,i )
(c)
≥ ⟨w̃(ṽ)

yk,i,r,k, ξk,i⟩

> 0.

Here (a) follows from Lemma 5; (b) follows from 3; (c) follows from Assumption 1 by choosing a sufficiently
large d.

Case 2: (ṽ + 1) (mod τ) = 0.

From our induction hypothesis we know that ⟨w̃(ṽ+1−τ+s)
yk,i,r,k , ξk,i⟩ > 0 for all 0 ≤ s ≤ τ − 1. Then,

⟨w̃(ṽ)
yk,i,r,k, ξk,i⟩ = ⟨w̃(ṽ+1−τ)

yk,i,r,k , ξk,i⟩ + η

nm

τ−1∑
s=0

(−ℓ′(ṽ+1−τ+s)
k,i ) ∥ξk,i∥2

2︸ ︷︷ ︸
I1

+ η

nm

τ−1∑
s=0

∑
i′∈[N ],i′ ̸=i

(−ℓ′(ṽ+1−τ+s)
k,i′ )σ′

(
⟨w̃(ṽ+1−τ+s)

yk,i,r,k , ξk,i′⟩
)

⟨ξk,i, ξk,i′⟩

︸ ︷︷ ︸
I2

+ η

nm

τ−1∑
s=0

∑
k′,k′ ̸=k

∑
i′∈[N ]

(−ℓ′(ṽ+1−τ+s)
k′,i′ )σ′

(
⟨w̃(ṽ+1−τ+s)

yk,i,r,k′ , ξk′,i′⟩
)

⟨ξk,i, ξk′,i′⟩

︸ ︷︷ ︸
I3

(46)

Using Lemma 5 we can lower bound I1 as follows:

I1 ≥
ησ2

pd

2nm

τ−1∑
s=0

(−ℓ′(ṽ+1−τ+s)
k,i ),

where the inequality follows from Lemma 5.

For |I2| we have,

Lemma 5 as follows:

|I2|
(a)
≤

η2σ2
p

√
d log(4n2/δ)
nm

τ−1∑
s=0

∑
i′∈[N ],i′ ̸=i

(−ℓ′(ṽ+1−τ+s)
k,i′ )

(b)
≤

η(N − 1)C22σ2
p

√
d log(4n2/δ)

nm

τ−1∑
s=0

(−ℓ′(ṽ+1−τ+s)
k,i ).
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Here (a) follows from Lemma 5; (b) follows from 3. Similarly we can bound |I3| as follows,

|I3|
(a)
≤

η2σ2
p

√
d log(4n2/δ)
nm

τ−1∑
s=0

∑
k′,k′ ̸=k

∑
i′∈[N ]

(−ℓ′(ṽ+1−τ+s)
k′,i′ )

(b)
≤

η(n − N)C22σ2
p

√
d log(4n2/δ)

nm

τ−1∑
s=0

(−ℓ′(ṽ+1−τ+s)
k,i ).

Here (a) follows from Lemma 5; (b) follows from 3. Substituting the bounds for I1, |I2|, |I3| in equation 46 we
have,

⟨w̃(ṽ)
yk,i,r,k, ξk,i⟩ ≥ ⟨w̃(ṽ+1−τ)

yk,i,r,k , ξk,i⟩ + I1 − |I2| − |I3|

≥ ⟨w̃(ṽ+1−τ)
yk,i,r,k , ξk,i⟩ +

ησ2
pd

2nm

τ−1∑
s=0

(−ℓ′(ṽ+1−τ)+s
k,i )

− ηC2

m
2σ2

p

√
d log(4n2/δ)

τ−1∑
s=0

(−ℓ′(ṽ+1−τ+s)
k,i )

(a)
≥ ⟨w̃(ṽ+1−τ)

yk,i,r,k , ξk,i⟩

≥ 0.

Here (a) follows from Assumption 1 by choosing a sufficiently large d. Thus we have shown that
⟨w̃(v)

yk,i,r,k, ξk,i⟩ ≥ 0 for all 0 ≤ v ≤ v′ and r such that ⟨w(0)
yk,i,r,k, ξk,i⟩ ≥ 0. This implies S

(0)
k,i ⊆ S

(v)
k,i

for all 0 ≤ v ≤ v′. Furthermore we know that
∣∣∣S(0)

k,i

∣∣∣ ≥ 0.4m for all k ∈ [K], i ∈ [N ] from Lemma 7 and thus∣∣∣S(v)
k,i

∣∣∣ ≥ 0.4m for all k ∈ [K], i ∈ [N ], 0 ≤ v ≤ v′.

Proof of 5. Note that as part of the proof of 4 we have already shown that ⟨w̃(v)
j,r,k, ξk,i⟩ ≥ 0 for all 0 ≤ v ≤ v′

and k, i such that yk,i = j and ⟨w̃(0)
j,r,k, ξk,i⟩ ≥ 0. This implies S̃

(0)
j,r ⊆ S̃

(v)
j,r for all 0 ≤ v ≤ v′. Furthermore we

know that
∣∣∣S̃(0)

j,r

∣∣∣ ≥ n/8 for all j ∈ {±1}, r ∈ [m] from Lemma 8 and thus
∣∣∣S̃(v)

j,r

∣∣∣ ≥ n/8 for all j ∈ {±1}, r ∈ [m].

This concludes the proof of Lemma 17.

We are now ready to prove Theorem 3.

C.2.4 Proof of Theorem 3

We will again use a proof by induction to prove this theorem.

Proof of equation 27. For j = yk,i we know from equation 24 that P(v′+1)
j,r,k,i = 0 and hence we look at the case

where j ̸= yk,i.

Case 1: (v′ + 1) (mod τ) ̸= 0.

a) If P(v′)
j,r,k,i < −0.5β − 4

√
log(6n2/δ)

d nα, then from equation 31 in Lemma 11 we know that,

⟨w̃(v′)
j,r,k, ξk,i⟩ ≤ ⟨w(0)

j,r , ξk,i⟩ + P(v′)
j,r,k,i + 4

√
log(6n2/δ)

d
nα

(a)
≤ 0.5β + P(v′)

j,r,k,i + 4
√

log(6n2/δ)
d

nα

(b)
< 0.
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Here (a) follows from definition of β in Theorem 3; (b) follows from P(v′)
j,r,k,i < −0.5β − 4

√
log(6n2/δ)

d nα.

Now using the fact that ⟨w̃(v′)
j,r,k, ξk,i⟩ < 0 we have σ′

(
⟨w̃(v′)

j,r,k, ξk,i⟩
)

= 0, which implies P(v′+1)
j,r,k,i = P(v′)

j,r,k,i ≥

−β − 8
√

log(6n2/δ)
d nα using the induction hypothesis.

b). If P(v′)
j,r,k,i ≥ −0.5β − 4

√
log(6n2/δ)

d nα, then from equation 24 we have,

P(v′+1)
j,r,k,i = P(v′)

j,r,k,i + η

Nm
ℓ′(v′)

k,i σ
′(

⟨w̃(v′)
j,r,k, ξk,i⟩

)
∥ξk,i∥2

2 1
(
j = −yk,i

)
(a)
≥ −0.5β − 4

√
log(6n2/δ)

d
nα −

3ησ2
pd

2Nm
(b)
≥ −β − 8

√
log(6n2/δ)

d
nα. (47)

Here (a) follows from |ℓ′(·)| ≤ 1 and Lemma 5; (b) follows from 3ησ2
pd

2Nm ≤ 4
√

log(6n2/δ)
d nα using Assumption 5.

Case 2: (v′ + 1) (mod τ) = 0.

In this case, from equation 24 we have,

P(v′+1)
j,r,k,i = P(v′+1−τ)

j,r,k,i + η

nm

τ−1∑
s=0

ℓ′(v′+1−τ+s)
k,i σ

′(
⟨w̃(v′+1−τ+s)

j,r,k , ξk,i⟩
)

∥ξk,i∥2
2 1
(
j = −yk,i

)
︸ ︷︷ ︸

:=I2

= P(v′+1−τ)
j,r,k,i + η

nm
I2. (48)

Now suppose instead of doing the update in equation 48, we performed the following hypothetical update:

Ṗ(v′+1)
j,r,k,i = P(v′)

j,r,k,i + η

Nm
ℓ′(v′)

k,i σ
′(

⟨w̃(v′)
j,r,k, ξk,i⟩

)
∥ξk,i∥2

2 1
(
j = −yk,i

)
(a)= P(v′+1−τ)

j,r,k,i + η

Nm

τ−1∑
s=0

ℓ′(v′+1−τ+s)
k,i σ

′(
⟨w̃(v′+1−τ+s)

j,r,k , ξk,i⟩
)

∥ξk,i∥2
2 1
(
j = −yk,i

)
= P(v′+1−τ)

j,r,k,i + η

Nm
I2.

Here (a) uses equation 24 for v = [v′ + 1 − τ : v′]. From the argument in Case 1 we know that Ṗ(v′+1)
j,r,k,i ≥

−β − 8
√

log(6n2/δ)
d nα. Observe that P(v′+1)

j,r,k,i ≥ Ṗ(v′+1)
j,r,k,i since I2 ≤ 0 and N ≤ n and thus P(v′+1)

j,r,k,i ≥

−β − 8
√

log(6n2/δ)
d nα.

Proof of equation 26. We know from equation 23 that for j ̸= yk,i, P
(v′)
j,r,k,i = 0 for all 0 ≤ v′ ≤ T ∗τ − 1 and

hence we focus on the case where j = yk,i.

Case 1: (v′ + 1) (mod τ) ̸= 0.

Let v′
j,r,k,i be the last iteration such that v′

j,r,k,i (mod τ) = 0 and P(v′
j,r,k,i)

j,r,k,i ≤ 0.5α and let s be the maximum
value in {0, 1, . . . , τ − 1} such that P(v′

j,r,k,i+s)
j,r,k,i ≤ 0.5α. Define vj,r,k,i = v′

j,r,k,i + s. We see that for all
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v > vj,r,k,i we have P(v)
j,r,k,i > 0.5α. Furthermore,

P(v′+1)
j,r,k,i

(a)
≤ P(vj,r,k,i)

j,r,k,i − η

Nm
ℓ′(vj,r,k,i)

k,i σ
′(

⟨w̃(vj,r,k,i)
j,r,k , ξk,i⟩

)
∥ξk,i∥2

2 1
(
j = yk,i

)
︸ ︷︷ ︸

L1

−
∑

vj,r,k,i<v≤v′

η

Nm
ℓ′(v)

k,i σ
′(

⟨w̃(v)
j,r,k, ξk,i⟩

)
∥ξk,i∥2

2 1
(
j = yk,i

)
︸ ︷︷ ︸

L2

. (49)

Here (a) uses the fact that we are avoiding the scaling down by a factor of 1
K which occurs at every v

(mod τ) = 0 (see equation 23) for v′
j,r,k,i < v ≤ v′.

We know P(vj,r,k,i)
j,r,k,i ≤ 0.5α. We can bound L1 and L2 as follows:

L1
(a)
≤ η

Nm
∥ξk,i∥2

2

(b)
≤

3ησ2
pd

2Nm

(c)
≤ 1

(d)
≤ 0.25α.

Here (a) uses |ℓ′(·)| ≤ 1, σ′(·) ≤ 1; (b) uses Lemma 5; (c) uses Assumption 5; (d) uses T ∗τ ≥ e.

Now note that for vj,r,k,i < v ≤ v′ since P(v)
j,r,k,i ≥ 0.5α we have,

⟨w̃(v)
j,r,k, ξk,i⟩

(a)
≥ ⟨w(0)

j,r,k, ξk,i⟩ + P(v)
j,r,k,i − 4

√
log(6n2/δ)

d
nα

(b)
≥ −0.5β + 0.5α − 4

√
log(6n2/δ)

d
nα

(c)
≥ 0.25α. (50)

Here (a) follows from Lemma 11, (b) follows from the definition of β (see Theorem 3) and P(v)
j,r,k,i ≥ 0.5α, (c)

follows from β ≤ 1
12 ≤ 0.1α and 4

√
log(6n2/δ)

d nα ≤ 0.2α using Assumption 1.

Substituting the bound above in L2 we have,

|L2|
(a)
≤

∑
vj,r,k,i<v≤v′

η

Nm
exp

(
−⟨w̃(v)

j,r,k, ξk,i⟩ + 0.5
)

σ
′(

⟨w̃(v)
j,r,k, ξk,i⟩

)
∥ξk,i∥2

2 1
(
j = yk,i

)
(b)
≤

∑
vj,r,k,i<v≤v′

2η

Nm
exp

(
−⟨w̃(v)

j,r,k, ξk,i⟩
)

∥ξk,i∥2
2 (51)

(c)
≤

∑
vj,r,k,i<v≤v′

2η

Nm
exp(−0.25α)

3σ2
pd

2

= 2η(v′ − vj,r,k,i − 1)
Nm

exp(− log T ∗τ)
3σ2

pd

2

≤ 2η(T ∗τ)
Nm

exp(− log T ∗τ)
3σ2

pd

2

=
3ησ2

pd

Nm
(d)
≤ 0.25α.

For (a) we use Lemma 13; for (b) we use exp(0.5) ≤ 2 and ⟨w̃(v)
j,r,k, ξk,i⟩ ≥ 0 from equation 50, (c) follows

from Lemma 5 and equation 50; (d) follows from Assumption 5.
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Thus substituting the bounds for L1 and L2 we have,

P(v′+1)
j,r,k,i ≤ α,

which completes our proof.

Case 2: (v′ + 1) (mod τ) = 0.

Suppose instead of doing the update in equation 23, we performed the following hypothetical update

Ṗ
(v′+1)
j,r,k,i′ = P(v′)

j,r,k,i − η

Nm
ℓ′(v′)

k,i σ
′(

⟨w̃(v′)
j,r,k, ξk,i⟩

)
∥ξk,i∥2

2 1
(
j = yk,i

)
. (52)

From the argument in Case 1 we know that Ṗ
(v′+1)
j,r,k,i′ ≤ α. Observe that P(v′+1)

j,r,k,i ≤ Ṗ
(v′+1)
j,r,k,i′ and thus

P(v′+1)
j,r,k,i ≤ α.

Proof of equation 28. This part bounds G(v′+1)
j,r,k . To do so we show that the growth of G(v′+1)

j,r,k is upper
bounded by the growth of P(v′+1)

yk,1,r∗,k,1 for any r∗ ∈ S
(0)
k,1, that is,

G(v′+1)
j,r,k

P(v′+1)
yk,1,r∗,k,1

≤ C ′γ̂.

We will again use a proof by induction. We first argue the base case of our induction. Since r∗ ∈ S
(0)
k,1 ⊆ S

(v)
k,1,

so,

P(1)
yk,1,r∗,k,1 = P(0)

yk,1,r∗,k,1︸ ︷︷ ︸
=0

− η

Nm
ℓ′(0)

k,1 σ′
(〈

w(0)
yk,1,r∗,k, ξk,1

〉)
︸ ︷︷ ︸

=1(∵r∗∈S
(0)
k,1)

∥ξk,1∥2
2

=
η ∥ξk,1∥2

2
Nm

(
−ℓ′(0)

k,1

) (a)
≥

ησ2
pd

2Nm
,

where (a) follows from Lemma 5. On the other hand,

G(1)
j,r,k = G(0)

j,r,k︸ ︷︷ ︸
=0

− η

Nm

∑
i∈[N ]

ℓ′(0)
k,iσ

′(
⟨w(0)

j,r,k, yk,iµ⟩
)

∥µ∥2
2 ≤

∥µ∥2
2 η

m
.

Therefore,

G(1)
j,r,k

P(1)
yk,1,r∗,k,1

≤
2N ∥µ∥2

2
σ2

pd
≤ C ′γ̂,

if C ′ ≥ 2. Now assuming equation 53 holds at v′ we have the following cases for (v′ + 1).

G(v)
j,r,k

P(v)
yk,1,r∗,k,1

≤ C ′γ̂.

Case 1: (v′ + 1) (mod τ) ̸= 0. From equation 22 we have,

G(v′+1)
j,r,k = G(v′)

j,r,k + η

Nm

∑
i∈[N ]

(−ℓ′(v′)
k,i )σ

′(
⟨w̃(v′)

j,r,k, yk,iµ⟩
)

∥µ∥2
2

(a)
≤ G(v′)

j,r,k + ηC2

m
(−ℓ′(v′)

k,1 ) ∥µ∥2
2

(53)
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where (a) follows from part (3) in Lemma 17. At the same time since ⟨w(v)
yk,1,r∗,k, ξk,1⟩ ≥ 0 for any r∗ ∈ S

(0)
k,1

and for all 0 ≤ v ≤ T ∗τ − 1, we have from equation 23:

P(v′+1)
yk,1,r∗,k,1 = P(v′)

yk,1,r∗,k,1 + η

Nm
(−ℓ′(v′)

k,1 ) ∥ξk,1∥2
2

(a)
≥ P(v′)

yk,1,r∗,k,1 + η

Nm
(−ℓ′(v′)

k,1 )
σ2

pd

2 ,

where (a) follows from Lemma 5.

Thus,

G(v′+1)
j,r,k

P(v′+1)
yk,1,r∗,k,1

≤ max

 G(v′)
j,r,k

P(v′)
yk,1,r∗,k,1

,
2C2N ∥µ∥2

2
σ2

pd

 (a)
≤ max{C ′γ̂, 2C2γ̂}

(b)
≤ C ′γ̂.

Here (a) follows from the definition of γ̂; (b) follows from setting C ′ = 2C2.

Case 2: (v′ + 1) (mod τ) = 0.

We have from equation 22,

G(v′+1)
j,r,k = G(v′+1−τ)

j,r,k + η

nm

τ−1∑
s=0

∑
k′

∑
i∈[N ]

(−ℓ′(v′+1−τ+s)
k′,i )σ

′(
⟨w̃(v−τ+s)

j,r,k , yk,iµ⟩
)

∥µ∥2
2

(a)
≤ G(v′+1−τ)

j,r,k + ηC2

m

τ−1∑
s=0

(−ℓ′(v′+1−τ+s)
k,1 ) ∥µ∥2

2 ,

where (a) follows from part (3) in Lemma 17. At the same time since ⟨w(v)
yk,1,r∗,k, ξk,1⟩ ≥ 0 for any r∗ ∈ S

(0)
k,1

and for all 0 ≤ v ≤ T ∗τ − 1, we have from equation 23,

P(v′+1)
yk,1,r∗,k,1 = P(v′+1−τ)

yk,1,r∗,k,1 + η

nm

τ−1∑
s=0

(−ℓ′(v′+1−τ+s)
k,1 ) ∥ξk,1∥2

2

(a)
≥ P(v′+1−τ)

yk,1,r∗,k,1 + η

nm

τ−1∑
s=0

(−ℓ′(v′+1−τ+s)
k,1 )

σ2
pd

2 ,

where (a) follows from Lemma 5. Thus,

G(v′+1)
j,r,k

P(v′+1)
yk,1,r∗,k,1

≤ max

G(v′+1−τ)
j,r,k

P(v′+1−τ)
yk,1,r∗,k,1

,
2C2n ∥µ∥2

2
σ2

pd

 (a)
≤ max{C ′γ̂, 2C2γ̂}

(b)
≤ C ′γ̂.

Here (a) follows from the definition of γ̂; (b) follows from setting C ′ = 2C2. Thus we have shown G(v′+1)
j,r,k ≤

C ′γ̂P(v′+1)
yk,1,r∗,k,1 ≤ C ′γ̂α where the last inequality follows from P(v′+1)

yk,1,r∗,k,1 ≤ α.

Now that we have proved Theorem 3, that is, equation 26, equation 27 and equation 28 hold for all
0 ≤ v ≤ T ∗τ − 1, we state a simple proposition that extends the result in Lemma 17 for all 0 ≤ v ≤ T ∗τ − 1.
Proposition 2. Under assumptions, for all 0 ≤ v ≤ T ∗τ − 1 we have

1. 1
m

∑m
r=1

[
P(v)

yk,i,r,k,i − P(v)
yk′,i′ ,r,k′,i′

]
≤ κ for all k, k′ ∈ [K], i, i′ ∈ [N ].

2. yk,if(W̃(v)
k , xk,i) − yk′,i′f(W̃(v)

k′ , xk′,i′) ≤ C1 for all k, k′ ∈ [K] and i, i′ ∈ [N ].

3.
ℓ′(v)

k′,i′

ℓ′(v)
k,i

≤ C2 = exp(C1) for all k, k′ ∈ [K] and i, i′ ∈ [N ].
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4. S
(0)
k,i ⊆ S

(v)
k,i where S

(v)
k,i :=

{
r ∈ [m] : ⟨w̃(v)

yk,i,r,k, ξk,i⟩ ≥ 0
}

, and hence
∣∣∣S(v)

k,i

∣∣∣ ≥ 0.4m for all k ∈ [K], i ∈ [N ].

5. S̃
(0)
j,r ⊆ S̃

(v)
j,r where S̃

(v)
j,r :=

{
k ∈ [K], i ∈ [N ] : yk,i = j, ⟨w̃(v)

j,r,k, ξk,i⟩ ≥ 0
}

, and hence
∣∣∣S̃(v)

j,r

∣∣∣ ≥ n
8 .

Here we take κ = 5 and C1 = 6.75.

C.3 First Stage of Training.

Define,

T1 = C3nm

ησ2
pdτ

(54)

where C3 = Θ(1) is some large constant. In this stage, our goal is to show that P
(T1)
yk,i,r∗,k,i ≥ 2 for all r∗ such

that r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r∗ , ξk,i⟩ ≥ 0
}

. To do so, we first introduce the following lemmas.

Lemma 18. For all 0 ≤ t ≤ T1 − 1 and 0 ≤ s ≤ τ − 1 we have,

max
j,r,k

{
Γ(t)

j,r + γ
(t,s)
j,r,k

}
≤

C3n ∥µ∥2
2

σ2
pd

= O (1) .

Proof. We have,

Γ(t)
j,r + γ

(t,s)
j,r,k = − η

nm

t−1∑
t′=0

∑
k

∑
i∈[N ]

τ−1∑
s=0

ℓ′(t′,s)
k,i σ

′(
⟨w(t′,s)

j,r,k , yk,iµ⟩
)

∥µ∥2
2

− η

Nm

s∑
s′=0

∑
i∈[N ]

ℓ′(t,s′)
k,i σ

′(
⟨w(t,s′)

j,r,k , yk,iµ⟩
)

∥µ∥2
2

(a)
≤ − η

nm

t−1∑
t′=0

∑
k

∑
i∈[N ]

τ−1∑
s=0

ℓ′(t′,s)
k,i ∥µ∥2

2 − η

Nm

s∑
s′=0

∑
i∈[N ]

ℓ′(t,s′)
k,i ∥µ∥2

2

(b)
≤

η(t + 1)τ ∥µ∥2
2

m

≤
ηT1τ ∥µ∥2

2
m

= C3n ∥µ∥2
2

σ2
pd

(c)= O (1) .

Here (a) follows from σ′(·) ∈ {0, 1}, (b) follows from |ℓ′(·)| ≤ 1, (c) follows from Assumption 1.

Lemma 19. For all 0 ≤ t ≤ T1 − 1 and 0 ≤ s ≤ τ − 1 we have,

max
j,r,k,i

{
P

(t)
j,r,k,i + ρ

(t,s)
j,r,k,i

}
= O (1) .
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Proof. We have from equation 12 and equation 18,

P
(t)
j,r,k,i + ρ

(t,s)
j,r,k,i = − η

nm

t−1∑
t′=0

τ−1∑
s=0

ℓ′(t′,s)
k,i σ

′(
⟨w̃(v′)

j,r,k, ξk,i⟩
)

∥ξk,i∥2
2 1
(
yk,i = j

)
− η

Nm

s∑
s′=0

ℓ′(t,s′)
k,i σ

′(
⟨w(t,s′)

j,r,k , ξk,i⟩
)

∥ξk,i∥2
2 1
(
yk,i = j

)
(a)
≤ − η

nm

t−1∑
t′=0

τ−1∑
s=0

ℓ′(t′,s)
k,i ∥ξk,i∥2

2 − η

Nm

s∑
s′=0

ℓ′(t,s′)
k,i ∥ξk,i∥2

2

≤
η(t + 1)τ ∥ξk,i∥2

2
Nm

(b)
≤

3ηT1τσ2
pd

2Nm

≤ 3C3n

2N
= O (1) .

Here (a) follows from σ′(·) ≤ 1, (b) follows from t ≤ T1 − 1 and Lemma 5.

Lemma 20. For any k ∈ [K] and i ∈ [N ], we have Fj(W(t,s)
j,k , xk,i) = O (1) for all j ∈ {±1}, 0 ≤ t ≤ T1 − 1

and 0 ≤ s ≤ τ − 1.

Proof. We have,

Fj(W(t,s)
j,k , xk,i)

= 1
m

m∑
r=1

[
σ
(

⟨w(t,s)
j,r,k, yk,iµ⟩

)
+ σ

(
⟨w(t,s)

j,r,k, ξk,i⟩
)]

(a)
≤ 1

m

m∑
r=1

[∣∣∣⟨w(t,s)
j,r,k, yk,iµ⟩

∣∣∣+
∣∣∣⟨w(t,s)

j,r,k, ξk,i⟩
∣∣∣]

(b)
≤ 1

m

m∑
r=1

[∣∣∣⟨w(0)
j,r , µ⟩

∣∣∣+ Γ(t)
j,r + γ

(t,s)
j,r,k +

∣∣∣⟨w(0)
j,r , ξk,i⟩

∣∣∣+ P
(t)
j,r,k,i + ρ

(t,s)
j,r,k,i + 4

√
log(6n2/δ)

d
nα

]

≤ 5 max
r∈[m]

{∣∣∣⟨w(0)
j,r , µ⟩

∣∣∣ , Γ(t)
j,r + γ

(t,s)
j,r,k,

∣∣∣⟨w(0)
j,r , ξk,i⟩

∣∣∣ , P
(t)
j,r,k,i + ρ

(t,s)
j,r,k,i, 4

√
log(6n2/δ)

d
nα

}
(c)
≤ 5 max

r∈[m]

{
β, Γ(t)

j,r + γ
(t,s)
j,r,k, P

(t)
j,r,k,i + ρ

(t,s)
j,r,k,i, 4

√
log(6n2/δ)

d
nα

}
(d)= O (1) .

Here (a) follows from σ(z) ≤ |z|, (b) follows from Lemma 11, (c) follows from the definition of β, (d) follows
from Lemma 10, Lemma 18 and Lemma 19.

Lemma 21. For all t ≥ T1 and 0 ≤ s ≤ τ − 1 we have,

P
(t)
yk,i,r∗,k,i + ρ

(t,s)
yk,i,r∗,k,i ≥ P

(T1)
yk,i,r∗,k,i ≥ 2. (55)

where r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r,k, ξk,i⟩ > 0
}

.

Proof. First note that from Lemma 20, we have for any k ∈ [K], i ∈ [N ], F+1(W(t,s)
+1,k, xk,i), F−1(W(t,s)

−1,k, xk,i) =
O (1) for all t ∈ {0, 1, . . . , T1 − 1}, s ∈ {0, 1, . . . , τ − 1}. Thus there exists a positive constant C such that for
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all 0 ≤ t ≤ T1 − 1 and 0 ≤ s ≤ τ − 1 we have,

−ℓ′(t′,s)
k,i ≥ C. (56)

Next we know from Proposition 2 part 4 that,

⟨w(t,s)
yk,i,r∗,k, ξk,i⟩ > 0 for all 0 ≤ t ≤ T1 − 1, 0 ≤ s ≤ τ − 1,

where r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r,k, ξk,i⟩ > 0
}

. This implies that for t ≥ T1,

P
(t)
yk,i,r∗,k,i + ρ

(t,s)
yk,i,r∗,k,i ≥ P

(T1)
yk,i,r∗,k,i

(a)= −
T1∑

t′=0

η

nm

τ−1∑
s=0

ℓ′(t′,s)
k,i · ∥ξk,i∥2

2

(b)
≥

ηCT1τσ2
pd

2nm
(b)
≥ 2. (57)

Here (a) follows from equation 18; (b) follows from equation 56 and Lemma 5; (b) follows from the definition
of T1 in equation 54 and setting C3 = 4/C.

C.4 Second Stage of Training

In the first stage we have shown that for any k ∈ [K] and i ∈ [N ], P
(t)
yk,i,r∗,k,i + ρ

(t,s)
yk,i,r∗,k,i ≥ 2 for all t ≥ T1

and s ∈ [0 : τ − 1]. Our goal in the second stage is to show that for every round in T1 ≤ t ≤ T ∗ − 1, the loss
of the global model is decreasing. To do so, we will show that our objective satisfies the following property

⟨∇Lk(W(t,s)
k ), W(t,s)

k − W∗⟩ ≥ Lk(W(t,s)
k ) − ϵ

2τ
,

where W∗ is defined as follows.

w∗
j,r := w(0)

j,r + 5 log(2τ/ϵ)

∑
k

∑
i∈[N ]

1
(
j = yk,i

) ξk,i

∥ξk,i∥2
2

 . (58)

Using this we can easily show that the loss of the global model is decreasing in every round leading to
convergence. We now state and prove some intermediate lemmas.

Lemma 22. Under Condition 1, we have

∥∥∥W(T1) − W∗
∥∥∥

2
= O

(√
mn

σ2
pd

log(τ/ϵ)
)

.
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Proof. ∥∥∥W(T1) − W∗
∥∥∥

2
≤
∥∥∥W(T1) − W(0)

∥∥∥
2

+
∥∥∥W∗ − W(0)

∥∥∥
2

(a)= O
(

m1/2 ∥µ∥−1
2 max

j,r
Γ(T1)

j,r

)
+ O

(
m1/2n1/2σ−1

p d−1/2 max
j,r,k,i

{
P

(T1)
j,r,k,i, P

(T1)
j,r,k,i

})
+ O

(
m1/2nσ−1

p d−3/4
)

+
∥∥∥W∗ − W(0)

∥∥∥
2

(b)= O
(

m1/2n ∥µ∥2 σ−2
p d−1

)
+ O

(
m1/2n1/2σ−1

p d−1/2
)

+ O
(

m1/2n1/2 log(τ/ϵ)σ−1
p d−1/2

)
(c)= O

(
m1/2n1/2σ−1

p d−1/2
)

+ O
(

m1/2n1/2 log(τ/ϵ)σ−1
p d−1/2

)
= O

(
m1/2n1/2 log(τ/ϵ)σ−1

p d−1/2
)

.

Here (a) follows from the following argument:

∥∥∥W(T1) − W(0)
∥∥∥2

2

=
∑
j,r

∥∥∥Γ(T1)
j,r · ∥µ∥−2

2 · µ
∥∥∥2

2
+
∑
j,r

∥∥∥∥∥∥
K∑

k=1

∑
i∈[N ]

P
(T1)
j,r,k,i · ∥ξk,i∥−2

2 · ξk,i

∥∥∥∥∥∥
2

2

+ 2m

〈
Γ(t)

j,r · ∥µ∥−2
2 µ,

2∑
k=1

∑
i∈[N ]

P
(t)
j,r,k,i · ∥ξk,i∥−2

2 · ξk,i

〉
︸ ︷︷ ︸

=0

= O

(
m

∥µ∥2
2

max
j,r

(Γ(t)
j,r)2

)
+ O

(
mn

∥ξk,i∥2
2

max
j,r,k,i

(P (t)
j,r,k,i)

2

)
+ O

(
mn2 max

k,k,k′,i′

⟨ξk,i, ξk′,i′⟩
∥ξk,i∥4

2

)

= O

(
m

∥µ∥2
2

max
j,r

(Γ(t)
j,r)2

)
+ O

(
mn

∥ξk,i∥2
2

max
j,r,k,i

(P (t)
j,r,k,i)

2

)
+ O

(
mn2

σ2
pd3/2

)

where the last equality follows from Lemma 5. Getting back to our proof, we see that (b) follows from
Lemma 18, Lemma 19 and definition of W∗ in equation 58; (c) follows from Assumption 1.

Lemma 23. For any k ∈ [K], i ∈ [N ] we have for all t ∈ {T1, T1 + 1, . . . , T ∗ − 1}, s ∈ {0, 1, . . . , τ − 1},

yk,i⟨∇f(W(t,s)
k , xk,i), W∗⟩ ≥ log(2τ/ϵ).
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Proof.
yk,i⟨∇f(W(t,s)

k , xk,i), W∗⟩

= 1
m

∑
j,r

σ′
(

⟨w(t,s)
j,r,k, yk,iµ⟩

)
⟨µ, jw∗

j,r⟩ + 1
m

∑
j,r

σ′
(

⟨w(t,s)
j,r,k, ξk,i⟩

)
⟨yk,iξk,i, jw∗

j,r⟩

= 1
m

∑
j,r

∑
k′,i′

σ′
(

⟨w(t,s)
j,r,k, ξk,i⟩

)
5 log(2/ϵ)1

(
j = yk′,i′

) ⟨yk,iξk,i, jξk′,i′⟩
∥ξk′,i′∥2

2

+ 1
m

∑
j,r

∑
k′,i′

σ′
(

⟨w(t,s)
j,r,k, yk,iµ⟩

)
5 log(2/ϵ)1

(
j = yk′,i′

) ⟨µ, jξk′,i′⟩
∥ξk′,i′∥2

2

+ 1
m

∑
j,r

σ′
(

⟨w(t,s)
j,r,k, yk,iµ⟩

)
⟨µ, jw(0)

j,r ⟩ + 1
m

∑
j,r

σ′
(

⟨w(t,s)
j,r,k, ξk,i⟩

)
⟨yk,iξk,i, jw(0)

j,r ⟩

≥ 1
m

∑
j=yk,i,r

σ′
(

⟨w(t,s)
j,r,k, ξk,i⟩

)
5 log(2τ/ϵ)

︸ ︷︷ ︸
I1

− 1
m

∑
j,r

∑
(k′,i′ )̸=(k,i)

σ′
(

⟨w(t,s)
j,r,k, ξk,i⟩

)
5 log(2τ/ϵ) |⟨ξk,i, ξk′,i′⟩|

∥ξk′,i′∥2
2︸ ︷︷ ︸

I2

− 1
m

∑
j,r

∑
k′,i′

σ′
(

⟨w(t,s)
j,r,k, yk,iµ⟩

)
5 log(2τ/ϵ) |⟨µ, ξk′,i′⟩|

∥ξk′,i′∥2
2︸ ︷︷ ︸

I3

− 1
m

∑
j,r

σ′
(

⟨w(t,s)
j,r,k, yk,iµ⟩

) ∣∣∣⟨µ, jw(0)
j,r ⟩
∣∣∣︸ ︷︷ ︸

I4

− 1
m

∑
j,r

σ′
(

⟨w(t,s)
j,r,k, ξk,i⟩

) ∣∣∣⟨yk,iξk,i, jw(0)
j,r ⟩
∣∣∣︸ ︷︷ ︸

I5

.

Now noting that σ′(z) ≤ 1 and ⟨µ, ξk,i⟩ = 0 ∀k ∈ [K], i ∈ [N ] we have the following bounds for I2, I3, I4, I5
using Lemma 5, Lemma 6 and Lemma 10.

I2 = log(2τ/ϵ)O
(

n
√

log(n2/δ)/
√

d
)

, I3 = 0,

I4 = O
(√

log(m/δ) · σ0 ∥µ∥2

)
, I5 = O

(√
log(mn/δ) · σ0σp

√
d
)

.

For I1 we know that, ⟨w(t,s)
yk,i,r∗,k, ξk,i⟩ ≥ 0 ∀t ∈ [0 : T ∗ − 1], ∀s ∈ [0 : τ − 1] (Lemma 21 ) and r∗ such that

r∗ ∈ S
(0)
k,i :=

{
r ∈ [m] : ⟨w(0)

yk,i,r,k, ξk,i⟩ ≥ 0
}

. Thus,

I1 ≥ 1
m

|S(0)
k,i |5 log(2τ/ϵ) ≥ 2 log(2τ/ϵ).

where the last inequality follows from Lemma 7. Applying triangle inequality we have,

yk,i⟨∇f(W(t,s)
k , xk,i), W∗⟩ ≥ I1 − |I2| − |I3| − |I4| − |I5| ≥ log(2τ/ϵ),

where the last inequality follows from Assumption 1 and Assumption 4.

Lemma 24. (Lemma D.4 in Kou et al. (2023)) Under assumptions, for 0 ≤ t ≤ T ∗ and 0 ≤ s ≤ τ − 1, the
following result holds, ∥∥∥∇Lk(W(t,s)

k )
∥∥∥2

2
≤ O

(
max

{
∥µ∥2

2 , σ2
pd
})

Lk(W(t,s)
k ).

Lemma 25. For all k ∈ [K], T1 ≤ t ≤ T ∗ − 1, 0 ≤ s ≤ τ − 1 we have,

⟨∇Lk(W(t,s)
k ), W(t,s)

k − W∗⟩ ≥ Lk(W(t,s)
k ) − ϵ

2τ
.
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Proof.
⟨∇Lk(W(t,s)

k ), W(t,s)
k − W∗⟩

= 1
N

∑
i∈[N ]

ℓ′(t,s)
k,i ⟨yk,i∇f(W(t,s)

k , xk,i), W(t,s)
k − W∗⟩

(a)= 1
N

∑
i∈[N ]

ℓ′(t,s)
k,i

[
yk,if(W(t,s)

k , x) − yk,i⟨∇f(W(t,s)
k , xk,i), W∗⟩

]
(b)
≥ 1

N

∑
i∈[N ]

ℓ′(t,s)
k,i

[
yk,if(W(t,s)

k , xk,i) − log(2τ/ϵ)
]

(c)
≥ 1

N

∑
i∈[N ]

[
ℓ(yk,if(W(t,s)

k , xk,i)) − ϵ/2τ
]

= Lk(W(t,s)
k ) − ϵ

2τ
.

Here (a) follows from the property that ⟨∇f(W, x), W⟩ = f(W, x) for our two-layer CNN model; (b) follows
from equation 23 (note that ℓ′(t,s)

k,i ≤ 0), (c) follows from ℓ′(z)(z − z′) ≥ ℓ(z) − ℓ(z′) since ℓ(·) is convex and
log(1 + z) ≤ z.

Lemma 26. (Local Model Convergence) Under assumptions, for all t ≥ T1 we have,

∥∥∥W(t,τ)
k − W∗

∥∥∥2

2
≤
∥∥∥W(t) − W∗

∥∥∥2

2
− η

τ−1∑
s=0

Lk(W(t,s)
k ) + ηϵ.

Proof. ∥∥∥W(t,s+1)
k − W∗

∥∥∥2

2

=
∥∥∥W(t,s)

k − W∗
∥∥∥2

2
− 2η⟨∇Lk(W(t,s)

k ), W(t,s)
k − W∗⟩ + η2

∥∥∥∇Lk(W(t,s)
k )

∥∥∥2

2
(a)
≤
∥∥∥W(t,s)

k − W∗
∥∥∥2

2
− 2ηLk(W(t,s)

k ) + ηϵ

τ
+ η2

∥∥∥∇Lk(W(t,s)
k )

∥∥∥2

2
(b)
≤
∥∥∥W(t,s)

k − W∗
∥∥∥2

2
− ηLk(W(t,s)

k ) + ηϵ

τ
,

where (a) follows from Lemma 25; (b) follows from Lemma 24 and Assumption 5. Now starting from s = τ − 1
and unrolling the recursion we have,

∥∥∥W(t,τ)
k − W∗

∥∥∥2

2
≤
∥∥∥W(t,0)

k − W∗
∥∥∥2

2
− η

τ−1∑
s=0

Lk(W(t,s)
k ) + ηϵ.
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C.5 Proof of Theorem 1

For any t ≥ T1 we have,

∥∥∥W(t+1) − W∗
∥∥∥2

2
=
∥∥∥∥∥

K∑
k=1

1
K

W(t,τ)
k − W∗

∥∥∥∥∥
2

2

(a)
≤

K∑
k=1

1
K

∥∥∥W(t,τ)
k − W∗

∥∥∥2

2

(b)
≤
∥∥∥W(t) − W∗

∥∥∥2

2
− η

1
K

K∑
k=1

τ−1∑
s=0

Lk(W(t,s)
k ) + ηϵ

(c)
≤
∥∥∥W(t) − W∗

∥∥∥2

2
− η

1
K

K∑
k=1

Lk(W(t)) + ηϵ

=
∥∥∥W(t) − W∗

∥∥∥2

2
− ηL(W(t)) + ηϵ, (59)

where (a) follows from Jensen’s inequality, (b) follows from Lemma 26; (c) follows from
∑τ−1

s=0 Lk(W(t,s)
k ) ≤

Lk(W(t,0)
k ) = Lk(W(t)). From equation 59 we get,

ηL(W(t)) ≤
∥∥∥W(t) − W∗

∥∥∥2

2
−
∥∥∥W(t+1) − W∗

∥∥∥2

2
+ ηϵ.

Summing over t = T1, T1 + 1, . . . , T and dividing by η(T − T1 + 1) we have,

1
T − T1 + 1

T∑
t=T1

L(W(t)) ≤
∥∥W(T1) − W∗

∥∥2
2

η(T − T1 + 1) + ϵ, (60)

for all T1 ≤ T ≤ T ∗ − 1. Now equation 60 implies that we can find an iterate with training error less than 2ϵ
within,

T = T1 +
∥∥W(t) − W∗

∥∥2
2

ηϵ
= O

(
mn

ησ2
pdτ

)
+ O

(
mn log(τ/ϵ)

ησ2
pdϵ

)
rounds where the last equality follows from the definition of T1 in equation 54 and Lemma 22. This completes
our proof of Theorem 1.
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D Proof of Theorem 2

We first state some intermediate lemmas that will be used in the proof.

Lemma 27. Suppose ⟨w(t′)
j,r , jµ⟩ ≥ 0 for some t′ ≥ 0. Then for all t ≥ t′, s ∈ [0 : τ − 1], k ∈ [K], we have

⟨w(t,s)
j,r,k, jµ⟩ ≥ 0.

Proof. We will use a proof by induction. We will show that our claim holds for t = t′, s ∈ [0 : τ − 1] and also
t = (t′ + 1), s = 0. Using this fact we can argue that the claim holds for all t ≥ t′ and s ∈ [0 : τ − 1].

Case 1: First let us look at the local iterations s ∈ [0 : τ − 1] for t = t′. From Lemma 4 we have,

⟨w(t′,s)
j,r,k , jµ⟩ = ⟨w(t′)

j,r , jµ⟩ + γ
(t′,s)
j,r,k

(a)
≥ ⟨w(t′)

y,r , jµ⟩
(b)
≥ 0,

where (a) uses γ
(·,·)
j,r,k ≥ 0 by definition; (b) uses ⟨w(t′)

j,r , jµ⟩ ≥ 0.

Case 2: Now let us look at the round update t = t′ + 1, s = 0. We have,

⟨w(t′+1,0)
j,r,k , jµ⟩ = ⟨w(t′+1)

j,r , jµ⟩

= ⟨w(t′)
j,r , jµ⟩ + 1

K

K∑
i=1

γ
(t′,τ)
j,r,k

(a)
≥ ⟨w(t′)

j,r , jµ⟩
(b)
≥ 0,

where (a) uses γ
(·,·)
j,r,k ≥ 0 by definition; (b) uses ⟨w(t′)

j,r , jµ⟩ ≥ 0.

Lemma 28. Under Condition 1, for any 0 ≤ t ≤ T ∗ − 1 we have,

Γ(t)
j,r ≥ Γ(t−1)

j,r + η ∥µ∥2
2

4m

τ−1∑
s=0

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ if ⟨w(t−1)
j,r , jµ⟩ ≥ 0, (61)

and,

Γ(t)
j,r ≥ Γ(t−1)

j,r + η ∥µ∥2
2

4m

(
min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣+ h

τ−1∑
s=1

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣) if ⟨w(0)
j,r , jµ⟩ < 0. (62)

Proof.

From equation 16 we have the following update equation for Γ(t)
j,r,

Γ(t)
j,r = Γ(t−1)

j,r − η

nm

τ−1∑
s=0

∑
k,i

ℓ′(t−1,s)
k,i · σ

′(
⟨w(t−1,s)

j,r,k , yk,iµ⟩
)

· ∥µ∥2
2 . (63)

Proof of equation 61. In this case we know from Lemma 27 that if ⟨w(t)
j,r, jµ⟩ ≥ 0, then

⟨w(t,s)
j,r,k, jµ⟩ ≥ 0 for all k ∈ [K], s ∈ [0 : τ − 1]. (64)
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Using this observation we have from equation 63,

Γ(t)
j,r

(a)
≥ Γ(t−1)

j,r + η|Dj | ∥µ∥2
2

nm

τ−1∑
s=0

min
(k,i)∈Dj

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣
(b)
≥ Γ(t−1)

j,r + η ∥µ∥2
2

4m

τ−1∑
s=0

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ (65)

where (a) follows from the definition of Dj := {k ∈ [K], i ∈ [N ] : yk,i = j}; (b) follows from Lemma 9 and
min(k,i)∈Dj

∣∣∣ℓ′(t′,s)
k,i

∣∣∣ ≥ mink,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣.
Proof of equation 62. First let us look at the iteration s = 0. In this case we know that ⟨w(t−1,0)

j,r,k , jµ⟩ =
⟨w(t−1)

j,r , jµ⟩ < 0 and thus ⟨w(t−1)
j,r , yk,iµ⟩ > 0 for yk,i = −j. Using this observation we have,

− η

nm

∑
k,i

ℓ′(t−1,0)
k,i · σ

′(
⟨w(t−1,0)

j,r,k , yk,iµ⟩
)

· ∥µ∥2
2 ≥

η |D−j | ∥µ∥2
2

nm
min

(k,i)∈D−j

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣
(a)
≥

η ∥µ∥2
2

4m
min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣
where (a) follows from Lemma 9 and min(k,i)∈Dj

∣∣∣ℓ′(t′,s)
k,i

∣∣∣ ≥ mink,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣.
Now let us look at the case 1 ≤ s ≤ τ − 1. In this case if ⟨w(t−1,s)

j,r,k , jµ⟩ < 0 then,

− η

nm

∑
i

ℓ′(t−1,s)
k,i · σ

′(
⟨w(t−1,s)

j,r,k , yk,iµ⟩
)

· ∥µ∥2
2 ≥

η |D−j,k| ∥µ∥2
2

nm
min

(k,i)∈D−j,k

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ , (66)

and if ⟨w(t−1,s)
j,r,k , jµ⟩ ≥ 0 then,

− η

nm

∑
i

ℓ′(t−1,s)
k,i · σ

′(
⟨w(t−1,s)

j,r,k , yk,iµ⟩
)

· ∥µ∥2
2 ≥

η |Dj,k| ∥µ∥2
2

nm
min

(k,i)∈Dj,k

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ .
Thus,

− η

nm

∑
i

ℓ′(t−1,s)
k,i · σ

′(
⟨w(t−1,s)

j,r,k , yk,iµ⟩
)

· ∥µ∥2
2 ≥

η min{|D+,k| , |D−,k|} ∥µ∥2
2

nm
min

(k,i)∈Dk

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣ . (67)

Using the results in equation 66 and equation 67 we have,

Γ(t)
j,r ≥ Γ(t−1)

j,r + η ∥µ∥2
2

4m
min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣+ η ∥µ∥2
2

m

∑
k

min{|D+,k| , |D−,k|}
n

τ−1∑
s=1

min
(k,i)

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣
(a)
≥ Γ(t−1)

j,r + η ∥µ∥2
2

4m

(
min
k,i

∣∣∣ℓ′(t−1,0)
k,i

∣∣∣+ h

τ−1∑
s=1

min
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣) ,

where (a) follows from our definition of h in equation 1.

Lemma 29. Let Aj := {r ∈ [m] : ⟨w(0)
j,r , jµ⟩ ≥ 0}. For any 0 ≤ t ≤ T ∗ − 1 we have,

1. For any j ∈ {±1}, r ∈ [m] : Γ(t)
j,r ≤ η∥µ∥2

2
m

∑t−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣.
2. For any r ∈ Aj : Γ(t)

j,r ≥ η∥µ∥2
2

4m

∑t−1
t′=0

∑τ−1
s=0 min(k,i)

∣∣∣ℓ′(t′,s)
k,i

∣∣∣.
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3. For any r /∈ Aj : Γ(t)
j,r ≥ η∥µ∥2

2
4m

∑t−1
t′=0

(
mink,i

∣∣∣ℓ′(t′,0)
k,i

∣∣∣+ h
∑τ−1

s=1 mink,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣).

Proof.

Unrolling the iterative update in equation 16 we have,

Γ(t)
j,r = η

nm

t−1∑
t′=0

τ−1∑
s=0

∑
k,i

(−ℓ′(t′,s)
k,i ) · σ

′(
⟨w(t′,s)

j,r,k , yk,iµ⟩
)

· ∥µ∥2
2 . (68)

Proof of equation 1. Using equation 68, we can get an upper bound on Γ(t)
j,r as follows.

Γ(t)
j,r ≤

η ∥µ∥2
2

m

t−1∑
t′=0

τ−1∑
s=0

max
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣ ,
where the inequality follows from σ′(·) ≤ 1.

Proof of equation 2. From Lemma 27 we know that if ⟨w(0)
j,r , jµ⟩ ≥ 0 then ⟨w(t′)

j,r , jµ⟩ ≥ 0 for all t′ ≥ 0. Thus
using equation 61 repeatedly for all 0 ≤ t′ ≤ t − 1 we get,

Γ(t)
j,r ≥

η ∥µ∥2
2

4m

t−1∑
t′=0

τ−1∑
s=0

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣ .
Proof of equation 3. Note that the bound in equation 62 holds even if ⟨w(t−1)

j,r , jµ⟩ ≥ 0. Thus applying
equation 62 repeatedly for all 0 ≤ t′ ≤ t − 1 we get,

Γ(t)
j,r ≥

η ∥µ∥2
2

4m

t−1∑
t′=0

(
min
k,i

∣∣∣ℓ′(t′,0)
k,i

∣∣∣+ h

τ−1∑
s=1

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣) .

Lemma 30. Under assumptions, for any 0 ≤ t ≤ T ∗ − 1 we have,

1.
∑

k,i P
(t)
j,r,k,i ≤ 3ησ2

pd

2m

∑t−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣.
2.
∑

k,i P
(t)
j,r,k,i ≥ ησ2

pd

16m

∑t−1
t′=0

∑τ−1
s=0 min(k,i)∈S̃

(t′,s)
j,r

∣∣∣ℓ′(t′,s)
k,i

∣∣∣
where S̃

(t′,s)
j,r :=

{
k ∈ [K], i ∈ [N ] : ⟨w(t′,s)

j,r,k , ξk,i⟩ ≥ 0
}

.

Proof.

From equation 18 we have the following update equation for P
(t)
j,r,k,i.

∑
k,i

P
(t)
j,r,k,i =

∑
k,i

P
(t−1)
j,r,k,i − η

nm

τ−1∑
s=0

∑
k,i:yk,i=j

ℓ′(t−1,s)
k,i · σ

′(
⟨w(t−1,s)

j,r,k , ξk,i⟩
)

· ∥ξk,i∥2
2

=
∑
k,i

P
(t−1)
j,r,k,i − η

nm

τ−1∑
s=0

∑
(k,i)∈S̃

(t−1,s)
j,r

ℓ′(t−1,s)
k,i · ∥ξk,i∥2

2 . (69)

where the last equality follows from the definition of S̃
(t,s)
j,r .

49



Under review as submission to TMLR

Proof of equation 1. Now using equation 69 we have,

∑
k,i

P
(t)
j,r,k,i

(a)
≤
∑
k,i

P
(t−1)
j,r,k,i +

3ησ2
pd

2m

τ−1∑
s=0

max
k,i

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣
where (a) follows from Lemma 5. Unrolling the recursion above we have the following upper bound,

∑
k,i

P
(t)
j,r,k,i ≤

3ησ2
pd

2m

t−1∑
t′=0

τ−1∑
s=0

max
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣ .
Proof of equation 2. From equation 69 we have,

∑
k,i

P
(t)
j,r,k,i

(a)
≥
∑
k,i

P
(t−1)
j,r,k,i +

ησ2
pd

16m

τ−1∑
s=0

min
(k,i)∈S̃

(t−1,s)
j,r

∣∣∣ℓ′(t−1,s)
k,i

∣∣∣
where (a) follows from Lemma 5 and Proposition 2 part 5 which implies

∣∣∣S̃(t−1,s)
j,r

∣∣∣ ≥ n/8. Unrolling the
recursion above we have,

∑
k,i

P
(t)
j,r,k,i ≥

ησ2
pd

16m

t−1∑
t′=0

τ−1∑
s=0

min
(k,i)∈S̃

(t′,s)
j,r

∣∣∣ℓ′(t′,s)
k,i

∣∣∣ .

Lemma 31. For all t ≥ T1, we have ⟨w(t)
y,r, yµ⟩ > 0.

Proof. We have,

⟨w(t)
y,r, yµ⟩ = ⟨w(0)

y,r, yµ⟩ + Γ(t)
j,r

(a)
≥ −Θ

(√
log(m/δ) · σ0 ∥µ∥2

)
+ Γ(t)

j,r

(b)
≥ −Θ

(√
log(m/δ) · σ0 ∥µ∥2

)
+ η ∥µ∥2

2
4m

T1−1∑
t′=0

min
k,i

∣∣∣ℓ′(t′,0)
k,i

∣∣∣
(c)= −Θ

(√
log(m/δ) · σ0 ∥µ∥2

)
+ Ω

(
n ∥µ∥2

2
σ2

pdτ

)
(d)
≥ Θ

(√
log(m/δ) ·

√
n ∥µ∥2
σpdτ

)
+ Ω

(
n ∥µ∥2

2
σ2

pdτ

)
(e)
≥ 0. (70)

Here (a) follows from Lemma 6; (b) follows from Lemma 29; (c) follows from the definition of T1 in
Equation (54); (d) follows from Assumption 4; (e) follows from Assumption 3 and Assumption 2.

Lemma 32. Under Condition 1, for any T1 ≤ t ≤ T ∗ − 1 we have,

1.
∥∥w(0)

j,r

∥∥
2

Θ(σ−1
p d−1/2n−1/2)

∑
k,i

P
(t)
j,r,k,i

= O (1)

2. Γ(t)
j,r

∥µ∥−1
2

Θ(σ−1
p d−1/2n−1/2)

∑
k,i

P
(t)
j,r,k,i

= O (1)
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Proof of equation 1. Note from our proof of Lemma 21, we know that for all T1 ≤ t ≤ T ∗ − 1 we have
P

(t)
j,r,k∗,i∗ ≥ 2 for all (k∗, i∗) ∈ S̃

(0)
j,r =

{
k ∈ [K], i ∈ [N ] : yk,i = j, ⟨w(0)

j,r,k, ξk,i⟩ ≥ 0
}

. Thus,

∑
k,i

P
(t)
j,r,k,i ≥ 2

∣∣∣S̃(0)
j,r

∣∣∣ (a)= Ω (n) , (71)

where (a) follows from Lemma 8. This implies,∥∥∥w(0)
j,r

∥∥∥
2

Θ
(
σ−1

p d−1/2n−1/2
)∑

k,i P
(t)
j,r,k,i

(a)=
Θ
(

σ0
√

d
)

Θ
(
σ−1

p d−1/2n−1/2
)∑

k,i P
(t)
j,r,k,i

(b)= O
(

σ0σpdn−1/2
)

(c)= O (1) .

Here (a) follows from Lemma 6; (b) follows from equation 71; (c) follows from Assumption 4.

Proof of equation 2. From Lemma 28 and Lemma 30 we have,

Γ(t)
j,r∑

k,i P
(t)
j,r,k,i

≤
16 ∥µ∥2

2
σ2

pd

∑t−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣∑t−1
t′=0

∑τ−1
s=0 min(k,i)∈S̃

(t′,s)
j,r

∣∣∣ℓ′(t′,s)
k,i

∣∣∣
(a)
≤

16C2 ∥µ∥2
2

σ2
pd

,

where (a) follows from Proposition 2 part 3 which implies maxk,i

∣∣∣ℓ′(t′−1,s)
k,i

∣∣∣ ≤ C2 min(k,i)∈S̃
(t′−1,s)
j,r

∣∣∣ℓ′(t′−1,s)
k,i

∣∣∣
for all 0 ≤ t′ ≤ T ∗ − 1, 0 ≤ s ≤ τ − 1. Thus,

Γ(t)
j,r ∥µ∥−1

2

Θ
(
σ−1

p d−1/2n−1/2
)∑

k,i P
(t)
j,r,k,i

= O
(

n1/2 ∥µ∥2
σpd1/2

)
(a)= O (1) .

where (a) follows from Assumption 1.

Lemma 33. For any T1 ≤ t ≤ T ∗ − 1 we have,∑
r σ
(

⟨w(t)
y,r, yµ⟩

)
∑

r,k,i P
(t)
−y,r,k,i

≥
C4 ∥µ∥2

2
σ2

pmd

(
|Ay| + (m − |Ay|)

(
h + 1

τ
(1 − h)

))
,

where C4 > 0 is some constant.

Proof.

We can write, ∑
r

σ
(

⟨w(t)
y,r, yµ⟩

)
=

∑
r:⟨w(0)

y,r,yµ⟩≥0

σ
(

⟨w(t)
y,r, yµ⟩

)
︸ ︷︷ ︸

I1

+
∑

r:⟨w(0)
y,r,yµ⟩<0

σ
(

⟨w(t)
y,r, yµ⟩

)
︸ ︷︷ ︸

I2

. (72)

First note that if ⟨w(0)
y,r, yµ⟩ ≥ 0 then from Lemma 27 we know that ,

⟨w(t,s)
y,r,k, yµ⟩ ≥ 0 for all k ∈ [K], 0 ≤ t ≤ T ∗ − 1, 0 ≤ s ≤ τ − 1. (73)
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We can bound I1 as follows:

I1 =
∑

r:⟨w(0)
y,r,yµ⟩≥0

σ
(

⟨w(t)
y,r, yµ⟩

)
(a)=

∑
r:⟨w(0)

y,r,yµ⟩≥0

⟨w(t)
y,r, yµ⟩

(b)
≥

∑
r:⟨w(0)

y,r,yµ⟩≥0

Γ(t)
y,r

(c)= Ω
(

|Ay|η ∥µ∥2
2

t−1∑
t′=0

τ−1∑
s=0

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣) . (74)

Here (a) follows from equation 73; (b) follows from Lemma 4; (c) follows from Lemma 29 part 2. For I2, we
have the following bound:

I2 =
∑

r:⟨w(0)
y,r,yµ⟩<0

σ
(

⟨w(t)
y,r, yµ⟩

)
(a)
≥

∑
r:⟨w(0)

y,r,yµ⟩<0

⟨w(0)
y,r, yµ⟩ + Γ(t)

j,r

(b)
≥ −(m − |Ay|)Θ

(√
log(m/δ) · σ0 ∥µ∥2

)
+

∑
r:⟨w(0)

y,r,yµ⟩<0

Γ(t)
j,r

(c)= Ω

 ∑
r:⟨w(0)

y,r,yµ⟩<0

Γ(t)
j,r


(d)
≥ Ω

(
(m − |Ay|)η ∥µ∥2

2

(
T1−1∑
t′=0

min
k,i

∣∣∣ℓ′(t′,0)
k,i

∣∣∣+ h

T1−1∑
t′=0

τ−1∑
s=1

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣)

+ (m − |Ay|)η ∥µ∥2
2

t−1∑
t′=T1

τ−1∑
s=0

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣). (75)

Here (a) follows from σ(z) ≥ z; (b) follows from Lemma 6 and Assumption 4; (c) follows from Lemma 31; (d)
follows from Lemma 29. Substituting equation 74 and equation 75 in equation 72 we have,

∑
r

σ
(

⟨w(t)
y,r, yµ⟩

)
≥ Ω

(
|Ay|η ∥µ∥2

2

t−1∑
t′=0

τ−1∑
s=0

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣
+ (m − |Ay|)η ∥µ∥2

2

(
T1−1∑
t′=0

min
k,i

∣∣∣ℓ′(t′,0)
k,i

∣∣∣+ h

T1−1∑
t′=0

τ−1∑
s=1

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣)

+ (m − |Ay|)η ∥µ∥2
2

t−1∑
t′=T1

τ−1∑
s=0

min
k,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣) (76)

Now using equation 76 and Lemma 30 we have,
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∑
r σ
(

⟨w(t)
y,r, yµ⟩

)
∑

r,k,i P
(t)
−y,r,k,i

(a)
≥ Ω

(
∥µ∥2

2
σ2

pmd

(
|Ay|

∑t−1
t′=0

∑τ−1
s=0 mink,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣∑t−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣
+ (m − |Ay|)

∑T1−1
t′=0

(
mink,i

∣∣∣ℓ′(t′,0)
k,i

∣∣∣+ h
∑τ−1

s=1 mink,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣)+
∑t−1

t′=0
∑τ−1

s=0 mink,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣∑T1−1
t′=0

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣+
∑t−1

t′=T1

∑τ−1
s=0 maxk,i

∣∣∣ℓ′(t′,s)
k,i

∣∣∣
))

(b)
≥ Ω

(
∥µ∥2

2
σ2

pmd

(
|Ay| + (m − |Ay|)

(
h + 1

τ
(1 − h)

)))

where (a) follows from Lemma 30; (b) follows from Proposition 2 part 3 and Equation (56).

Lemma 34. Under assumptions, for all T1 ≤ t ≤ T ∗ − 1 we have

∑
r σ
(

⟨w(t)
y,r, yµ⟩

)
σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

≥ Θ
(

n1/2 ∥µ∥2
2

σ2
pmd1/2

(
|Ay| + (m − |Ay|)

(
h + 1

τ
(1 − h)

)))
.

Proof. To prove this, we first show that
∥∥∥w(t)

j,r

∥∥∥
2

= O
(
σ−1

p d−1/2n−1/2) ·
∑

k,i P
(t)
j,r,k,i for all j ∈ {±1}.

We first bound the norm of the noise components as follows.

∥∥∥∥∥∥
∑
k,i

P
(t)
j,r,k,i · ∥ξk,i∥−2

2 · ξk,i

∥∥∥∥∥∥
2

2

=
∑
k,i

(
P
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Here for (a) uses Lemma 5; (b) uses maxj,r,k,i

∣∣∣P (t)
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. Now from equation 15 we know that,
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Using triangle inequality and equation 77 we have,∥∥∥w(t)
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where (a) follows from Lemma 33.

Lemma 35. (sub-result in Theorem E.1 in Cao et al. (2022).) Denote g(ξ) =
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2
.

D.1 Test Error Upper Bound

We now prove the upper bound on our test error in the benign overfitting regime as stated in Theorem 2.

First note that for some given (x, y) we have,

P(y ̸= sign(f(W(t), x)) = P(yf(W(t), x) ≤ 0).

We can write,
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Now note that since t ≥ T1 we know that σ
(

⟨w(t)
−y,r, yµ⟩

)
= 0 for all r ∈ [m] from Lemma 31. Thus,
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Here (a) follows from the definition of g(ξ) in Lemma 35; (b) follows from the result in Lemma 35; (c)
uses (a − b)2 ≥ a2/2 − b2, ∀a, b ≥ 0; (d) uses Lemma 34; (e) follows from the benign overfitting condition
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2 = Ω
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and choosing sufficiently large C6. Now note that,
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This completes our proof for the upper bound on the test error in the benign overfitting regime.

D.2 Test Error Lower Bound

We first state some intermediate lemmas that we use in our proof.

Lemma 36. (Lemma 5.8 in Kou et al. (2023)) Let g(ξ) =
∑

j,r jσ
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Lemma 37. (Proposition 2.1 in Devroye et al. (2018)) The TV distance between N (0, σ2

pId) and N (v, σ2
pId)

is less than ∥v∥2
2 /2σp.

Proof.

We have,
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Here (a) follows from equation 78; P(y ̸= sign(f(W(t), x)) = P(yf(W(t), x) ≤ 0); (b) fol-
lows from σ
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)

= 0 (Lemma 31) and σ
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Now we know from Lemma Lemma 36, that
∑

j [(g(jξ + v) − g(jξ)] ≥ 4C6 maxj{
∑

r Γ(T )
j,r }. This implies

that one one of the ξ, ξ + v, −ξ, −ξ + v must belong to Ω. Therefore,

min {P(Ω),P(−Ω),P(Ω − v),P(−Ω − v)} ≥ 0.25 (80)

Also note that by symmetry P(Ω) = P(−Ω). Furthermore,

|P (Ω) − P (Ω − v)| =
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Here (a) follows from the definition of TV distance; (b) follows from Lemma Lemma 37. Thus we see that
equation 81 along with equation 80 implies that P(Ω) = 0.22. Substituting this in equation 79 we get
L0−1

D (W(T )) = 0.1 as claimed.

E Main Paper Lemma Proofs

E.1 Proof of Lemma 1

This lemma follows from directly from Lemma 29 and the constant lower bound on cross-entropy loss
derivatives, i.e., Equation (56).

E.2 Proof of Lemma 2

This lemma follows from directly from Lemma 30 and the constant lower bound on cross-entropy loss
derivatives, i.e., Equation (56).
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E.3 Proof of Lemma 3

Using our result in Lemma 28 with τ = 1 and h = 0, we have after T1 = O
(

mn
ησ2

pd

)
iterations for all j ∈ {±1}

and r ∈ [m],
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Here (a) follows from equation 56. Now for any t ≥ T1 we have from Lemma 4,
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2
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where (a) follows from the fact that Γ(t)
j,r is non-decreasing with respect to t, (b) follows from Assumption 4

and Lemma 6; (c) follows from Assumption 3.

F Additional Experimental Details

Implementation. We use PyTorch Paszke et al. (2019) to run all our algorithms and also simulate our
synthetic data setting. For experiments on neural network training we use one H100 GPU with 2 cores and
20GB memory. For synthetic data experiments we use one T4 GPU. The approximate total run-time for all
our experiments on neural networks is about 36 hours. The approximate total run-time for all experiments
on the synthetic data setting is about 1 hour.

Details for Figure 1. We simulate a FL setup with K = 10 clients on the CIFAR10 data partitioned
using Dirichlet(α) with α = 0.1 for the non-IID setting and α = 10 for the IID setting. For pre-training,
we consider a Squeezenet model pre-trained on ImageNet Russakovsky et al. (2015) which is available in
PyTorch. Following Nguyen et al. (2022) we replace the BatchNorm layers in the model with GroupNorm
Wu & He (2018). For FL optimization we use the vanilla FedAvg optimizer with server step size ηg = 1 and
train the model for 500 rounds and 1 local epoch at each client. For centralized optimization we use SGD
optimizer and run the optimization for 200 epochs. Learning rates were tuned using grid search with the grid
{0.1, 0.01, 0.001}. Final accuracies were reported after averaging across 3 random seeds.

Details for and Figure 2 and Figure 3. For these experiments we simulate a synthetic data setup
following our data model in Section 2. We set the dimension d = 200, n = 20 datapoints (we keep n small to
ensure we are in the over-parameterized regime), m = 10 filters, K = 2 clients, N = 10 local datapoints. The
signal strength is ∥µ∥2

2 = 3, noise variance is σ2
p = 0.1 and variance of Gaussian initialization is σ0 = 0.01.

The global dataset has 10 datapoints with positive labels and 10 datapoints with negative labels. We also
create a test dataset of 1000 datapoints following the same setup to evaluate our test error.

Details for Figure 5 and Figure 6. We simulate a FL setup with K = 20 clients using Dirichlet(α) Hsu
et al. (2019). For pre-training, we consider a ResNet18 model pre-trained on ImageNet Russakovsky et al.
(2015) which is available in PyTorch. Following Nguyen et al. (2022) we replace the BatchNorm layers in the
model with GroupNorm Wu & He (2018). For FL optimization we use the FedAvg optimizer with server step
size ηg = 1 and 1 local epoch at each client. In the case of random initiation, for local optimization we use
SGD optimizer with a learning rate of 0.01 and 0.9 momentum. In the case of pre-trained initiation, for local
optimization we use SGD optimizer with a learning rate of 0.001 and 0.9 momentum. The learning rate is
decayed by a factor of 0.998 in every round in the case for both initializations. Each experiment is repeated
with 3 different random seeds.
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